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• More generally, we define a ring to be a non-empty set  R  having two binary operations (we’ll 
think of these as addition and multiplication) which is an Abelian group under  +  (we’ll denote 
the additive identity by 0),  and satisfies the following additional properties:

(v) a(bc) = (ab)c  ∀ a, b, c ∈ R  i.e., associativity for multiplication

(vi) ∃ 1 ∈ R such that  1a = a = a1  ∀ a ∈ R  i.e., a multiplicative identity*

(vii) a(b + c) = (ab) + (ac)  and  (a + b)c = (ac) + (bc)  ∀ a, b, c ∈ R  i.e., distributivity**

• Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring 
ℤn of integers mod n, the Boolean ring of 𝓟(A) for some set A under + (symmetric difference) 
and ∩ (as multiplication),  and the ring of 3 × 3 matrices of real numbers.  Since  +  is always 
commutative in a ring, we say that a ring is commutative if its multiplication is commutative 
(notice that the matrix ring fails to be commutative).  

• Notice also that there’s no requirement for a ring to have multiplicative inverses.  If a ring is 
commutative and has multiplicative inverses for everything other that 0, then it’s called a field.  
For example, the field of rational numbers, or of real numbers, or integers modulo a prime, or 
non-singular 3 × 3 matrices together with the zero matrix.

• The fact that the integers are a commutative ring, but fail to be a field, and that they’re very 
useful(!!), is why attention is focussed on rings.  In this course we’ll mostly confine our 
attention to commutative rings because of the more immediate application to the integers.
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*  Some authors prefer not to include the requirement of a general ring having a 
multiplicative identity, preferring to talk about rings and rings with identity as very 
distinct animals.  There are some benefits to this, however the community is 
divided on this, so for simplicity we’ll go with the side that includes 1.

**  There are a bunch of useful properties common to all rings.  For example,  
0x = 0  always,  since  0x = (0 + 0)x  =  0x + 0x.   Also  (–1)x = –x  always,  since 
x + (–1)x  =  1x + (–1)x  =  (1 + (–1))x  = 0x = 0.  Similarly, (–a)(–b) = ab always.



CS 2800 - Number Theory

• Returning to where we left off two slides ago, we observed that in the field  ℤp   any non-zero 
element   a   has the property that  ap–1 = 1.  What about the commutative ring  ℤn  when  n  
isn’t a prime, for example when  n = pr ?

• First some definitions.  Let’s define a unit in a commutative* ring to be any element  u ∈ R  such 
that  ∃ v ∈ R  with  uv = 1 .  The set of all units in a ring (clearly non=empty since  1 is a unit) is 
called the group of units of the ring  R ,  and is often denoted  R× .

• We define  p ∈ R  to be a prime if it’s not a unit and if  p | ab  ⟹  p | a  or  p | b . **

• Similarly, we can define a zero divisor to be any non-zero element  r ∈ R  such that  ∃ s ∈ R with 
s ≠ 0  and  rs = 0 .   Notice that zero divisors can’t have multiplicative inverses.***  If  t ∈ R is 
such that  tk = 0  for some  k ≥ 1 ,  then  t  is said to be nilpotent.

• Notice that if a ring has no zero divisors****, then even if it doesn’t have multiplicative inverses, 
we can still solve equations like  ax = ab  if  a ≠ 0,  for then  0 = ax – ab = a(x – b) ,  and the 
lack of zero divisors then implies that either  a = 0  or  x – b = 0,  hence  x – b = 0  and so  x = 
b .  So ‘cancellation’ is still possible even without inverses!

• So what does the group of units of  R = ℤn  look like?  We could list the elements, so if  n = pr :

R×   =   { 0, 1, 2, . . . , p –1, p, p + 1, . . . , 2p – 1, 2p, 2p + 1, . . . , 3p – 1, 3p, 3p + 1, . . . . . , pr–1 – 1, pr–1, pr–1 + 1, . . . , pr – 1 }

• So there were a total of  pr  elements in  R,  from which we’ve deleted  pr–1  of them (since 
multiples of  p  can’t have multiplicative inverses), leaving us with  |R×| = pr – pr–1 .

30

*  If defining this for a non-commutative ring, then we’d have to require both 
that  uv = 1  and  vu = 1.

**  Recall that the notation  x | y  means that  x  divides  y  exactly.  Notice also 
that our definition specifically excludes  1  from being a prime.

****  Such a ring is called an integral domain.***  Otherwise if  mk = 1  and  rm = 0,  then  r = r1 = r (mk) = (rm) k = 0k = 0 .

\ \ \ \\
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• More generally,  if  n  is some composite number, then n = rm, whereupon m is a zero divisor 
and so can’t have a multiplicative inverse.  So  R×  comprises numbers between 1 and n which 
are co-prime to n.   This quantity is a function, namely φ(n), and is called the Euler phi function.

• Notice that  aφ(n) = 1  for any non zero-divisor  a ∈ R×  when  R = ℤn .  

• How can we calculate φ(n)?   We’ve seen that φ(n) = p – 1  if  n = p (a prime),  and also that  
φ(n) = pr  –  pr –1  if  n = pr .   Indeed, it’s not hard to show* that if  a  and  b  are co-prime, then  
φ(ab) = φ(a)	  φ(b) ,   hence for  n  any composite number,  by factorising  n  completely we can 
get   φ(n)  =  φ(pr . . . . qz)  =  (pr – pr –1) . . . . (qz – qz –1)  =  n(1 – p–1) . . . . (1 – q–1) .

• Let’s play with what we have for a bit.  We’ll calculate  235 (mod 7).  Since  35 = (6)(5) + 5   and 
φ(7) = 6 ,  we can see that  235  =  (26)5 × 25  = 1 × 32 = 4 (mod 7).

• Similarly, we can calculate  1181050696835 (mod 1176).  Firstly we factorise 1176 = (23)(3)(72),  so 
then 	  φ(1176)  =  (8 – 4)(3 – 1)(49 – 7)  =  336 ,  and then compute  81050696835 (mod 336), 
namely 3.  Hence  1181050696835 =  (11336)241222312  × 113  = 1331 (mod 1176) = 155 (mod 1176).

• In order to be able to handle multiple simultaneous modular equations, we’ll need to be able to 
relate multiple rings.  Essentially, each ring will ‘define’ the effect of each modular factor, but 
there’s a natural isomorphism which will make life much easier.  Let’s start by supposing that 
we have two rings  R  and  S ,  then we can make the set  R = R × S  into a ring in a natural 
way by defining  (r ,  s) + (r′ ,  s′) = (r + r′,  s + s′)  and  (r ,  s)(r′ ,  s′) = (rr′,  ss′) .
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*  you can check that this is true simply by comparing the number of zero divisors of 
a, b, and ab.   We can also get this as a corollary of the Chinese remainder theorem 
we’ll prove shortly.
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• Define the subset  A ⊆ R  to be absorptive*  if it’s a subgroup of  R  under  +  and that  rA ⊆ A  
and  Ar ⊆ A **  for all  r ∈ R  (hence the use of the word ‘absorptive’).   As a natural example of 
such a set in the ring  ℤ  consider  A = nℤ ,  since for any r ∈ R,  any  t ∈ rA  is automatically a 
multiple of  n  and so lives in  A .  

• It’s not hard to show that if  f : R ⟶ S  is a ring homomorphism, then  ker f  is an absorptive 
set (the kernel for rings will be the set of all elements of R which get mapped to 0S).  Notice 
that if  A  is absorptive and  1 ∈ A ,  then  A = R ,  so typically we’re more interested in the 
cases where  A  doesn’t contain 1. 

• We define  A + B  =  { a + b | a ∈ A ,  b ∈ B }  and  AB = { Σ aibi | ai ∈ A ,  bi ∈ B } ,   where the 
summation in  AB  is only ever allowed to be over finitely many things.  It’s easy to show that 
both of these are absorptive if  A  and  B  are absorptive.

• If  A and B are absorptive in R, then we can define  f : R ⟶ R/A × R/B  by  f(r) = (r + A , r + B).  
Then  f  is a (ring) homomorphism,***  with ker f  =  A ∩ B.

• If moreover  A + B = R,  then  f  is onto and  A ∩ B = AB,****  hence  R/AB  is isomorphic to  
R/A × R/B.  In the context of  R = ℤ  and  A = mℤ  and  B = nℤ , then if  m  and  n  are coprime,  
then  AB = mnℤ .  However, why is it obvious that  A + B = R  in this case?  It’s all down to the 
fact that the gcd (greatest common divisor) of  m  and  n  is 1.
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***  Showing  f(r + s) = f(r) + f(s)  is straightforward.  However, the absorptive 
nature of A and B is needed to show that  f(rs) = f(r) f(s)  since, for example,     
(r + A) (s + B) = rs + rA + Ar + AA = rs + A + A + A = (rs) + A

*  This is not standard notation.  The standard language is to call these sets ideals.  
However, the word ‘absorptive’ seems to characterise how they behave, so for 
now we’ll use this more descriptive language.

**  Notice that in fact, rA = A = Ar .  That’s easy to see once you spot that 1 ∈ R 
means that 1A ⊆ A.

****   Since A is absorptive, aibi ∈ A ,  and since B is absorptive, aibi ∈ B ,  and 
since absorptive sets are subgroups under +,  Σ aibi ∈ A ∩ B  !   AB ⊆ A ∩ B .  
Now if  A + B = R  then  1 ∈ A + B  so  1 = a + b  for some a ∈ A and b ∈ B ,  
but then  c ∈ A ∩ B !  c = c1 = c(a + b) = ca + cb ∈ AB .  Hence  A ∩ B ⊆ AB .
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• So we need an effective way to compute the gcd of a pair of numbers.  Claim:  if  d = gcd(m,n)  
then the equation  mx + ny = kd  has solutions  x, y ∈ ℤ  ∀ k ∈ ℤ .

• We’ll approach this by actually constructing a solution to the equation 13155x + 2367y = 3 
using the Euclidean subtraction algorithm.

Divide  2367  into  13155  to get  13155 = 5 × 2367 + 1320

Divide  1320  into  2367  to get  2367 = 1 × 1320 + 1047

Divide  1047  into  1320  to get  1320 = 1 × 1047 + 273

Divide  273  into  1047  to get  1047 = 3 × 273 + 228

Divide  228  into  273  to get  273 = 1 × 228 + 45

Divide  45  into  228  to get  228 = 5 × 45 + 3

Divide  3  into  45  to get  45 = 15 × 3 + 0   STOP .   

Hence this last ‘dividing value’ is the gcd of  2367 and 13155 .

• This is actually a process to find a largest                                                                        
common measurement unit for two lengths;                                                                           
at least, that was how it was formulated in                                                                       
ancient Greek times.  It was used to get                                                            
approximations for the ratios of a side to the                                                               
diagonal of a square, for a side to the diagonal                                                                       
of a regular pentagon, and for the ratio of the circumference to the diameter of a circle, and is 
strongly related to the construction of continued fractions.
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Hence if we let units = 3, then working from the bottom up, 
45 = 15 units
228 = 5(45) + 3 = 5(15 units) + 1 unit = 76 units
273 = 1(228) + 45 = 1(76) + 15 units = 91 units
1047 = 3(273) + 228 = 3(91) + 76 units = 349 units
1320 = 1(1047) + 273 = 1(349) + 91 units = 440 units
2367 = 1(1320) + 1047 = 1(440) + 349 units = 789 units
13155 = 5(2367) + 1320 = 5(789) + 440 units = 4385 units

We can also use this information to get a solution to the 
equation by focussing on the remainders, letting a = 13155 and  
b = 2367, via 

1320 = a – 5b
1047 = b – 1320 = b – (a – 5b) = –a + 6b
273 = 1320 – 1047 = (a – 5b) – (–a + 6b) = 2a – 11b
228 = 1047 – 3(273) = (–a + 6b) – 3(2a – 11b) = –7a + 39b
45 = 273 – 228 = (2a – 11b) – (–7a + 39b) = 9a – 50b
3 = 228 – 5(45) = (–7a + 39b) – 5(9a – 50b) = –52a + 289b
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• Notice that if we take successive truncations of the previous continued fraction, we get a 
sequence of rational approximations to the value of  r = 13155 ÷ 2367 ,  and that they alternate 
around above and below, namely:  r ≈ 5 ,  6 ,  5+ 1/2 ,  5+ 4 /7 ,  5+ 5 /9 ,  5+ 29/52 ,  5+ 440/789 ,  or 
in decimal form:  r ≈ ↑5 ,  ↓6 ,  ↑5.5 ,  ↓5.57143 ,  ↑5.55556 ,  ↓5.55769231 ,  =5.55766793 .

• We’ll apply this to find an sequence of approximations for the                                     
diameter : side ratio for a regular pentagon.  It’ll be a reminder                                              
of euclidean geometry ....

• We’ll label the length of a side by  s  and a diagonal by  d.

So in our picture,  d = 2a + b.

Since  AB  is parallel to  EC ,  AEF  is isoceles, and AF = s.

So  d = s + a  and  s = a + b

Since  EA  is parallel to  GF  and  BD ,   EFG  is isoceles, and  GF = a.  

But  GF  is the diagonal of another regular pentagon with side  b.

So  d : s  is the same ratio as  b : a.

So in the spirit of the euclidean subtraction algorithm ...

d = 1s + a ,  s = 1a + b ,  b = 1s1 + a1 ,  s1 = 1a1 + b1 ,  b1 = 1s2 + a2 ,  s2 = 1a2 + b2 ,  b2 = 1s3 + a3 , . . . .

where the bn ,  sn ,  and an  are repeating the same pattern of sides and diagonals within ever smaller pentagons.

This gives a continued fraction expansion:  d / s  =  1 + 1/ (1 + 1/ (1 + 1/ (1 + 1/ (1 + .......... ) ) ) )  which gives successive 

rational approximations:   1 ,  1+ 1/2 ,  1+ 2/3 ,  1+ 3/5 ,  1+ 5/8 ,  1+ 8/13 ,  1+ 13/21 ,  1+ 21/34 , . . . . .

Not only does this method give a surprisingly fast rational approximation, but it also amusingly uses the Fibonacci sequence!

• Applied to estimating  π  this process yields:  3 ,  22 /7 ,  333/106 ,  355/113 ,  103993/33102 , . . . . . . 
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• This approach can be generalised.  Suppose a ring  R  can admit a function  f : R* ⟶	  ℕ  such 
that  a, b ∈ R*  ⟹  ∃ q, r ∈ R  with  a = bq + r  and  f(r) < f(b)  or  r = 0.  Certainly the ring of 
integers satisfies this (with for example, f(n) = |n| being the function).  Can we do this for  ℤn ?  
Any ring which has this property is said to be a Euclidean domain.

• Notice that we could extend this to the ring of polynomials having integer (or rational, or real, 
or complex) coefficients by defining  f  to yield the degree of the polynomial.  The results of 
applying the Euclidean subtraction algorithm to such polynomials will of course be different 
depending on the range of coefficients available.

• Before our detour on finding gcds, we raised the question of solving multiple simultaneous 
modular equations, and observed that for  A  and  B  absorptive in  R  with  A + B = R,  then  
R/AB  is isomorphic to  R/A × R/B ,  and so if  m  and  n  are coprime, then  ℤmn  is isomorphic 
to  ℤm × ℤn .   This is known as the Chinese remainder theorem.

• A consequence of this is that if we’re given a pair of equations  x = a mod m ,  x = b mod n  
with  m, n  coprime,  then  (a , b) ∈ ℤm × ℤn   corresponds to a unique value in  ℤmn ,  hence we 
can solve in the traditional simultaneous equation style, substituting successively.*  We can even 
do this for many equations, as long as the moduli are pairwise coprime.

Suppose  x = 3 mod 11,   x = 6 mod 8 ,   x = –1 mod 15.

The first equation gives us  x = 3 + 11a,  so from the second equation we get  x = 6 + 8b = 3 + 11a .

This gives  3 = 11a – 8b  ⟹  a = 1 = b  ⟹  x = 14 + 88t  as a general solution for the first two equations.

The third equation gives us  x = –1 + 15c = 14 + 88t  ⟹  15 = 15c – 88t  ⟹   c = 1,  t = 0  

⟹  x = 14 + 1320s  is the general solution for the three equations.

35
*  This approach actually feels a bit like using the Euclidean algorithm -- we’ll 
work through a more efficient way to formulate this in the homework.


