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• It’s time for us to move onto a fresh topic which has had an enormous impact on both theory 
and applications.

• A binary operation on a set  S  is a function  φ	  : S × S ⟶ S .   Essentially it’s a way of combining 
a pair of elements in  S  (in a specific order) to get a result in  S .   Typically we eschew the 
function notation and write instead  s ∗ t  for  φ(s , t).   Examples might be multiplication or 
addition of numbers, or combinations of rotations and reflections in three dimensional space.

• A group is a non-empty set  G  together with a binary operation satisfying*

(i) a ∗ (b ∗ c)  =  (a ∗ b) ∗ c    ∀ a, b, c ∈ G

(ii) ∃ e ∈ G  such that  a ∗ e  =  a  =  e ∗ a    ∀ a ∈ G

(iii) a ∈ G  ⟹  ∃ a′∈ G  such that  a ∗ a′  =  e  =  a′∗ a

• Typically we’ll write a–1 for  a′, and write 1 for  e  (although we might choose to use  0  if 
working with addition on numbers, just for our sanity!).

• A group is said to be Abelian if it also satisfies the commutative axiom

(iv)  a ∗ b  =  b ∗ a  ∀ a, b ∈ G

• Standard examples are  ℤ  under addition,  Q*  and  ℝ*  under multiplication**,  ℤ5
* but not ℤ6

* 
under multiplication (why is 6 bad?), and for a non-commutative example, the set comprising all 
rotations about the origin and all reflections through lines through the origin in the plane.  
We’ll consider many more examples as we work through this material.

**  Recall that the use of the star here means deletion of 0, so ℝ* = ℝ – {0}.*  These axioms are called associative, identity, and inverse, respectively.
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• Of course, once we have a structure, we can play the usual games with structures and functions 
amongst them.

• A subgroup  H  of a group  G  is a subset of  H  which is itself a group (using the same binary 
operation as  G).*   Given any non-empty subset  S ⊆ G,  we can extend  S  to a subgroup of  
G  by ‘multiplying’ its various elements together until it becomes self-contained and has all its 
inverses.  In this situation we say the subgroup  H  is generated by  S,  and will write  H = ⟨ S ⟩.

• Example:  Let  G = ℤ12  under addition, and let  S = {4 , 6},  then since 4 + 4 = 8, 4 + 8 = 0, 4 + 6 = 10. 4 + 10 = 2, etc..  
In the end, we get  H = ⟨ 4 , 6 ⟩  =  { 0, 2, 4, 6, 8, 10 }.

• Let G = { all acts of permuting 4 things }.  Clearly, it seems reasonable to assume that { all acts of permuting 3 things } 
should be a subgroup of G, since any permutation of just 3 things can be thought of as a permutation of 4 things where 
one of the things is kept fixed, and so must be self-contained.

• The permutation group  Sn  is the group of all permutations** of n objects.  Let’s illustrate this in 
the case of n = 5.  

• Certainly there are 5! = 120 possible permutations of the five objects  a, b, c, d, e  (5 choices for the first one, leaving 4 
options for the second, 3 for the third, 2 for the fourth, and only 1 for the last one).

• Notation:  We’ll denote the act of moving, for example,  abcde to baced  by the ‘symbol’ (12)(3)(45), which we interpret 
as meaning  “swap the things in positions 1 and 2,  leave position 3 fixed,  and swap the things in positions 4 and 5”.  Then 
the ‘symbol’  (134)(25)  means  “cycle the things in positions 1, 3 and 4,  and swap those in positions 2 and 5”.  Notice 
that the first example permutation is its own inverse, and the second one, when performed 6 times, get us back to the 
identity action.

• The subsets { (12) , (23) } and  { (12) , (34) } each generate their own subgroups of  S5.  You might like to try writing 
out the multiplication table for S4 and seeing if you can spot the subgroups sitting inside it.

**  We abuse notation and language by using the word permutation both for the 
end product of moving stuff around, as well as the actual act of moving them.

*  A consequence of this is that H must also contain the identity of G.
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• Functions between groups G and H are of course functions between sets, but since we have 
the added structure of a binary operation, it’s convenient to insist that group functions preserve 
that structure.  In particular, we define a group homomorphism  f : G ⟶	  H  to be a function  f 
which also satisfies

• f(a  ∗G  b)   =   f(a)  ∗H  f(b)

Notice that in our commutative diagram, we’ve expressed the homomorphism                                                                                              
condition as equivalent to saying that going across the top followed by going                                                                                              
down the RHS yields the same answer as first going down and then going                                                                                              
across the bottom.  In other words, it doesn’t matter if you multiply before                                                                                             
mapping to H or afterwards.

• Our other function labels can be applied to homomorphisms;  so epimorphism, monomorphism, 
isomorphism, endomorphism, and automorphism all carry the same additional meanings.

• Moreover, we can repeat the equivalence relation factoring that we’d done for functions once 
we’ve ensured that the relations respect the additional structure.  So, for example, if we have a 
relation  ~  defined on elements in a group G,  then we get  G/~  as the  set  of equivalence 
classes, so can try to see if it can be made into a  group  in its own right under the following 
natural extension of the original binary operation

• define  ∗  on G/~  by   [ a ] ∗ [ b ]  =  [ a ∗ b ]

Although this worked well for  ℤ  under addition, and having  a ~ b iff  (b – a) is divisible by 5 ,  this is actually less 
benign than it appears.  Simply because we used the word ‘define’, doesn’t automatically make it a good definition.  
We have to show that it’s well-defined.   In particular,  since  [ a ]  and  [ b ]  are sets merely labelled by  a  and  b,  
yet the definition uses those labels explicitly,  we need to show that we’d get the same answer if those same sets 
had different labels.  In particular, does  [ a ] = [ a′ ] and [ b ] = [ b′ ]  ⟹  [ a ] ∗ [ b ] = [ a′ ] ∗ [ b′ ] ?

Our natural definition will then only make sense if   a ∗ b  ~  a′ ∗ b′ ,  and that will depend on the choice of ~ .
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