
CS 2800 - Set Theory

• At this point it’s natural to ask about sequences of infinitely many things and how one can 
reason about them.  We’ll start in a fairly intuitive fashion, and then formalise things later.

• Restricting our attention for the moment to the domain ℝ of real numbers, we could define a 
sequence (an)n≥1 = a1, a2, a3, ... , an, ....  for n ∈ ℕ*  via some rule.  Often we’ll write simply (an) ,   
and may leave it to the context to know if the sequence is starting at 0 or 1,  or even some 
other number.  For example: *

• an  =  n2

• a1  =  1,  and  an  =  n × an–1 ∀ n > 1

• a1  =  1,  a2  =  1,  and  an  =  an–1 + an–2 ∀ n > 2

• In some sense, such sequences are ordered ∞–tuples, although that seems a tad tricky to see 

how to formalise.  Perhaps better would be to define a function  α : ℕ ⟶	  ℝ	  	  so that  α(n) = an  
thus in a formal sense making  an  into “the n-th term” via the  n ∈ ℕ  that it came from.

• If we were to define factorials by saying that n! were to be the product of all the integers from 
1 up to and including n, then it would seem that to prove that the second rule above created 
the factorials would need infinitely many statements, and that’s distinctly unpleasant!  Instead, 
we take our cue from the way we constructed ℕ in the first place.  Intuitively ....
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*  The first one is a sequence of squares, the second of factorials, 
and the last is the Fibonacci sequence.
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• So how is this made formal?  Returning to our definition of ℕ (slide 8), we could make the 
following observations*

• These are known as the Peano axioms for the natural numbers (actually due to Dedekind).**   
The one we’ve listed as (iii) is the principle of induction.  Although these are axioms for numbers, 
since we already have sets, we can deduce some of these, in particular (iv)*** and (v).

• We’ll play with (iii) explicitly: 

(a) Lemma:  No  n ∈ ℕ is a subset of any of its elements.  Let P(n) = “n is not a subset of any of its elements”.

Proof:  Let S = { n ∈ ℕ | n ⊈ k ∀ k ∈ n } ⊆ ℕ.  Now 0 = ∅ ⟹ 0 ∈ S, so the P(0) is true (base case).  Now suppose P(n) 
true, ie, suppose that n ∈ S (induction step).  Then  n ⊆ n ⟹ n ∉ n ⟹ σ(n) ⊈ n.   Moreover, for any  t  with  σ(n) ⊆ t ,  
then  n ⊆ t ,  so t ∉ n, so σ(n) also can’t be a subset of any element of n, hence σ(n) can’t be a subset of any element 
of σ(n),  so σ(n) ∈ S,  and P(σ(n)) is true.  So by (iii) we have that S = ℕ.

(b) Lemma:  ∀ n ∈ ℕ, every element of  n  is a subset of  n.  The proof is similar, though with  S = { n ∈ ℕ | k ⊆ n ∀ k ∈ n }.

(c) Suppose  n, m ∈ ℕ  with  σ(n) = σ(m).  So n ∈ σ(n) ⟹ n ∈ σ(m) ⟹ (n ∈ m) ∨ (n = m).   Similarly,  (m ∈ n) ∨ (m = n).  
Hence if n ≠ m, then (n ∈ m) ∧ (m ∈ n),  but then lemma (b) ⟹ (n ⊆ m) ∧ (m ⊆ n) ⟹ n = m ... oops!  Hence n = m, 
and we’ve proven (v).
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**  Dedekind, R. (1888). Was sind und was sollen die Zahlen? Vieweg, Braunschwieg. 
Reprinted in R. Fricke, E. Noether & Ö. Ore (Eds.), Gesammelte Mathematische 
Werke (vol. 3, pp. 335-91). New York: Chelsea Publishing Company. 1969.   Also see 
Peano, G., 1889, Arithmetices Principia, Bocca, Turin.

***  Actually, (iv) is very easy to show, so is left as an exercise for you.

*  Recall that σ(n) = n ∪ {n}, so n is a set.  Intuitively we think of σ(n) as being 
represented by the expression n+1.

(i) 0 ∈ ℕ ,  where of course 0 = ∅

(ii) n ∈ ℕ  ⟹  σ(n) ∈ ℕ  

(iii) if  A ⊆ ℕ  and  0 ∈ A ,  then ( n ∈ A  ⟹  σ(n) ∈ A )  ⟹  A = ℕ
(iv) σ(n) ≠ 0  ∀ n ∈ ℕ
(v) for  n, m ∈ ℕ ,   σ(n) = σ(m)  ⟹  n = m


