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• Given two sets  A , B ,  how do we decide which is the larger?  We could either count the 
number of things in each and compare results, or simply pair up the terms (a , b) with a ∈ A 
and b ∈ B  and see which set runs out first!  Attempting to create such a 1-1 correspondence 
between  A  and  B  is really trying to construct a 1-1  function from  A  onto (a subset) of  B  
or the other way around.  On the other hand, trying to count the number of elements in a set S  
is really building a 1-1 function from  S  into  ℕ>0 .   We’ll denote the size (or cardinality) of the 
set  S  by  |S|.

• Defining the size for finite sets is easy, but amusing things happen when we start working with 
infinite sets.  For example, which is the larger of  ℤ  and  2ℤ , where the latter is just the integer 
multiples of 2?  Since  2ℤ ⊆ ℤ  and  2ℤ ≠ ℤ  it’s obvious that  |2ℤ| ≤ |ℤ| ,  where we’re inclined 

to treat the inequality as strict.  However, consider the function  f : ℤ ⟶ 2ℤ  given by  f(n) = 2n .  
It’s easy to show that  f  is 1-1, which means that  |ℤ| ≤ |2ℤ|  and hence  |2ℤ| = |ℤ| .  Similarly, 
we can show that  |ℤ| = |ℕ| .  This ability for a set to be in 1-1 correspondence with a proper 
subset of itself could be taken as a defining property of infinite sets.

• Let’s compare the sizes of  ℤ  and  ℤ2.   The function  f : ℤ ⟶ ℤ2                                        
given by  f(n) = (n , 0)  is 1-1 (check this), so  |ℤ| ≤ |ℤ2| .  Consider                                       
the function  g : ℤ2 ⟶ ℕ  as described in the picture.  This is also                                        
1-1, so  |ℤ2| ≤ |ℕ| ≤ |ℤ| ,  and hence  |ℤ2| = |ℤ| .  Notice that since                                         
ℤ ⊆ Q ⊆ ℤ2  (by the construction of  Q),  we have  |ℤ| ≤ |Q| ≤ |ℤ2| ,                                     

and hence  |Q| = |ℤ| .   We say that a set  S  is countable if it has the                                       
same size as ℕ, and write |S| = ℵ0  (using the Hebrew letter aleph). 
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• It might be natural to assume that none of this is surprising, and that it’s simply enough to say 
that things are ‘infinite’, and that all infinities are the same.  However, there’s a pretty argument 
due to Cantor which shows that ℝ ,  the set of real numbers, is actually strictly larger than Q.

• The argument proceeds by contradiction, starting by supposing ℝ to be countable.  

• It will be enough to consider the subset*  [0 , 1] ⊆ ℝ ;  since if ℝ is                                                                      
countable then every subset of ℝ must be countable, consequently                                                                                                             
there would be an explicit one-to-one function from [0 , 1] to ℕ.                                                                                                              
Looking at this list, where we have written each number in [0 , 1] as                                                                                                             
an infinite decimal, we will now exhibit a number which fails to be in                                                                                                             
that supposedly complete list.

• Consider the number  β  =  0·b1 b2 b3 b4 b5 b6  . . . .   where the value                                                                                                             
of the r-th decimal place is given by  br =  arr (mod 5)  so that,  for                                                                                                             
example, if  arr = 8  then  br = 3.  Clearly  β≠ α1 since it’s about as                                                                                                             
wrong as possible in the first decimal place.  Similarly,  β≠ α2 since it                                                                                                             
fails to match at the second decimal place.  Indeed,  β  fails to equal any of the  αr ,  always failing in the ‘diagonal 
position’, which means that  β  fails to be in the supposedly complete list of reals in [0 , 1] .   Since this argument                                                       
can be repeated for any purported counting of  [0 , 1] ,   this proves that  [1 , 0] ,  and hence also ℝ,  is uncountable.                                 

• Another version of this proof applies nicely to sets and their power sets.  Claim |A| ≨  |𝓟(A)|.

• Consider  f : A ⟶	  𝓟(A)  given by f(a) = {a}.  Clearly this is 1-1, so |A| ≤ |𝓟(A)|.  To prove the inequality strict, suppose 
false, i.e., suppose ∃ surjection  g : A ⟶	  𝓟(A) .  Let’s define  B = { a ∈ A | a ∉ g(a) } ,  then certainly B ⊆ A, so B ∈ 𝓟(A) ,  
so since  g  is onto, ∃ a′∈ A with g(a′) = B.  If a′∈ B ,  then a′∉ g(a′) = B ... oops!  But if a′∉ B, then a′∈ g(a′) = B ... oops 
again!!  So our original supposition is untenable, and hence the inequality must be strict.

• This uncountable set has size ℵ1 , the notation for which probably hints to you that this is the 
start of a sequence of distinct infinite sizes!!!!

*  The notation  (a , b) = { x ∈ ℝ | a < x < b }  and  [a , b] = { x ∈ ℝ | a ≤ x ≤ b }
for open and (respectively) closed intervals is standard, with obvious meanings for  
[a , b)  and  (a ,  b] .   

α1   =   0·a11a12a13a14a15a16 . . . . . . 1

α2   =   0·a21a22a23a24a25a26 . . . . . . 2

α3   =   0·a31a32a33a34a35a36 . . . . . . 3

α4   =   0·a41a42a43a44a45a46 . . . . . . 4

α5   =   0·a51a52a53a54a55a56 . . . . . . 5

α6   =   0·a61a62a63a64a65a66 . . . . . . 6

↓ 	 ↓ ↓
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