
CS 2800 - Set Theory

• There are a lot of niceties in defining what a set should be, but for now we’ll leave that to the 
more esoteric regions of the foundations of mathematics, and be satisfied with the inherently 
problematic definition that a set is a collection of objects defined by some rule (i.e., the rule 
tells us whether any given objects should or should not be in the collection).*

• Unless we say otherwise, we’ll treat sets like  { a , b , c , a , b , a , d }  and  { a , b , d , c }  as being 
equal, i.e., the order of listing members is irrelevant, and any repetition of the same element in 
the description doesn’t add in multiple copies of it. **

• As in our discussion of logic, so again for sets we’ll start by looking at ways of manipulating 
sets.***   There are two particular sets of importance: the empty set, denoted ∅, and the universe 
(comprising everything under potential consideration, which we’ll choose to denote by  U ). 

• There are some natural ways of acting on sets:

• If  A  and  B  are two sets, then  A - B  is the set of all things which are in  A  but not in  B  and could write this formally 
as  A - B = { x ∈ A | x ∉ B },  the set difference.   Note that  x ∈ A  denotes that  x  is a member of the set  A, and the 
vertical line in this context means ‘such that’.

• A ∪ B  is the union of  A  and  B,  formally  A ∪ B  = { x ∈ U | x ∈ A ∨ x ∈ B }.

• A ∩ B  is the intersection of  A  and  B,  formally  A ∩ B = { x ∈ U | x ∈ A ∧ x ∈ B }.

• Ac  is the complement of  A,  formally  Ac = U - A.

• A + B  is the symmetric difference of  A  and  B,  formally  A + B = (A - B) ∪ (B - A).

6

***  It’s worth noting that whenever any somewhat general results are stated, it’s 
often helpful to have a few specific examples to play with so that you can start to get 
a feel for what the results mean in practice.  Proof by example is a common attempt 
by many students, but only works if you test it for every conceivable example(!!!), 
but it is nevertheless a great way to help decide if you actually believe the result.

*  For an elaboration of the problems, look up Russell’s paradox, and think in terms 
of such collections being able to be a bit too large ...  the formal ways of fixing this 
are essentially ways of ensuring that there’s a restriction on how big a set can be -- 
infinite is perfectly fine however.
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** In the case that this latter aspect is permitted, we’ll be explicit in calling such 
animals multisets.
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• We write  A ⊆ B  to mean that  A is a subset of B, meaning that everything in A is also in B.  
Note that for two sets  A and B to be equal means that  A ⊆ B  and  B ⊆ A.

• There are a number of quasi-algebraic manipulations we can do with sets: *

1. A ∪ (B ∪ C)  =  (A ∪ B) ∪ C

2. A ∪ B  =  B ∪ A

3. A ∪ (B ∩ C)  =  (A ∪ B) ∩ (A ∪ C)

4. A ∪ ∅  =  A

5. A ∪ Ac  =  U

6. A ∪ B  =  A  for all sets  A  ⇒  B  =  ∅

7. A ∪ B  =  U  and  A ∩ B  =  ∅  ⇒  B  =  Ac

8. (Ac)c = A

9. ∅c  =  U

10. A ∪ A  =  A

11. A ∪ U  =  U

12. A ∪ (A ∩ B)  =  A

13. (A ∪ B)c  =  Ac ∩ Bc **

• All of the above have dual versions obtained by swapping ∪ and ∩, and ∅ and U.
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Sample wordy proof for 3:

Let x ∈ (A ∪ B) ∩ (A ∪ C), then by definition of ∩ this means that x ∈ A ∪ B  and  x ∈ A ∪ C.
x ∈ A ∪ B means by definition of ∪ that x ∈ A  or  x ∈ B,  or both.
x ∈ A ∪ C means by definition of ∪ that x ∈ A  or  x ∈ C,  or both.
So if x ∉ A then it has to be that x ∈ B and x ∈ C.
If x ∈ A then it needn’t be in B or C, but no problem occurs if it is.
Hence  x ∈ A ∪ (B ∩ C), and we’ve shown that

A ∪ (B ∩ C) ⊇ (A ∪ B) ∩ (A ∪ C).

To show the converse, let’s argue by contradiction.
Suppose that y ∈ A ∪ (B ∩ C) but that y ∉ (A ∪ B) ∩ (A ∪ C).  (*)
y ∈ A ∪ (B ∩ C) means by definition of ∪ that y ∈ A  or  y ∈ B ∩ C,  or both.
If y ∈ A then y ∈ A ∪ B   and  y ∈ A ∪ C, which would contradict (*).
So y ∉ A.
Hence y ∈ B ∩ C, which by definition of ∩ means that y ∈ B and y ∈ C.
But then y ∈ A ∪ B   and   y ∈ A ∪ C, again contradicting (*).
Hence (*) is false, and we’ve shown that

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

Thus we have that   A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

**  This is one of the De Morgan’s laws ... the other is its dual.*  You might like to try proving them.

Sample symbolic proof for 3:

x ∈ (A ∪ B) ∩ (A ∪ C)   ⟺   ( x ∈ A ∪ B ) ∧ ( x ∈ A ∪ C ) ,  by definition of ∩
⟺   ( (x ∈ A) ∨ (x ∈ B) ) ∧ ( (x ∈ A) ∨ (x ∈ C) ) ,  by definition of ∪
⟺   ( (x ∈ A) ∧ (x ∈ A) ) ∨ ( (x ∈ B ) ∧ (x ∈ C) ) ,  by distribution of ∧ and ∨
⟺   ( (x ∈ A) ∨ (x ∈ B ∩ C) ) ,  by definition of ∩
⟺   x ∈ A ∪ (B ∩ C) ,  by definition of ∪


