- There are a lot of niceties in defining what a set should be, but for now we'll leave that to the more esoteric regions of the foundations of mathematics, and be satisfied with the inherently problematic definition that a set is a collection of objects defined by some rule (i.e., the rule tells us whether any given objects should or should not be in the collection).*
- Unless we say otherwise, we'll treat sets like $\{a, b, c, a, b, a, d\}$ and $\{a, b, d, c\}$ as being equal, i.e., the order of listing members is irrelevant, and any repetition of the same element in the description doesn't add in multiple copies of it. **
- As in our discussion of logic, so again for sets we'll start by looking at ways of manipulating sets.*** There are two particular sets of importance: the empty set, denoted \varnothing, and the universe (comprising everything under potential consideration, which we'll choose to denote by $\mathfrak{U l}$).
- There are some natural ways of acting on sets:
- If A and B are two sets, then $A-B$ is the set of all things which are in A but not in B and could write this formally as $\mathrm{A}-\mathrm{B}=\{x \in \mathrm{~A} \mid x \notin \mathrm{~B}\}$, the set difference. Note that $x \in \mathrm{~A}$ denotes that x is a member of the set A , and the vertical line in this context means 'such that'.
- $\quad A \cup B$ is the union of A and B, formally $A \cup B=\{x \in \mathcal{U}| | x \in A \vee x \in B\}$.
- $\quad \mathrm{A} \cap \mathrm{B}$ is the intersection of A and B , formally $\mathrm{A} \cap \mathrm{B}=\{x \in \mathfrak{U} \backslash x \in \mathrm{~A} \wedge x \in \mathrm{~B}\}$.
- $\quad A^{c}$ is the complement of A, formally $A^{c}=\mathfrak{2}-A$.
- $\quad A+B$ is the symmetric difference of A and B, formally $A+B=(A-B) \cup(B-A)$.

[^0]- We write $A \subseteq B$ to mean that A is a subset of B, meaning that everything in A is also in B. Note that for two sets A and B to be equal means that $A \subseteq B$ and $B \subseteq A$.
- There are a number of quasi-algebraic manipulations we can do with sets: *

1. $A \cup(B \cup C)=(A \cup B) \cup C$
2. $A \cup B=B \cup A$
3. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
4. $\mathrm{A} \cup \varnothing=\mathrm{A}$
5. $A \cup A^{c}=2 \mathfrak{Z}$
6. $A \cup B=A$ for all sets $A \Rightarrow B=\varnothing$
7. $A \cup B=\mathcal{U}$ and $A \cap B=\varnothing \Rightarrow B=A^{C}$
8. $\quad\left(A^{c}\right)^{c}=A$
9. $\varnothing^{c}=2 \mathfrak{l}$
10. $A \cup A=A$
11. $\mathrm{A} \cup \mathfrak{Z} \mathfrak{l}=\mathfrak{2}$
12. $A \cup(A \cap B)=A$
13. $(A \cup B)^{c}=A^{c} \cap B^{c}$ **

Sample wordy proof for 3:

Let $x \in(A \cup B) \cap(A \cup C)$, then by definition of \cap this means that $x \in A \cup B$ and $x \in A \cup C$. $x \in A \cup B$ means by definition of u that $x \in A$ or $x \in B$, or both.
$x \in A \cup C$ means by definition of \cup that $x \in A$ or $x \in C$, or both.
So if $x \notin \mathrm{~A}$ then it has to be that $x \in \mathrm{~B}$ and $x \in \mathrm{C}$.
If $x \in A$ then it needn't be in B or C, but no problem occurs if it is.
Hence $x \in A \cup(B \cap C)$, and we've shown that

$$
A \cup(B \cap C) \supseteq(A \cup B) \cap(A \cup C)
$$

To show the converse, let's argue by contradiction.
Suppose that $y \in A \cup(B \cap C)$ but that $y \notin(A \cup B) \cap(A \cup C) .\left(^{*}\right)$
$y \in A \cup(B \cap C)$ means by definition of u that $y \in A$ or $y \in B \cap C$, or both.
If $y \in A$ then $y \in A \cup B$ and $y \in A \cup C$, which would contradict $\left({ }^{*}\right)$.
So $y \notin A$.
Hence $y \in B \cap C$, which by definition of \cap means that $y \in B$ and $y \in C$.
But then $y \in A \cup B$ and $y \in A \cup C$, again contradicting $\left(^{*}\right)$.
Hence $\left(^{*}\right.$) is false, and we've shown that

$$
A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)
$$

Thus we have that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Sample symbolic proof for 3:

```
x\in(A\cupB)\cap(A\cupC)\Leftrightarrow(x\inA\cupB)^(x\inA\cupC), by definition of n
    \Leftrightarrow ((x\inA)\vee (x\inB))}\wedge((x\inA)\vee (x\inC)), by definition of 
    \Leftrightarrow((x\inA)^(x\inA))\vee ((x\inB)^(x\inC)), by distribution of ^ and v
    \Leftrightarrow((x\inA)\vee (x\inB\capC)), by definition of }
    \Leftrightarrowx\inA\cup(B\capC), by definition of }
```

- All of the above have dual versions obtained by swapping u and n, and \varnothing and \mathfrak{U}.

[^0]: * For an elaboration of the problems, look up Russell's paradox, and think in terms of such collections being able to be a bit too large ... the formal ways of fixing this are essentially ways of ensuring that there's a restriction on how big a set can be -infinite is perfectly fine however.

