Satisfiability Modulo Theories and Network Verification

Nikolaj Bjørner

Microsoft Research

Formal Methods and Networks Summer School

Ithaca, June 10-14 2013

Lectures

Wednesday 2:00pm-2:45pm:
An Introduction to SMT with Z3

Thursday 11:00am-11:45am

Algorithmic underpinnings of SAT/SMT

Friday 9:00am-9:45am

Theories, Solvers and Applications

Plan

 Progress in automated reasoning SAT, Automated Theorem Proving, SMT

1. An abstract account for SMT search (DPLL+T)

2. Integrating Theories

Takeaway: Theorem Proving is cool and beautiful

Symbolic Engines: SAT, FTP and SMT

SAT: Propositional Satisfiability.

(Tie v Shirt) \(\sigma \text{Tie v \sigma Shirt} \) \(\lambda \text{Tie v Shirt} \)

FTP: First-order Theorem Proving.

$$\forall X,Y,Z [X*(Y*Z) = (X*Y)*Z] \ \forall X [X*inv(X) = e] \ \forall X [X*e = e]$$

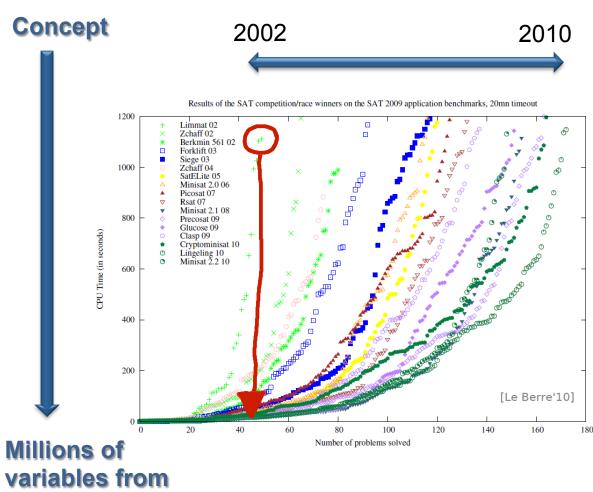
SMT: Satisfiability Modulo background Theories $b + 2 = c \land A[3] \neq A[c-b+1]$

SAT - Milestones

HW designs

Problems impossible 10 years ago are trivial today

year	Milestone
1960	Davis-Putnam procedure
1962	Davis-Logeman-Loveland
1984	Binary Decision Diagrams
1992	DIMACS SAT challenge
1994	SATO: clause indexing
1997	GRASP: conflict clause learning
1998	Search Restarts
2001	zChaff: 2-watch literal, VSIDS
2005	Preprocessing techniques
2007	Phase caching
2008	Cache optimized indexing
2009	In-processing, clause management
2010	Blocked clause elimination



Courtesy Daniel le Berre

FTP - Milestones

Y	ear Milestone	Who	Year	Milestone	Who
				Completion and saturation	many people and
	1930 Hebrand's theorem	Herbrand	1970	0 procedures	provers
	1934 Sequent calculi	Gentzen	197	0 Knuth-Bendix ordering	Knuth; Bendix
	1934 Inverse method	Gentzen	197	1 Selection function	Kowalski; Kuehner
	1955 Semantic tableaux	Beth	197	2 Built-in equational theories	Plotkin
	Herbrand-based theorem				
	1960 proving	Wang Hao	197	2 Prolog	Colmerauer
	1960 Ordered resolution	Davis; Putnam	197	4 Saturation algorithms	Overbeek
		Davis; Logemann;			
	1962 DLL	Loveland	197	5 Completeness of paramodulation	Brand
	1963 First-order inverse method	Maslov	197	5 AC-unification	Stickel
	1965 Unification	J. Robinson	197	6 Resolution as a decision procedure	Joyner
	1965 First-order resolution	J. Robinson	197	9 Basic paramodulation	Degtyarev
	1965 Subsumption	J. Robinson	1980	0 Lexicographic path orderings	Kamin; Levy
	1967 Orderings	Slagle	198	5 Theory resolution	Stickel
W		Wos; G. Robinson;		Definitional clause form	
	1967 Demodulation or rewriting	Carson; Shalla	198	6 transformation	Plaisted; Greenbaum
	1968 Model elimination	Loveland	198	8 Superposition	Zhang
	1969 Paramodulation	G. Robinson; Wos	198	8 Model construction	Zhang
			1989	9 Term indexing	Stickel; Overbeek
n	me success stories:			O General theory of redundancy	Bachmair; Ganzinger
(Open Problems (of 25 years):			2 Basic superposition	Nieuwenhuis; Rubio
Cpcii i iobicilio (di 20 jouio).					

So

XCB: X = ((X = Y) = (Z = Y)) = Z)is a single axiom for equivalence

Knowledge Ontologies GBs of formulas

1993 First instance-based methods Billon; Plaisted 1993 Discount saturation algorithm Avenhaus; Denzinger 1998 Finite model finding using SAT McCune 2000 First-order DPLL Baumgartner Ganzinger; Korovin 2003 iProver method 2008 Sine selection Hoder

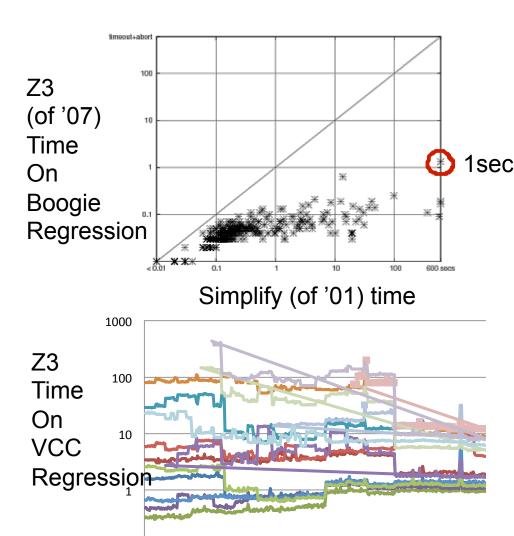
Courtesy Andrei Voronkov, U of Manchester

SMT - Milestones

year	Milestone
1977	Efficient Equality Reasoning
1979	Theory Combination Foundations
1979	Arithmetic + Functions
1982	Combining Canonizing Solvers
1992-8	Systems: PVS, Simplify, STeP, SVC
2002	Theory Clause Learning
2005	SMT competition
2006	Efficient SAT + Simplex
2007	Efficient Equality Matching
2009	Combinatory Array Logic,

Includes progress from SAT:

15KLOC + 285KLOC = Z3



March 09

0.1

Nov 08

Z3 News: Solving 3R Efficiently

A key idea: Use partial solution to guide the search



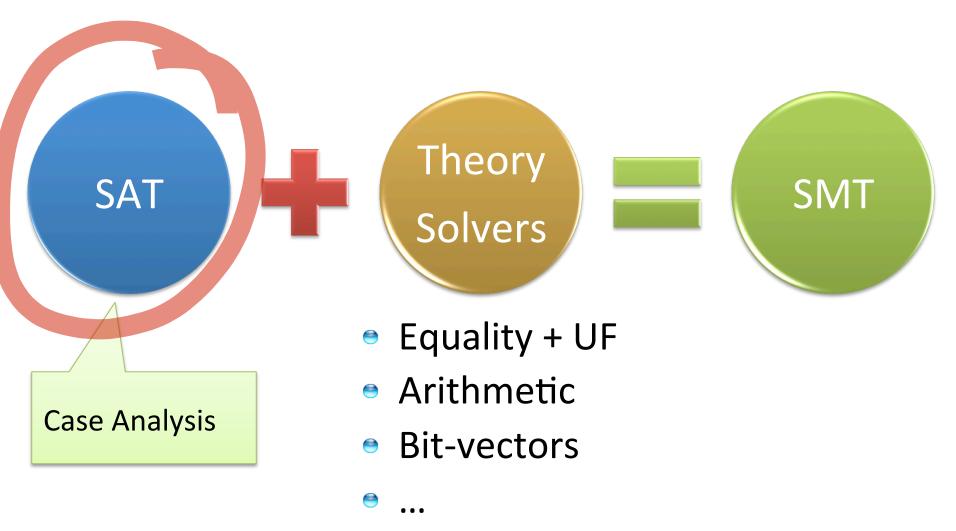
News: Horn Clause Satisfiability

$$mc(x) = x-10$$
 if $x > 100$
 $mc(x) = mc(mc(x+11))$ if $x \le 100$
 $assert (x \le 101 \Rightarrow mc(x) = 91)$
 $\forall X. \ X > 100 \Rightarrow mc(X,X-10)$
 $\forall X,Y,R. \ X \le 100 \land mc(X+11,Y) \land mc(Y,R) \Rightarrow$
 $mc(X,R)$
Krystof Hoder & Nikolaj Bjorner, SAT 2012

 $\forall X R mc(X R) \land X < 1 \cap 1$ Bior R — Mc Millan, Rybalchenko, SMT 2012

SMT SOLVING

SMT: Basic Architecture



Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$
Abstract (aka "naming" atoms)

$$p_{1}, p_{2}, (p_{3} \vee p_{4}) \qquad p_{1} \equiv 0$$
 $p_{3} \equiv 0$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

 $p_1, p_2, (p_3 \lor p_4)$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$
 $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Assignment
$$p_1$$
, p_2 , $\neg p_3$, p_4

Basic Idea

$$x \ge 0, \ y = x + 1, \ (y > 2 \ v \ y < 1)$$

$$Abstract \ (aka "naming" atoms)$$

$$p_{1}, \ p_{2}, \ (p_{3} \ v \ p_{4}) \qquad p_{1} \equiv (x \ge 0), \ p_{2} \equiv (y = x + 1),$$

$$p_{3} \equiv (y > 2), \ p_{4} \equiv (y < 1)$$

$$Assignment \qquad x \ge 0, \ y = x + 1,$$

$$p_{1}, \ p_{2}, \ \neg p_{3}, \ p_{4} \qquad x \ge 0, \ y = x + 1,$$

$$\neg (y > 2), \ y < 1$$

Basic Idea

$$x \ge 0, \ y = x + 1, \ (y > 2 \lor y < 1)$$

$$p_1, \ p_2, \ (p_3 \lor p_4) \qquad p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1),$$

$$p_3 \equiv (y > 2), \ p_4 \equiv (y < 1)$$

$$SAT$$

$$Solver$$

$$p_1, \ p_2, \ \neg p_3, \ p_4$$

$$x \ge 0, \ y = x + 1,$$

$$\neg (y > 2), \ y < 1$$

$$V > 2 \lor y < 1$$

$$V > 2 \lor y < 1$$

$$V > 3 \lor y < 1$$

$$V > 4 \lor y$$

Basic Idea

$$x \ge 0, \ y = x + 1, \ (y > 2 \ v \ y < 1)$$

$$p_1, \ p_2, \ (p_3 \ v \ p_4) \qquad p_1 = (x \ge 0), \ p_2 = (y = x + 1),$$

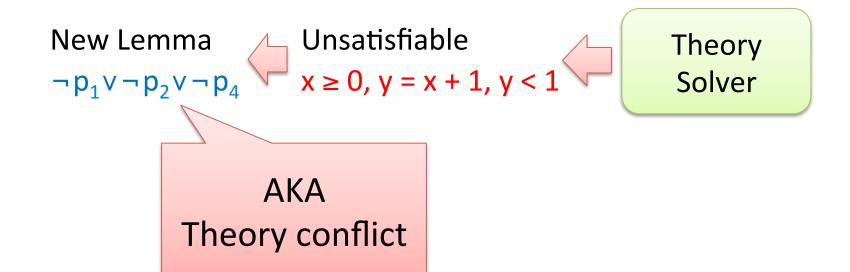
$$p_3 = (y > 2), \ p_4 = (y < 1)$$

$$Assignment \\ p_1, \ p_2, \ \neg p_3, \ p_4 \qquad x \ge 0, \ y = x + 1,$$

$$\neg (y > 2), \ y < 1$$

$$New Lemma \qquad Unsatisfiable \\ \neg p_1 \lor \neg p_2 \lor \neg p_4 \qquad x \ge 0, \ y = x + 1, \ y < 1$$

$$Theory \\ Solver$$



SAT/SMT SOLVING USING DPLL(T)

[DAVIS PUTNAM LOGEMAN LOVELAND MODULO THEORIES]

Resolution

Formula must be in CNF

Resolution rule: $C \lor p$ $D \lor \neg p/C \lor D$

Example: $q \lor t \lor p \quad q \lor r \lor \neg p/q \lor t \lor r$

The result of resolution is the resolvent (clause).

Original clauses are kept (not deleted).

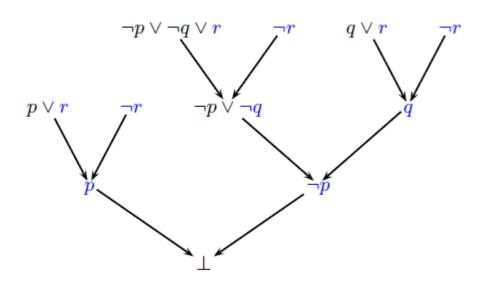
Duplicate literals are deleted from the resolvent.

Note: No branching.

Termination: Only finite number of possible derived clauses.

Resolution (example)

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:



Ex: Implement a naïve resolution procedure.

Unit & Input Resolution

Unit resolution: $\mathcal{C} \lor \ell \quad \neg \ell / \mathcal{C} \quad \neg \ell$ ($\mathcal{C} \lor \ell$ is subsumed

by *C*)

Input resolution: $C \lor \ell$ $D \lor \neg \ell / C \lor D$ ($C \lor \ell$ member of

input F).

Exercise:

Set of clauses *F*:

F has an input refutation iff F has a unit refutation.

DPLL: David Putnam Logeman Loveland = Unit resolution + split rule.

$$F/F,p \mid F, \neg p \text{ Split} \quad p \text{ and } \neg p \text{ are not in } F$$

$$F$$
, $C \lor \ell$, $\neg \ell / F$, C , $\neg \ell$ unit

Ingredient of most efficient SAT solvers

Pure Literals

A literal is pure if only occurs positively or negatively.

Example:

$$\varphi = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4)$$

\(\neg x_1\) and x_3 are pure literals

Pure literal rule:

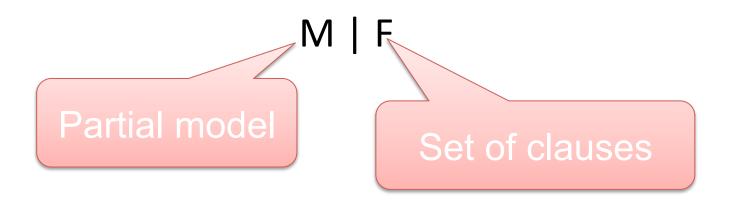
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$\varphi_{\neg x_1,x_3} = (x_4 \vee \neg x_5) \wedge (x_5 \vee \neg x_4)$$

Preserve satisfiability, not logical equivalency!

DPLL (as a procedure)

- Standard backtrack search
- ► DPLL(F):
 - Apply unit propagation
 - If conflict identified, return UNSAT
 - Apply the pure literal rule
 - If F is satisfied (empty), return SAT
 - Select decision variable x
 - ▶ If $DPLL(F \land x) = SAT$ return SAT
 - ▶ return DPLL($F \land \neg x$)



Guessing

 $p, \neg q \mid p \lor q, \neg q \lor r$

Deducing

Backtracking

Modern DPLL

- Non-chronological backtracking (backjumping)
- Lemma learning

and

Efficient indexing (two-watch literal)

• ...

CDCL – Conflict Directed Clause Learning

Lemma learning

Core Engine in Z3: Modern DPLL/CDCL

Initialize	$\epsilon \mid F$
Decide	$M \mid F \Longrightarrow M, \ell \mid F$
Propagate	$M \mid F, C \lor \ell \Longrightarrow M, \ell \uparrow C \lor \ell \mid F, C \lor \ell$

Sat $M \mid F \Rightarrow M$

Conflict $M/F, C \Longrightarrow M/F, C \mid C$

We will **now** motivate the CDCL algorithm as a cooperative procedure between model and proof search

orget

 $C \Rightarrow M \mid F, C \mid C$

⇒Unsat

 $\forall \ell \Rightarrow M\ell \uparrow C \forall \ell \mid F$

 $C' \vee \neg \ell \Longrightarrow M \mid F \mid C' \vee C$

"It took me a year to understand the Mini-SAT FUIP code" Mate Soos to Niklas Sörenson over ice-cream in Trento

Cista nder M

 $C \subseteq M, \neg \ell \in M'$

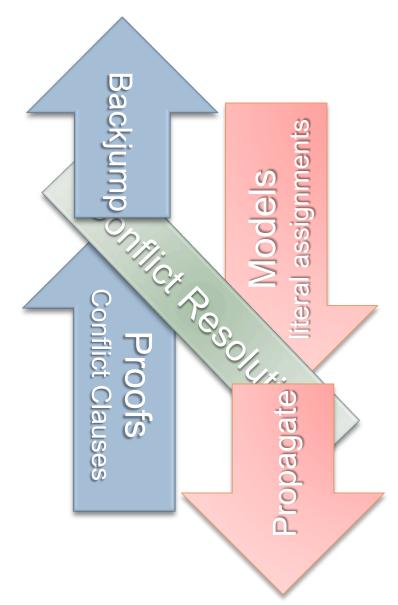
 $\ell \uparrow C \lor \ell \in M$

 $M \mid F, C \Longrightarrow M \mid F$ C is a learned clause

Restart $M/F \Rightarrow \epsilon/F$

[Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

Mile High: Modern SAT/SMT search



The Farkas Lemma Dichotomy

- 1. There is an x such that: $Ax=b \land x \ge 0$
- 2. There is a y such that: $yA \ge 0 \land yb < 0$

For every matrix A, vector b it is the case that either (1) or (2) holds (and not both).

A Dichotomy of Models and Proofs

- 1. There is a model M such that $M \models F$
- 2. There is a proof π such that $\digamma \downarrow \iota \Pi \emptyset$

For every formula F (set of clauses) it is the case that either (1) or (2) holds (and not both).

A Dichotomy of Models and Proofs

- 1. There is $M \supseteq M$ such that $M \models F$
- 2. There is $M \subseteq M$ and proof Π such that $F \vdash J\Pi M'$

For every formula F (set of clauses) and partial model M it is the case that either (1) or (2) holds (and not both).

A Dichotomy of Models and Proofs

- 1. There is $M \supseteq M$ such that $M \models F$
- 2. There is $M \subseteq M$ and proof Π such that $F \vdash J\Pi M'$

Given M can it be extended to M to satisfy (1)? If not, find subset M to establish (2). (that is inconsistent with F)

A Dichotomy of Models and Proofs

Corollary:

If $F \vdash J\Pi$ C then it is not possible to extend C to satisfy F

Corollary:

If $M \models \neg F$ then

- $C,\ell \subseteq M$ for some $F \vdash C \lor \ell$ (or F contains \emptyset)
- for every *D*, where
 - $D, C \subseteq M \uparrow' \subseteq M$
 - $M1' \vdash (D \lor \neg \ell)$

it is not possible to extend MT to satisfy F

CDCL Search — Data structures

Invariant:

For state M/F/C: $C \subseteq M F \vdash C$

Invariant:

For states $M \mid F$ and $M \mid F \mid D$ where $M = M \downarrow 1 \ \ell \uparrow C \lor \ell \ M \downarrow 2$: $C \subseteq M \downarrow 1 \quad F \vdash C \lor \ell$

Initialize $\epsilon \mid F$

F is a set of clauses

No model candidate has been fixed

Decide
$$M \mid F \Rightarrow M, \ell \mid F$$

l is unassigned

Case split on ℓ If Mcan be extended to satisfy F, then the extension contains M, p or $M, \neg p$

Propagate

 $M \mid F, C \lor \ell \Longrightarrow M, \ell \uparrow C \lor \ell \mid F, C \lor \ell$

C is false under M

 ℓ must be true if M has any chance of being a model for F, $C \lor \ell$

Sat $M|F \Rightarrow M$

F true under M

Unsat $M/F/\emptyset \Rightarrow Unsat$

Conflict $M/F, C \Rightarrow M/F, C \mid C$

C is false under M

C is a **sufficient** explanation why M is not a model of F

Resolve

$$M/F|CV\neg \ell \Longrightarrow M/F|CVD$$

 $\ell \uparrow D \lor \ell \in M$

Recall

Corollary:

If $M \models \neg F$ then

- $C,\ell \subseteq M$ for some $F \vdash C \lor \ell$ (or F contains \emptyset)
- for every D, where
 - $D, C \subseteq M \uparrow' \subseteq M$,
 - $-M1'\vdash (DV\neg \ell)$

it is not possible to extend MT' to satisfy F

CVD is a sufficient and **earlier** explanation why M is not a model of F

Backjump $MM' \mid F \mid C \lor \ell \Rightarrow M\ell \uparrow C \lor \ell \mid F$

 $C \subseteq M, \neg \ell \in M'$

- $C \lor \ell$ is a sufficient explanation why M is not a model of F
- Prefixes of MM that contain $\neg \ell$ cannot become a model of F

FUIP First Unique Implication Point strategy when # of decision literals in M is minimal.

Why is **FUIP** better?

- Minimizes # of backtracking points before learned fact ℓ↑C∨ℓ
- What if $\ell \uparrow C \lor \ell$ implies negation of removed backtracking point?
 - We would *forget* the learned fact $\ell \uparrow C \lor \ell$ during backjumping.
 - ... only to then re-learn it.

Learn $M/F|C \Rightarrow M/F, C|C$

Re-use proof step for later: build DAG proof instead of TREE proof

Forget $M \mid F, C \Longrightarrow M \mid F$ c is a learned clause

All about the Glucose

Overview of glucose results

Don't forget to forget:

- Learned clauses could turn out to be useless.
- They could hog resources

Blocked Clause Elimination:

Glucose 2.1 was ranked 1st at the 2012 - Remove clauses that will not be used in proofs

Glucose 2.0 was ranked 1st at the 2011 SAT competition on Applications (SAT+LINSAT) problems and was in good positions in other tracks

Glucose 1.0 was ranked 1st at the 2009 SAT competition on a SAT+UNSAT category, but was ranked 2nd, due to tie-breaki

all Glucose 2's traces of the last competition, phase 2, in the short analysis of glucose 2: Learning was firstly introduced categories Applications and Crafted, Glucose 2 learnt 973,461 but removed 909,123,525 of them, i.e. more than 93% of the clauses are removed. This view is really new and contradicts based on the identification of good clauses, but also on the rethat one of the performance keys of our solver is not only the CDCL incompleteness (keeping learnt clauses is essentia parallel track in the SAT 2011 competition beside the fact that Ct, by aggressively deleting those clauses, Glucose increase time (not CPU) than many parallel solvers exploiting the 8 cor o emphasize here that Glucose 2 was ranked fourth on the shortest proof as possible.

Teaching

SAT'11 Proc.

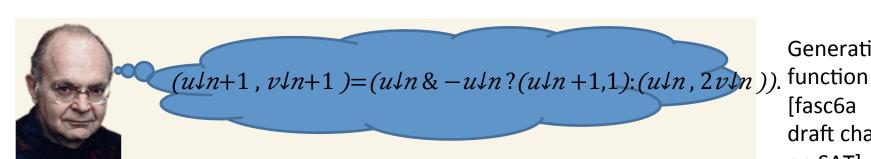
Aug, 2011: (New) Web Site

Restart $M \mid F \Longrightarrow \epsilon \mid F$

Avoid getting trapped in one part of search space

$$S \downarrow 1$$
, $S \downarrow 2$,.... = 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,1,2,1,1,2,4,1,1,2,4,8,1,...

[Reluctant doubling sequence: Luby, Sinclair, Zuckerman, IPL 47]



Generating [fasc6a draft chapter on SAT

Donald E. Knuth (高德纳), Professor Emeritus of The Art of Computer Programming at Stanford University, welcomes you to his home page.

Modern DPLL - tuning

- Restart frequency
 - Why is restarting good?
 - Efficient replay trick for frequent restart
- Which variable to split on
- Which branch to explore first
- Which lemmas to learn
- Blocked clause elimination
- Cache binary propagations
 - This is just scratching the surface

DPLL(T) solver interaction

T- Propagate
$$M \mid F, C \lor \ell \implies M, \ell^{C \lor \ell} \mid F, C \lor \ell$$
 C is false under T + M
T- Conflict $M \mid F \implies M \mid F \mid \neg M'$ $M' \subseteq M \text{ and } M' \text{ is false under } T$

T- Propagate
$$a>b,b>c$$
 | $F,a\leq c\lor b\leq d$ \Rightarrow
$$a>b,b>c,b\leq d^{a\leq c\lor b\leq d}$$
 | $F,a\leq c\lor b\leq d$

T- Conflict
$$M \mid F \Rightarrow M \mid F, \ a \le b \lor b \le c \lor c < a$$

$$where \ a > b, b > c, a \le c \subseteq M$$

Model based Theory Combination

Challenge:

- Solvers need to exchange what is equal.
- Computing all implied equalities is expensive.

ldea:

- Have solvers produce models.
- Use models to introduce equalities on demand.
 If then guess

Summary

 Progress in automated reasoning SAT, Automated Theorem Proving, SMT

1. An abstract account for SMT search (DPLL+T)

2. Integrating Theories

Takeaway: Theorem Proving is cool and beautiful