Relational Graph Models, Taylor Expansion and Extensionality

Domenico Ruoppolo

Giulio Manzonetto

Laboratoire d'Informatique de Paris Nord Université Paris-Nord – Paris 13 (France)

> MFPS XXX Ithaca, New York 15th June 2014

Relational Graph Models, Taylor Expansion and Extensionality

Domenico Ruoppolo

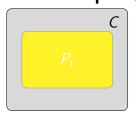
Giulio Manzonetto

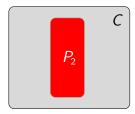
Laboratoire d'Informatique de Paris Nord Université Paris-Nord – Paris 13 (France)

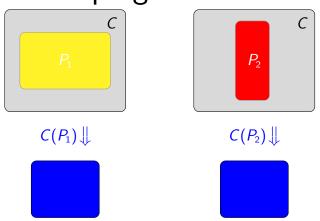
> MFPS XXX Ithaca, New York 15th June 2014

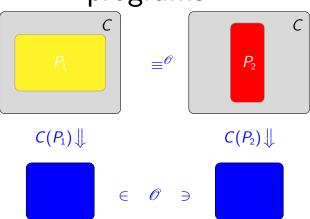
Observational equivalence of

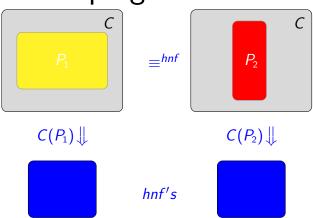
programs











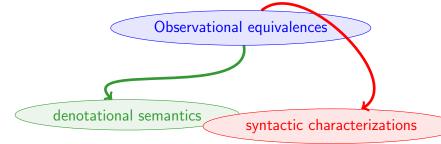
Morris's observational equivalence for the untyped λ -calculus

 $M \equiv^{nf} N$

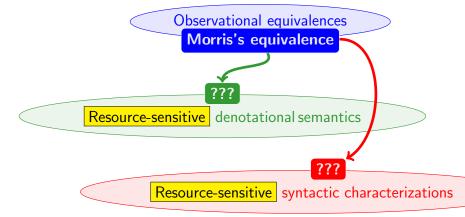
for all context C(-)

C(M) has a β -normal form iff C(N) has a β -normal form

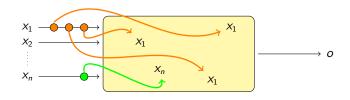
Characterizing observational equivalences



Resource-sensitive characterizations for Morris

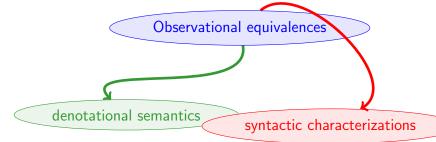


<i>X</i> ₁ <i>X</i> ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[M]	
-			<i>− o</i>
X _n	\longrightarrow	"black box"	

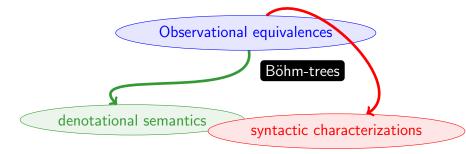


What about resource usage of the execution?

Characterizing observational equivalences



Characterizing observational equivalences



[Barendregt 1981]

Characterizing Morris's equivalence

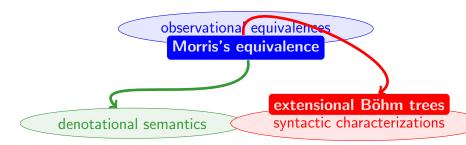
observational equivalences

Morris's equivalence

denotational semantics syntactic characterizations

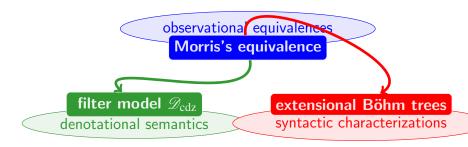
[Morris 1968, Hyland 1975]

Characterizing Morris's equivalence



[Hyland 1975, Levy 1976]

Characterizing Morris's equivalence



[Coppo, Dezani & Zacchi 1987]

The key idea

Böhm tree

Output of the program

Approximations of the β -normal form of the term

The key idea

Böhm tree

Output of the program

Approximations of the β -normal form of the term

Resource management of the program $\mathscr{T}(MN) = \sum_{k \in \mathbb{N}} M \begin{bmatrix} k \text{ times} \\ N, \dots, N \end{bmatrix}$

[Ehrhard & Regnier 2003]

```
t ::= x \mid \lambda x.t \mid tb

b ::= [t_1, \dots, t_n] \quad \text{where } n \ge 0
```

```
t ::= x \mid \lambda x.t \mid tb
b ::= [t_1, ..., t_n] \quad \text{where } n \ge 0
```

Terms

```
t ::= x \mid \lambda x.t \mid tb

b ::= [t_1, ..., t_n] \quad \text{where } n \ge 0
```

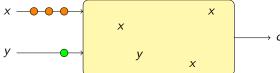
```
t ::= x \mid \lambda x.t \mid tb
b ::= [t_1, ..., t_n] \quad \text{where } n \ge 0
```

Bags

$$t ::= x \mid \lambda x.t \mid tb$$

$$b ::= [t_1, \dots, t_n] \quad \text{where } n \ge 0$$

$$(\lambda x \lambda y.t)[s_{11}, s_{12}, s_{13}][s_{21}]$$



$$t ::= x \mid \lambda x.t \mid tb$$
 $b ::= [t_1, \dots, t_n] \quad \text{where } n \ge 0$

$$(\lambda x \lambda y.t)[s_{11}, s_{12}, s_{13}][s_{21}]$$

$$x \longrightarrow x$$

$$y \longrightarrow x$$

If the number of occurrences of x in t equals k

$$(\lambda x.t)[s_1,\ldots,s_k] \quad \rightarrow_{\beta} \quad \sum_{p \in \mathfrak{S}_k} t\left\{s_{p(1)}/x_1,\ldots,s_{p(k)}/x_k\right\}$$

If the number of occurrences of x in t equals k

$$(\lambda x.t)[s_1,\ldots,s_k] \longrightarrow_{\beta} \sum_{p \in \mathfrak{S}_k} t\left\{s_{p(1)}/x_1,\ldots,s_{p(k)}/x_k\right\}$$

Seeking linear substitution? Then take non-determinism, too!

 $\mathscr{T}: \lambda$ -terms \rightarrow infinite sums of resource terms

 ${\mathscr T}: \lambda\text{-terms} \to \inf$ infinite sums of resource terms

$$\boxed{\mathscr{T}(MN)} = \sum_{k \in \mathbb{N}} M \left[N, \dots, N \right]$$

Definition (Taylor expansion)

$$\mathcal{T}(x) = x \qquad \mathcal{T}(\lambda x.M) = \sum_{t \in \mathcal{T}(M)} \lambda x.t$$
$$\mathcal{T}(MN) = \sum_{k \in \mathbb{N}, t \in \mathcal{T}(M), s_1, \dots, s_k \in \mathcal{T}(N)} t[s_1, \dots, s_k]$$

 $\mathscr{T}: \lambda$ -terms \to infinite sums of resource terms

Example

$$\mathcal{J}(\lambda y.xyy) = \sum_{n \ k \in \mathbb{N}} \lambda y.x \left[\underbrace{y, \dots, y}_{n \text{ times}} \right] \left[\underbrace{y, \dots, y}_{k \text{ times}} \right]$$

 ${\mathscr T}: \lambda\text{-terms} \to \inf$ infinite sums of resource terms

Theorem (Ehrhard & Regnier 2008)

For every λ-term M

$$\operatorname{nf}_{\beta}(\mathscr{T}(M)) = \mathscr{T}(\operatorname{BT}(M)).$$

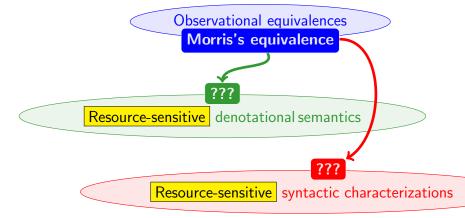
 $\mathscr{T}: \lambda$ -terms \rightarrow infinite sums of resource terms

Theorem (Ehrhard & Regnier 2008)

For every λ-term M

$$\operatorname{nf}_{\beta} \left[\mathscr{T}(M) \right] = \mathscr{T} \operatorname{BT}(M)$$

Resource-sensitive characterizations for Morris



Relational Semantics

The cartesian closed category **MRel**:

objects: sets A, B, ...

morphisms: $A \rightarrow B \subseteq \mathcal{M}_{\mathrm{f}}(A) \times B$

Kleisli of **ReI**, self-dual \star -autonomous category, provided with the exponential comonad $! = \mathcal{M}_f$.

The cartesian closed category **MRel**:

objects: sets A, B, ...

morphisms: $A \rightarrow B \subseteq \mathcal{M}_{\mathrm{f}}(A) \times B$

Kleisli of **ReI**, self-dual \star -autonomous category, provided with the exponential comonad ! = \mathcal{M}_f .

The cartesian closed category **MRel**:

objects: sets A, B, ...

morphisms: $A \rightarrow B \subseteq \mathcal{M}_{\mathrm{f}}(A) \times B$

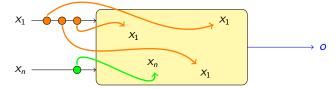
Kleisli of **ReI**, self-dual \star -autonomous category, provided with the exponential comonad ! = \mathcal{M}_f .

The cartesian closed category MRel:

objects: sets A, B, ...

morphisms: $A \rightarrow B \subseteq \mathcal{M}_{f}(A) \times B$

Kleisli of **ReI**, self-dual \star -autonomous category, provided with the exponential comonad ! = \mathcal{M}_f .



The cartesian closed category MRel:

objects: sets A, B, ...

morphisms: $A \rightarrow B \subseteq \mathscr{M}_{\mathrm{f}}(A) \times B$

Reflexive objects in **MRel**, i.e. retracts

$$[D \Rightarrow D] \quad \lhd \quad D$$

The cartesian closed category MRel:

objects: sets A, B, ...

morphisms: $A \rightarrow B \subseteq \mathcal{M}_{\mathrm{f}}(A) \times B$

Reflexive objects in **MRel**, i.e. retracts

$$[D \Rightarrow D] = \mathcal{M}_{f}(D) \times D \quad \triangleleft \quad D$$

Relational Graph Models

Definition (relational graph model)

```
\mathscr{D} = (D, i) is given by
```

- an infinite set D;
- ullet a total injection $i: \mathcal{M}_{\mathrm{f}}(D) \times D \to D$.
- \mathscr{D} is *extensional* when *i* is bijective.

Relational Graph Models

Definition (relational graph model)

```
\mathscr{D} = (D, i) is given by
```

- \bullet an infinite set D;
- a total injection $i: \mathcal{M}_f(D) \times D \to D$.
- \mathcal{D} is extensional when i is bijective.

Reminder (Plotkin's graph model)

$$\mathcal{D} = (D, i)$$
 is given by

- an infinite set D;
- a total injection $i: \mathscr{P}_f(D) \times D \to D$.

To a rgm $\mathcal{D} = (D, i)$ we associate

$$T_{\mathscr{D}}: \quad \sigma ::= \alpha \mid \mu \to \sigma \qquad I_{\mathscr{D}}: \quad \mu ::= \omega \mid \sigma \mid \sigma \land \mu$$

To a rgm $\mathcal{D} = (D, i)$ we associate

$$\mathsf{T}_{\mathscr{D}}: \quad \sigma \, ::= \, \textcolor{red}{\alpha} \, \mid \, \textcolor{black}{\mu} \rightarrow \sigma \qquad \quad \mathsf{I}_{\mathscr{D}}: \quad \mu \, ::= \, \textcolor{black}{\omega} \, \mid \, \sigma \wedge \textcolor{black}{\mu}$$

atomic types correspond to atoms of D

To a rgm $\mathcal{D} = (D, i)$ we associate

$$T_{\mathscr{D}}: \quad \sigma ::= \alpha \mid \mu \to \sigma \qquad \qquad I_{\mathscr{D}}: \quad \mu ::= \omega \mid \sigma \mid \sigma \wedge \mu$$

- atomic types correspond to atoms of D
- intersections correspond to multisets of elements of D

To a rgm $\mathcal{D} = (D, i)$ we associate

$$T_{\mathscr{D}}: \quad \sigma ::= \alpha \mid \mu \to \sigma \qquad \qquad I_{\mathscr{D}}: \quad \mu ::= \omega \mid \sigma \mid \sigma \wedge \mu$$

- atomic types correspond to atoms of D
- intersections correspond to multisets of elements of D
- arrow types correspond to elements of $[D \Rightarrow D] = \mathcal{M}_f(D) \times D$

To a rgm $\mathcal{D} = (D, i)$ we associate

$$\mathsf{T}_{\mathscr{D}}: \quad \sigma ::= \alpha \mid \mu \to \sigma \qquad \mathsf{I}_{\mathscr{D}}: \quad \mu ::= \omega \mid \sigma \mid \sigma \land \mu$$

- atomic types correspond to atoms of D
- intersections correspond to multisets of elements of D
- arrow types correspond to elements of $[D \Rightarrow D] = \mathcal{M}_f(D) \times D$

The injection $i: \mathcal{M}_{\mathrm{f}}(D) \times D \to D$ induces an equivalence

$$\sigma \simeq \tau$$

For a closed λ -term M

$$\llbracket M \rrbracket^{\mathscr{D}} = \{ \sigma \mid \vdash^{\mathscr{D}} M : \sigma \}$$

For a closed λ -term M

$$\llbracket M \rrbracket^{\mathscr{D}} = \{ \sigma \mid \vdash^{\mathscr{D}} M : \sigma \}$$

Theorem (approximation)

$$\llbracket M \rrbracket^{\mathscr{D}} = \llbracket \operatorname{BT}(M) \rrbracket^{\mathscr{D}}$$

For a closed λ -term M

$$\llbracket M \rrbracket^{\mathscr{D}} = \{ \sigma \mid \vdash^{\mathscr{D}} M : \sigma \}$$

Theorem (New approximation)

$$\llbracket M \rrbracket^{\mathscr{D}} = \llbracket \mathscr{T}(M) \rrbracket^{\mathscr{D}} = \llbracket BT(M) \rrbracket^{\mathscr{D}}$$

It is *here* that we replace the traditional Böhm tree -like approximations with the new Taylor -like one!

Theorem (that we are looking for)

Let \mathscr{D} be a rgm with possibly some more hypothesis. The following are equivalent for M, N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} = \llbracket N \rrbracket^{\mathscr{D}}$
- 2. $M \equiv^{\text{nf}} N$

Theorem (that we are looking for)

Let \mathscr{D} be a rgm with possibly some more hypothesis. The following are equivalent for M, N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Lemma (characterization of β -normalizability)

A closed λ -term M has a β -normal form iff in every rgm $\mathscr D$ preserving ω -polarities,

$$\vdash^{\mathscr{D}} M : \sigma$$

for some type σ such that $\omega
otin ^+ \sigma$.

Lemma (characterization of β -normalizability)

A closed λ -term M has a β -normal form iff in every rgm $\mathscr D$ preserving ω -polarities,

$$\vdash^{\mathscr{D}} M : \sigma$$

for some type σ such that $\omega
otin^+ \sigma$.

Lemma (characterization of β -normalizability)

A closed λ -term M has a β -normal form iff in every rgm $\mathscr D$ preserving ω -polarities,

$$\vdash^{\mathscr{D}} M : \sigma$$

for some type σ such that $\omega \notin^+ \sigma$.

Lemma (characterization of β -normalizability)

A closed λ -term M has a β -normal form iff in every $rgm \mathscr{D}$ preserving ω -polarities,

$$\vdash^{\mathscr{D}} M : \sigma$$

for some type σ such that $\omega \notin^+ \sigma$.

Theorem (full abstraction for Morris's)

Let \mathscr{D} be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $[M]^{\mathcal{D}} \subseteq [N]^{\mathcal{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

$$\mathcal{D}_{\infty}$$

$$\omega
ightarrow arepsilon \ \simeq \ arepsilon$$

fully abstract for \equiv^{hnt}

fully abstract for Morris

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

[Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\omega
ightarrow arepsilon \ \simeq \ arepsilon$$

fully abstract for
$$\equiv^{hnt}$$

fully abstract for Morris

Theorem (full abstraction for Morris's)

Let \mathscr{D} be an extensional rgm preserving ω -polarities. following are equivalent for M, N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subset \llbracket N \rrbracket^{\mathscr{D}}$
- 2. $M \sqsubseteq^{\text{nf}} N$

Examples

[Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\varepsilon$$

$$oldsymbol{arepsilon} \omega
ightarrow oldsymbol{arepsilon} \simeq oldsymbol{arepsilon}$$

fully abstract for \equiv^{hnt}

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

[Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\varepsilon$$

$$\omega
ightarrow arepsilon \ \simeq \ arepsilon$$

fully abstract for \equiv^{hnt}

fully abstract for Morris

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

[Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\varepsilon$$

$${\color{red}\omega}
ightarrow {\color{gray}\varepsilon} \ \simeq \ {\color{gray}\varepsilon}$$

fully abstract for \equiv^{hnt}

fully abstract for Morris

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

[Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\boldsymbol{\varepsilon}$$

$$\omega \to \epsilon \; \simeq \; \epsilon$$

fully abstract for
$$\equiv^{hnt}$$

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

[Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\varepsilon$$

$$\omega \to \epsilon \; \simeq \; \epsilon$$

fully abstract for
$$\equiv^{hnt}$$

$$\star \rightarrow \star \simeq \star$$

fully abstract for Morris

Theorem (full abstraction for Morris's)

Let $\mathscr D$ be an extensional rgm preserving ω -polarities . The following are equivalent for M,N closed λ -terms:

- 1. $\llbracket M \rrbracket^{\mathscr{D}} \subseteq \llbracket N \rrbracket^{\mathscr{D}}$
- 2. *M* ⊑^{nf} *N*

Examples

Bucciarelli & others 2007]

$$\mathscr{D}_{\infty}$$

$$\varepsilon$$

$$\omega \to \epsilon \; \simeq \; \epsilon$$

fully abstract for
$$\equiv^{hnf}$$

$$\star \rightarrow \star \simeq \star$$

Fine! What else?

Observational equivalences Morris's equivalence extensional rgm preserving ω-polarity Resource-sensitive denotational semantics ??? Resource-sensitive syntactic characterizations

Fine! What else?

Observational equivalences Morris's equivalence extensional rgm preserving ω -polarity Resource-sensitive denotational semantics Resource-sensitive syntactic characterizations

We seek an analogous of [Ehrhard & Regnier 2008] "commutativity" theorem

$$\operatorname{nf}_{\beta} \left[\mathscr{T}(M) \right] = \left[\mathscr{T} \operatorname{BT}(M) \right]$$

taking η -reduction into account. Something like

$$\operatorname{nf}_{\eta} \operatorname{nf}_{\beta} \mathscr{T}(M) = \mathscr{T} \operatorname{BT}^{e}(M)$$

The core problem: how to η -reduce resource terms? A paradigmatic instance of the problem:

$$\sum_{n \in \mathbb{N}} \lambda x. y \left[\overbrace{x, \dots, x}^{n \text{ times}} \right] \longrightarrow_{\eta} y$$
?

The core problem: how to η -reduce resource terms? A paradigmatic instance of the problem:

```
\lambda x.y \left[ \right] \rightarrow_{\eta} y ?
```

The core problem: how to η -reduce resource terms? A paradigmatic instance of the problem:

$$\lambda x.y \left[\right] \rightarrow_{\eta} y$$
?

 $\lambda x.y[]$ is a term of the sum $nf_{\beta} \mathcal{F}(\lambda x.y.x)$

The core problem: how to η -reduce resource terms? A paradigmatic instance of the problem:

$$\lambda x.y \left[\right] \rightarrow_{\eta} y$$
 ?

 $\lambda x.y[]$ is a term of the sum $nf_{\beta} \mathcal{T}(\lambda x.y.x)$

$$\operatorname{nf}_{\beta} \left[\mathscr{T}(\lambda x.yx) \right]$$

but also

$$\lambda x.y[]$$
 is a term of the sum $\inf_{\beta} \mathcal{T}(\lambda x.yy)$

$$\operatorname{nf}_{\beta} \left[\mathscr{T}(\lambda x.yy) \right]$$

Moral of the story: η -conversion of resource approximants has a global behavior.

Moral of the story: η -conversion of resource approximants has a global behavior.

Definition (extensional Taylor expansion)

Let M be a λ -term. Then

$$\mathcal{T}^{\eta}(M) = \operatorname{nf}_{\eta^{\ell}} \mathcal{L}(\operatorname{nf}_{\beta} \mathcal{T}(M))$$

Moral of the story: η -conversion of resource approximants has a global behavior.

Definition (extensional Taylor expansion)

Let M be a λ -term. Then

$$\boxed{\mathscr{T}^{\eta}(M) = \operatorname{nf}_{\eta^{\ell}}\mathscr{L}(\operatorname{nf}_{\beta} \mathscr{T}(M))}$$

Moral of the story: η -conversion of resource approximants has a global behavior.

Definition (extensional Taylor expansion)

Let M be a λ -term. Then

$$\boxed{\mathscr{T}^{\eta}(M) = \operatorname{nf}_{\eta^{\ell}} \mathscr{L}(\operatorname{nf}_{\beta} \mathscr{T}(M))}$$

Example

 $\lambda x.y[]_{\eta(x)}^{x}$ as a term in the sum $\operatorname{nf}_{\beta}(\mathscr{T}(\lambda x.yx))$ $\lambda x.y[]^{y}$ is a term in the sum $\operatorname{nf}_{\beta}(\mathscr{T}(\lambda x.yy))$

Moral of the story: η -conversion of resource approximants has a global behavior.

Definition (extensional Taylor expansion)

Let M be a λ -term. Then

$$\boxed{\mathscr{T}^{\eta}(M) = \operatorname{nf}_{\eta^{\ell}} \mathscr{L}(\operatorname{nf}_{\beta} \mathscr{T}(M))}$$

Example

 $\lambda x.y[]_{\eta(x)}^{\times}$ as a term in the sum $\operatorname{nf}_{\beta}(\mathscr{T}(\lambda x.yx))$ $\lambda x.y[]^{y}$ is a term in the sum $\operatorname{nf}_{\beta}(\mathscr{T}(\lambda x.yy))$

Moral of the story: η -conversion of resource approximants has a global behavior.

Definition (extensional Taylor expansion)

Let M be a λ -term. Then

$$\boxed{\mathscr{T}^{\eta}(M) = \operatorname{nf}_{\eta^{\ell}} \mathscr{L}(\operatorname{nf}_{\beta} \mathscr{T}(M))}$$

Example

 $\lambda x.y[]_{\eta(x)}^{x}$ as a term in the sum $\operatorname{nf}_{\beta}(\mathscr{T}(\lambda x.yx))$ $\lambda x.y[]^{y}$ is a term in the sum $\operatorname{nf}_{\beta}(\mathscr{T}(\lambda x.yy))$

Theorem

For every λ-term M

$$\left| \mathscr{T}^{\eta}(M) \right| = \mathscr{T} \operatorname{BT}^{\eta}(M)$$

Here $\operatorname{BT}^{\eta}(M)$ is a coinductive version of the extensional Böhm tree, that characterizes $\equiv^{\operatorname{nf}}$, but $\operatorname{not} \sqsubseteq^{\operatorname{nf}}$.

So do our $\mathcal{I}^{\eta}(M)$. Better than nothing!

Conclusion

• We introduced a syntactic mathematical model of \equiv^{nf} $\mathcal{I}^{\eta}(M)$

Conclusion & Future Work

- We introduced a class of models fully abstract for \sqsubseteq^{nf} extensional rgm preserving ω -polarity
- Future works: refining the notion of preservation of ω -polarity in order to get *all* relational models fully abstract for $\sqsubseteq^{\mathrm{nf}}$, along the line of [Breuvart LICS14]
- We introduced a syntactic mathematical model of \equiv^{nf} $\mathcal{T}^{\eta}(M)$
- \bullet Future works: looking for a similar model of \sqsubseteq^{nf}

Thanks for your attention.