Towards a quantum domain theory

Mathys Rennela

Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen

MFPS XXX

Operator theory vs. Domain theory

Order-theoretic properties of operator algebras

1946 J.-P. Vigier

1951 J. Dixmier

1951 R. V. Kadison

1951 S Sherman

1956 R V Kadison

2007 K. Saito, J.D. Maitland Wright

Semantics of quantum programming language

2004 P. Selinger

2006 E. D'Hondt, P. Panangaden

Operator theory Domain theory

An interesting connection is emerging!

Introduction

The domain-theoretic structure of W*-algebras Semantics of quantum types Conclusion

Radboud University Nijmegen

Current semantical interpretation of quantum types

$$A, B := I \mid A \otimes B \mid 0 \mid A + B \mid bit \mid qbit$$

- $\llbracket bit \rrbracket = \mathbb{C}^2$, $\llbracket trit \rrbracket = \mathbb{C}^3$, ...
- $\llbracket qbit \rrbracket = M_2(\mathbb{C}), \llbracket qtrit \rrbracket = M_3(\mathbb{C}), ...$
- $[0] = 0 = \{0\}$
- [/] = ℂ
- $[A + B] = [A] \oplus [B]$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \otimes \llbracket B \rrbracket$

Typed programs = completely positive maps

What about recursive types and infinite types?

Results in this paper

- Hom-sets of normal (positive) sub-unital maps between W*-algebras are directed-complete.
- **W***, category of W*-algebras together with normal sub-unital maps, is **order-enriched**.
- W* is algebraically compact for an important class of functors.
 - This means: these functors have both initial algebras and final coalgebras, and they coincide.
 - Peter Freyd, "Remarks on algebraically compact categories", 1992.
 - Michael Barr, "Algebraically compact functors", 1995.

Plan

Introduction

The domain-theoretic structure of W*-algebras

Fixpoint theorem

Semantics of quantum types

Conclusion

Hilbert spaces and W*-algebras

- Hilbert spaces are used in quantum foundations
- Examples: \mathbb{C}^n , $\ell^2(\mathbb{N})$, ...
- $\mathcal{B}(H) = \text{collection of bounded linear operators on a Hilbert space } H. \mathcal{B}(H) \text{ has a multiplication and an involution}$
- W*-algebra: special subalgebra of $\mathcal{B}(H)$ closed in uniform convergence, pointwise convergence, the structure of $\mathcal{B}(H)$ and its order; algebra of observables in quantum theory.

Example

- $oldsymbol{0}$ $\mathcal{B}(H)$: collection of bounded operators on a Hilbert space H
- **2** $L^{\infty}(X)$: function space for some standard measure space X (commutative)
- § $\ell^{\infty}(\mathbb{N})$: space of bounded sequences (commutative and separable)

Maps between W*-algebras

- P $f: A \rightarrow B$ is **positive** if it preserves positive elements
- sU f is **sub-unital** if $0 \le f(1) \le 1$ holds
- cP f is **completely positive** if for every $n \in \mathbb{N}$, $\mathcal{M}_n(f) : \mathcal{M}_n(A) \to \mathcal{M}_n(B)$ defined by $\mathcal{M}_n(f)([x_{i,j}]_{i,j < n}) = [f(x_{i,j})]_{i,j < n}$ is positive.
 - M_n(A): W*-algebra generated by the set of n-by-n matrices whose entries are in A.
 - N $\phi: A \to B$ is **normal** if ϕ is positive and its restriction $\phi: [0,1]_A \to [0,1]_B$ is Scott-continuous.
 - [0, 1]_A, subset of positive elements below the unit.

Löwner order

Definition

W*: category of W*-algebras together with NsU-maps

Definition (Löwner partial order)

For positive maps $f,g:A\to B$ between W*-algebras A and B, we define pointwise the following partial order $\sqsubseteq:f\sqsubseteq g$ if and only if g-f is positive.

Theorem

For W^* -algebras A and B, the poset $(\mathbf{W}^*(A, B), \sqsubseteq)$ is directed-complete.

W*-algebras are order-enriched

Recall: a category whose hom-sets are posets is called **Dcpo** | 1-enriched if:

- 1 its hom-sets are dcpos with bottom
- 2 pre-composition and post-composition of morphisms are strict and Scott-continuous.

$\mathsf{Theorem}$

The category W^* is a **Dcpo** \square -enriched category.

Theorem (K. Cho, 2014; done independently)

 $\mathbf{W}^*_{\mathrm{cP}}$, category of W^* -algebras together with NcPsU-maps is **Dcpo**₁₁-enriched with the following order on maps: $f \sqsubseteq_{cP} g$ if and only if g - f is completely positive.

Von Neumann functors

Definition

An endofunctor F on a $\mathbf{Dcpo}_{\perp !}$ -enriched category \mathbf{C} is **locally continuous** if $F_{X,Y}: \mathbf{C}(X,Y) \to \mathbf{C}(FX,FY)$ is Scott-continuous.

Definition

A **von Neumann functor** is a locally continuous endofunctor on **W*** which preserves multiplication-preserving maps.

$\mathsf{Theorem}$

The category **W*** is algebraically compact for the class of von Neumann functors, i.e. every von Neumann functor F admits a canonical fixpoint and there is an isomorphism between the initial F-algebra and the inverse of the final F-coalgebra.

Recipe: how to construct a fixpoint for such functors

- Consider a sequence of the form $\Delta = D_0 \xrightarrow{\alpha_0} D_1 \xrightarrow{\alpha_1} \cdots$ where $D_0 = 0$, $D_{n+1} = FD_n$, $\alpha_0 = !_{F0}$, $\alpha_{n+1} = F\alpha_n$ $(n \in \mathbb{N})$
- Define a W*-algebra D and turn it into a cocone $\mu: \Delta \to D$, i.e. a sequence of arrows $\mu_n: D_n \to D$ such that the equality $\mu_n = \mu_{n+1} \circ \alpha_n$ holds for every $n \ge 0$. This is a colimit of Δ
- Observe that $F\mu: F\Delta \to FD$ is a colimit for $F\Delta$, obtained by removing the first arrow from Δ .
- Two colimiting cocone with same vertices are isomorphic, which implies that D and FD share the same limit and are isomorphic.
- Dually, consider the sequence $\Delta^{\rm op} = D_0 \stackrel{\beta_0}{\longleftarrow} D_1 \leftarrow \cdots$ and provide a limit for it.
- Conclusion: The functor F admits a fixpoint.

Examples

Functor	Fixpoint	Correspondence in Sets
$FX = X \oplus \mathbb{C}$	$\bigoplus_{i\geq 0}\mathbb{C}=\ell^\infty(\mathbb{N})$	Lifting
$FX = (X \otimes A) \oplus \mathbb{C}$	$\bigoplus_{i\geq 0} i \cdot A$	A*

 $[nat] = \ell^{\infty}(\mathbb{N})$ We have **infinite** types!

Quantum types, revisited

$$A, B := I \mid A \otimes B \mid 0 \mid A + B \mid bit \mid qbit \mid nat \mid \mu x. A$$

•
$$\llbracket \textit{bit} \rrbracket = \mathbb{C}^2 = \ell^\infty(2), \ \llbracket \textit{trit} \rrbracket = \mathbb{C}^3 = \ell^\infty(3), \ \ldots$$

•
$$\llbracket qbit \rrbracket = M_2(\mathbb{C}), \llbracket qtrit \rrbracket = M_3(\mathbb{C}), ...$$

•
$$[0] = 0 = \{0\}$$

•
$$[A + B] = [A] \oplus [B]$$

•
$$\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \otimes \llbracket B \rrbracket$$

•
$$\llbracket \mathsf{nat} \rrbracket = \ell^{\infty}(\mathbb{N})$$

•
$$\llbracket \mu x.A \rrbracket$$
 = initial algebra of $\llbracket x \vdash A \rrbracket$
= final coalgebra of $\llbracket x \vdash A \rrbracket$

Conclusion

- The category W* of W*-algebras together with normal sub-unital maps is order-enriched.
- The category W* is algebraically compact for an important class of functors.

This is the appropriate category for further investigations of the semantics of quantum computation.

This is a new trend that we are now working on at Radboud University.

Thank you

