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Abstract 

Studying human postural control mechanisms not only includes the analysis of diverse 
time-series datasets including position and acceleration of perturbation and changes in a subject’s 
anterior-posterior center of pressure (APCOP), but also whether the subject correctly detected 
whether a perturbation occurred. For small perturbations imbedded in the normal pattern of 
sway, this translates to being able to detect an anomaly in a time-series profile of the variable 
under study. Thus, we use a time-series-bitmap (TSB) approach to indicate the anomalies present 
in the APCOP profile. These anomalies point to how the subject reacted physically as well as 
psychologically to the platform movement, thus helping to correlate a subject’s physiological 
and psychophysical responses. This method not only facilitates in understanding APCOP profiles 
in a much different way, but also helps determine the validity of the data collected. The anomaly 
detection technique uses two concatenated, lag and lead windows that slide across the time-
series. Each window converts a subsequence into symbolic form using the Symbolic Aggregate 
approXimation (SAX) algorithm, followed by a level-two calculation and normalization of 
alphabet frequency. The distance between two windows at each time instance gives anomaly 
score. A high anomaly score is reported for any large variation in the time-series data. The score 
provides an indicator of a subject’s physiological detection response where one felt movement, 
and aids in correlating it with the psychophysical response of the subject.  
 
Introduction 

As an individual sways, there are subtle changes in the activation of lower limb muscles 
(as measured by EMGs), and in the position of the Center of Pressure (related to the vertical 
projection of the Center of Mass onto the platform upon which this person stands). The EMG 
and COP profiles are continuous time-series variables. A question of interest in studying postural 
stability is to what extent the EMGs and COPs are changed by subtle anterior perturbations of 
the platform, when these perturbations are shorter than the mean sway path or the sway path 
range. In this regard, studying the postural control mechanism not only includes the analysis of 
diverse time-series datasets such as position and acceleration of the platform and for instance the 
subject’s anterior-posterior center of pressure (APCOP), but also if the subject correctly detected 



whether a move occurred. Our protocol uses a psychophysical test procedure called the Two 
Alternative Forced Choice (2AFC) method, where a subject is required to decide in which of two 
intervals was a stimulus presented. We typically use a run of 30 trials, each of 15 s duration. 
Each trial has four sequential intervals: Ready (4s), One (4s), Two (4s), and Decide (3s). These 
commands are sent to the subject’s headphones from an audio output card in the controlling 
computer. The subject signals via one or two presses of a telemetered pushbutton in which of the 
two intervals they thought that the move occurred.  

 
We want to find changes in one or more physiological or biomechanical variables that 

correlated with detection correctness. If the testing is done with movement parameters that are at 
the subject’s psychophysical detection threshold (i.e., the subject consistently detects 75% of the 
trials), then on average one in four of the trials should be a guess. The difficulty exists when 
trying to determine whether detection correctness can be predicted by one or more signature 
changes in peri-threshold data caused by the perturbation. Moreover, at threshold, even a 
“correct” detection could be the result of a Guess. Hence, we seek profiles in our data that can be 
used to distinguish physiological changes seen during correct detections (Hits) from those 
detections caused by Guesses or False Positives. The corollary in the non-stimulated interval is 
that True Negative responses should be distinguishable from Misses. 

 
  The mechanisms of human postural control play an important role in the maintenance of 
upright stance. Failures of these mechanisms to correct unexpected displacements of the body are 
a major contributor to falling1. Many studies have looked at postural control during quiet stance 
as well as during highly perturbed stance. In contrast, our protocol employs quasi-static, short 
perturbations whose lengths are within the normal distance of sway range. To avoid extraneous 
clues due to movement vibration, we developed test hardware and software that we collectively 
call SLIP-FALLS-STEPm (for Sliding Linear Investigative Platform For Assessing Lower Lim 
Stability with Synced Tracking, EMG and Pressure measurements2). This equipment allows 
precise vibration-free horizontal translations. 
 

A test like SLIP-FALLS-STEPm that characterizes responses to very small anterior 
perturbations that lie within the normal sway range, and that provides no external cues, should be 
a better predictor of a postural control response2. Processed SLIP-FALLS-STEPm data from past 
experiments provides a Legacy Data Set containing various time-series signals that include 
position, acceleration, APCOP, and EMG data. For each subject, a maximum of 30 trials are per-
formed per run, and each trial collects these and other time-series data. The 15 s epoch data that 
we collect represents about three sway cycles (at a nominal sway frequency of 0.5 Hz). This is 
not enough data to use typical time-domain cross-correlation techniques. However, other means 
exist to tease out trends in time-series data. To study postural stability and movement detection 
strategies, reduction of data dimensionality is needed. Symbolic representation of abstracted data 
makes analysis more easy and accurate.  
 

We apply here a time-series-bitmap (TSB) approach to pull out potential anomalies 
present in the APCOP response, and then to see if the presence of anomalies corresponds to 
correct detection. These anomalies illustrate how the subject reacted physically as well as 
psychologically to the platform movement thus helping to differentiate between the subject’s 
physiological and psychophysical responses. This method not only helps in understanding 



APCOP profiles in much different way but also helps in determining validity of the data 
collected for the particular trial. 
 
 The TSB based approach used in this paper allows testing over diverse data streams. Data 
are categorized into Hit, Miss, False Positive, True Negative and Guess categories, based on a 
subject’s detection of a perturbations and the actual interval of movement. This helps in studying 
movement detection strategies. Detection of anomalies during pre, peri or post move states helps 
resolve the question of what underlies the subject’s movement detection decision. The effect of 
the peri-move state on the response of a subject can be easily analyzed by looking at pre-move 
anomalies. This lead us to design an analysis routine based on time-series-bitmap techniques to 
for predict postural control responses during perturbed stance.   
 
Methods 
a) Subjects 
 Various groups of subjects underwent testing on the SLIP-FALLS-STEPm. Here we 
consider the Healthy Elderly Adult (HEA) group of individuals set over 50 yrs old, without 
diabetes and without lower limb peripheral neuropathy (as verified by clinical nerve conduction 
testing) from our Legacy Data Set. 
 
b) Experimental Procedures 
 Our Sliding Linear Investigative Platform For Analyzing Lower Limb Stability and 
Synced Tracking, EMG and Pressure mapping (SLIP-FALLS-STEPm) is a novel device and a 
data collection system designed to study human postural control mechanism. The 2-Alternative-
Forced-Choice (2AFC) protocol forced subjects to choose one of the two sequential intervals in 
which a perturbation was presented. The subject receives the commands “Ready”, “One”, “Two” 
and “Decide”, in intervals of 3 to 4s each, with a stimulus either in interval One or Two. After 
the word “Decide”, the subject presses a doorbell button once or twice to signal in which interval 
one felt the stimulus occurred. A data collection system collects data such as platform 
displacement and acceleration, and detection interval signal. All data is recorded at a sampling 
rate of 1000 Hz.   
 
c) Time-Series-Bitmap Based Analysis 
c1) Background 
 Analyzing time-series data has always been challenging. The diversity in our data 
streams makes the task more difficult. The Symbolic Aggregate ApproXimation (SAX) is one 
solution to reducing the complexity of our data. SAX is a good method for symbolic 
representation techniques used in detection of anomalies. Our hypothesis is that the unexpected 
or anomalous pattern in subject’s APCOP time-series data explains detection strategies behind 
subject’s response.  Brief definitions of some terms will help to understand the application of 
SAX and other time-series-bitmap techniques to our data. Dividing a lengthy time-series into 
subsections makes it easier to discern data behavior. These subsections are called subsequences. 
 
Time-Series: A time-series T = t1, ..., tm is an ordered set of m real-valued variables3. 

 
Subsequence: Given a time-series T of length m, a subsequence C of T is a sampling of length 

n<m of contiguous position from T, that is, C = tp, …, tp+n-1 for 1<= p <= m-n+13. 



Anomaly Detection: Given a time-series Q, and some model of “normal” behavior, find all sec-
tions of Q that contain anomalies, or “surprising/interesting/unexpected/novel” behavior4. 
 

c2) Data Abstraction 
Piecewise Aggregate Approximation (PAA) is used as an abstraction method. A time-

series C of length n can be represented in a w-dimensional space by a vector 1,..., wC c c= . The ith 
element of C  is calculated by the following equation: 
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To reduce the time-series from n dimensions to w dimensions, the data is divided into w 
equal sized “frames”. The mean value of the data falling within the frame is calculated and a 
vector of these values becomes the data-reduced representation4.   

 
c3) Symbolic Representation 

We used SAX in our symbolic representation approach. PAA, a data abstraction method, 
provided data for conversion of time-series into symbols for SAX. PAA replaces equally sized 
frames by their mean values. PAA symbols undergo discretization to produce SAX words that 
are strings of SAX alphabets. The alphabet size is an arbitrary integer a, where a > 2. For 
alphabet size of three, a = 3, {a, b, c}. Figure 1 shows a short time-series being converted into 
SAX word baabccbc. 

 
Figure 1: A real valued time-series can be converted to the SAX word baabccbc5

 
 Because our data contains long time-series, the ability to convert subsequences of time-
series data and converting them into SAX word that makes analysis more efficient. 
 
d) Time-Series Anomaly Detection 
 Our approach to time-series anomaly detection is inspired by work done by Li Wei et al5. 
Time-series-bitmaps are based on idea behind Chaos game theory. Chaos game bitmaps are 
defined for sequences with an alphabet size of four5. As reported by many authors, cardinality of 
four is considered as excellent choice for diverse datasets5. After undergoing discretization the 
time-series using SAX, the frequency of SAX subwords of length L is calculated, where L 
represents the desired level of recursion, in our case, L = 2. These frequencies are then 
normalized by dividing it by the largest value. 
 
 Based on the anomaly detection technique, two concatenated windows are created and 
are slid across the time-series5. Each window looks at a subsequence of specific length. The 
latter one is called the lead window and the former one as the lag window. For each window, the 



subsequence under analysis is converted into its SAX representation, and frequencies of SAX 
subwords are then calculated and normalized (see Figure 2). The distances between the two 
windows are measured at each time instance and stored as an anomaly score. For two windows 
of the same size (Same level of recursion), the distance between them is calculated as the 
summation of the square of the distance between each pair of pixels. At each step of the sliding 
window, a new data point is incrementally ingressed and an old data point is egressed in constant 
time to make the time complexity linear in the length of the time-series5. 
 

 
 

Figure 2: Method illustrating Time-Series-Bitmap Algorithm and how it converts 
subsequences into SAX symbols to calculate anomaly scores for each instance of the 
lag and the lead windows using the known time-series data of platform position taken 

from a move in Interval 1 
 



Results 
a) Implementation of time-series-bitmap algorithm  

Anomaly detection algorithm indicates presence of anomaly at a specific time. Figure 2 
shows our successful detection of anomalies in the time-series data of platform position. This 
section describes the time-series-bitmap and shows how the algorithm is applied to our data. We 
first test the algorithm on the position signal, since it has a specific known transition from one 
value to another. A bin size of 40 was used for the SAX algorithm since that size (i.e., 25 Hz) 
most suits our data. All the data used for the descriptive analysis here is from a 67 yr old, healthy 
female responding to a 4 mm perturbation. Figure 3 demonstrates how the lead and lag windows 
are translated across the time-series with the example of position time-series data of Figure 2, if: 

Word Length: 8                      Lead Window Size: 180              
Lag Window Size: bin size * word length = 320 
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Figure 3: Time-series records of platform position and anomaly score 

indicating where actual movement has occurred (Interval 1) 
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Figure 4: Time-series records of platform position and subject’s APCOP with 

the anomaly score for the APCOP (with the move in Interval 2) 



 
Center of pressure (COP) is used as measure of postural control3. AP represents the 

anterior-posterior direction, and APCOP would be expected to be influenced by an anterior 
perturbation. Thus, we chose the APCOP as the time-series of most interest upon which to test 
the anomaly detection algorithm. The APCOP data is irregular and linking it with detection 
correctness is complex task. Figure 5 shows where anomalies are seen. Here it correlates well 
with where the subject felt movement occur. We get high anomaly score during 8000 ms to 9000 
ms (the time of the move in Interval 2). Note that there is a clear deterministic response apparent 
here in the APCOP, which is not seen often. 
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Figure 5: HIT, with a high anomaly score in the interval (2) where 

subject actually felt and detected movement. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
-1

0

1

2

3

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
-2

-1

0

1

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
0

1

2

3

4

5

Time (ms)

A
no

m
al

y 
S

co
re

Time (ms)

Time (ms)

P
os

iti
on

A
P

C
O

P

 
Figure 6: a FALSE POSITIVE, with a low anomaly score in  interval 1 where the movement was 

given and with high anomaly activity in Interval 2 (i.e., at and after 8000 ms) 
 



The presence of anomalies in either of the stimulus or non-stimulus intervals helps to 
distinguish between a Hit or a Miss, and False Positive or True Negative. This is our major task 
in understanding the psychophysics of postural control.  

 
A physiological response is one’s neurophysiological (i.e., EMGs) or biomechanical 

(e.g., ΔAPCOP) response to a perturbation and the subject’s psychophysical response indicates 
where the subejct felt the movement. In Figure 5, the subject’s physiological and psychophysical 
responses both exist in the same interval, which can be viewed as a HIT. The perturbation was 
given in interval two and subject responded in the same interval.  
 

In contrast, in Figure 6 there is no significant anomaly score present in the stimulus 
interval 1. Excessive anomaly activity is seen in interval 2 (the non-stimulated one), which leads 
to the classification of FALSE POSITIVE. The interesting point that could be argued here is that 
this subject made the incorrect choice of interval 2 based on the increase in anomalous activity 
there. It is though the sensory input “fooled” the subject into choosing the wrong interval, or that 
the subject perceived the wrong stimulus interval and the reacted to an imaginary stimulus. We 
have a seen a number of examples of these FALSE POSITIVES. 
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Figure 7: GUESS, with the presence of high APCOP anomalies in both 

the intervals, yet with correct detection in the stimulus interval. 
 

 Figure 7 presents a particular case where the subject psychophysically correctly detects 
the movement interval. Yet one biomechanical response (the APCOP) has high anomaly scores 
in both intervals. If APCOP was the sole basis upon which this subject made a decision, then this 
response needs to be characterized as a GUESS. In addition, the background anomaly scores are 
consistent throughout the entire test sequence. This background “noise” could be construed as 
making detection difficult, again if APCOP was the variable upon which detection is based. 
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Figure 8: MISS, with higher activity in the stimulus interval, 

but with incorrect psychophysical detection. 
 

In Figure 8, the higher anomaly score in Interval 2 indeed correlates with the presence of 
the stimulus there. Yet the subject chose the other interval. This is then classified as a MISS, 
since the response should have triggered a correct detection. 
 
Ensemble Averaging 

As shown in the previous section, the SAX technique can be applied to single trials. We 
next use it for ensemble averages that are constructed via point-by-point time averages of the 
APCOP time-series acquired from 30 trials in a 4 mm run for this subject, with all Interval 1 
simulation/ Interval 1 choice (S1C1) profiles averaged together (i.e. correct detection). Similar 
ensemble time averages are produced for interval 1 stimulation/ Interval 2 choice (S1C2) profiles 
(i.e., incorrect detection), and for S2C2 and S2C1. 
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Figure 9: HIT from Interval 1 Correct Detect (point by point averaged APCOP), and 

TRUE NEGATIVE from lack of responses in the non-stimulated interval 
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Figure 10: Similar to Fig. 9, with a HIT in Interval 2 for Correct Detect (point-by-point 
averaged APCOP), and TRUE NEGATIVE from lack of responses in the non-stimulated interval 

 
Figures 9 and 10 more vividly show highly contrasting anomaly scores between the 

stimulus interval and the non-stimulated one in ensemble APCOP averages of corrected detected 
trials for Interval 1 stimulation (Fig. 9) and Interval 2 stimulation (Fig. 10). Based on the stark 
differences in anomaly scores between the stimulated and non-stimulated intervals, we could 
tentatively conclude that APCOP anomalies could serve as a basis for detection decision making. 
However, the corollary must then be proven — that incorrect decisions arise from a lack of 
contrast in the APCOP anomaly scores between stimulated and non-stimulated intervals, 
requiring a GUESS. Indeed, as shown in Figure 11, the lack of contrast is exactly what is 
observed!  
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Figure 11: Interval 1 non-detected APCOP profiles are ensemble averaged. No 
differences in anomaly scores exist between Intervals 1 and 2. A similar lack of 

differences is seen for Interval 2 stimulations not correctly detected. 
 



Discussion 
Applying the time-series-bitmap based approach to analyze human postural control is 

innovative. As a novel technique, it can differentiate physiological responses (APCOP changes) 
based on psychophysical responses (i.e., correct or incorrect decisions). This algorithm gives 
high anomaly scores when there are transitory variations in a subject’s APCOP response. This 
approach helps in categorizing responses to the perturbations into Hit, Miss, False Positive, True 
Negative and Guess classes. Ensemble averaging of the APCOP itself can visually reveal 
differences between detected and non-detected trials2. Nevertheless, the time-series-bitmap 
algorithm gives us a tool to categorize these differences formally. 
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