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Abstract— Most previous models about wireless channel are 

proposed to capture long-time channel characteristics. However, 
when we combine group transmission with error correcting 
mechanisms, the steady-state probabilities are no longer accurate 
enough to depict the short-time loss states. In this paper, we 
propose a new analytical model for group transmission which can 
capture influences of initial channel state and group length on 
transmission reliability. The model offers us a significant insight 
into loss characteristics of group transmission, which is essential 
to design reliable wireless protocols. Finally to illuminate the 
strength of our model, we also apply our model to compare the 
reliability performance of multipath transmission with single path 
transmission. 
 

Index Terms—Reliability, packet group transmission, Gilbert 
model, correlated wireless channel 

I. INTRODUCTION 
Driven by industrial and scientific applications, packet-loss 

or bit-error modeling of wireless network has recently attracted 
much attention from academia. 

For unpredictable wireless channels, a lot of models are 
proposed [1]-[4], which offer us a significant insight into 
characteristics of the underlying wireless channels. In most 
previous models, a completely accurate analysis of the error 
process could be complicated and often only the long-time 
statistics can be computed. For instance, Markov models are 
generally employed to characterize error processes. The 
steady-state probabilities of a Markov model, which represent 
the long-run proportion of the time spent in each state, are key 
parameters in modeling. 

However, when we adopt packet group transmission based 
on Erasure coding [5], [6] or FEC [7], the homogeneousness 
among packets is modified and steady-state probabilities are 
not accurate enough to depict the loss event.  For example, in a 
channel with steady loss probability 0.2, isolated loss and burst 
loss make no difference for the reliability of mass transmission 
(e.g. more than thousands of packets) while having a great 
impact on the reliability of group transmission. As shown in Fig. 
1, based on the loss probability, the corresponding Erasure 
coding [M=4: R=1] can recover all isolated losses but only 
some burst losses. 
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Fig. 1. Group Transmission using Erasure Coding 

Hence in unreliable wireless network, the correlation 
between packets in one group has to be considered and the 
short-time statistic is indispensable to design an efficient and 
reliable mechanism. Especially in low-rate Wireless Sensor 
Networks, the data traffic generated by one sensor may be of 
very low intensity but burst traffic may be triggered by a set of 
sensors due to a common event. Thus the design based on the 
long-time statistics is no longer accurate and our work is 
motivated by the need to understand the short-time loss 
behavior in wireless network. 

In this paper we propose a new model, based on the Gilbert 
theory [8], to compute of the loss probability of packet group. 
Our contribution can be summarized as follows: 
1) Extend the Gilbert model to capture the influence of initial 

channel states on transmission reliability. Since most 
previous models are utilized for long-time statistics, they 
paid little attention to the influence of initial channel state. 
However, when considering the short-length group 
transmission, we can no longer ignore that point. Their 
importance is demonstrated with theoretical analysis.  

2) With the help of the new model, we provide a theoretical 
study about how to define reliable protocols based on 
packet group transmission. In traditional one-by-one 
transmission, large numbers of packets can ensure the 
accuracy of long-time statistic. However, in low-rate 
wireless networks (e.g. WSNs) that require high reliability, 
correlations inside group are not negligible, which makes 
long-time statistics lose accuracy. Therefore in this paper, 
we deliberately explore the relationship between reliability 
and group length. 

3) To illuminate the value of our model, we also apply our 
model to multipath scheme and discover that multipath is 
not always more reliable than single path transmission.  

The rest of this paper is outlined as follows. In Section II we 
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briefly introduce the basic wireless channel model, which is a 
prerequisite theoretical foundation for the whole paper. Then 
we provide a new analytical model to represent reliability of 
packets in groups under different parameters in Section III. The 
theoretical evaluation is carried out in Section IV. In Section V 
we compare multipath scheme with single path scheme based 
on our new model. Conclusions are given in Section VI. 

II. PRELIMINARIES 
Errors or losses occur on the wireless channel due to various 

impairments including interference and mobility, which exhibit 
some degree of correlations. Markov models have been widely 
used to characterize loss behavior [1], [2]. Considering the 
tractability and accuracy in low-rate network of the Gilbert 
Model [9], it is adopted in this paper as a basic model.  

In the Gilbert Model (Fig. 2), p is the transition probability of 
going from a non-loss state to a loss state and q is the 
probability of going from a loss sate to a non-loss state. 1-q, 
also called conditional loss probability (clp) is the probability 
that the next packet is again lost, provided the previous one has 
been lost.  

 
Fig. 2. The Gilbert model 

The stationary probabilities of the Gilbert model represent 
the long-time proportion of the time spent in each state. Once 
the transitional probabilities are known, we can compute 
stationary probability π0 for non-loss state and π1 for loss state, 
which is also called the unconditional loss probability (ulp): 

0 1,q p
p q p q

π π= =
+ +

.                        (1)  

In other words, π0 and π1 also represents the mean arrival and 
loss probability. From collected network traffic traces, we can 
easily obtain trained parameters p and q. 

III. THEORETICAL MODEL 
Since traditional methods (e.g. Gilbert model) use long-time 

stationary probabilities to represent packet-loss or bit-error 
processes, it is hard to characterize the dynamic factors in 
heterogeneous group transmission. In this section we propose a 
new analytical model, which can capture the influence of initial 
channel state and group length on transmission reliability. 

For N packets transmitted in one group, each packet can 
transmit successfully or suffer loss event. We define {s(t), 
t=1..N} as the stochastic process to represent transmission state 
of N packets, then packets series model is constructed in Fig. 3. 
Here the transitional probabilities p and q are both the same as 
the Gilbert model, representing one-step state transition 
probability between loss state and non-loss state. 

We define probabilities for loss and non-loss state of i-th pa- 

 
Fig. 3. Packets series model 

-cket as: 
{ ( ) 1}, { ( ) 0}, ( [1, ])i iP s i P s i i Nα β= = = = ∈            (2) 

Specifically, we set the initial probabilities for the first packet 
as 

1 1, 1a aα β= = −                              (3) 
From the model in Fig. 3, it is observed that 
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 Let El be the mean loss number and En be the mean arrival 
number, which can be calculated as 
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To simplify the above formula, we utilize Jordan Normal 
Form of A as 
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where 
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Based on the Jordan Normal Form, we can rewrite (6) as 
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Owing to the fact that 
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we have  
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Fig. 4. Initial Channel State a=1 

 
Fig. 5. Initial Channel State a=0.7 
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Then the mean number of loss packets El can be calculated as 
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And the mean loss probability of one group can be expressed as 

2

( 1 (1 ) ) ((1 ) ) ( )
( )

Np q a p aq Np p q
N p q

η − + − − × − − + +
=

+
.   (12) 

Obviously from (12), we can figure out the mean loss 
probability in packet group transmission is determined by 
transitional probabilities (i.e. p and q), the group length N and 
the initial probabilities a. 

 
Fig. 6. Initial Channel State a=0.25 

 
Fig. 7. Initial Channel State a=0 

 And as the group length N approaches infinity, the limit of η 
is 

12

( )lim
( )( )N

Np p q p
p qN p q

η π
→∞

+
= = =

++
,                   (13) 

which is exactly the mean loss probability π1 in (1). This result 
can denote that our model is fine-granularity application of the 
Gilbert model. 

IV. NUMERICAL RESULTS 
In this section, the model proposed above is utilized to 

analyze the reliability of packets group transmission under 
different conditions. Due to length constraint, here we only 
discuss the case of stationary packet loss probability π1=0.25 
without loss of generality. Under this stationary probability, the 
loss results under different initial channel state (a=1, 0.7, 0.25 
and 0) are shown from Fig. 4 to Fig. 7. 

Fig. 4 shows loss probabilities of group transmission for two 
channel states (namely, different transitional probabilities p and 
q) under the same initial channel state. It is observed that in 
such a bad initial channel condition (a=1), the reliability of 
group transmission is extraordinary unacceptable when group 
length N is smaller than 5. However with the increase of N, the 
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loss probabilities of group transmission gradually coincide with 
the stationary loss probability 0.25.  

Additionally, we also note from Fig. 4 that the smaller the 
transitional probabilities are, the slower the change of loss 
probabilities are. For example, the loss result of p=0.1 and 
q=0.3 alters more slowly than that of p=0.25 and q=0.75. This 
conclusion results from that small transitional probabilities, 
which means high correlation between packets, will enhance 
the channel memory. 

Similar with Fig. 4, the results from Fig. 5 also represent the 
influence of group length N under initial channel state. 
Compared with results when a=1, a better initial channel state 
a=0.7 will result in better reliability with the same group length. 

In Fig. 6, it is obviously that when initial channel condition a 
is equal to stationary packet loss probability π1, the result of our 
model is exactly the same with the long-time statistic value. 
And no matter how long the group length is, the reliability of 
group transmission is always stable. 

To further investigate the influence of the initial channel 
condition on group reliability, we report results in Fig. 7 under 
an ideal initial channel state (a=0). Due to the channel memory, 
the reliabilities of group transmission behave better than steady 
state, especially when the group length N is small. Furthermore 
we can also notice that the smaller transitional probabilities are, 
the more apparent the channel memory is. 

From above analysis, it is clearly observed that our new 
model does reflect the influence of the initial channel state and 
the group length. Our theoretical results verify that in order to 
obtain high reliability of group transmission in bursty or 
unstable wireless network, we need increase the group length 
or add redundant packet to enhance resistance against loss 
events. And the design based on long-time statistics cannot 
guarantee reliability in complicated and unpredictable wireless 
network. 

V. MULTIPATH STUDY 
To illuminate the value of our model, we apply our model to 

multipath transmission in this section. The application of 
multipath technique in wireless network seems nature, since it 
may diminish the effect of unstable wireless links to increase 
reliability. Thus most previous work adopt mechanism which 
combine path redundancy (i.e. multiple disjoint paths) and data 
redundancy (e.g. Erasure codes or FEC) to provide reliable 
transmission [7], [10]-[12]. However based on our model, we 
can discover some facts that are neglected before. 
 In our reliability comparison we assume t paths are available 
for tN packets transmitted from a source to a destination node. 
Each path has the same transitional probabilities, which result 
in the same long-time steady state, and different initial channel 
state ai. Without loss of generality, it is assumed that 

 1 2 ... ta a a≥ ≥ ≥ .                                    (14) 
Additionally, load balancing is implemented in multipath 
transmission to ensure N packets are allocated evenly in each 
single path. Using our model, we can get the following 
theorem: 

Theorem 1: The multipath scheme equals or is better than the 
worst single-path one when transmitting large numbers of 
packets. 
Proof:  

Based on (12), the loss probabilities of tN packets in 
single-path transmission can be represented as 

2
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( )
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i
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Owing to the linear relationship between ai and ηi, we can get  
( ) ( ) ( )1 2 ... ttN tN tNη η η≥ ≥ ≥ .                    (16) 

 Using multipath transmission with load balancing, tN 
packets are allocated evenly in t single-path, then the loss 
probabilities of tN packets in multipath transmission is 

( ) ( ) ( ) ( )1 1

t t

i i
ti i

mul t

N N N t N
N

tN t t

η η η
η η= =

×
×

= = ≥ =
∑ ∑

.  (17) 

When the group length N approaches infinity, there exist 
( ) ( )lim limt tN N
tN Nη η

→∞ →∞
= .                      (18) 

Refer to (17) and (18), we finally obtain 
( )mul t tNη η≥ .                           (19) 

This theorem does explain why it is generally agreed that 
multipath transmission can diminish the effect of unstable 
wireless links to increase reliability. 
 However, when we set initial channel state ai as the same 
fixed value a for all multiple paths, we discover another fact. 
Theorem 2: The multipath scheme is not always more reliable 
than the single-path transmission. 
Proof:  

Since 1 2 ... ta a a a= = = = , the loss probabilities of tN 
packets in single-path transmission can be represented as 

( )sig tNη η= ,                                  (20) 
and the loss probabilities in multipath transmission is 
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Then difference of reliability is 

2
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For convenience of discussion, we set t=3 and rewrite (22) as 

 3
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It is not difficult to prove that when , [0,1]p q ∈ , we have  
3(1 ) 3(1 ) 2 0N Np q p q− − − − − + ≥ .              (24) 

Here the value of ( )p a p q− + is the key determinant to the 
final result. Specifically when ( )p a p q≥ + , 0ηΔ ≥ which 
means the multipath transmission is more reliable; Or else 
single-path scheme provides more reliable packet transmission. 
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Fig. 8. a=0.4, N=4 

 
Fig. 9. a=0.5, N=4 

 From Fig. 8 and Fig. 9, it is clearly observed the influence of 
initial channel state on result. We call the area above contour 
line “0” as single-path superior region and the area below as 
multipath superior region. From the movement of contour line 
“0” in two figures, we can find that worse initial channel state 
(a=0.5) will cause smaller multipath superior region, which is 
to verify that due to the effect of correlation, the multipath 
scheme is not always more reliable than the single-path 
transmission. 

Finally as N approaches infinity, the limit of ηΔ  is 

( ) ( )lim lim lim 0
N N N

tN Nη η η
→∞ →∞ →∞

Δ = − = .              (25) 

When comparing Fig. 8 and Fig. 10, we can figure out increase 
of N will reduce the reliability difference of two schemes. 

VI. CONCLUSION 
In this paper, we propose a simple but tractable model to 

analyze the loss probability for packet group transmission. Our 
results show that in bad initial channel states, high correlation 
among packets in group will largely deteriorate the reliability 
performance. However, with the increase of the group length, 
the impact of correlation gradually diminishes. Finally we 
apply our model to multipath transmission and reveal that ow- 

 
Fig. 10. a=0.4, N=12 

-ing to the correlation effect, namely channel memory, the 
multipath scheme behaves even worse that single-path under 
bad initial channel state. 
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