NPCryptBench: A Cryptographic Benchmark Suite
for Network Processors

Yao Yue and Chuang Lin
Department of Computer Science and Technology
Tsinghua University, China
{yueyao, clin} @csnetl.cs.tsinghua.edu.cn

Abstract— Network processors (NPs), a type of multicore,
multithread system that exploits system-on-chip techniques, usu-
ally adopt a distributed, shared memory hierarchy to scale up
network processing. Network applications running on NP often
display distinct characteristics on memory subsystem compared
with traditional processors with multilevel cache. As security,
especially cryptography, has become indispensable in today’s net-
works, we present a benchmark suite called NPCryptBench. It is
the first benchmark specially designed to evaluate cryptographic
performance on NPs, particularly that of processor and memory
subsystem. By running NPCryptBench on Intel IXP network
processors, we provide quantitative evidence that performance
bottlenecks under such a highly parallel environment reside
in memory hierarchy and prolonged access latency, instead of
limited computing resources described in recent literature. To
alleviate this memory-wall effect, we suggest several software
optimizations, which averagely boost the benchmark throughput
by 145% on Intel IXP2800. Our analysis and optimizations are
also suitable for other NPs with similar architectures.

Index Terms— NPCryptBench, Performance Evaluation, Cryp-
tographic algorithm, Network processor

I. INTRODUCTION

Network processors (NPs) have become building blocks in
nodal devices by providing a balance between performance
and flexibility. Currently, link bandwidth explosion puts in-
creasing demands on multicore System-on-Chip (SoC) NP
architectures, which incorporate simple processing engines
(PEs) equipped with little/no cache and application-specific
instruction set. The memory subsystem in NP is more designed
to store and forward packet streams than processor centric.
These architectural features make NPs extremely vulnerable
to the widening processor-memory gap, which continues to
increase with each semiconductor generation. Besides, the
additional memory latency typical of such multicore systems
only exacerbates the problem. To alleviate the memory-wall
effect, NPs often introduce distributed, shared memory hierar-
chy as well as multithread support by PE.

Because of these architectural traits, benchmarking NP turns
out quite difficult. Many researchers suggest developing task-
oriented benchmarks, which should combine NP architecture
and application specialties [1]. Among the numerous network
applications, there is growing interest in efficient cryptographic
processing with the prevalence of secure network services,
e.g. secure IP (IPSec) and virtual private networks (VPNs).

Zhangxi Tan
Department of Electrical Engineering
and Computer Science
University of California, Berkeley, USA
xtan@cs.berkeley.edu

Current hardware solutions like security coprocessors often fall
short of flexibility requirements, and they also have scalability
problems with shared resources. Therefore, it is still necessary
to implement cryptographic processing in a software-based
manner.

However, cryptographic processing on NP has not been
well addressed yet. On one hand, there is little application-
oriented tools and statistics. Cryptographic processing only
takes a small portion in known NP benchmarks [2]-[5]. On
the other hand, not all experience can be borrowed from tradi-
tional processors. Most previous studies assume a symmetric
multiprocessor (SMP) or superscalar architecture with multi-
level cache, and measure results using simulators for general-
purpose processor (GPP). These studies ignore the distinct
memory hierarchy of NP, and identify performance bottlenecks
as the processor computing power and/or instruction set [6].

Here we present NPCryptBench, an NP-specific crypto-
graphic benchmark suite. Contributions of our work are gen-
erally threefold. First, we introduce the first NP benchmark
known so far that focuses on cryptography, and present its
design methodology. Second, two ports of NPCryptBench have
been utilized to evaluate cryptographic performance on two
generations of Intel IXP network processors [7]. Quantitative
results clearly show the memory-wall effect and its exacerba-
tion in light of a widening processor-memory gap. Finally, we
propose several optimizations to tune the benchmark. Their
effectiveness has been demonstrated through cycle-accurate
simulations.

Up to now, three versions of NPCryptBench have been de-
veloped, version 1.0/1.01 are for Intel IXP1200 and IXP2X00
respectively, and a third internal release is composed of hand-
optimized codes adopted in the experiments. NPCryptBench
can be freely used under an academic license (accessible
from University of Wisconsin’s WWW Computer Architecture
Page'). A number of academic institutes have signed the
license, and report research with our benchmark on simulators
(NePSim [8]), compilers and cryptographic applications on
network processors.

The rest of the paper is organized as follows. Section 2
provides a brief view of related work. Section 3 introduces
the benchmark design methodology, from its target hardware

Ihttp://www.cs.wisc.edu/arch/www/

http://www.cs.wisc.edu/arch/www/

architecture, algorithm selection to implementation considera-
tions. Section 4 and section 5 present compile-time and run-
time characteristics of NPCryptBench on Intel IXP network
processors and analyze the performance bottleneck. Section 6
discusses optimizations and evaluates their effect on IXP2800.
Section 7 concludes the paper.

II. RELATED WORK

Several benchmark suites for NP have already been pub-
lished. CommBench [2] classifies header and payload appli-
cations. NetBench [4] defines three different packet-processing
granularities. A later benchmark suite, NPBench [3] mainly fo-
cuses on control plane applications. NP’s prosperity also draws
attention of embedded processor researchers. For example, the
Embedded Microprocessor Benchmark Consortium (EEMBC)
[9] has released header application benchmarks for NP, and
allows source-level modification when necessary. MiBench [5]
provides 9 free benchmarks related to security or network for
embedded processors. Unlike NPCryptBench, most products
tested in EEMBC together with all processor models in other
benchmarks can be categorized as GPP-based. Furthermore,
NPCryptBench’s coverage of occurrences of cryptographic
algorithms in popular security applications (listed in TABLE
I) turns out much higher than that of other benchmarks.
Hence it is more desirable when evaluating security network
applications on NPs.

III. BENCHMARK DESIGN METHODOLOGY

To design NPCryptBench, we extract common themes
shared by heterogeneous NPs, select representative crypto-
graphic algorithms and describe rules that we follow when
implementing the benchmark on a proposed target platform.

A. Target NP Architecture

The design of benchmark rests on understanding the target
platform. NPCryptBench assumes a multicore SoC NP archi-
tecture illustrated in Fig. 1:

Control Plane
GPP-based Flash/Rom
Control
Processor _
___________________ DRAM
1 1
1 1
Cod Code
ggg Stora:e ggg Storage
Thread [Thread
PEs PEs —
Data Plane
Memory
H Processor Cores Controllers

Fig. 1. Target NP Architecture

1) Layered Processor Model: According to requirements
of network applications, processor cores within a network
processor can be classified into two layers:

- Control Plane Processor: Most NP vendors build one
GPP-based core on chip, (e.g. XScale core in Intel
IXP2X00). It is typically used to perform non-realtime
control plane tasks, like updating route tables and re-
source initialization.

- Data Plane Processor: This type of processors is usually
based on RISC technologies and carry out realtime data
plane tasks like package forwarding and data encryption.
They are also called Processing Engines (PEs) in most
literature [3] [10]. It is common to build multiple PEs
within one NP and organize them as a pipeline (Cisco’s
PXF [11]) or in clusters (Intel IXP2X00).

2) PE Architecture: Compared to control plane processor,
PEs are rather simple. They employ a short pipeline and small,
separate local storage for data and instructions other than
plenty of register resources. PEs are not built with advanced
architectures like branch prediction, superscalar, out-of-order
execution and multilevel cache. Instead, there are special func-
tion units and instruction set optimized for packet forwarding.
Besides, some PEs introduce hardware multithreading to hide
I/O and memory access latency.

3) Distributed, Shared Memory Hierarchy: To maximize
performance at reasonable cost, designers adopt memories
with various speeds and sizes. These memories can have either
different or same address space and are shared by all processor
cores on the chip. While such hierarchy offers flexibility of
freely assigning data to different memories, it also introduces
difficulty in efficient management.

B. Algorithm Selection

Security primitives used in practice generally fall into
three categories: unkeyed, symmetric-key and asymmetric-key.
NPCryptBench focuses on symmetric-key ciphers and unkeyed
hash functions, taking ten algorithms based on their repre-
sentativeness, popularity and availability. TABLE I samples
popular security applications in both wired and wireless net-
works. Currently, we do not address asymmetric-key ciphers
because certain implementation shows they are 3 magnitude
slower than symmetric-key ciphers [12], too computationally
expensive for data plane processors.

TABLE I
POPULAR SECURITY APPLICATIONS AND NPCRYPTBENCH’S COVERAGE
OF CRYPTOGRAPHIC ALGORITHMS USED IN THESES APPLICATIONS

Application Introduction Algorithm Coverage
openPGP Privacy and authentication, (RFC 2440) 5/8
S/MIME Similar to openPGP, (RFC 3370) 3/3

SSH Encrypted login and communication 6/7

SSL/TLS Transport Layer Security, (RFC 2246) 6/7

IPSec® IP-level security, (RFC 2401-2412) 3/3

WEP Data encryption in IEEE 802.11 2/2

WPA2 Implements the majority of IEEE 802.11i 2/2

WTLS Wireless Transport Layer security 5/5
Overall Coverage 10/15

A pSec supports customized ciphers

NPCryptBench contains two hash functions, MD5 [13] and
SHA-1 [14]. Hash functions produce an output of constant
length (called digest) from arbitrary length of input. The bulk
of the package belongs to symmetric-key ciphers, which can
be further classified into two categories. RC4 [15] and SEAL
[16] represent stream ciphers, which randomly generate key
streams to "XOR” with plaintext of variable length. AES [17],
DES [18], RC5 [19], RC6 [20], Blowfish [21] and IDEA [22]
represent block ciphers, which transform a fixed-length block
of plaintext into same-length ciphertext.

Little data storage is needed for the unkeyed hash functions.
In contrast, ciphers usually require more memory for keys
and lookup tables (S/P-boxes). Some ciphers (RC5, RC6 and
IDEA) obviate large tables. However, they introduce opera-
tions like modular multiplication (RC6, IDEA) or variable bit
rotation (RCS5, RC6), which are not directly supported by all
NP models. As a summary, TABLE II lists characteristics of
these algorithms.

TABLE II
ALGORITHM CHARACTERISTICS OF NPCRYPTBENCH
Block Size Key Size Table Size
Type Name (bits) Round | =, ‘tes) (bytes)
AES 128 10 16,24,32 4096
DES 64 16 7 512
Block RC5 T 32,64,128 | 0-25516 | 0-255,16 0
Cipher RC6 ¥ 128 20 16,2432 0
Blowfish 64 16 4-56 4096
IDEA F 64 9 16 0
Stream RC4 - - 1-256,8 256
Cipher SEAL - - 20 <4096°
Hash MD5 512 64 0 0
Function SHA-1 512 80 0 0

NPCryptBench adopts recommended values (in bold) for variable parameters
f require 32-bit variable bit rotation

require multiplication
? here lists the upper bound

C. Implementation Considerations

The main considerations during implementing NPCrypt-
Bench are listed as follows:

1) Algorithm Kernels and Coding Convention: NPCrypt-
Bench only implements the critical inner loops of cryp-
tographic algorithms, where the processing majority lies.
Other parts like initialization are carried out by control plane
processors. To ease programming, many NPs can translate
applications written in high-level language with their own
compilers, which support some general-purpose language and
extra hardware-related intrinsic functions. On these platforms,
the C style codes of NPCryptBench can be easily ported with
limited modification.

2) Modification: Modification helps adjust benchmarks to
heterogeneous NP architectures. NPCryptBench allows the
following two types of modification:

- Assembly: Codes can incorporate assembly, when the op-
eration is included in the instruction set but not efficiently
represented with high-level language, e.g. bit rotation.

- Intrinsic Function: Hardware-oriented or vendor-defined
functions, such as I/O and memory access, can be used
in accordance with specific platforms.

3) Optimization: In NP world, benchmarking often helps
develop optimizing techniques and test their effectiveness.
Our previous works [23], [24] discuss optimizations of cryp-
tographic processing on certain platforms, which enable us
to introduce four levels of hand-optimizations that could be
applied to our benchmark.

- Level-0: Raw implementation without optimizations.

- Level-1: Generic, NP-independent optimizations also
available on traditional processors.

- Level-2: NP-dependent optimizations together with those
of level-1.

- Level-3: Optimizations for a massive parallel environ-
ment plus those of level-2.

A full description of these optimizations is provided in
section VI-B and section VI-D. Depending on these hand-
optimizations, codes of NPCryptBench are classified into 4
levels correspondingly.

4) Parallelism: With network bandwidth well outpacing
silicon speed and memory lagging behind processors, many
NPs rely on parallel techniques like multi-PE and multithread
to meet performance requirements. NPCryptBench supports
benchmarking multi-PE and multithread performance by in-
cluding thread/PE control instructions into the source.

IV. COMPILE-TIME CHARACTERISTICS OF
NPCRYPTBENCH

A. Target Platform and Experiment Environment

As a particular implementation, NPCryptBench is applied
to two generations of Intel IXP network processors, IXP1200
and IXP2400/2800. Their processing engines are called micro-
engines (MEs) by Intel. MEs are scaled-down, cacheless RISC
cores which support hardware multithreading. TABLE III lists
processor/memory parameters of IXP1200/2X00. All three
models incorporate two types of external memory, DRAM
and SRAM. DRAM is large in size and used as mass packet
buffers. SRAM is for faster access of small data structures (e.g.
IP header). In addition, there exists an on-chip Scratch SRAM
shared among all MEs for low latency access. Compared with
IXP1200, IXP2X00 is equipped with an extended instruction
set and additional on chip memories. IXP2400 and IXP2800
are architecturally similar except the latter has more MEs,
higher working frequency and faster memory modules.

TABLE III
MEMORY AND PROCESSOR CHARACTERISTICS OF INTEL IXP
NETWORK PROCESSORS

Type Tran. Size Memory Access Latency
DRAM 16 bytes 48/36 119/53 291/54
memory SRAM 4 bytes 22/19 90/48 100/54
Scratch 4 bytes 20/20 59/48 56/40
LM 4 bytes - 1/1 1/1
number of ME 6 8 16
processor thread number per ME 4 8 8
ME frequency 200MHz 600MHz 1400MHz
Network Processor model IXP1200 IXP2400 IXP2800

Read/Write memory access latencies are measured in ME cycles, with SRAM and
DRAM bus frequencies listed below.

As shown in TABLE III, the evolution of Intel IXP network
processors leads to a quickly widening processor-memory
performance gap. An over 50% growth of relative latency
is caught between the two generations. In particular, DRAM
read latencies (in ME cycles) of IXP2400 and 2800 are 248%
and 606% that of IXP1200. To compensate for the processor-
memory gap, IXP2X00 integrates fast internal storage called
local memory (LM) into each ME, which can be accessed at
almost the same speed as per-ME registers.

In the following experiments, ME, SRAM and DRAM are
configured with parameters in TABLE III. NPCryptBench
1.00/1.01 (level-0 codes) are used on Intel IXP1200/2X00
respectively, and all codes are written in Intel Microengine C.
In our experiments, 4 versions of Intel IXA SDK (integrating
Intel Microengine C compiler and cycle-accurate simulator)
are utilized. Among them, SDK 2.01 is for IXP1200, while
SDK 3.1, 3.5 and 4.1 are for IXP2X00. Three compile
optimization options, -O2 (optimized for speed), -O1 (opti-
mized for code size) and -O0 (for debug, no optimization),
are available. Without explicit mention, codes in this paper
are generated by SDK 2.01 for IXP1200 and SDK 4.1 for
IXP2X00 with -O2 compiler option.

B. Data Storage

storage”. All algorithms (except Blowfish, see section VI-A)
decrease in code size from IXP1200 to IXP2X00, owing to a
richer PE instruction set and reduced initialization directives.

1200 —
i Others
DRAM Write
DRAM Read
s SRAM Write
1000 - 2 SRAM Read =
s Scratch Write
mwmmm Scratch Read
Control Reg. Access
Load Imme.
800 - mmwssm Cond. Branch 1
s Uncond. Branch
mmmmm ALU(complex)
mm ALU(simple)

600 -

Lines of code

=

200 fpe - T -

T O B P S D P Iy
s % 0 %05%, 20,76, % %,
s

T O A B S D B &
SHES 4’%\%‘7 (2 %%@ %,
%

IXP1200

IXP2XXX

Fig. 2.
Processors

Static Instruction Mix of NPCryptBench on Intel IXP Network

TABLE V
TABLE IV COMPARISON OF AVERAGE DYNAMIC INSTRUCTION MIX
I i NPCryptBenck
MEMORY USAGE OF NPCRYPTBENCH ON INTEL IXP NETWORK "s;r;::"" 'l‘p(;le"“
PROCESSORS (IN BYTES ;
() ALU(simple) 78.9 53 41 535 60
Algorithms IXP1200 IXP2X00 ALU(complex) 59
g Scratch SRAM local memory Scratch Uncond. Branch 0.1 1 1 162 3.7
AES 176 5120 176 5120 Cond. Branch 1.9 13 18 ' 72
DES 2176 0 2176 0 Immediate 33 1 2 N/A N/A
RC5 136 0 136 0 Mem. Load 7.0 18 27 19.3 277
RC6 176 0 176 0 Mem. Store 0.5 8 6 8.9 ’
Blowfish 72 4096 72 4096 other 24 1 5 2.2 1.4
IDEA 208 0 208 0 total 100 100 100 100 100
RC4 0 1024 1024 0 Code Size 359 3430(all) 500(99%time) N/A 359
SEAL? 0 <4096 4 <4096 % CommBench has two groups of applications: Payload Processing Applications
MD5 0 0 0 0 (PPA) and Header Processing Applications (HPA)
SHA-1 0 0 0 0
Memory Capacity 4096 8SM 2560 16384

1 Plaintext/Ciphertext are stored in DRAM.
a SEAL uses SRAM to store generated keys

Ciphers need to store their control data, i.e. subkeys and
tables (if any). TABLE IV shows the memory occupation of
each benchmark algorithm. For the majority of ciphers in
NPCryptBench, control data are kept in the fastest memory
provided. For example, when local memory becomes avail-
able on IXP2X00, 5 ciphers fully localize their control data
and merely visit DRAM to fetch plaintext and write back
ciphertext. However, the capacity ceilings force 4 algorithms
on IXP1200 and 3 on IXP2X00 to arrange tables in second
fastest memory.

C. Code Storage and Instruction Mix

Ciphers in NPCryptBench need only small code storage,
usually less than 250 lines. DES has lengthier codes than
other ciphers for it has to perform some complex bit opera-
tions. Compared with ciphers, hash functions need more code

Fig. 2 illustrates static instruction mix of NPCryptBench on
three IXP platforms, and TABLE V compares the dynamic mix
of NPCryptBench 1.01 with other popular NP benchmarks.
71.5% (IXP1200), 78.9% (IXP2X00) instructions executed are
simple ALU, like add, shift and logic. On IXP2X00, complex
ALU instructions like multiplication or variable bit rotation
add up to 5.9% in the overall statistics. Another 2.0% is taken
by branch instructions. On IXP1200 where multiplication is
done by software, these two percentages are 1.2% and 10.1%
respectively. In contrast to other benchmarks in TABLE V
which report at least 10% branch and at most 60% ALU
instructions, our results indicate that cryptographic algorithms
are more computationally intensive and sparse in branch.

Another noticed phenomenon is that cryptographic algo-
rithms do not rely heavily on memory and load-immediate
instructions. The IXP1200 version contains no more than
12.0% such instructions on average. Later on IXP2X00, the

2Because of compiler problems, SHA-1 cannot be compiled on IXP1200.

number is further reduced to 10.8% by taking advantage of
the richer register resources and local memory. Consequently,
no algorithm reaches the average portion in CommBench
(29.5%), NPBench (28.2%) or NetBench (27.7%). Also on
IXP2X00, algorithms’ portion of memory and load-immediate
instructions varies greatly, from 0.2% (MDS5) to 24.5% (AES).

V. RUN-TIME CHARACTERISTICS OF NPCRYPTBENCH
A. Throughput Test

800

IXP1200 mmmm
1XP2400
I1XP2800

Throughput (Mbps)

AES DES RC5

RC6 Blowfish IDEA RC4 SEAL MD5 SHA-1

Fig. 3. Benchmark Throughput on Intel IXP Network Processors

To provide basic measure of cryptographic performance on
two generations of Intel IXP network processors, throughput
of NPCryptBench (Level-0 codes) has been collected under
single-thread/single-ME configuration. From Fig. 3 we find
that throughput of different algorithms varies greatly, as the
fastest MD5 outperforms the slowest RC6 (on IXP1200)/AES
(on IXP2X00) by 45 times or more. Unkeyed hash functions
run much faster than ciphers, twice at least. Within encrypting
algorithms, stream ciphers perform better than block ciphers.
On IXP1200, RC6 and IDEA are the slowest two algorithms
because they lack hardware support for multiplication. But on
IXP2XO00, it is cipher storing large tables in external memory
that falls behind others, such as AES.

Throughput results on Intel IXP network processors depart
from those obtained on GPP. For example, AES outperforms
RC6, Blowfish and IDEA on an Alpha 21264 workstation
[6], while on IXP2X00 it has the least throughput. Some NP
benchmarks like CommBench [2] and NPBench [3] calculate
instructions per-byte/packet to estimate performance, but it
fails to explain the results in Fig. 3. On IXP2X00, DES has
more instructions per byte yet still generates higher throughput
than AES and Blowfish.

Although cryptographic processing is believed to be com-
putationally intensive, benchmark throughput cannot always
keep pace with the elevation of ME frequency if not for some
architectural improvements. ME frequency increases 133%
from IXP2400 to IXP2800, but only SEAL produces 1.33
times more throughput. All other algorithms fall behind the
speedup of ME. This comparison raises the question that how
well ME is utilized during cryptographic processing.

B. Pipeline Statistics

100

m |dle
Aborted

mmmmm Executing

80 |- *

60 [n

Percentage (%)

20 o

0
Riicions b Rt Sl T s s 2
% % %

IXP1200 IXP2400 IXP2800

Fig. 4. Pipeline Statistics for Intel IXP Network Processors

Pipeline statistics characterize the utilization of ME. Ac-
cording to Fig. 4, ME’s executing percentage on three plat-
forms never exceeds 60%. ME remains underutilized for
almost all algorithms as it is often aborted or idling. Two archi-
tectural improvements on IXP2X00, a richer ME instruction
set and local memory, help reduce aborted state caused by
branch penalty or external memory access. As a result, ME
pipeline on IXP2X00 is rarely aborted. On the other hand,
idle state has always been common on these three models,
average portions of the 10 benchmarks are over 42%. When
running AES, RC4/5/6, Blowfish and SEAL on IXP2800, ME
idles over half the time, waiting for memory operations to
complete. From IXP1200 to IXP2XO00, 6 algorithms increase
ME’s idle time. Moreover, from IXP2400 to IXP2800 ME’s
idle time goes through a universal rise because of the widening
processor-memory gap.

C. Execution Cycle Breakdown

Cycle breakdown clarifies time consumed by each type of
instructions. With these results we can discern which instruc-
tions are creating the bottleneck. Fig. 5 depicts time portion
occupied by each type of instructions on IXP1200/2800. RC6
and IDEA on IXP1200 spend around 50% time on branch in-
structions (to accomplish multiplication in a software manner),
while other benchmarks spend at most 4% of total execution
time on them. ALU instructions have a considerable time
portion, however, they contribute less than memory operations
in overall statistics. In addition, load-immediate and other
instructions that occupy 10.5% of static code storage use only
2.7% execution time, because they mainly reside outside the
loop kernel.

The major difference between static/dynamic instruction
mix and execution cycle breakdown is the abrupt rise of mem-
ory instructions, which averagely occupy over 50% execution
time on either platform. All cryptographic algorithms need
memory operations to fetch plaintext and write back digest

I
!
[

Fig. 5.

or ciphertext. What is more, ciphers involve frequent access
to subkeys and/or tables. Compared with ALU and branch
instructions which cost only one or a few cycles, memory in-
structions have 1 or 2 magnitude longer latencies (TABLE III).
Thus despite their small code storage, memory instructions
become the dominant group on the fly. On IXP2800 where ME
idles most, even the table-free hash functions spend at least
21.7% of total execution time on memory instructions. On the
other hand, AES, Blowfish and SEAL leave over 70% ME
computing power unused because of their frequent memory
access. This analysis agrees with the results from pipeline
statistics in section I'V-B.

Study of cryptographic processing on GPP claims processor
computing resources as the major bottleneck [6]. This is
possible on older generation of NPs. For example, lacking
hardware support on multiplication hinders the performance
of RC6 and IDEA on IXP1200. However, this problem has
been readily tackled by a richer instruction set on newer NPs.
From analysis above, the real bottleneck on NP is memory
access. With a growing speed disparity among processors and
memories, this bottleneck will become more substantial in the
future. That means simply increasing ME’s computing power
cannot produce proportional throughput lift. To better improve
cryptographic performance, optimizations mainly attacking
this memory-wall effect should be developed.

VI. OPTIMIZATION AND PARALLELISM

A. Effect of Compiler Optimization

In the previous section, the memory-wall effect hampers
throughput even for compiler-optimized codes. To find out
performance improvements provided by compilers and their
ability in addressing the memory-wall effect, we carry out
experiments on IXP2800 enumerating 3 compiler versions and
3 optimization options. Scaled throughput and code size are
demonstrated in Fig. 6 and Fig. 7 respectively, with results
under default settings (section IV-A) as baseline.

Several conclusions can be derived directly from the figures.
First, compiler optimization is necessary for cryptographic

Execution Cycle Breakdown of NPCryptBench on IXP1200/2800

1.05 T

Scaled Performance

[RIR I RI I
fogatat =4 =4 AN
[ole]elelelelele)
[e=Re2pa=
:
beomn

06 L L L L L L L
AES DES IDEA Blowfish RCS RC6 RC4 SEAL MD5 SHA-1

Fig. 6. Comparison of IXP2800 Compilers - Benchmark Throughput

1.8

0.8

Scaled Code Size

0.6

0.4

0.2

PPN
[rgagat=tat=toty
foleYeloleetory

F82R82R8=2

0 L L L L L L L
AES DES IDEA Blowfish RC5 RC6 RC4 SEAL MD5 SHA-1

Fig. 7. Comparison of IXP2800 Compilers - Code Size

processing, especially for saving code storage. Codes gener-
ated with option -O0 are about 17% slower than -O2 codes
and 65% lengthier than -O1 codes. Second, codes generated
by different versions of compilers (with option -O1 and -O2)
have similar size and performance. Newer compilers introduce
generic optimizations like loop-unrolling and lead to much
larger code size. However, they are not very effective and even
slow down some algorithm, e.g. Blowfish.

By reading compiled codes we find that optimizations
performed by compilers are incapable of tasks such as context-

aware instruction reordering, table splitting and read/write
block size adjusting. In addition, we encountered some com-
piler failures. Compiler 2.01 fails on SHA-1 for IXP1200,
and compiling SEAL for IXP2X00 takes an hour on a Pen-
tium 4 2.4G processor. Current research of NP compilers
is still in its infancy, and mainly focuses on correctness
rather than performance. Therefore, it is worthwhile to study
hand-optimizations that better adapt cryptographic processing
to an NP architecture. The development of hand-optimizing
strategies in NPCryptBench can also help improve future NP
compilers.

B. Hand-optimizations For Single-thread

Lacking compiler countermeasures, we put forward hand-
optimizations to address the bottleneck discovered earlier.
Techniques alleviating the memory-wall effect under single-
thread mode are adopted with highest priority among opti-
mizations mentioned in section III-C-3.

Memory-related optimization of level-1 suggests greedy
memory allocation of subkey and table storage. This could be
achieved through splitting large tables and taking advantage of
“unused” registers. Other level-1 optimizations include loop-
unrolling, preloading immediate into registers (precalculation)
and replacing multiplication with shift operation.

On level-2, certain features of the target platform enable
extra memory optimizations, like reordering memory instruc-
tions. On Intel IXP network processors and most other NPs,
with the mechanism of complete signals and command queues,
the PE can issue multiple memory references simultaneously
and keep calculating during the waiting. Level-2 optimizations
also incorporate aligning data in memory and using special
hardware units when available.

C. Scaling Up Performance with Parallelism

Besides optimizing single-thread codes, two distinct features
of NP can be further used to scale up cryptographic throughput
with parallelism. Multi-PE multiplies NP’s computing power,
and multithread boosts PE’s utilization rate. Both techniques
increase parallelism and the throughput of memory subsystem.
Here we evaluate performance of level-2 codes with flow-level
and block-level parallelism [23]. Throughput of the benchmark

on IXP2800 is gathered on Intel IXA SDK 3.1 (-O2 option),
with various numbers of PE and thread.

Fig. 8 presents the throughput attained in the experiment.
After applying the hand-optimizations described in section VI-
B, performance of single-thread codes remarkably improves
for most algorithms. Actually an average of 145% increase is
observed, easily surpassing the compiler optimization. How-
ever, with multiplied ME/thread number, new bottlenecks
occur.

For algorithms that already achieve a near 100 percent ME
utilization rate under single-thread mode, multiple threads can-
not increase the overall throughput. Algorithms with frequent
memory references like AES, Blowfish and SEAL benefit from
multithread when ME number is small (one or two), because
their memory access latency could be sufficiently hidden.
However, throughput stops growing linearly for all algorithms
from 4 threads to 8 threads, as ME’s computing power has
already saturated under the 4-thread configuration.

When ME number increases from one to two, all algorithms
present nearly doubled throughput. But performance growth
begins to diverge with more MEs. Only DES, IDEA and
SHA-1 maintain a near linear speedup with 8§ MEs running
concurrently. On the contrary, AES and RCS5 hardly gain any
performance boost from greater than 4 MEs. In this case,
memory requests and internal traffic increase with the growth
of ME number, so shared memory or buses become the new
bottlenecks.

D. Optimizing for Parallelism

On IXP2800, abundant memory requests initiated by many
thread/ME make algorithms less scalable under massive paral-
lel environment. To mitigate congestion at memory and shared
buses, level-3 optimizations maximize memory read/write
burst size therefore reduce overall memory access overhead. It
is noticed that the two hash functions already hit the ceiling of
burst size on Intel IXP network processors, thus cannot enjoy
further increase.

To demonstrate the effectiveness of the level-3 optimiza-
tions, we compare it with an increase in memory frequency
(16.5% increase for DRAM and 33.5% increase for SRAM).

Fig. 8.

Throughput of NPCryptBench (Level-2) on IXP2800 with Varying Numbers of Threads and MEs

I I I
SHA-L | 0o O Level-3 Optimizations (200 Mhz SRAM, 400 Mhz RDRAM)

B Increase memory speed (233 Mhz SRAM,533 Mhz RDRAM)

-
[] 4847

SEAL 4652

Rea] 2107

973

Blowfish

RCE 2200

RC5 |
980 2929

IDEA

DES

AES

0 50 100 150 200 250 300

Improvement (%)

Fig. 9. Throughput and Improvement of Level-3 Optimizations and Increased
Memory Frequency on IXP2800 Under 8-ME, 8-thread Configuration

Their improvements over throughput in Fig. 8 are illus-
trated in Fig. 9. We find Level-2 codes on the modified
IXP2800 platform gain an average lift of 14.5%. In contrast,
level-3 codes produce a 72.1% elevation. Therefore, hand-
optimization of memory access contributes much more than
memory bus speedup. Algorithms whose performances rely
heavily on DRAM benefit most, such as RC4/5/6. Yet to those
whose original bottleneck is ME’s computing power (DES and
IDEA), memory optimization offers relatively little growth
of throughput, usually less than 10%. For these algorithms,
hardware puts on a real limit, further lift will rely on faster
PE or other architectural improvements.

VII. CONCLUSION AND FUTURE WORK

In this paper, NPCryptBench is presented as the first attempt
to evaluate cryptographic performance on NPs. Quantitative
evidence proves the principal bottleneck for ciphers and hash
functions being the exacerbated memory-wall effect. Since
it cannot be tackled by current compilers, we put forward
hand-optimizations according to application characteristics.
These optimizing strategies can be incorporated in future
compilers to gain better performance. Besides, we suggest
several hardware improvements to alleviate the bottleneck and
enhance cryptographic performance on data plane:

- Increase internal memory size (e.g. to >4K byte) on PEs
to lessen the pressure on shared memory.

- Enlarge the memory and command queues to reduce the
possibility of PE stalls.

- Adopt a new memory system to shorten memory access
latency.

In the future, we consider developing more ports of
NPCryptBench other than the Intel IXP family. Asymmetric-
key ciphers will be addressed on some advanced NP models.
At the same time, we plan to release all levels of NPCrypt-
Bench codes to the public, with better encapsulation.

ACKNOWLEDGMENT

This research is supported by Intel IXA University Program
(No. 0411A66), the National Natural Science Foundation of
China (N0.90412012) and the National Grand Fundamental
Research 973 Program of China (No. 2003CB314804).

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, 3rd ed, Morgan Kaufmann, 2002.

[2] T. Wolf and M. Franklin, ’CommBenchta telecommunications benchmark
for network processors”, Proc. IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS’00), 2000.

[3] B. K. Lee and L. K. John , "NpBench: A Benchmark Suite for Con-
trol plane and Data plane Applications for Network Processors”, Proc.
International Conference on Computer Design (ICCD’03), 2003.

[4] G. Memik and et al., "NetBench: A Benchmarking Suite for Network
Processors”, Proc. IEEE/ACM International Conference on Computer
Aided Design (ICCAD’01), 2001.

[5] M. R. Guthaus and et al., "MiBench: A Free, Commercially Represen-

tative Embedded Benchmark Suite”, Proc. IEEE International Workshop

on Workload Characterization (WWC-4), 2001.

J. Burke and et al.,, ”Architectural Support for Fast Symmetric-Key

Cryptography”, Proc. 9th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems(ASPLOS’00),

pp-178-189, 2000.

[7] Intel® xp Family of Network Processors, http://www.intel.
com/design/network/products/npfamily/index.htm.

[8] Y. Luo and et al., "NePSim: A Network Processor Simulator with
Power Evaluation Framework”, IEEE Micro Special Issue on Network
Processors for Future High-End Systems and Applications, 2004.

[91 EEMBC, http://www.eembc.org.

[10] M. Peyravian and J. Calvignac, "Fundamental Architectural Considera-
tions for Nnetwork Processors”, Computer Networks, Vol.41, no.5, 2003.

[11] Parallel eXpress Forwarding in the Cisco 10000 Edge Service
Router”,Cisco Systems, White Paper, 2000.

[12] N. Sklavos and O. Koufopavlou, “Mobile Communications World:
Security Implementations Aspects - A State of the Art”, Computer
Science Journal of Moldova, Vol.11, no.2, 2003.

[13] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, Apr. 1992;
http://www.fags.org/rfcs/rfcl321.html.

[14] Secure Hash Standard, National Institute of Standard and Technology,
http://csrc.nist.gov/CryptoToolkit/tkhash.html

[15] B. Schneier, Applied Cryptography, 2nd ed., John Wiley & Sons, 1996.

[16] P. Rogaway and D. Coppersmith, "A Software-Optimized Encryption
Algorithm”, Proc. the Cambridge Security Workshop, 1994.

[17] Advanced Encryption Standard (AES), National Institute of Standard and
Technology, http://www.nist.gov/aes.

[18] Data Encryption Standard (DES), National Institute of Standard and
Technology, http://csrc.nist.gov/cryptval/des.htm

[19] R. L. Rivest, "The RC5 Encryption Algorithm”, Proc. 2nd International
Workshop on Fast Software Encryption, 1995.

[20] J. Nechvatal and et al., "Report on the Development of the Ad-
vanced Encryption Standard”, National Institute of Standard and Technol-
ogy, http://csrc.nist.gov/CryptoToolkit/aes/round2/
r2report.pdf, 2000.

[21] B. Schneier, "Description of a New Variable-Length Key, 64-Bit Block
Cipher”, Proc. Cambridge Security Workshop, 1994.

[22] X. Lai, On the Design and Security of Block Ciphers, Hartung-Gorre
Veerlag, 1992.

[23] Z. Tan and et al., ”Optimization and Benchmark of Cryptographic Al-
gorithms on Network Processors”, IEEE Micro, Special Issue on Network
Processor For Future High-End Systems and Applications, pp.55-69,
2004.

[24] Z. Tan and et al., ”Optimization and Benchmark of Cryptographic Al-
gorithms on Network Processors”, Proc. IEEE International Conference
on System, Man and Cybernetics (SMC’03), vol.3, pp.2296-301, 2003.

[6

[t

http://www.intel.com/design/network/products/npfamily/index.htm
http://www.intel.com/design/network/products/npfamily/index.htm
http://www.eembc.org
http://www. faqs.org/rfcs/rfc1321.html
http://csrc.nist.gov/CryptoToolkit/tkhash.html
http://www.nist.gov/aes
http://csrc.nist.gov/cryptval/des.htm
http://csrc.nist.gov/CryptoToolkit/aes/round2/r2report.pdf
http://csrc.nist.gov/CryptoToolkit/aes/round2/r2report.pdf

	Introduction
	Related Work
	Benchmark Design Methodology
	Target NP Architecture
	Layered Processor Model
	PE Architecture
	Distributed, Shared Memory Hierarchy

	Algorithm Selection
	Implementation Considerations
	Algorithm Kernels and Coding Convention
	Modification
	Optimization
	Parallelism

	Compile-time Characteristics of NPCryptBench
	Target Platform and Experiment Environment
	Data Storage
	Code Storage and Instruction Mix

	Run-time Characteristics of NPCryptBench
	Throughput Test
	Pipeline Statistics
	Execution Cycle Breakdown

	Optimization and Parallelism
	Effect of Compiler Optimization
	Hand-optimizations For Single-thread
	Scaling Up Performance with Parallelism
	Optimizing for Parallelism

	Conclusion and Future Work
	References

