
Optimization and Benchmark of Cryptographic
Algorithms on Network Processors*

Zhangxi Tan, Chuang Lin, Yanxi Li, Yixin J iang
Computer Science Department

Tsinghua University
Beijing, China

xtan@csnetl .cs.tsinghua,edu.cn

Abstract - With the increasing needs of security,
cryptographic functions have been exploited in network
devices. Besides time consuming, security protocols are
flexible in algorithm selections. Fortunately, network
processors, which serve as the backbone of intelligent
network devices, hold performance and flexibility at the
same time. In this article, we investigate several
principles that can be used with implementing and
optimizing cpptographic algorithms on network
processors. Also, these principles are applied in real life
algontltms, including stream ciphers, block ciphers and
digital signatures. Related experiments and benchmark
results on Intel LYPl200 network processor are provided.

Keywords: Cryptographic algorithms, network processor,
optimization.

1 Introduction
Salient trend has it that many network devices

integrate cryptographic functions to gratify the increasing
needs of security. Especially, encryptioddecryption and
digital signature algorithms are expensive and
dramatically affect the all overall performance. Hardware
solutions [I] suffer from the cost and flexibility, while
software approaches compensate the drawbacks at the cost
of performance. Network processor, a device between
GPP (General Purpose Processor) and ASIC (Application
Specific Integrated Circuit) caters for the requirements of
performance and flexibility simultaneously. Unfortunately,
several difficulties do exist to hinder the elevation. First,
most cryptographic algorithms are designed without a full
appreciation of network processors. Second, several
preliminary results [2], [12] show encryption algorithms
have much more complexity than other header processing
applications. Third, many commercial network processors
are RISC based and have limited MIPS. Besides, no cache
or small cache is built on chip. Hence, optimizing
cryptographic algorithms on network processor is not only
close to software manners hut also a challenging job.

Some related works on GPPs have been done recent
years. Bruce Schneier [111 has presented several general

optimization principles on Intel Pentium processors. It
mainly focuses on “register poor” processors and takes
more concem on instruction pairing and snperscalar
processing, which are not possessed by network
processors. However, latency hiding and parallel
processing are conspicuous means. Erich Nahum [4] has
involved parallel processing on share memory
multiprocessor systems and discussed three types of
parallelism: per-connection, per-packet, and intra-packet
parallelism. Thread parallel techniques will be
emphasized in conjunction with latency hidmg in onr
discussions.

In this article, we analyze the general architecture of
prevailing commercial network processors, using Intel
IXP series as an example. Then, we propose three
catalogs of optimization principles. Due to some hardware
limits, implementing expensive algorithms (e.g., RSA [7])
on fast path of network processors is not feasible. Thus,
we implement and benchmark some compact encryption
algorithms and MD5 [6] digital signature algorithm on
Intel IXP1200 network processor.

2 Architecture of network processors
To satisfy the requirements of intelligent processing,

most commercial network processors are designed with
following technologies:

Pipeline and Parallel. mechanism. Network
processors contain multiple processing elements
(PES) which organized either in pipeline or
parallel manners.

Optimized memory units. Memory access is an
expensive task. This feature provides the
feasibility of latency hiding and reimburses the
drawback of small cache.

Special ALU instructions. This is originally used
to accelerate route applications, while still suits
cryptographic applications’ needs.

* 0-7803-7952-7/03/$17.00 0 2003 IEEE. 2296

http://cs.tsinghua,edu.cn

Hardware multithread. Many network processors
apply several ''Zero switching overhead"
hardware threads to increase utilization rate.

To be more specific, in this article we use Intel
EF'1200 as the platform. It is a wide used network
processor, which typically incarnates the characteristics
mentioned above, shown in Figure 1.

~ "ucn;,ra,r,,,, ,,~

PCI e", 4
.........I_ j 1:- I*-n=-*-r :

>:ai, e w.M,I,. $

...................
; S,>X*M \
: .,,:.~Mn,-''''' ~

,,,
:,' ,,:vi:,, ;- .
,, I:;bb<,r". ' .. /*U, aut,,,,- f

'- .. ?!:!%t:".".

..... ". ".l".

.............. *,
LII..aiU.illid

.......

-"

''1

Figure I. Hardware architecture of IXP1200

D(p1200 is mainly made up of 6 high speed
Microengines and one StrongAnn management core. Each
Microengine owns 4 hardware threads and only one
thread can be activated at anytime. Microengines and
StrongAnn are all RISC based processors sharing memory,
bus and other off chip resources, while Microengines
carry fast path applications and StrongAnn does slow path
jobs. Our optimizations will mainly focus on fast path,
especially the four threads of one Microengine. Without
any special indicate, in our benchmark parallel processing
is refer to four threads of one Microengine.

i

and reduce calculations of iteration variables and
array indexes.

Take full advantage of rich register resources
which could serve as cache, temporary storage
and constant tables.

Pre-calculate part of algorithms. For instance,
setup S-Box entries with keys, compute array
indexes and load immediate data into registers.

3.2 Latency hiding

Usually off-chip memory accesses generate long
communication latency. During the access waiting time
processors are in idle state, so the utilization rate of
processors will he degraded. Network processors could
improve this sitnation by controlling the waiting
procedure manually. The core idea of latency hiding is to
do something useful when waiting memory references. As
a whole, the latency seems to he hided.

3.3 Parallel processing

On network processors, parallel processing can be
exploited at Microengine level and hardware thread level.
Microengine level is somewhat like the parallelism of
SMP systems and related approaches have been studied in
[4], [SI. Our methods cany more weights on hardware
thread level parallelism in conjunction with the latency
hiding technique. Since many multithread processors use
non-preemptive context arbiters, thread switching can
work in either of the two modes:

Swap out immediately after issuing memory
references. In this case, current thread will be
deactivated waiting for the arbiter to wake up
and next valid thread executes immediately.

3 General optimization principles
Firstly, we propose two goals for optimizations: one

is to increase the utilization rate of Microengines. The
other is to minimize memory accesses and communication
latency. The former is to stretch the limited computation
capacity to the outmost. The later is to downcast After issuing memory references finish some
expensive memory operations. Regarding these, we operations and then swap out. This approach
summarize some principles in the following three catalogs. combines the latency hiding technique.

3.1 Computation oriented

On RISC based network processors, most
instructions could be -executed in one cycle and no
instruction pattems are required. However, network
processors exploit instruction pipeline techniques and
their rich register resources will be highlighted.

Avoid using complex instructions, which occupy
more than one cycle of time.

Unroll loops, avoid conditional jumps and thread
swapping. These can stunt the flush of pipeline

The second mode takes the latency hiding into
account and seems perfect, but the latency hiding prevents
other threads from execution until it swaps out.
Functionally, thread level parallelism we encounter in this
article mainly include the following forms:

All threads serve as homogeneous "processors"
and process similar jobs. This method is
especially useful to some block ciphers which
can be paralleled at data level. Also it is
commonly used with connection level parallelism.

Threads serve different functions and are
organized as a functional pipeline. Similar work

2297

can be found in researches of Simultaneous
Multithreaded processor (SMT). One early topic
by Zilles [I31 introduced the concept of helper
thread prefetching memory to increase cache hit
rate. Although cache behavior is not the major
problem on network processors, memory access
is still the bottleneck. Thus, we develop the
original helper thread idea into a more complex
one, by adding some non-critical operations to
the helper thread.

4 Analyze and benchmark existing
algorithms
In this section, we will apply our principles to some

existing cryptographic algorithms. Up to now, most
cryptographic algorithms are based on several time-
consuming inner loops. Other portions either performed at
startup time or sporadically, contribute little to the overall
execution time Thus, the inner loops will be our major
concems and their performance will be evaluated on Intel
IXP1200 network processor, which is configured at 200
MHz. All raw and unprocessed data are deposited in
SRAM.

.

4.1 Block ciphers: Blowfish and KhufuKhafre

Blowfish [lo] and KhufnKhafre [3] are concise and
their instruction storage requirements are amenable to
network processors.

Precompntation.
As these algorithms, S-Box and some arrays of

constant are initialized with keys. During the tun time,
they will not be changed 6equently.
Blowfish: DWORD P[18], S[4][256]

P and S are all initialized according to keys. P contains
only 18 entries and can be stored in register, while S has
to be placed in SRAM.

The S-box of Khufu is key depended while Khake is
not. Like Blowfish, the S-box of KhufujKhafre is also
placed in SRAM.

KhufnKhafre: DWORD S[ROUNDS/8][256]

Optimizing inner loops.
Blowfish:
for (i=Oj<l6;j++) { 1/16 rounds

L ”= Ph];
R

swap(J-,R); //swap L, R

((S[O][L & OxFF] + S[l][(L >> 8) & OxFF])”
S[2][(L >> 16) & OxFF])+ S[3][(L >> 24) & OxFF];

1
L, R are two long words to be encrypted. The inner loop
of Blowfish can be fully unrolled. Also it has some
memory accesses and needs complex address calculations.
For this reason, we bide these address calculations within
the latency of memory references, shown in Figure 2. At

cycle 5460, the fnst S-box read request is issued. Then we
continue to calculate S-box indexes and request three more
SRAM operations without swappmg out. Consequently, 8
cycle computations have been hided.

54M %E 5470 5475 5480 54%
. ! , I

Figure 2. The latency hiding effect of Blowfish

The thronghput is more than three times of the raw one,
illustrated in Figure 3. Owing to the data independence of
block ciphers, each thread can serve a portion of sources
and parallel at connection or packet level. In our
experiments, we benchmark the multi-thread performance
in two modes mentioned in section 3.3. Here, we name
parallel without latency hiding “Ml” and parallel with
latency hiding “ M Y . As Blowfish, M2 is better than M1.
But in KhufulKhafre, we draw the opposite conclusion.

KhnfuRhafre:
for (i=Oj<ROUNDS;j-H) {

tmp = R A S[ROUNDS/S][L & OxFF];
R = L <<< C; L = tmp;
}

L, Rare two 32 bit blocks to be encrypted. C is a constant
and determined according to j. As the security is
concemed, ROUNDS must exceed 16. In our experiments
we choose 32. Obviously, it is perfect to unroll all the
loops, thus the calculation of S-box indexes and rotation
constants will be omitted. Besides, loop unrolling can help
latency hiding among different rounds. Like Blowfish, we
take the advantage of data independence and evaluate the
parallel performance in two modes. The results are given
in Figure 3.

. _.

.- ._i -- . ”’ -- -:

Raw Computation Latency h i d i n g Parallel Parallel
oriented DroeeSSlns procernng

(HI) (V.2)

Figure 3. Throughputs of Blowfish and KhufnKhafre
with different optimization techniques

4.2 Stream ciphers: SEAL, RC4

In this section, SEAL [XI, RC4 [9] will be analyzed.
Disparate from block ciphers, most stream ciphers can not
be paralleled at data stream level, because of the strong
dependence of encryption operations. As a result,
connection level parallelism could not improve the

2298

throughput of single connection. At this circumstance, the
helper thread method will he the suitable solution for
parallel processing.

Precomputation.
SEAL: DWORD T[512], S[256], N[4]
RC4: DWORD S[256]

be placed in SRAM

e Optimizing inner loops.
SEAL:

These arrays are initialized based on keys and have to

Initialize a,b,c,d, N[4] according to keys
for (i=O;j<64j++) {

p = a & Ox7FC; b += T[p/4]; a=a >>> 9; bA=a;
q = h & Ox7FC; c A= T[q/4]; b=b >>> 9; c+=b;
p =(p+c) & Ox7FC; d += Tlp/4]; c=c >>> 9; dA=c;
q =(q+d) & Ox7FC; a A= T[q/4]; d=d >>> 9; a+=&
p =@+a) & Ox7FC; h Tlp/4]; a=a >>> 9;
q =(q+b) & Ox7FC; c += T[q/4]; h=b >>> 9;
p =(p+c) & Ox7FC; d A= T[p/4]; c=c >>> 9;
q =(q+d) & Ox7FC; a += T[q/4]; d=d >>> 9;
I* output 128hit data *I
a+=N[Z*(i&l)]; c+=N[2*(j&1) + I];

1
The inner loop of SEAL consists of initialization works
and a 64-round loop. Apparently, the 64-round loop is the
bottleneck. For the sake of simplicity, our benchmark only
takes the 64-round loop into account. Owing to the large
tables, SEAL has the most memory references among the
algorithms we have benchmarked in this article.

mw Cmn*h LI1Smyhidms ParaOllpmeuing
m k m d

Figure 4. Throughputs of SEAL with different
optimization techniques

Loop unrolling can only help to calculate the last two
operations of the loop and contribute nothing to the T
table index calculations. Also, the strong dependence of
consecutive operations bogs down the effect of latency
hiding. Only one circular rotation instruction can be hided
with each T table reference, as Figure 4 shows the result.
Although SEAL is a stream cipher, the generation of
variable length outputs can still benefit i?om the simple
parallelism used with block ciphers.

RC4:
for (i=j=O;cnt;cnt--,pt+) {
i=(i+l) & OxFF;
tmpI=S[i];

//update index i

22E

j=(i+tmpI) & OxFF; //update index j
tmpJ=S[i];S~]=tmpI; S[i]=tmpJ; //swap S[i], Sb]
N calculate a random index of S-box
t=(tmpI+tmpJ) & OxFF;
*p A= S[t]; I/ XOR the raw data

f
The computation granularity of RC4 is 8 bit, so there are
data align problems on 32 bit network processors. In our
optimization, we unroll the loop to the multiple of 4 and
align S-box entries to 32 hit. Additionally, the increment
of i is only calculated every 4 or 8 rounds, thus raw or
encrypted data can be easily cached in 32 bit registers.
From the view point of latency hiding, we adjust the
execution sequence of first two operations, that is to use
the memory reference of S[i] to hide "i = (i + 1) & OxFF".

I
IbrpStbd,

I*-

I hrw-
I

0 10 W M 4a YI M

%9*)
Figure 5 . Throughputs of RC4 with different optimization

techniques

On the parallel side, the helper thread idea has been
introduced. We exploit one main thread to finish some
serialized operations (fust four lines of the loop) and use
one or more threads to accomplish the random index
calculation, an XOR operation (the last two lines of the
loop) and prefetch operations (e.g. raw data read or write).
Moreover, memory operations have been classified to
achieve optimized performance, utilizing memory priority
features of IXP1200. That is to assign higher priority to
the S-box swap operation which is crucial to the following
accesses and lower priority to the encrypted data write
hack. Here we benchmark their performances with
different numbers of helper threads in Figure 5. The
results show that the more the helper threads the less the
performance. This is because the workload of helper
thread is relative lighter than that of the main thread. More
helper threads compete more with the main thread and
adversely degrade the performance.

4.3 Digital signatures: MD5

MD5 is a 128 bit hash function, which has enjoyed
widespread use in practice. Like stream ciphers, strong
dependence exists among consecutive operations of MD5.

19

Further, it requires little memory references except
reading raw data.

Precomputation.
Unlike other encryption algorithms, MD5 does not

have S-box or array initializations. Only 4 registers should
be loaded with immediate data. On the other hand, MD5
employs many 32 bit constants during the main loop.
Whereas, calculations with 32 bit immediate data on many
32 bit RISC based network processors require at least 3
instructions (two for loading data into registers, one for
ALU operation). Hence, in the precomputation stage we
load these immediate data in advance.

Optimizing inner loops.
Reading raw data;
(Round 1) Forj from 0 to 15 do the following:

t = (A + f(B;C;D) + X[zb]] +YE]),
(A;B;C;D)=(D; B+(t - su]);B; C).

(Round 2) For j from 16 to 3 1 do the following:
t = (A + g(B;C;D) + X[zLill+ ylil),
(A,B;C;D)=(D; B+(t - su]);B, C).

t = (A + h(B;C;D) + X[zu]] + yb]),
(A,B;C;D)=(D; B+(t - sE1);B; C).

t = (A+k(B;C;D)+X[zfi]]+ylj]).
(A;B;C;D)=@;B+(t - sb]);B; C).

(H1 ;H2;H3;H4) = (Hl+A;HZ+B;H3+C;H4+D).
A,B,C,D are 32 bit variable. f,g,h& are functions made
up of basic bit operations. X are raw data arrays. s, z ,y
are constant arrays. Clearly, loop unrolling can avoid
many may indexes. Noticed that the majority of the main
loop is composed of register calculations, latency hiding
technology contribute little to the optimization. Moreover,
MD5 is also a serial algorithm and allows the minimum
inner connection parallelism. Therefore, helper thread

(Round 3) For j from 32 to 47 do the following:

(Round 4) For j from 48 to 63 do the following:

(update chaining values)

method has been involved like RC4. This time, the helper
thread only performs raw data read opaations and uses
thread signals to communicate with the main thread.

0 20 40 W 80 I W 120 140 IM 180

f i~ghpuqhmpr)

Figure 6. Throughputs of MD5 with different optimization
techniques

Results in Figure 6 show that the latency hiding, helper
thread and connection level parallelism all achieve
throughputs at approximate 160 Mhps. The reason is that
MD5 is a computation-intensive algorithm and memory
references only occupy a small amount of time. Hence,
optimizations towards memory access only make a little
improvement.

5 Conclusions
Above, we have optimized and benchmarked 5 fast

path cryptographic algorithms, which hold different
characteristics. Finally, we compare their intrinsic
properties on IXP1200 in Table 1. To show the
efficiency of different optimization principles, SRAM
throughput after applying different principles and
Microengine utilization rate have been given in Table 2.

Table 1. Characteristics of different cryptographic algorithms

Table 2. SRAM throughput and Microengine utilization rate under different optimizations

2300

In Table 2, column “Thread parallel” is refer to thread
parallelism with or without the latency hiding technique
and the best method is sampled here.

From the tables above, we may draw the following
conclusions:

Algorithms with too many memory references
often get poor performance. For examples, SEAL
has 15 memory references per round and gets the
lowest performance among the algorithms we
have benchmarked. In contrast, KhufuKhafre,
MD5 and Blowfish enjoy higher throughput.

Computation oriented optimizations deliver very
limited performance boost unless the algorithm
relies seriously on the MIPS of processors (e.g.
MD5). Due to the RISC architecture, this can be
estimated by the instruction space of Table 1.

Thread level parallelism and latency hiding are
all used to increase the utilization rate of
processors. In our experiments most algorithms
improve a great deal with these optimizations. If
the original algorithm already has a high
processor utilization rate (like MD~) , these
methods will not work perfectly.

The helper thread is a good method to involve
parallelism with “serial” algorithms. In the tests
of RC4 and MD5, helper threads really improve
the performance and get similar throughput @er
thread) as connection level parallelism.

e

0

In real world applications, IXP1200 is designed for
access or edge devices and mainly supports IOOMbps
links. According to our results, to keep np with the link
speed, only one Microengine is not enough. Nevertheless,
we do believe implementing some lightweight
cryptographic algorithms with network processors is still
a feasible solution. Although our work is preliminary and
many factors remain to he explored, it still can be used
with algorithm selections and designs on the platform.

References
[I] W. Feghali, B. Bnrres, and G. Wolrich, “Security:
Adding Protection to the Network via the Network
Processor”, Intel Technology Joumal. Val 6, No. 3, pp.
40-49, Aug. 2002.

[2] G. Memik, B. M. Smith, and W. Hy “NetBench A
Benchmarking Suite for Network Processors”, Proc.
IEEE/ACM International Conference on Computer-Aided
Design, San Jose CA, pp. 39-42, November 2001.

[3] R. C. Merkle, “Fast Software Encryption Functions”,
Proc. 10th Annual International Cryptology Conference,
pp. 476-501, Santa Barbara CA, August 1990.

[4] E. Nahum, S. O’Malley, H. Orman, and R.
Schroeppel, “Towards High Performance Cryptographic
Software”, Proc. 3th IEEE Workshop on the Architecture
and Implementation of High Performance and
Communications Subsystems (HF’CS), Mystic CT, August
1995.

[5] E. Nahum, D. Yates, and S. O’Malley, H. Ormao,
and R. Schroeppel, “Parallelized network security
protocols”, Proc. Symp. on Network and Distributed
System Security, pp. 145-154, San Diego CA, February
1996.

[6]
RFC 1321, Network Working Group, April 1992.

[7] R. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key
cryptosystems”, Conzmunicafions of the ACM, page 120-
126, Feb. 1978.

[SI P. Rogaway, and D. Coppersmith, “A Software-
Optimized Encryption Algorithm”, Journal of Crypfology,
Vol. 11, No. 4, pp. 273-287, Sep. 1998.

[9]
Wiley & Sons, New York NY, 1996.

[lo] B. Schneir, “Description of a new variable-length
key, 64-bit block cipher (blowfish)”, Proc. the Cambridge
Security Workshop on Fast Software Encryption, pp. 191-
204, Cambridge Uy December 1993.

[l l] B. Schneier, and D. Whiting, “Fast software
encrypti0n:Designing encryption algorithms for optimal
software speed on the Intel Pentium Processor” , Proc.
Fast Software Encryption: 4” International Workshop,
Haifa Israel, pp. 240-259, January 1997.

[I21 T. Wolf, and M. Franklin, “CommBench-A
Telecommunications Benchmark for Network Processors”,
Proc. IEEE International Symposium on Performance
Analysis of Systems and Software, Austin TX, pp. 154-
162, April 2000.

[I31 C. Zilles, G. Sohi, “Ececntion-based Prediction
Using Speculative Slices”, Proc. 28” Annual International
Symposium on Computer Architecture, pp. 2-13,
Goteborg Sweden, June 2001.

R. Rivest, “The MD5 message-digest algorithm”,

B. Schneir, Applied Cryrography, 2nd Edifion, John

2301

