
550272-1732/04/$20.00  2004 IEEE Published by the IEEE computer Society

Information security is an indispens-
able concern owing to the growing demands
for trusted communication and electronic com-
merce. For example, applications such as those
for secure IP (IPSec) and virtual private net-
works (VPNs) have been widely deployed in
nodal processing. On the other hand, network
processors that provide a balance between per-
formance and flexibility become fundamental
building blocks in nodal devices to handle
diverse applications and protocols.

As requirements for communication securi-
ty grow, cryptographic processing becomes
another type of application domain. However,
cryptographic algorithms are all computation-
ally intensive.1 Furthermore, networks must
apply them to every packet crossing a secure
link, so cryptographic processing can have a
significant impact on overall performance.

To address this problem and add security
functions to network processors, a straightfor-
ward approach—one that achieves compara-
ble performance—is to implement them in
hardware. Unfortunately, many security chips

or coprocessors can only handle a few algo-
rithms, while most Internet security standards
allow flexibility in algorithm selection. In addi-
tion, cryptographic hardware is not cheap or
readily exportable. To compensate for these
drawbacks, vendors often build security func-
tionality directly into the same silicon as the
network processor. But this method is still
inflexible in that it cannot implement multi-
ple algorithms (the Intel IXP2850 network
processor, for example, has only two block
ciphers and one hash algorithm). Besides, data
must traverse shared memory and buses at least
four times. So the resource contention prob-
lem actually prevents those inline cryptographic
units from reaching their claimed performance.

Hence, the implementation of crypto-
graphic applications on network processors
via software is still necessary. Clearly, the most
challenging work for software implementa-
tions is to provide performance guarantees,
for instance, covering the handling packets at
high speed. On general-purpose processors,
traditional optimization techniques emphasize

Zhangxi Tan
Chuang Lin

Hao Yin
Tsinghua University

Bo Li
Hong Kong University of

Science and Technology

THIS WORK COMPARES AND ANALYZES ARCHITECTURAL CHARACTERISTICS OF

MANY WIDESPREAD CRYPTOGRAPHIC ALGORITHMS ON THE INTEL IXP2800

NETWORK PROCESSOR. IT ALSO INVESTIGATES SEVERAL IMPLEMENTATION AND

OPTIMIZATION PRINCIPLES THAT CAN IMPROVE OVERALL PERFORMANCE. THE

RESULTS REPORTED HERE ARE APPLICABLE TO OTHER NETWORK PROCESSORS

BECAUSE THEY HAVE SIMILAR COMPONENTS AND ARCHITECTURES.

OPTIMIZATION AND BENCHMARK
OF CRYPTOGRAPHIC ALGORITHMS

ON NETWORK PROCESSORS



improving instruction level parallelism (ILP)
and cache performance.2 However, most net-
work processor architectures employ multiple
processing engines (PEs) that work on data
plane processing; these multiple PEs go by sev-
eral names: microengine, channel processor,
or task-optimized processor. Based on RISC
cores, such PEs provide little ILP and offer no
cache or a small cache. What complicates the
problem is that PEs often communicate
directly with I/O. Accordingly, they must be
able to account for even small variations in
I/O operations. What’s more, the impact of
security applications performed on such plat-
forms is still unclear.

Most recent studies of cryptographic issues
on network processors assume a symmetric
multiprocessor (SMP) or superscalar archi-
tecture with multilevel caches.2,3 Such archi-
tectures, however, are more similar to
general-purpose processors; those studies thus
ignore many characteristics such as hardware
multithreading and asynchronous I/O that
are common in actual network processors. In
addition, such studies tend to measure results
using simulators for general-purpose proces-
sors; these simulators cannot cope with spe-
cial memory and I/O features unique to
network processors.

Our work studies architectural properties
for several widespread cryptographic algo-
rithms on an actual Intel IXP2800 network
processor. In this article, we propose several
implementation and optimization principles
and also discuss three topics in benchmark-
ing the optimized algorithms.

First, can multi-thread and multi-PE scale
up the processing? Second, what are the
potential bottlenecks and what are their caus-
es and solutions? Third, what optimizations
can be made to escalate the performance?

Intel IXP2800 architecture
Closely examining the IXP2800’s hardware

architecture, shown in Figure 1, helps to elu-
cidate our implementation and optimization.
IXP2800 is a member of Intel’s second-gen-
eration network processor family. Like its pre-
decessor, IXP1200, IXP2800 is also a 32-bit
RISC-based multicore system that exploits the
system-on-chip (SOC) technique for deep
packet inspection, traffic management, and
high-speed forwarding. The 700-MHz XScale
core is a general-purpose processor used for
exception handling, slow-path processing, and
other control plane tasks. The sixteen 1.4-
GHz microengines (MEs) are data plane PEs,
connected in two clusters. MEs in the same

56

NETWORK PROCESSORS

IEEE MICRO 56

Multithreaded (X8)
microengine array

Per-microengine
local memory, CAM, signals

neighbor registers

ME2 ME1

ME3 ME4

ME6 ME5

ME7 ME8

ME cluster 0

ME9 ME10

ME12 ME11

ME13 ME14

ME16 ME15

ME cluster 1

RDRAM
controller

(3 channels)

Quad data
rate SRAM
controller

(4 channels)

Xscale
core

PCI

Media
switch
fabric
unit

Scratch
memory

hash
unit

Figure 1. Intel IXP2800 hardware architecture.



cluster share a common command bus, which
they use to forward memory and I/O requests
to other relevant units. Adjacent MEs
(referred to as next neighbors) connect togeth-
er in a pipeline with their nearest neighbors
to provide one-way communication.

Intel designed the 32-bit media switch fab-
ric and PCI interface to connect to a media
access controller and external devices. Unlike
general-purpose processors—which rely heav-
ily on a large cache and efficient cache replace-
ment policies to improve performance—the
lack of locality in packet processing has forced
network processor designers to come up with
innovative memory and PE architectures. For
example, IXP2800 has a distributed, shared-
memory hierarchy that supports two types of
external memory: RDRAM and quad-data-
rate SRAM. In addition, the processor
includes a 16-Kbyte, on-chip, scratch SRAM
(shared among all MEs), plenty of registers,
and a small amount of local memory per ME.
In Table 1, we list the capacity, transfer size,
reference latency, and the typical usage of
these registers and memories. As shown in the
table, memory access latencies have not kept
pace with ME processing speed. For instance,
the minimum read latency for fastest shared
SRAM (scratch) is 100 ME cycles.

To solve this problem, the IXP architecture
uses eight zero-thread-switching-overhead hard-

ware threads for interleaved operation—one
thread does computation while others block,
waiting for memory operations to complete.
Thread swapping can be software controlled,
and MEs can perform asynchronous memo-
ry and I/O operations using multiple signals
that indicate the completion of these refer-
ences. Moreover, each ME supports a single-
cycle arithmetic logic unit (ALU) with shifter,
a multiply unit, and other specially designed
I/O instructions.

Cryptographic algorithms
Cryptographic processing is the art and sci-

ence of transforming regular data (plaintext)
into encrypted data (ciphertext). Such pro-
cessing primarily occurs in three application
domains:

• Public-key ciphers. In this domain, a
sender uses an openly published public
key for encryption. For decryption, the
receiver uses a private key that only it
knows.

• Private-key ciphers. Private-key applica-
tions rely on the sender and receiver shar-
ing of a common private key for use in
encryption and decryption.

• Hash functions. These functions trans-
form a variable-size input to an irre-
versible, fixed-length hash code. Both

57SEPTEMBER–OCTOBER 2004

Table 1. Characteristics of IXP2800 register and memories.

Reference 
Transfer latency 

Name Size size (bytes) (no. of cycles)* Application
Per-ME storage

General-purpose register 256*4 bytes 4 1 General programming
Transfer register 512*4 bytes 4 1 Transferring data from other MEs, memory, 

or I/O devices
Next-neighbor register 128*4 bytes 4 1 Communication with an adjacent ME
Local memory 640*4 bytes 4 5 Caching data needed by ME

Shared-memory among all MEs
Scratch 16 Kbytes 4 100/40** Fast access to processing state or data 

shared by all MEs
Quad data rate SRAM 64 Mbytes 4 130/53** Low-latency access to smaller data 

structures
RDRAM 2 Gbytes 16 295/53** Large storage for packet buffers and bulk 

data transfer
* Reference latencies are measured in ME cycles, configuring ME at 1.4 GHz, SRAM at 200 MHz, and RDRAM at 400 MHz.

** These average memory access latencies are for read/write.



sender and receiver must know the hash
algorithm used.

In this article, we do not address public-key
ciphers, because they require storing a large
amount of code and have slow execution
speeds, making them impractical for imple-
mentation on the fast path of a network proces-
sor. Besides, typical cryptographic systems like
the Secure Sockets Layer (SSL) use only pub-
lic-key ciphers for short sessions and private-
key management, while private-key ciphers are
critical for long-session performance.

Consequently, we focus on private-key
ciphers and hash functions, further classify-
ing the former into block and stream ciphers.

Block ciphers transform a fixed-length block
of plaintext into a block of ciphertext, using
a process that has several rounds. In contrast,
stream ciphers take data of variable length and
randomly generate key streams to “XOR”
with plaintext. Of the many algorithms, we
selected a subset of 10 algorithms based on
their popularity, availability, and how repre-
sentative they were of encryption processing
in general. Table 2 summarizes the character-
istics of these algorithms. Some algorithms—
such as AES and RC5—allow variable block
sizes and number of rounds.

In our experiments, we select recommend-
ed values for characteristics, according to algo-
rithm standards or which ones are most popular

58

NETWORK PROCESSORS

IEEE MICRO

Table 2. Selection and characteristics of cryptographic algorithms.

Block size No. of Table size Description or Special
Name (bits) rounds (bytes) applications requirements
Block ciphers

Data Encryption 64 16 256 First modern, None
Standard (DES)4 commercial-grade 

cipher
Advanced Encryption 128 10 5,120 Incorporated into None

Standard (AES)5 802.11i
International Data 64 9 0 Pretty Good Privacy (PGP) Multiply unit

Encryption Algorithm and Secure Shell/Secure
(IDEA)6 Sockets Layer (SSH/SSL)

RC5 (Ron’s Code 5)7 64 16 136 Wireless transport 32-bit variable
security layer rotation engine

in the Wireless 
Application Protocol

RC6 (Ron’s Code 6)8 128 20 176 AES candidate, Multiply unit and
improved 32-bit variable 

version of RC5 rotation engine
Blowfish9 64 16 4,168 Incorporated into None

Norton Utilities
Stream ciphers

RC4 (Ron’s Code 4)10 NA NA 256 SSL/TSL, 802.1x None
SEAL NA 64 + 2 less than 4,096* Disk encryption None

(Software-Optimized 
Encryption 
Algorithm)11

Hash functions
MD5 (Message 512 64 0 Digital signatures None

Digest 5)12

SHA-1 (Secure Hash 512 80 0 Digital signatures None
Algorithm 1)13

* SEAL’s table size is variable concerning the output length. Table 2 lists the upper bound.



in commercial applications. Most algorithms
include several key-dependent or key-
independent tables, called S- or P-boxes. Their
sizes not only affect security from a crypto-
graphic standpoint, but also have a substantial
influence on encryption speed. For this evalu-
ation, our selection combines small or no table
algorithms (such as hash function) and large-
table algorithms (such as AES and SEAL).

Experiments
To observe the architectural characteristics

of cryptographic algorithms and their utiliza-
tion of internal resources and to detect per-
formance bottlenecks, we conducted our
experiments under Workbench 3.1, a cycle-
accurate IXP2800 simulator. Our experiments
covered 1.4-GHz ME configurations, 200-
MHz SRAMs, and 400-MHz RDRAMs. We
compiled all the source codes using the Intel
Microengine C compiler 3.1 with optimiza-
tion level -O2, which offers the basic instruc-
tion and language optimizations. Some
operations, such as rotation, are not directly
expressible using C operators but are sup-
ported by IXP instructions. So we implement
these operations with inline assembly codes.
Hence, our optimization principles do not
focus on specific instructions unique to one
target but general features applicable to a wide
range of network processors. In addition, to
test the scalability of parallel optimization, we
used up to 8 MEs (64 threads total) in one
ME cluster, as described earlier.

Almost every known cryptographic algo-
rithm includes several small inner loops that
consume the vast majority of all processing
time. Other operations, such as key schedul-
ing and table initialization, can be precalcu-
lated at set-up time by slow path processors
(such as the XScale in the IXP2800). Thus,
our work focuses on the algorithm character-
istics of the inner loops, while many related
statistics include other portions, even those
that contribute little to overall performance.
To obtain benchmark results, we manually
apply the proposed optimization principles to
each algorithm. We store both the input and
output data in RDRAM, according to the
IXP2800 memory usage locations in Table 1.

Instruction characteristics
In this section, we present experimental sta-

tistics on the instruction distribution of these
algorithms. These metrics are essential infor-
mation in understanding the dynamic proper-
ties of these algorithms and developing
implementation and optimization principles.
Figure 2 illustrates the instruction mix profile
and code size of all selected algorithms. Table 3
depicts average statistics compared with Comm-
bench14 and NpBench,15 two existing network
processor benchmark suites that contain typi-
cal header and payload processing applications.

Based on this information, we see that most
block and stream ciphers need only a little
code storage (less then 200 lines of code). The
only exception is DES because it has several
complex bit operations that you must imple-
ment using a set of instructions indirectly.
Hash functions usually need more code stor-
age. On IXP2800, the codes for MD5 and
SHA-1 occupy 17.4 and 31 percent of the
overall 4-K instruction storage.

59SEPTEMBER–OCTOBER 2004

Memory operation
Unconditional branch
Simple ALU
Other

Load immediate
Conditional branch
Complex ALU

450

35

80
56 43

167 

AES DES RC5 RC6 Blowfish IDEA RC4 SEAL

450

400

350

300

250

200

150

100

50

0

Li
ne

s 
of

 c
od

e

174 178

SHA-1

1,200

1,000

800

600

400

200

0

Li
ne

s 
of

 c
od

e
1,240

MD5

178

(b)

(a)

Block and stream ciphers instruction mix

Hash functions instruction mix

Figure 2. Raw code sizes and instruction mix.



The most frequently used instructions are
ALU instructions, especially simple ALU
instructions like add, shift, and logic. Only algo-
rithms with special requirements (as indicated
in Table 2) need a few complex ALU instruc-
tions like multiply and complex shift. As a whole,
ALU instructions occupy a significant share of
the total instruction mix, which is 79.9 percent
on average followed by Commbench PPA (58
percent), NpBench (53.5 percent), and Comm-
bench HPA (41 percent) instructions. Hence,
cryptographic algorithms will consume more of
network processor’s computing power than
other payload or header processing applications.

Compared to other applications, every
cryptographic algorithm uses fewer branch
instructions in every algorithm. The average
percentage decrease is 1.5 percent, which is
much lower than that of Commbench PPA
(15 percent), Commbench HPA (20 percent),
and NpBench (16.2 percent).

Memory and load-immediate instructions
exhibit significant differences from algorithm
to algorithm. Stream ciphers and some block
ciphers (AES and Blowfish) tend to have a rel-
atively higher percentage of memory instruc-
tions than hash functions, which primarily
consist of ALU and load-immediate instruc-
tions. Except for AES, which has a percent-
age of memory instructions (26 percent)
comparable to that of header processing appli-
cations (33 percent in Commbench HPA),
the average percentage of memory instruc-
tions for the 10 algorithms is only 4 percent.
However, because of the long access latency
described earlier, memory operations should
still be carefully handled, as we will describe in
detail in the following sections.

Optimization principles and benchmarks
We describe our optimization and bench-

marks in two subsections. The first focuses on
general implementation and optimization
principles for a single thread within one ME.
The second section considers multithreading
and the results from scalability tests with mul-
tiple MEs.

Single threads: Generic optimizations
Generic implementation and optimization

rules are independent of the particular net-
work processor, and most are suitable for opti-
mizing general-purpose processors. Their goal
is to minimize the overall computation com-
plexity and decrease the number of expensive
operations.

Take advantage of memory. For optimum per-
formance, single threads must take full advan-
tage of rich register resource and the
distributed memory hierarchy. To minimize
access latencies, place some frequently used
tables into registers and per-ME local mem-
ories as much as possible. This situation is
similar to prefetching and using data caches
on general-purpose processors; but in net-
work processors, this memory use is con-
trolled directly by software. The C compiler
used in our benchmarks can automatically
select the fastest memory storage for the given
table size. To further improve the optimiza-
tion, we also manually split large tables. For
instance, two of the five total tables of AES
go into local memory and “unused” registers,
while other tables remain in scratch memory.
Our optimizations handle Blowfish tables in
a similar fashion.

60

NETWORK PROCESSORS

IEEE MICRO

Table 3. Comparisons of average instruction mix.

Average Commbench Commbench 
Instruction type mix PPA* HPA* NpBench
Memory 4.0 26 33 28.2
Load immediate 12.2 1 2 NA
Unconditional branch 0.7 1 1

16.2
Conditional branch 0.8 13 18
Simple ALU 78.6

58 41 53.5
Complex ALU 1.3
Other 2.4 1 5 2.2

* Commbench has two groups of benchmarks: payload processing applications (PPA) and header

processing applications (HPA).



Avoid using complex instructions. Avoid instruc-
tions, like multiplication, that consume more
than one cycle. For example, replace a power
of 2 multiply with shift operations.

Precalculated parts of algorithms. Aside from
the table initialization and key scheduling
mentioned earlier, immediate data used in
inner loops can also be preloaded. Moreover,
on architectures like IXP2800, loading a 32-
bit immediate requires two instructions. As
an example, hash functions use the C state-
ment “a += b + c + int32” extensively, where
variables a, b and c all fit in registers; int32 is
a 32-bit immediate. To reduce extra cycles
loading the immediate, replace this statement
by “a += b + c + d,” in which d is a register
preloaded with the value int32.

Unroll loops. This can prevent the pipeline
flushing and save extra clock cycles. On
IXP2800 (which has 6 pipeline stages), this
can save 3 cycles for each pipeline stall.
Besides, unrolling loops can reduce calcula-
tions that concern iteration variables and
make addressing in arrays more efficiently. For
instance, the inner loop of SEAL is

for(i=0;i<64;i++) {

...

a+= N[2*(i&1)]; 

c+= N[2*(i&1)+1];

...

}

Unrolled twice, this loop becomes

for(i=0;i<32;i++) {

...

a += N[0]; c += N[1];

...

a += N[2]; c += N[3];

...

}

The second code segment greatly simplifies
addressing in array N. It also halves the total
number of branches in the loop. However, this
improvement is at the cost of code size. For-
tunately, the small code size of most crypto-
graphic algorithms provides a good
opportunity for fully unrolling (eliminating)
the loop.

Single threads: Network-processor-dependent
memory optimizations

These principles use special optimized
memory and I/O units on network processors
to increase ME utilization rate and stretch the
computation capacity to the utmost level.

Align-memory operations. Table 1 shows trans-
fer size for different memory units. Access to
data sizes smaller than those supported by the
hardware incurs overhead. Thus, to achieve
optimal performance, an optimized applica-
tion should align tables at hardware bound-
aries. For instance, an application would store
8-bit table entries in RC4 as 32-bit variables
in per-ME Local Memory, at the expense of
more storage space.

Memory burst read and write. On most net-
work processors, a PE can issue memory burst
operations directly at the instruction level.
IXP2800 allows a 32-byte scratch or SRAM,
or 64-byte RDRAM burst reference within
one instruction. Employing this mechanism
further reduces memory instructions. In our
benchmark, reading plaintext and writing
ciphertext are all burst operations at their
block sizes.

Latency hiding and I/O parallelization. This
makes use of asynchronous memory opera-
tions to hide long memory access latencies and
to improve the ME utilization rate. The core
idea is to continue calculating while waiting
for the completion of references. Further, with
the mechanism of complete signals and com-
mand queues, the microengines can issue
multiple memory references simultaneously.
Figure 3 shows an example of this simultane-
ous issue.

Figure 4 presents single-thread throughputs
for selected algorithms with the application of
different optimization principles. Figure 5 (on
p. 63) gives related internal statistics for MEs.
As is evident from the plot, hash functions
have the best performance (see MD5 1,219
Mbits/s) followed by stream ciphers and block
ciphers. DES achieves the lowest throughput
(32.2 Mbits/s after optimization) because it
works at the bit level; the 32-bit IXP2800 has
weak support for bit-level instructions.

Although ALU instructions are the most fre-
quently used in every algorithm, generic opti-

61SEPTEMBER–OCTOBER 2004



mization techniques, which aim to improve
computational efficiency, are less effective than
network-processor-dependent memory opti-
mizations. For most algorithms, generic opti-
mizations can only provide less than a 15
percent improvement. The exceptions are
RC4, AES, and Blowfish. Because RC4 is 
8-bit aligned, after loop unrolling, this algo-
rithm can process the data at 32-bit bound-
aries, reducing overall memory operations.
Both AES and Blowfish have large tables, so
their performance enhancements come main-
ly from manually splitting large tables.

The effect of pipeline optimizations seems
quite limited. This is because of the short
pipeline architecture of network processors and
low percentage of branch instructions (less
than 2 percent) in cryptographic algorithms.
The execution statistics also support these
observations. Before any optimization, an ME
was only aborted (threads experience a pipeline
flush because of branch or thread swapping)
for a small percentage (0.2 to 2.2 percent) of
ME utilization time.

Most stream and block ciphers suffer from
a low ME utilization rate (see the low levels of

62

NETWORK PROCESSORS

IEEE MICRO

Execution 3 should be
performed only after two
memory references have
been completed.

Latency hiding and I/O parallelization

Issue memory
reference 1

Issue memory references 1, 2 Waiting for completion

Issue memory
reference 2 Normal execution

Execution 1

Execution 1

Latency 1

Latency 2

Execution 2 Execution 3Idle

Execution 2 Execution 3Latency 1 Latency 2

Time

Figure 3. Example of latency hiding and I/O parallelization.

1,350

1,200

1,050

900

750

600

450

300

150

0

T
hr

ou
gh

pu
t (

M
bp

s)

Unoptomized code
Generic optimization
Generic plus NP-dependent memory optimization

AES DES RC5 RC6 Blowfish IDEA RC4 SEAL MD5 SHA-1

Figure 4. Single-thread performance with different optimization principles.



active utilization for these algorithms in Figure
5), but generic optimizations do not account
for long memory reference latencies. On the
other hand, network-processor-dependent
memory optimizations effectively hide them
and significantly increase the ME utilization
rate, especially for algorithms, which have a
high percentage of memory operations. Even
though hash functions consist of less than 1
percent of memory instructions, memory opti-
mizations still yield more speedup than gener-
ic optimizations. Thus, for network processors,
hiding memory latencies should have a high
priority, unlike related discussions on general-
purpose processors, which put less emphasis on
memory systems.2

From Figure 5, we also observe that all algo-
rithms except AES, Blowfish, and SEAL have
a near 100 percent ME utilization rate after
memory optimizations. Hence, the comput-
ing power of MEs remains their bottleneck. 

In contrast, long access latency, rather than
memory bandwidth, limits the throughput of
AES, Blowfish, and SEAL, because no algo-
rithm tested had its ME stall because of full
target memory queues or ME command
queues.

One negative effect of network-processor-
dependent memory optimizations is that they
involve more signal synchronizations and
cause extra pipeline abort cycles. However, for
most algorithms, an ME is aborted less than
1 percent of the time, which is negligible
compared to the speedups provided by these
optimizations.

Multiple threads: Using parallelism
An obvious way to improve cryptographic

applications on network processors is to use
parallelism. Three types of parallelism are use-
ful: flow-level, block-level, and intrablock.
Flow-level parallelism is straightforward and
applicable to every algorithm, but does not
improve the throughput of a single flow.
Block-level parallelism focuses on block
ciphers only and works differently with
encryption modes, such as Electronic Code
Book (ECB) and Cipher Block Chaining
(CBC). ECB allows the encryption of sepa-
rate blocks in parallel but is susceptible to
simple-substitution attacks and cut-and-paste
forgery. Therefore, most applications use
CBC mode, which XORs the output of each
ciphertext with the next block of plaintext
thus allowing less parallel operations.

Intrablock parallelism operates on a single
block but only works with algorithms that
have less-serialized operations.

Flow- and block-level parallelism. We experi-
mented with flow- and block-level parallelism
to see how well the overall throughput scaled
using multiple threads and IXP2800 MEs.
We implemented all block ciphers in CBC
mode. When encrypted with CBC mode,
block read/write operations are parallelizable,
handled by single thread using I/O paral-
lelization. Thus, we assign one hardware
thread to one flow, which requires no thread
communication.

Figure 6 presents the overall throughputs of

63SEPTEMBER–OCTOBER 2004

100

80

60

40

20

0

M
E

 u
til

iz
at

io
n 

(p
er

ce
nt

ag
e)

Active Aborted Stalled Idle

AES DES RC5 RC6 Blowfish IDEA RC4 SEAL MD5 SHA-1
U G N U G N U G N U G N U G N U G N U G N U G N U G N U G N

U: Unoptimized  G: Generic  N: Generic+NP

Figure 5. Internal statistics for MEs.



the selected algorithms with our multiME,
multithread implementation. First, we observe
the results of one and two MEs. Naturally, the
throughput of two threads in two MEs is
around double that of a single thread in one
ME. However, the throughput of four or eight
threads in a ME is not four or eight times that
of one thread because they share the same com-
puting power. For algorithms that already
achieve a near 100 percent ME utilization rate
for a single-thread benchmark (via latency hid-
ing), multiple threads cannot increase the over-
all throughput. In contrast, multithreading
enhances the throughput of AES, Blowfish, and
SEAL, algorithms that involve many memory
references. But, increasing the number of
threads from four to eight generates no extra
throughput because MEs are already saturat-
ed. On an overall basis, the bottleneck is again
an ME’s computing power.

Another observation from the figure is that
having many MEs (greater than four) does not
always yield close to linear speedups, as does

the move from one to two MEs. Only DES,
IDEA, and SHA-1 maintain a near linear
speedup with an eight ME configuration.
Other algorithms improve very little in mov-
ing from four to eight MEs, even though the
computing power is double. So apparently, the
bottleneck is no longer the same.

Identifying bottlenecks. To identify the new bot-
tleneck, we inspected internal statistics for eight
ME configurations. We also measured perfor-
mance statistics for command bus arbiters; Fig-
ure 7 shows those results. Eight MEs share two
command bus arbiters, sending memory
requests to relevant controllers, one for an
SRAM request and one for scratch and
RDRAM requests. Except for the three algo-
rithms that improve with eight MEs, other algo-
rithms—such as MD5 and RC6—suffer from
low ME utilization rates with one thread per
ME. This is because the memory access laten-
cy increases under heavy load, and the compute
cycles cannot hide them anymore. Table 1 only

64

NETWORK PROCESSORS

IEEE MICRO

600
500
400
300
200
100

0T
hr

ou
gh

pu
t (

M
bp

s)
AES

1 2 4 8
No. of microengines

300
250
200
150
100

50
0T

hr
ou

gh
pu

t (
M

bp
s)

DES

1 2 4 8
No. of microengines

900
750
600
450
300
150

0T
hr

ou
gh

pu
t (

M
bp

s)

RC5

1 2 4 8
No. of microengines

1,500
1,250
1,000

750
500
250

0T
hr

ou
gh

pu
t (

M
bp

s)

RC6

1 2 4 8
No. of microengines

750

625

500

375

250

125

0T
hr

ou
gh

pu
t (

M
bp

s)

Blowfish

1 2 4 8
No. of microengines

900

750

600

450

300

150

0

T
hr

ou
gh

pu
t (

M
bp

s)
IDEA

1 2 4 8
No. of microengines

900

750

600

450

300

150

0

T
hr

ou
gh

pu
t (

M
bp

s)

RC4

1 2 4 8
No. of microengines

5,100
4,250
3,400
2,550
1,700

850
0T

hr
ou

gh
pu

t (
M

bp
s)

SEAL

1 2 4 8
No. of microengines

6,000

5,000

4,000

3,000

2,000

1,000

0T
hr

ou
gh

pu
t (

M
bp

s)

MD5

1 2 4 8
No. of microengines

6,000

5,000

4,000

3,000

2,000

1,000

0T
hr

ou
gh

pu
t (

M
bp

s)

SHA-1

1 2 4 8
No. of microengines

1 thread
4 thread
8 thread

Figure 6. Throughput of selected algorithms with varying numbers of threads and MEs.



depicts the average latency under modest load.
If the request is queued, its latency will be sev-
eral times longer. We initially thought that
multithreading might help to hide these extra
latencies. Actually, our results show that the use
of more threads does not convert the idle cycles
to active cycles, but to stalled cycles. The bot-
tleneck might differ for different algorithms:

• For AES, Blowfish, and SEAL, which
have the most shared-memory requests
among all the selected algorithms, the
bottleneck is the shared bus that connects
multiple MEs, because command bus
arbiters only idle a small percentage (less
than 6 percent) because of the fullness of
memory queues.

• For RC4, RC5, RC6, and MD5, the bot-
tleneck is RDRAM. Unlike the preced-
ing three algorithms, the only off-ME

memory access is the reading or writing
data from RDRAM, which occurs twice
at most when encrypting one block. In
the results for these algorithms, com-
mand bus arbiters are also idle for most
of the time, but because of a higher per-
centage (greater than 90 percent) of
memory queue fullness.

• For DES, IDEA, and SHA-1, the bot-
tleneck is once again the computing
power, because these algorithms have an
approximate 100 percent ME utilization.

Memory system optimizations. As we just dis-
cussed, for many algorithms, shared memory
becomes the new system bottleneck when
working in parallel with many MEs. To mit-
igate the contention, it is possible to optimize
the memory system using the following hard-
ware or software approaches:

65SEPTEMBER–OCTOBER 2004

100

80

60

40

20

0

P
er

ce
nt

ag
e

Active Aborted Stalled Idle

1T 8T
AES

1T 8T
DES

1T 8T
RC5

1T 8T
RC6

1T 8T
Blowfish

Blow-
fish

1T 8T
IDEA

1T 8T
RC4

1T 8T
SEAL

1T 8T
MD5

1T 8T
SHA-1

(a)

100

80

60

40

20

0

P
er

ce
nt

ag
e

Used Idle due to memory queue fullness Idle due to no request

(b)

1T8T
AES

1T8T
DES

1T8T
RC5

1T8T
RC6

1T8T 1T8T
IDEA

1T8T
RC4

1T8T
SEAL

1T8T
MD5

1T8T
SHA-1

1T8T
AES

1T8T
DES

1T8T
RC5

1T8T
RC6

1T8T
Blow-
 fish

None-SRAM request SRAM request

1T8T
IDEA

1T8T
RC4

1T8T
SEAL

1T8T
MD5

1T8T
SHA-1

1T: 1 thread  8T: 8 threads ME Statistics

Command bus arbiters statistics

Figure 7. Internal statistics of ME and command bus arbiters with an eight ME configuration.



• Increase the memory bus speed to reduce
access latency. We investigated this
approach by increasing IXP2800’s
SRAM to 233 MHz (a 16.5 percent
increase) and RDRAM to 533 MHz (a
33.5 percent increase).

• Increase the memory read/write burst size
to reduce memory traffic, which will also
reduce the pressure on the shared bus. In
previous tests, all memory references
burst at the block size of their algorithms.

Here, we demonstrate the effect when we
enlarge the burst to the maximum size
supported by IXP2800.

Figure 8 shows optimized throughput
(marked in numbers) and improvements from
applying the optimizations with eight thread
and eight ME configurations. Increasing burst
size is not possible on MD5 and SHA-1,
because their block sizes are already at the
maximum burst size. Algorithms that suffer
from the RDRAM bottleneck benefited most.
Although not shown here, we also test other
possible burst sizes and find that the larger the
burst size, the greater the improvement.

Additionally, increased burst size contributes
more than increased memory bus speed. Rais-
ing the burst size successfully shifts RC4, RC5,
and RC6 away from the RDRAM bottleneck,
because memory bus speed cannot convey more
significant improvements. For those whose bot-
tleneck is shared-bus or ME computing power,
memory optimizations afford relatively little
improvement, usually less than 10 percent.

Intrablock parallelism. For
some algorithms, several
threads in different MEs can
work together to enhance the
performance of a single flow,
in which the granularity of
flow- and block-level paral-
lelism is one thread within
one ME. Besides, these opti-
mizations not only increase
computation resources but
also increase high-speed stor-
age, such as registers and local
memory. Here, we do not use
several threads in one ME
because they share the same
computing power. However,

working with different MEs requires extra
communication among MEs. In our imple-
mentations, we consider the use of dual MEs
(two adjacent MEs) as the building block of
intrablock parallelism. Because IXP2800 only
organizes MEs in a pipeline, it supports fast
communication between two adjacent MEs.

Depending on the algorithm, we use two
execution modes of intrablock parallelism,
illustrated in Figure 9:

66

NETWORK PROCESSORS

IEEE MICRO

SHA-1

MD5

SEAL

RC4

Blowfish

RC6

RC5

IDEA

DES

AES
519

492
488

282
280

267

823
820

791

3,009

2,929 980

2,204
2,200

1,743

698
677

629

2,128 
2,107

973

4,845
4,847

4,652

5,220

6,954

Increase burst size (233-MHz SRAM, 533-MHz RDRAM)
Increase burst size (200-MHz SRAM, 400-MHz RDRAM)
Increase memory speed (233-MHz SRAM, 533-MHz RDRAM)

0 50 100 150 200 250 300

Improvement (percentage)

Figure 8. Throughput and improvement of memory system optimizations
with eight-thread and eight-ME configuration.

Fast data transfer by
next neighbor registers

Slow data tranfer by
reflector mechanism

ME0

Task 1

Task 2a

Task 3

ME1

Task 2b

ME0

Task 1 (helper)

ME1

Task 1 (main)

(a) (b)

Figure 9. Execution modes for intrablock parallelism: Fork-join (a); Helper-ME (b).



• Fork-join. Some tasks can be split in two
parallel streams and deployed on two MEs.
They then require bidirectional commu-
nications for synchronization. This fork-
join mode works with some block ciphers.

• Helper ME. This mode creates two
copies of the same task, one on each
ME. One ME, the helper, runs the
reduced task; the other (main ME) runs
the full task. The helper ME goes ahead
of the main ME and performs calcula-
tions with data loaded from shared
memories, before the reference by the
main ME. Many hash functions can
execute in this mode.

IXP2800 hardware restricts fast data transfer
by next-neighbor register in only one direction
(indicated by the solid line in Figure 9). Com-
munication in the reverse direction must use a
slower mechanism, called the reflector (dashed
line in Figure 9). We benchmarked AES and
DES in fork-join mode, and MD5 and SHA-
1 in helper-ME mode. Figure 10 presents their
throughputs and per-flow improvements over
flow- and block-level parallelism. Intrablock
parallelism involves many inter-ME commu-
nication latencies, especially working in fork-
join mode. But, we can hide these latencies
using the hardware thread. Consequently,
throughputs and per-flow improvements for

67SEPTEMBER–OCTOBER 2004

1 thread 4 thread 8 thread 1 thread/ME 4 threads/ME 8 threads/ME

Im
pr

ov
em

en
t (

pe
rc

en
ta

ge
)

6,000

5,000

4,000

3,000

2,000

1,000

0

12

10

8

6

4

2 

0

T
hr

ou
gh

pu
t (

M
bp

s)

No. of microengines
2 4 8

(c) MD5

3,000

2,500

2,000

1,500

1,000

500

0

6

5

4

3

2

1

0

T
hr

ou
gh

pu
t (

M
bp

s)

Im
pr

ov
em

en
t (

pe
rc

en
ta

ge
)

No. of microengines
2 4 8

(d) SHA-1

Im
pr

ov
em

en
t (

pe
rc

en
ta

ge
)

1,500

1,250

1,000

750

500

250

0

180

150

120

90

60

30

0

T
hr

ou
gh

pu
t (

M
bp

s)

No. of microengines
2 4 8

(a) AES

240

200

160

120

80

40

0

90

75

60

45

30

15

0
T

hr
ou

gh
pu

t (
M

bp
s)

Im
pr

ov
em

en
t (

pe
rc

en
ta

ge
)

No. of microengines
2 4 8

(b) DES

Figure 10. Throughput and per-flow improvement. We cannot configure MD5 in eight-thread
mode because of a register shortage.



AES and DES with four- or eight-thread con-
figurations are much higher than for single-
thread configurations.

So although the computing power has dou-
bled, some algorithms cannot entirely exploit
the increase. MD5 and SHA-1 have the low-
est improvements, because only a small per-
centage of their codes can run in the
helper-ME mode. In contrast, AES obtains a
186 percent per-flow improvement with an
eight-thread and eight-ME configuration.
This is because we split its large tables into
the local memories of different MEs. Split-
ting the tables reduces the shared-memory
requests, which put great pressure on the
command bus when the number of MEs is
large. Besides, unlike other algorithms, AES
obtains a much higher overall throughput
with intrablock parallelism than with other
forms of parallelism.

As a whole, our benchmarks show that
hash functions can achieve relatively high

throughputs exceeding 5 Gbps. Stream and
block ciphers run slower, having a throughput
of 1.5 Gbps on average. Nevertheless, all the
stream ciphers and some block ciphers in our
test still attain over 2-Gbps throughputs.
Because shared resources such as memory and
bus are a major factor that affects the overall
performance, we doubt whether employing a
shared, cryptographic-application-specific chip
or coprocessor in a network processor is the
only way to meet high-throughput demands.
However, several hardware improvements to
current network processors can help software
implementations on data path PEs:

• Increase the cache size on PEs to hold
large tables and lessen the pressure on the
shared memory and bus.

• Organize PEs in smaller clusters and
enhance the shared-bus performance.

• Enlarge the size of the memory and com-
mand queues to reduce the possibility of
PE stalls.

• Improve communications among differ-
ent PEs to help intrablock parallelism.

• Distribute support for cryptographic-
specific hardware in each PE or share this
support among a few PEs.

• Adopt a new memory system to shorten
the access latency.

We believe that in combination, the pro-
posed implementation and optimization prin-
ciples can go a long way toward improving
cryptographic processing performance on net-
work processors.

Acknowledgment
This research was supported by Intel IXA

University Research Plan (No. 9077), the Nat-
ural Science Foundation of China (No.
90104002, 60173012, 60273009, and
60372019), NSFC and RGC (No.
60218003), the Projects of Development Plan
of the State Key Fundamental Research (No.
G1999032707 and 2003CB314804), and
China Postdoctoral Science Foundation (No.
2003034152). Bo Li’s research was supported
in part by a NSFC/RGC joint grant under the
contract N_HKUST605/02; grants from
RGC under the contracts HKUST6402/03E
and HKUST6104/04E; and a grant from
Microsoft Research under the contract
MCCL02/03.EG01. This work was per-
formed while Bo Li was a visiting scientist in
Microsoft Research Asia, Beijing.

References
1. M. Merkow and J. Breithaupt, The Complete

Guide to Internet Security, Amacom, 2000.
2. H. Xie, L. Zhou, and L. Bhuyan, “Architec-

tural Analysis of Cryptographic Applications
for Network Processors,” http://www.
cs.ucr.edu/~bhuyan/papers/np1.pdf.

3. P. Dongara and T.N. Vijaykumar, “Acceler-
ating Private-Key Cryptography Via Multi-
threading on Symmetric Multiprocessors,”
Proc. IEEE Int’l Symp. Performance Analy-
sis of Systems and Software (ISPASS 03),
IEEE Press, 2003, pp. 58-69.

4. Data Encryption Standard (DES), Nat’l Insti-
tute of Standards and Tech., Federal Infor-
mation Processing Standards Publication
46-3, 25 Oct. 1999; http://csrc.nist.gov/
cryptval/des.htm.

5. Specification for the Advanced Encryption
Standard (AES), Nat’l Institute of Standards
and Tech., Federal Information Processing
Standards Publication 197, 26 Nov. 2001;
http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

6. X. Lai, On the Design and Security of Block
Ciphers, Hartung-Gorre Veerlag, 1992.

7. R.L. Rivest, “The RC5 Encryption Algo-

68

NETWORK PROCESSORS

IEEE MICRO



69SEPTEMBER–OCTOBER 2004

rithm,” Proc. 2nd Int’l Workshop on Fast
Software Encryption, Springer-Verlag, 1995,
pp. 86-96.

8. J. Nechvatal et al., “Report on the Develop-
ment of the Advanced Encryption
Standard,” Nat’l Institute of Standards and
Tech., 2 Oct. 2000; http://csrc.nist.gov/
CryptoToolkit/aes/round2/r2report.pdf.

9. B. Schneier, “Description of a New Variable-
Length Key, 64-Bit Block Cipher,” Proc.
Cambridge Security Workshop, Springer-
Verlag, 1994, pp. 191-204.

10. B. Schneier, Applied Cryptography, 2nd ed.,
John Wiley & Sons, 1996.

11. P. Rogaway and D. Coppersmith, “A Soft-
ware-Optimized Encryption Algorithm,”
Proc. the Cambridge Security Workshop,
Springer-Verlag, 1994, pp. 56-63.

12. R. Rivest, The MD5 Message-Digest Algo-
rithm, RFC 1321, Apr. 1992; http://www.
faqs.org/rfcs/rfc1321.html.

13. A.J. Menezes, P.C. van Oorschot, and S.A.
Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, 1996.

14. T. Wolf and M. Franklin, “CommBench: A
Telecommunication Benchmark for Network
Processors,” Proc. IEEE Int’l Symp. Perfor-
mance Analysis of Systems and Software
(ISPASS 00), IEEE Press, 2000, pp. 154-162.

15. B.K. Lee and L.K. John, “NpBench: A Bench-
mark Suite for Control Plane and Data Plane
Applications for Network Processors,” Proc.
IEEE Int’l Conf. Computer Design (ICCD 03),
2003, pp. 226-233.

Zhangxi Tan is an ME student in the Depart-
ment of Computer Science at Tsinghua Uni-
versity, China. His research interests include
computer architecture, network processors,
performance evaluation, and resource man-
agement in computer networks. Tan has a BE
in electronic engineering from Tsinghua Uni-
versity. He received the 2002 Outstanding

Graduate Student Award from both Tsinghua
University and the City of Beijing, and the
2004 Outstanding Chinese Student Scholar-
ship from IBM.

Chuang Lin is a professor and the head of the
Department of Computer Science at Tsinghua
University. His research interests include com-
puter networks, performance evaluation, net-
work security, and Petri net theory and
applications. Lin has a PhD in computer sci-
ence from Tsinghua University. He serves as
the general chair for ACM SIGCOMM’s 2005
Asia workshop and the associate editor of the
IEEE Transactions on Vehicular Technology. He
is a senior member of the IEEE.

Hao Yin is an assistant professor with Depart-
ment of Computer Science, Tsinghua Uni-
versity. His research interests include
multimedia communication, video coding,
and network security. Yin has a BS, an ME,
and a PhD, all in electrical engineering, from
the Huazhong University of Science and
Technology, China. He is a member of IEEE.

Bo Li is an associate professor with the Depart-
ment of Computer Science, Hong Kong Uni-
versity of Science and Technology; he is also
an adjunct researcher for Microsoft Research.
Li has a PhD in electrical and computer engi-
neering from the University of Massachusetts
at Amherst. He was cochair of IEEE Infocom
2004’s technical program committee.

Direct questions and comments to Zhangxi
Tan, Department of Computer Science and
Technology, Tsinghua University,100084 Bei-
jing China; xtan@csnet1.cs.tsinghua.edu.cn.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.


