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MDTC

MDTC utilizes all available training data to  
improve the overall performance across  

all (labeled and unlabeled) domains

Forward and backward passes when updating the parameters of Fs, Fd and C
Forward and backward passes when updating the parameters of D
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Figure 1: MAN for MDTC. The figure demonstrates the
training on a mini-batch of data from one domain. One
training iteration consists of one such mini-batch train-
ing from each domain. The parameters of Fs, Fd, C are
updated together, and the training flows are illustrated
by the green arrows. The parameters of D are updated
separately, shown in red arrows. Solid lines indicate
forward passes while dotted lines are backward passes.
JD

Fs
is the domain loss for Fs, which is anticorrelated

with JD (e.g. JD
Fs

= �JD). (See §2,§3)

that D cannot predict the domain of a sample given
its shared features. The intuition is that if even a
strong discriminator D cannot tell the domain of a
sample from the extracted features, those features
Fs learned are essentially domain invariant. By
enforcing domain-invariant features to be learned
by Fs, when trained jointly via backpropagation,
the set of domain features extractors Fd will each
learn domain-specific features beneficial within its
own domain.

The architecture of each component is relatively
flexible, and can be decided by the practitioners
to suit their particular classification tasks. For in-
stance, the feature extractors can adopt the form
of Convolutional Neural Nets (CNN), Recurrent
Neural Nets (RNN), or a Multi-Layer Perceptron
(MLP), depending on the input data (See §4). The
input of MAN will also be dependent on the feature
extractor choice. The output of a (shared/domain)
feature extractor is a fixed-length vector, which is
considered the (shared/domain) hidden features of
some given input text. On the other hand, the out-
puts of C and D are label probabilities for class

Algorithm 1 MAN Training
Require: labeled corpus X; unlabeled corpus U; Hyperpa-

mameter � > 0, k 2 N
1: repeat
2: . D iterations
3: for diter = 1 to k do
4: lD = 0
5: for all d 2 � do . For all N domains
6: Sample a mini-batch x ⇠ Ud

7: fs = Fs(x) . Shared feature vector
8: lD += JD(D(fs); d) . Accumulate D loss
9: Update D parameters using rlD

10: . Main iteration
11: loss = 0
12: for all d 2 �L do . For all labeled domains
13: Sample a mini-batch (x,y) ⇠ Xd

14: fs = Fs(x)
15: fd = Fd(x) . Domain feature vector
16: loss += JC(C(fs,fd);y) . Compute C loss
17: for all d 2 � do . For all N domains
18: Sample a mini-batch x ⇠ Ud

19: fs = Fs(x)
20: loss += � · JD

Fs
(D(fs); d) . Domain loss of Fs

21: Update Fs, Fd, C parameters using rloss
22: until convergence

and domain prediction, respectively. For example,
both C and D can be MLPs with a softmax layer on
top. In §3, we provide alternative architectures for
D and their mathematical implications. We now
present detailed descriptions of the MAN training
in §2.2 as well as the theoretical grounds in §3.

2.2 Training

Denote the annotated corpus in a labeled domain
di 2 �L as Xi; and (x, y) ⇠ Xi is a sample drawn
from the labeled data in domain di, where x is the
input and y is the task label. On the other hand,
for any domain di0 2 �, denote the unlabeled cor-
pus as Ui0 . Note for a labeled domain, one can
use a separate unlabeled corpus or simply use the
labeled data (or use both).

In Figure 1, the arrows illustrate the training
flows of various components. Due to the adver-
sarial nature of the domain discriminator D, it
is trained with a separate optimizer (red arrows),
while the rest of the networks are updated with the
main optimizer (green arrows). C is only trained
on labeled domains, and it takes as input the con-
catenation of the shared and domain feature vec-
tors. At test time for unlabeled domains with no
Fd, the domain features are set to the 0 vector for
C’s input. On the contrary, D only takes the shared
features as input, for both labeled and unlabeled
domains. The MAN training is described in Algo-
rithm 1.

The proof involves an application of the La-
grangian Multiplier to solve the minimum value
of JD, and the details can be found in the Sup-
plementary Material. We then have the following
main theorems for the domain loss for Fs:

Theorem 1. Let P =
PN

i=1 Pi

N . When D is trained
to its optimality, if D adopts the NLL loss:

JD
Fs

= � min
✓D

JD = �JD⇤

= �N log N + N · JSD(P1, P2, . . . , PN )

= �N log N +
NX

i=1

KL(PikP )

where JSD(·) is the generalized Jensen-
Shannon Divergence (Lin, 1991) among multi-
ple distributions, defined as the average Kullback-
Leibler divergence of each Pi to the centroid
P (Aslam and Pavlu, 2007).
Theorem 2. If D uses the L2 loss:
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where �2
Neyman(·k·) is the Neyman �2 diver-

gence (Nielsen and Nock, 2014). The proof of
both theorems can be found in the Supplementary
Material.

Consequently, by the non-negativity and joint
convexity of the f-divergence (Csiszar and Korner,
1982), we have:
Corollary 1. The optimum of JD

Fs
is �N log N

when using NLL loss, and 0 for the L2 loss. The
optimum value above is achieved if and only if
P1 = P2 = · · · = PN = P for either loss.

Therefore, the loss of Fs can be interpreted as
simultaneously minimizing the classification loss
JC as well as the divergence among feature distri-
butions of all domains. It can thus learn a shared
feature mapping that are invariant across domains
upon successful training while being beneficial to
the main classification task.

4 Experiments

4.1 Multi-Domain Text Classification
In this experiment, we compare MAN to state-
of-the-art MDTC systems, on the multi-domain

Book DVD Elec. Kit. Avg.
Domain-Specific Models Only

LS 77.80 77.88 81.63 84.33 80.41
SVM 78.56 78.66 83.03 84.74 81.25
LR 79.73 80.14 84.54 86.10 82.63

MLP 81.70 81.65 85.45 85.95 83.69
Shared Model Only

LS 78.40 79.76 84.67 85.73 82.14
SVM 79.16 80.97 85.15 86.06 82.83
LR 80.05 81.88 85.19 86.56 83.42

MLP 82.40 82.15 85.90 88.20 84.66
MAN-L2-MLP 82.05 83.45 86.45 88.85 85.20
MAN-NLL-MLP 81.85 83.10 85.75 89.10 84.95

Shared-Private Models
RMTL1 81.33 82.18 85.49 87.02 84.01

MTLGraph2 79.66 81.84 83.69 87.06 83.06
CMSC-LS3 82.10 82.40 86.12 87.56 84.55

CMSC-SVM3 82.26 83.48 86.76 88.20 85.18
CMSC-LR3 81.81 83.73 86.67 88.23 85.11
SP-MLP 82.00 84.05 86.85 87.30 85.05

MAN-L2-SP-MLP 82.46
(±0.25)

83.98
(±0.17)

87.22*
(±0.04)

88.53
(±0.19)

85.55*
(±0.07)

MAN-NLL-SP-MLP 82.98*
(±0.28)

84.03
(±0.16)

87.06
(±0.23)

88.57*
(±0.15)

85.66*
(±0.14)

1 Evgeniou and Pontil (2004)
2 Zhou et al. (2011)
3 Wu and Huang (2015)

Table 1: MDTC results on the Amazon dataset. Mod-
els in bold are ours while the performance of the rest is
taken from Wu and Huang (2015). Numbers in paren-
theses indicate standard errors, calculated based on 5
runs. Bold numbers indicate the highest performance
in each domain, and ⇤ shows statistical significance
(p < 0.05) over CMSC under a one-sample T-Test.

Amazon review dataset (Blitzer et al., 2007),
which is one of the most widely used MDTC
datasets. Note that this dataset was already pre-
processed into a bag of features (unigrams and bi-
grams), losing all word order information. This
prohibits the usage of CNNs or RNNs as fea-
ture extractors, limiting the potential performance
of the system. Nonetheless, we adopt the same
dataset for fair comparison and employ a MLP as
our feature extractor. In particular, we take the
5000 most frequent features and represent each
review as a 5000d feature vector, where feature
values are raw counts of the features. Our MLP
feature extractor would then have an input size of
5000 in order to process the reviews.

The Amazon dataset contains 2000 samples for
each of the four domains: book, DVD, electron-
ics, and kitchen, with binary labels (positive, neg-
ative). Following Wu and Huang (2015), we con-
duct 5-way cross validation. Three out of the five
folds are treated as training set, one serves as the
validation set, while the remaining being the test
set. The 5-fold average test accuracy is reported.

Table 1 shows the main results. Three types of
models are shown: Domain-Specific Models Only,
where only in-domain models are trained3; Shared
Model Only, where a single model is trained with
all data; and Shared-Private Models, a combina-
tion of the previous two. Within each category,
various architectures are examined, such as Least
Square (LS), SVM, and Logistic Regression (LR).
As explained before, we use MLP as our feature
extractors for all our models (bold ones). Among
our models, the ones with the MAN prefix use ad-
versarial training, and MAN-L2 and MAN-NLL in-
dicate the L2 loss and NLL loss MAN, respectively.

From Table 1, we can see that by adopting mod-
ern deep neural networks, our methods achieve su-
perior performance within the first two model cat-
egories even without adversarial training. This is
corroborated by the fact that our SP-MLP model
performs comparably to CMSC, while the latter
relies on external resources such as sentiment lex-
ica. Moreover, when our multinomial adversar-
ial nets are introduced, further improvement is
observed. With both loss functions, MAN out-
performs all Shared-Private baseline systems on
each domain, and achieves statistically signifi-
cantly higher overall performance. For our MAN-
SP models, we provide the mean accuracy as well
as the standard errors over five runs, to illustrate
the performance variance and conduct significance
test. It can be seen that MAN’s performance is rela-
tively stable, and consistently outperforms CMSC.

4.2 Experiments for Unlabeled Domains

As CMSC requires labeled data for each domain,
their experiments were naturally designed this
way. In reality, however, many domains may not
have any annotated corpora available. It is there-
fore also important to look at the performance
in these unlabeled domains for a MDTC system.
Fortunately, as depicted before, MAN’s adversarial
training only utilizes unlabeled data from each do-
main to learn the domain-invariant features, and
can thus be used on unlabeled domains as well.
During testing, only the shared feature vector is
fed into C, while the domain feature vector is set
to 0.

In order to validate MAN’s effectiveness, we
compare to state-of-the-art multi-source domain
adaptation (MS-DA) methods (See §6). Com-

3For our models, it means Fs is disabled. Similarly, for
Shared Model Only, no Fd is used.

Target Domain Book DVD Elec. Kit. Avg.
MLP 76.55 75.88 84.60 85.45 80.46

mSDA1 76.98 78.61 81.98 84.26 80.46
DANN2 77.89 78.86 84.91 86.39 82.01

MDAN (H-MAX)3 78.45 77.97 84.83 85.80 81.76
MDAN (S-MAX)3 78.63 80.65 85.34 86.26 82.72
MAN-L2-SP-MLP 78.45 81.57 83.37 85.57 82.24
MAN-NLL-SP-MLP 77.78 82.74 83.75 86.41 82.67

1 Chen et al. (2012)
2 Ganin et al. (2016)
3 Zhao et al. (2017)

Table 2: Results on unlabeled domains. Models in bold
are our models while the rest is taken from Zhao et al.
(2017). Highest domain performance is shown in bold.

pared to standard domain adaptation methods with
one source and one target domain, MS-DA allows
the adaptation from multiple source domains to a
single target domain. Analogically, MDTC can be
viewed as multi-source multi-target domain adap-
tation, which is superior when multiple target do-
mains exist. With multiple target domains, MS-
DA will need to treat each one as an independent
task, which is more expensive and cannot utilize
the unlabeled data in other target domains.

In this work, we compare MAN with one re-
cent MS-DA method, MDAN (Zhao et al., 2017).
Their experiments only have one target domain
to suit their approach, and we follow this setting
for fair comparison. However, it is worth not-
ing that MAN is designed for the MDTC setting,
and can deal with multiple target domains at the
same time, which can potentially improve the per-
formance by taking advantage of more unlabeled
data from multiple target domains during adver-
sarial training. We adopt the same setting as Zhao
et al. (2017), which is based on the same multi-
domain Amazon review dataset. Each of the four
domains in the dataset is treated as the target do-
main in four separate experiments, while the re-
maining three are used as source domains.

In Table 2, the target domain is shown on top,
and the test set accuracy is reported for various
systems. It shows that MAN outperforms several
baseline systems, such as a MLP trained on the
source-domains, as well as single-source domain
adaptation methods such as mSDA (Chen et al.,
2012) and DANN (Ganin et al., 2016), where the
training data in the multiple source domains are
combined and viewed as a single domain. Finally,
when compared to MDAN, MAN and MDAN each
achieves higher accuracy on two out of the four
target domains, and the average accuracy of MAN

books elec. dvd kitchen apparel camera health music toys video baby magaz. softw. sports IMDb MR Avg.
Domain-Specific Models Only

BiLSTM 81.0 78.5 80.5 81.2 86.0 86.0 78.7 77.2 84.7 83.7 83.5 91.5 85.7 84.0 85.0 74.7 82.6
CNN 85.3 87.8 76.3 84.5 86.3 89.0 87.5 81.5 87.0 82.3 82.5 86.8 87.5 85.3 83.3 75.5 84.3

Shared Model Only
FS-MTL 82.5 85.7 83.5 86.0 84.5 86.5 88.0 81.2 84.5 83.7 88.0 92.5 86.2 85.5 82.5 74.7 84.7

MAN-L2-CNN 88.3 88.3 87.8 88.5 85.3 90.5 90.8 85.3 89.5 89.0 89.5 91.3 88.3 89.5 88.5 73.8 87.7
MAN-NLL-CNN 88.0 87.8 87.3 88.5 86.3 90.8 89.8 84.8 89.3 89.3 87.8 91.8 90.0 90.3 87.3 73.5 87.6

Shared-Private Models
ASP-MTL 84.0 86.8 85.5 86.2 87.0 89.2 88.2 82.5 88.0 84.5 88.2 92.2 87.2 85.7 85.5 76.7 86.1

MAN-L2-SP-CNN 87.6* 87.4 88.1* 89.8* 87.6 91.4* 89.8* 85.9* 90.0* 89.5* 90.0 92.5 90.4* 89.0* 86.6 76.1 88.2*
(0.2) (1.0) (0.4) (0.4) (0.7) (0.4) (0.3) (0.1) (0.1) (0.2) (0.6) (0.5) (0.4) (0.4) (0.5) (0.5) (0.1)

MAN-NLL-SP-CNN 86.8* 88.8 88.6* 89.9* 87.6 90.7 89.4 85.5* 90.4* 89.6* 90.2 92.9 90.9* 89.0* 87.0* 76.7 88.4*
(0.4) (0.6) (0.4) (0.4) (0.4) (0.4) (0.3) (0.1) (0.2) (0.3) (0.6) (0.4) (0.7) (0.2) (0.1) (0.8) (0.1)

Table 3: Results on the FDU-MTL dataset. Bolded models are ours, while the rest is from Liu et al. (2017). High-
est performance is each domain is highlighted. For our full MAN models, standard errors are shown in parenthese
and statistical significance (p < 0.01) over ASP-MTL is indicated by *.

is similar to MDAN. Therefore, MAN achieves
competitive performance for the domains without
annotated corpus. Nevertheless, unlike MS-DA
methods, MAN can handle multiple target domains
at one time.

4.3 Experiments on the MTL Dataset

To make fair comparisons, the previous experi-
ments follow the standard settings in the literature,
where the widely adopted Amazon review dataset
is used. However, this dataset has a few limita-
tions: First, it has only four domains. In addition,
the reviews are already tokenized and converted
to a bag of features consisting of unigrams and
bigrams. Raw review texts are hence not avail-
able in this dataset, making it impossible to use
certain modern neural architectures such as CNNs
and RNNs. To provide more insights on how well
MAN work with other feature extractor architec-
tures, we provide a third set of experiments on the
FDU-MTL dataset (Liu et al., 2017). The dataset
is created as a multi-task learning dataset with 16
tasks, where each task is essentially a different
domain of reviews. It has 14 Amazon domains:
books, electronics, DVD, kitchen, apparel, cam-
era, health, music, toys, video, baby, magazine,
software, and sports, in addition to two movies re-
view domains from the IMDb and the MR dataset.
Each domain has a development set of 200 sam-
ples, and a test set of 400 samples. The amount of
training and unlabeled data vary across domains
but are roughly 1400 and 2000, respectively.

We compare MAN with ASP-MTL (Liu et al.,
2017) on this FDU-MTL dataset. ASP-MTL also
adopts adversarial training for learning a shared
feature space, and can be viewed as a special case
of MAN when adopting the NLL loss (MAN-NLL).

Furthermore, while Liu et al. (2017) do not pro-
vide any theoretically justifications, we in §3 prove
the validity of MAN for not only the NLL loss,
but an additional L2 loss. Besides the theoreti-
cal superiority, we in this section show that MAN
also substantially outperforms ASP-MTL in prac-
tice due to the feature extractor choice.

In particular, Liu et al. (2017) choose LSTM as
their feature extractor, yet we found CNN (Kim,
2014) to achieve much better accuracy while be-
ing ⇠ 10 times faster. Indeed, as shown in Ta-
ble 3, with or without adversarial training, our
CNN models outperform LSTM ones by a large
margin. When MAN is introduced, we attain the
state-of-the-art performance on every domain with
a 88.4% overall accuracy, surpassing ASP-MTL
by a significant margin of 2.3%.

We hypothesize the reason LSTM performs
much inferior to CNN is attributed to the lack
of attention mechanism. In ASP-MTL, only the
last hidden unit is taken as the extracted fea-
tures. While LSTM is effective for representing
the context for each token, it might not be power-
ful enough for directly encoding the entire doc-
ument (Bahdanau et al., 2015). Therefore, var-
ious attention mechanisms have been introduced
on top of the vanilla LSTM to select words (and
contexts) most relevant for making the predic-
tions. In our preliminary experiments, we find that
Bi-directional LSTM with the dot-product atten-
tion (Luong et al., 2015) yields better performance
than the vanilla LSTM in ASP-MTL. However, it
still does not outperform CNN and is much slower.
As a result, we conclude that, for text classifica-
tion tasks, CNN is both effective and efficient in
extracting local and higher-level features for mak-
ing a single categorization.

• Summary: We show that MAN, as a versatile machine learning framework, directly 
minimizes the f-divergence among multiple distributions. 

• f-divergence is a family of metrics measuring the difference between probability 
distributions. Many common divergences, such as KL-divergence, total variation 
divergence, are special cases of f-divergence. 

• Nowozin et al. (2016) proved that standard adversarial nets are minimizers of various f-
divergence metrics between two distributions, depending on the choice of loss function. 

• MAN is hence a generalization of the impactful (binomial) adversarial networks to 
multiple distributions.

The non-cooperative coupling of Fs and D form a Multinomial Adversarial Network. 
D attempts to identify the domain of a sample using the shared features. 
Fs learns domain-invariant features by learning to stop leaking domain information to D.

Let the distribution of the shared features f for instances in each domain di 2 � be:

Pi(f) , P (f = Fs(x)|x 2 di) (1)

We consider two MAN variants with the NLL and L2 loss, respectively:

JNLL
D = �

NX

i=1

E
f⇠Pi

[logDi(f)] (2)

JL2
D =

NX

i=1

E
f⇠Pi

2

4
NX

j=1

(Dj(f)� {i=j})
2

3

5 (3)

Lemma 1. For any fixed Fs, with either NLL or L2 loss, the optimum D⇤ is:

D⇤
i (f) =

Pi(f)PN
j=1 Pj(f)

(4)

Theorem 1. Let P =
PN

i=1 Pi

N . When D is trained to its optimality, if D adopts the NLL loss:

JD
Fs

= �min
✓D

JD = �JD⇤ = �N logN +N · JSD(P1, P2, . . . , PN ) = �N logN +
NX

i=1

KL(PikP )

where JSD(·) is the generalized Jensen-Shannon Divergence (Lin, 1991), defined as the aver-
age Kullback-Leibler divergence of each Pi to the centroid P (Aslam and Paul, 2007).

Theorem 2. If D uses the L2 loss:

JD
Fs

=
NX

i=1

E
f⇠Pi

2

4
NX

j=1

(D⇤
j (f)�

1

N
)2

3

5 =
1

N

NX

i=1

�2
Neyman (PikP )

where �2
Neyman(·k·) is the Neyman �2 divergence (Nielson and Nock, 2014).

Consequently, by the non-negativity and joint convexity of the f-divergence:

Corollary 1. The optimum of JD
Fs

is �N logN when using NLL loss, and 0 for the L2 loss.

The optimum value above is achieved if and only if P1 = P2 = · · · = PN = P for either loss.

8 Playground

Glossary

�L The set of all labeled domains which have some annotated data.

�U The set of all unlabeled domains which have no annotated data.

� The set of all domains: � = �L [ �U .

Xi The labeled data for domain di 2 �L.

Ui The unlabeled corpus for domain di 2 �.

Fs The shared feature extractor that extracts domain-invariant features.

Fd The set of domain feature extractors that extracts domain-specific features.

C The text classifier.

D The adversarial domain discriminator.

JC The cost C minimizes.

JD The cost D minimizes.

JD
Fs

The domain cost of Fs that is anticorrelated to JD.

JFs The cost of Fs: JFs = JC + �JD
Fs

.

� A hyperparameter balancing the classification loss and the domain loss.

k A hyperparameter synchronizing the training of D and the rest of MAN.

MAN-NLL The MAN variant with the Negative Log Likelihood loss.

MAN-L2 The MAN variant with the Least Square loss.
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MAN Glossary

MDTC Experiments Experiments on 
Unlabeled Domains

Amazon Dataset (Table 1)

✓Widely adopted

- 2000 samples/domain

- 5-fold cross-validation

✗ 4 domains

✗ Preprocessed to bag-of-word features 

(no raw text, no word order information)

FDU-MTL Dataset (Table 3)

✗ Less reported results

- ~2000 samples/domain

- Pre-split train/dev/test sets


✓16 domains


✓Original texts available

• Baselines: Multi-Source Domain Adaptation 
Methods


• Dataset: Amazon (4 domains)

• 3 labeled (source) domains

• 1 unlabeled (target) domain

• MAN achieves SToA performance

• MAN also has the potential to handle >1 

unlabeled domains


