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Abstract. This paper is a contribution to the long standing open prob-
lem of uniform termination of Semi-Thue Systems that consist of one rule
s — t. McNaughton previously showed that rules incapable of (1) delet-
ing ¢t completely from both sides, (2) deleting ¢ completely from the left,
and (3) deleting ¢ completely from the right, have a decidable uniform
termination problem. We use a novel approach to show that Premise (2)
or, symmetrically, Premise (3), is inessential. Our approach is based on
derivations in which every pair of successive steps has an overlap. We
call such derivations single-threaded.
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1 Introduction

The decidability of the uniform termination problem of one-rule Semi-Thue Sys-
tems (1STS) has been open for 14 years. A systematic exploration of the problem
was started by Kurth [5].

This problem is both a test case for the strength of termination proof methods
and a trigger for their development. Remarkable progress has been made by
investigating the consumption and introduction patterns in derivations [7, 8, 4].

McNaughton’s notion of a well-behaved derivation is based on the idea that
some rules act as if there was an invisible barrier (“inhibitor”) somewhere at
their right hand side. This inhibitor cannot be removed, so derivations cannot
exhibit global communication through the string. McNaughton shows that it is
decidable whether a rule is well-behaved, i.e. admits only well-behaved deriva-
tions. Moreover he shows that uniform termination is decidable for well-behaved
rules.

* Partly supported by KBN Grant 7 T11C 028 20.
** Partly supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-97046.



In a well-behaved derivation the contractum introduced by any step during
a derivation cannot be consumed completely. The contractum can be consumed
partially from the left or from the right. We want to study non-well-behaved
derivations and hence call a derivation:

— both-sides-digestible (BD) if the remainder of some step after partial con-
sumption from the left and partial consumption from the right is consumed
later completely;

— left-digestible (LD) if the remainder of some step after partial consumption
from the left (without any partial consumption from the right) is consumed
later completely;

— right-digestible (RD) if the remainder of some step after partial consumption
from the right (without any partial consumption from the left) is consumed
later completely.

We study the following question:

— A 1STS is obviously well-behaved iff it satisfies none of these properties. Can
we decide uniform termination also if some of them are true?

An interesting special case is given when the left hand side of the rule has no
self-overlap. For this self-overlap free (SOF) case, Kobayashi et al. [4] introduce
derivation patterns that are less restrictive than well-behavedness and they call
derivations which satisfy them tame, gentle and simple. They show that a gentle
1STS can be transformed to another Semi-Thue System which may have more
rules. The two systems have equivalent uniform termination problems. Typically,
the transformed system is more amenable to the classic termination criteria.
Kobayashi et al. call the properties =LD, =RD, and their conjuntion “left very
gentle”, “right very gentle”, and “very gentle”, respectively. They show that very
gentle 1STSs are gentle and that the image of a simple 1STS is a context-free
grammar whence its uniform termination problem is decidable. Other examples
can often be solved by a transformation and a subsequent ad hoc argument.
Beyond the SOF, simple systems no decidability result is available yet.

In a straightforward way the notions of tame, gentle, and simple 1STSs are
generalized to non-SOF 1STSs [2]. These properties form a hierarchy:

very gentle = gentle = tame

fr T

well-behaved = simple = —-BD

It is easily verified that a 1STS is simple iff it is tame and -BD. We establish
the following result:

— Uniform termination is decidable for 1STSs that satisty ~BDA(-~LDV-RD).

We reduce the uniform termination problem of 1STSs that satisfy ~BD A
= RD to the uniform halting problem of pushdown automata which is decid-
able [12]. For this purpose we show that each non-terminating such 1STS has an



infinite derivation where each step overlaps with the previous one. We call such
derivations single-threaded. In this case the left and right contexts of the redex
can be represented as the contents of two stacks. By —=RD, the left stack is size
bounded.

This class of 1STSs includes the following examples which are not covered
by Kobayashi et al.: examples that are simple and non-SOF; examples that are
non-simple (thus non-tame), non-SOF. On the other hand, Kobayashi et al.
also cover the SOF, simple, left-digestible, right-digestible 1ST'Ss, a class which
however may be void.

Our examples are not covered by any existing automated termination cri-
teria, except inverse match-boundedness [3]. Inverse match-boundedness covers
all well-behaved 1STSs, but it is unknown what other classes of 1STSs it also
covers.

This work is a thoroughly revised and extended version of the first author’s
master’s thesis [9] and a Technical Report [10].

The paper is organized as follows: In Section 2, we introduce concepts impor-
tant in our framework, such as chain graph and mother-in-law. In Section 3, we
introduce the notion of single-threaded derivation and we derive the decidability
result of uniform termination. In Section 4 we give examples of the systems to
which our results apply.

2 Preliminaries

We assume familiarity of the reader with semi-Thue systems (string rewrit-
ing) [1].

A string u is called a factor of v, in symbols u C v, if v = zuy for some
x,y € X*; a prefiz if v = uy for some y € X*; a suffiz if v = zu for some x € X*.
The prefix or suffix u of v is called proper if u # v. The set of all proper suffixes
of the word w is denoted by Suf(u).

The set of overlaps of a string u with a string v is defined by

OVL(u,v) = {w € X7 | u=v'w,v = wv',u'v' #¢e,u/,v € *}

The length of a string u is denoted by |u|.

A Semi-Thue System R is a finite set of rules (s,t) € X* x X*, also written
s — t. The one-step rewrite relation — C X* x X* is defined by usv — wtv
if u,v € X* and (s,t) € R. The factors s and t are also called the redez and
the contractum, respectively. Occasionally we underline the redex and overline
the contractum, as in the following two rewrite steps for the example system
ab — ba: aab — aba — baa. A sequence of rewrite steps is called a derivation.
We write D : wg — w; — ... to denote a derivation named D with rewrite
steps wg — wy; — .... A system R is called terminating if there is no infinite
derivation wg — w1 — .. ..

We focus on one-rule Semi-Thue Systems (1STS) {s — t}, also written s — ¢.
As s — t is non-terminating if s C ¢, and terminating if |s| > |¢t| and s # t, we
assume throughout the paper that s Z ¢t and |s| < [¢]. A 1STS s — ¢ is called



self-overlap free (SOF), if OVL(s,s) = 0. If OVL(t,s) = 0 or OVL(s,t) = 0,
then s — t terminates [5, Criterion D]. If OVL(t, s) N OVL(s, t) # 0 (“bordered
rule”) then the uniform termination problem of s — ¢ is reducible to that of a
non-bordered rule [2, Theorem 6.21]. We henceforth assume that OVL(t, s) and
OVL(s,t) are disjoint and non-empty.

Definition 1 ([4]). If o € OVL(t, s) then let s, and t, be defined by s = asq
and t = toa. If B € OVL(s,t) then let sz and tg be defined by s = sgf and
t=ptg.

By OVL(¢,s) N OVL(s, t) = 0, there can be no confusion between s, and sg or
between ¢, and tg.

2.1 Positions

By [m, n] we mean the set of integer numbers between, and including, m and n.
We flip the square bracket next to m or n to indicate that m or n, respectively,
shall be excluded. Positions in a string w are integer numbers in [0, |w|]. We
call 0 and |w| the (left and right, respectively) boundary positions of w, and the
other positions the inner positions of w. The inner positions represent the spaces
between letters.

Let a (finite or infinite) derivation D : wy — wy; — ... be presupposed. We
denote positions in D by pairs (i, p) where p is a position in w;. The position
(1 — 1,p) corresponds to the position (4, ¢), in symbols (i — 1,p) < ,es (4,9), if
there are x,y € X* such that w;—; = xsy, w; = xty, and either 0 < ¢ = p < ||
or |25 < p < |asy| and q = p — |s| + ]

If to a given (i — 1,p) a ¢ exists such that (i — 1,p) <5 (¢,q), then ¢ is
unique. If no such ¢ exists, i.e., if |x| < p < |zs]|, then p is said to be consumed
at step 4. Likewise if to a given (4,q) a p exists such that (i — 1,p) <5 (4,9),
then p is unique. If no such p exists, i.e., |z| < g < |zt|, then ¢ is said to be
introduced at step 1.

The redex position, R(i), of the i-th rewrite step in D is defined by R(i) = ||
if w;—1 = sy and w; = aty for some z,y € X*.

The set of positions consumed in step 7 is | R(%), R(7)+|s|[. The set of positions
introduced in step i is |R(7), R(:) + [t][.

The equivalence closure of <5, denoted by ~,.s, allows us to identify a
position in w; with its corresponding position in w;. If (4, p) ~res (J, ¢) then the
position p in w; and the position ¢ in w; are called residuals (of each other).
We will conveniently speak about a position p in string w; when we mean the
residual of p.

Example 1. As a running example we use the system aabbab — abbaabba. Con-
sider the following derivation D:

wy = aabbaabbabbb — aabbabb x aabbabb — abbaabbab * aabbabb
— abbaabbab * abbaabbab — abbabbaabba * abbaabbab
— abbabbaabba * abbabbaabba — abbabbaabbabbaabbabaabba = wg




The set of positions consumed in the first step of D is [5,9]. The set of
positions introduced in the first step of D is [5,11]. The position marked by x*
in any word in D is a residual of the position marked by * in any other word.
According to our convention, we may say that the position * introduced in the
first step of D is consumed by the last step of D.

Definition 2 ([8]). A step i is called digestible, in symbols D(i), if all contrac-
tum positions in w; are later consumed. The derivation is called well-behaved
if no step in it is digestible. The 1STS s — t is called well-behaved if all its
derivations are well-behaved.

Note that according to our definitions, the inner positions of the contractum
are exactly the introduced positions.

Ezxample 2. The first step in the derivation D from Example 1 is digestible.

Theorem 1 ([8]). It is decidable whether an arbitrary 1STS is well-behaved.
Uniform termination is decidable for the class of well-behaved 1STS.

Definition 3 ([9, Definition 5.2]). For each j > i let Rem(i, j) (for “remain-
der”) denote the set of all residuals in w; of the set of contractum positions
from step i. Step j > i is said to consume from the left the remainder of step i

if Rem(z,7) # 00 and
min Rem(i, j — 1) €]R(5), R(j) + |s][-

Step j > i is said to consume from the right the remainder of step i if Rem(i, j) #
0 and

max Rem(i, j — 1) €]R(j), R(j) + |s][.

Intuitively, step j consumes from the left (right) the remainder of step 4 if it
consumes the leftmost (rightmost) position, but not every position, from the
remainder at step j — 1.

Ezxample 3. The second step in the derivation D from Example 1 consumes from
the left the remainder of step 1, whereas the third step consumes it from the
right.

Definition 4 ([9, Definition 5.5]). We say that step i is

— both-sides-digestible, in symbols BD(i), if D(i) holds and some steps j > i
consume from the left the remainder of step i, and some steps j > i consume
from the right the remainder of step i;

— left-digestible, in symbols LD(%), if D(i) holds and all steps j > i that par-
tially consume the remainder of step i do so from the left (i.e., no steps j > i
consume from the right the remainder of step i);

— right-digestible, in symbols RD(i), if D(i) holds and all steps j > i that
partially consume the remainder of step i do so from the right (i.e., no steps
j > i consume from the left the remainder of step i).



The conditions are mutually exclusive for given i. A derivation is said to sat-
isfy BD, LD, or RD, if some of its steps i satisfy BD(i), LD(i), or RD(%), respec-
tively. A 1STS s — t satisfies BD, LD, or RD, if some of its derivations satisfy
BD, LD, or RD, respectively. We define (both-sides, left, right)-indigestibility
for steps, derivations and systems, denoting them by ~BD,—=LD,-RD, by negat-
ing the respective conditions. Note that by definition a 1STS is well-behaved if
and only if it satisfies - BD A—=LD A —=RD.

Ezample 4. The condition BD(1) holds for the derivation from Example 1.
Theorem 2 ([6]). The Conditions LD and RD are decidable for 1STSs.

Proof. Conditions LD and RD are equivalent to McNaughton’s conditions C2
and C3, respectively [6, Theorem 6.1]. This shows up in cases I and II in his
proof. a

If =LD A =RD holds then BD is equivalent to McNaugton’s Condition C1.
However, Condition BD is not equivalent to C'1 in the general case.

Ezample 5. The system from Example 1 satisfies =RD and —C'1. However, it
satisfies BD as the derivation D exhibits.

2.2 Chain Graphs

The notion of chain graph gives one the means to reason in detail about the
relation between steps in a derivation.

Definition 5. Let D : wg — wy — .... Let w; = xsy for some i, x,y. The factor
s in w; s called live if:

— there is a step j > i such that (i,|z]) ~res (i — 1, R(j)), i.e., at step j the
redex |x| from w; is reduced;

— (4,p) ~res (7 — 1,p') for all |x| < p < |xs|; i.e., no position of s is consumed
until s is rewritten.

Informally speaking, a live factor is finally reduced and it is not touched before
then. Note that the live factor in w; need not be reduced in the very next step
w; — w;41. Since the residuals of overlapping redexes overlap, live factors do
not overlap.

Definition 6 ([5, Definition 4.25]). The chain graph of a (finite or infinite)
derivation D : wy — w1 — ... is a directed graph (V, E). The vertices in V are
the positions of live factors. The edges in E = Fy U E; are defined as follows:

— if (i = 1,p) —pes (i,9) and (i — 1,p),(i,q) € V then ((i — 1,p), (4,q)) € Ep;
— if (i — 1, R(7)), (i,q) € V, and some of the positions (i,q), ..., (i,q+ |s|) are
introduced by step i, then ((i — 1, R(2)), (i,q)) € E1.

We define selector functions src, tgt,level : E — N for the source, the target,
and the level of an edge k € E by src(k) = p, tgt(k) = ¢, level(k) = i if



E, \El
10" L
\1 \0
(2,3) (2,9) .
\LED \
(3,3) (3.12)
\0
(4, 14)

Ey

(5,10)

Fig. 1. The chain graph of the derivation from Example 1

The chain graph is a forest of finitely many trees, 71, ..., Tk, rooted at the
positions p; < - -+ < pg of the live redexes in wy.

Ezxample 6. Figure 1 shows the chain graph of the system in Example 1. The
lowest edge has the source vertex (4,14), the target vertex (5,10), it is in Ej,
and its level is 5.

Definition 7. Edges from the set E1 will also be called active. An active edge k
is called a left edge if src(k) > tgt(k); and a right edge if src(k)+|s| < tgt(k)+|t].
We will call the active edges on the same level rivals.

By s Z t and [s| < [t|, every active edge is a left or a right edge.

Lemma 1. If k is a left edge at level i then w;—1 = zsgsy and w; = zstgy for
some € OVL(s,t) and z,y € X*. Moreover src(k) = |zsg| and tgt(k) = |z|.
If k is a right edge at level i then w;—1 = xssqv and w; = ztysv for some
a € OVL(t, s) and x,v € X*. Moreover src(k) = |z| and tgt(k) = |zta|.

Proof. Straightforward from the definitions. O
Lemma 2. If (i,p) ~res (7,q) and (i,p") ~res (4,¢") and p < p’ then q¢ < ¢'.
Proof. By induction on |j — |, with the inductive step done by case analysis on
R(i) <p, p < R(i) <p', and p’ < R(i). 0
2.3 Family Members

New tools developed in this section will enable us to speak in more detail about
infinite derivations.

Definition 8 ([9, Definition 7.1]). Let k be a right edge at level i. Then s,
and (i—1,|zs|) in Lemma 1 are called the husband and its position, respectively.
Likewise for a left edge, sg and (i—1,|z|) are called the husband and its position,
respectively.



Intuitively, a husband is a non-empty factor that is supplemented to a live
redex by the next rewrite step. The husband positions of k are the residuals of
the positions of the live redex created by k.

Ezxample 7. In the chain graph of the derivation from Example 1, the husbands
of the edges at level 1 are aabb at position (0,0) and b at position (0, 10).

Definition 9. [[9, Definition 7.3]] Let p be a position in the husband h of an
active edge k. Then we call the vertex (i — 1, R(7)) the mother-in-law of p if p is
introduced in step i. A mother-in-law of the active edge k is the mother-in-law of
one of the positions in the husband of k. The step that rewrites the target redex
of k is called the marriage consumption step of k.

Wi_1 | mother-in-law |
wi i t

!

!

!

!

;

!
Wj—1 A [ q. ... |

k § husband §

wj § kall ' |

Fig. 2. Husband and mother-in-law

Ezample 8. The vertex (0,4) in the chain graph of the derivation D from Ex-
ample 1 is the mother-in-law of the position * in wy. The string aabb at position
(4,10) is the husband of the edge going from (4, 14) to (5,10), and the vertex
(3,3) is its mother-in-law.

Note that a mother-in-law need not be the source vertex of an edge. In other
words, the rewrite step w;—1 — w; need not create a live redex.

3 Uniform Termination of One-rule Single-Threaded
Systems

In this section we define single-threaded derivations, show how single-threadedness
can be derived, and use single-threadedness for decidability of uniform termina-
tion in a special case.



3.1 Single-Threadedness and Independence

Definition 10. A path in the chain graph of a derivation is called single-threaded
if every edge on it is active. A derivation is called single-threaded if its chain
graph is a single-threaded path. A 1STS is called single-threaded if it admits an
infinite single-threaded derivation.

Theorem 3 ([7, Theorem 7.4],[9, Theorem 3]). Every non-terminating,
well-behaved 1STS is single-threaded.

McNaughton’s zy-sequence corresponds to a single-threaded path.

Definition 11 ([9, Definitions 8.2 and 8.3]). An active edge k is called
independent if all its mothers-in-law are ancestors of k. A mother-in-law that is
not an ancestor of k is called alien to k. A path is called independent if every
active edge on it is independent.

In other words, an edge is dependent iff it has an alien mother-in-law. In con-
trast, an independent path does not need any other paths to proceed with its
reductions.

Example 9. The left path in Figure 1 is independent. However, the right path is
not — the mother-in-law (3, 3) of the boundary position (4,10) of the husband
is a vertex in the left path and is hence alien to the edge ((4,14), (5, 10)).

Lemma 3. If there is an infinite derivation whose chain graph contains an infi-
nite independent path whose first i edges are active, then there is also an infinite
derivation whose chain graph contains an infinite independent path whose first
1+ 1 edges are active. Moreover, the two derivations coincide up to, and includ-
ing, step i.

Proof. Let k denote the active edge at level ¢ in the independent path S. Let
j > i denote the next level at which S has an active edge, k’. By symmetry we
may assume that &’ is a right edge. Let h be the husband of %', i.e., there are
z,y,g € X* such that w;j_ = xshy — xthy = zgsy = w;. Since k' € S and all
edges between k and &’ are inactive, the occurrence of s is preserved, i.e., none of
its positions is consumed, during the derivation w; —* w;_;. Only the parts left
or right to it in w; may be touched during this derivation. All mothers-in-law of
h are above level i since they are both redexes and ancestor nodes of k. Hence h
is present in w; and not touched during the derivation w; —* w;_; either. Let
2’ —* x and 3y’ —* y render the changes that happened during the derivation
w; —* wj_1. Then the derivation can be rearranged thus:

«
w; = a'shy —— w1 = zshy

l l

/ o / * /o i
Wi =T g8y —— wj—wj—;vgsy



We will show that the chain graph of the new derivation D’ : wg — wy — - -+ —
Wi — Wiyq == Wiy — Wi =wj — wjy1 — ... has an infinite independent
path with the first i + 1 edges active. In steps wi,; — -+ — w}_; — w}; we

execute reductions left and right from gs in the same order as they were exec{med
in D.

First note that the inactive edge at level i + 1 having source (i, |z'|) in the
chain graph of D is replaced by the active edge ((4,|z’]), (i+1, |2'g|)) in the chain
graph of D’. Let us denote this active edge by K.

Let S consist of vertices

Vo, .-, Vi—1, (Zv |ml|)7 RS (.] - 1a |'T|)a (.]7 ‘$g|),1]j+1, o

and respective edges between them. The path S’ consisting of the vertices:

Vo, -5 Vi—1, (Z, |$/|)7 (7’ +1, |$/g|)7 BN (.77 |‘rg|)u7}j+17 s

in the chain graph of D’ has by its construction first ¢ + 1 edges active. It suffices
to show that it is an infinite independent path.
Suppose that there is a dependent edge [ € S’. There are 3 possible cases:

— level(l) < 4. Since D’ up to step 4 is the same as D and hence the respective
parts of their chain graphs are the same, [ is dependent also in the chain
graph of D, a contradiction.

— level(l) €]i,j]. Then | = K, since K is the only active edge in those levels.
Hence one of the positions in the husband h of K is introduced before level
i+ 1 by an alien mother-in-law m. But before level i 4 1 the derivations and
their chain graphs are the same, hence m is also an alien mother-in-law of
k', a contradiction.

— level(l) > j. Then [ was present in the original chain graph as well since all
reduction steps later than j are the same. Let m = (j' — 1, R(j')) be an alien
mother-in-law of [. We have 3 possible cases:

e j' > j. Since the steps after j and hence their chain graphs are the same,
m is alien to [ in S as well.

e j' €li,7]. Obviously, j/ # i+ 1, because m is alien. Let p be the position
in the husband of [ introduced by the reduction corresponding to m.
Then p has a residual p’ in w}. We can either have p’ < |z] or p" > |zgs],
since other positions stay untouched during the derivation wj,; —* w’.
Therefore p’ is either an inner position of x or of y. To fix our atten-
tion, suppose that it is an inner position of y. By Lemma 2, we have
w_q = 2" gsy1sys for some ", y1,y2 € X*, where 2’ —* 2 —* x and
Yy —* y1sya —* y. Let |2"gsyr| < p”’ < |x”gsyit| be the residual of p
introduced in step j’. Consider the corresponding reduction step in D:
wjr = a" shy1sys — " shyitys = wjr41. The position p”’ = |h| — |g| + p”
in wj/ 41 is introduced in this reduction. One shows that (j’, p’"’) is a resid-
ual of (j,p’) in D. Since (5, |2z"|) € S, the mother-in-law (j', |z” shy1]) is
alien. Hence S is not independent, a contradiction.

10
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Fig. 3. The chain graph from Example 10

e j/ < i. By definition of mother-in-law, the step wf, _; — wj, in D’
introduces a residual of (level(¢) — 1, p). The same step in D introduces a
residual of (level(¢)—1, p) in D, because the derivation w; —* w;_1 — w;
touches exactly the same positions as the derivation w; — wj, ; —* w.
So m is an alien mother-in-law of ¢ also in the chain graph of D, a
contradiction.

So S’ contains no dependent edge, which finishes the proof. ad

Ezample 10. Consider the first three steps of D from Example 1. Let B denote
the right branch in its chain graph. The edges on B come from sets E1, Ey, E1.
Pushing up the second active edge from B, results in the following derivation:

aabbaabbabbb — aabbabb * aabbabb —
—aabbabb * abbaabbab — abbaabbab x abbaabbab

Its chain graph is shown in Figure 3. Note that the right path starts with
two active edges.

Lemma 4 ([9, Lemma 15]). If the chain graph of an infinite derivation con-
tains an infinite independent path then there is a derivation that contains an
infinite, single-threaded path starting from level 0.

Proof. First we drop enough initial steps from the derivation, so that the inde-
pendent path starts from level 0. Then we construct the i-the step of the target
derivation and the i-th level of its chain graph by applying Lemma 3 ¢ times. O

Lemma 5. A derivation whose chain graph contains an infinite single-threaded
path starting from level 0 is a single-threaded derivation.

Proof. Let an infinite derivation be given that contains an infinite, single-threaded
path, S. As every edge on the path is active, there cannot be, besides the path,
another redex that is rewritten during the derivation. By definition of chain
graph there is, therefore, no inactive edge in the chain graph. By the same to-
ken, the active edges have no rivals. So there are no edges outside S. a

The concepts and lemmas introduced so far can be used to prove:

Theorem 4. FEvery both-sides-indigestible, non-terminating 1STS is single-threaded.

11



3.2 Simulation by a Pushdown Automaton

We show in this section that the single-threaded derivations of a right-indigestible
1STS can be rendered by a pushdown automaton, whence the uniform termina-
tion problem for single-threaded, right-indigestible 1STSs is decidable.

Lemma 6 ([9, Proposition 34]). Let wog — w; — ... be an infinite single-
threaded derivation and let D(i) hold for some i > 0. If k; is a left edge then
LD(i) holds. If k; is a right edge then RD(i) holds.

Proof. To fix our attention, suppose that k; is a left edge. Hence reduction of
the target redex consumes positions introduced in the i-th step from the left. By
induction we can show that no step consumes positions from the right. a

During the remainder of this section we assume that the given 1STS s — ¢
is single-threaded and satisfies =RD.

Lemma 7 ([9, Lemma 35]). Let k be a right edge at level i in the chain graph
of a single-threaded derivation. Then no position p < src(k) in w;_1 is consumed
later.

Proof. By contradiction. Suppose that there is a right edge k at level ¢ and the
position p < src(k) is consumed later. Since the derivation is single-threaded, we
can show by induction that all positions between src(k) and tgt(k) in w; are also
consumed; hence D(i) holds. By Lemma 6, we get RD(i), a contradiction. O

Definition 12 ([9, Definition 10.5]). To a 1STS s — t, we assign a gener-
alized pushdown automaton [11] A whose transitions will correspond to rewrite
steps in a giwven derivation. The input alphabet and the stack alphabet are X each.
The state of the automaton is encoded as the contents of a stack of size strictly
bounded by |t|. So a configuration is a pair (z,y) € X<I! x T*. The automaton
has the transition relation - C (<1 x £%) x (X<I!l x X*) defined by:

(z,y) F (ta,y") ify=sqy, « € OVL(t,s), z € X<I!l, ¢/ y e X*

—~

The transition relation F is well-defined by |2'| < |z| < [t] and [to] < [t]. A
finite or infinite sequence of transitions is called a computation.

Lemma 8 ([9, Lemma 37]). If A admits an infinite computation then there
s an infinite derivation.

Proof. One shows that for all z,2’ € X<I!l and y,y € X*, if (z,y) F (z/,y)
then xsy — x’'sy’ or xsy — xx'sy’. O

Definition 13. We say that A is put on the derivation wy — w1 — ..., if its
configuration is set to (x,y), and |x| < [t|, where  and y are the left and right
contexts of the first rewrite step, wg — w1 .

12



Lemma 9. The automaton A, put on an infinite, single-threaded derivation,
admits an infinite computation.

Proof. We prove that 4 admits one transition and thereafter it is put on an
infinite, single-threaded derivation again. By applying this argument ¢ times, we
can construct the i-th transition of the automaton for any ¢ > 0.

To prove the claim, let an infinite, single-threaded derivation D : wy —
wy — ... be given, and let wg = xsy and R(1) = |x| for some z,y € X*. If
R(1) > R(2) (k1 is a left edge), then © = a’sg and wy = a'stgy for some 2’/ € X*
and 8 € OVL(s, t). The automaton can make a transition (z,y) - (2, tgy), and
is so put on the remaining derivation wy — wy — .... If R(1) < R(2) (k1 is a
right edge), then y = s,y" and wy = zt,sy’ for some y' € X* and o € OVL(t, s).
By Lemma 7, the prefix x remains unaffected by the derivation w; — wg — .. ..
Now for all ¢ > 0 let w} be defined by w; = zw)}. Then wj — wy — ... is again
an infinite, single-threaded derivation. a

Lemma 10. Let S be a path in the chain graph of an infinite, single-threaded
derivation. If S contains infinitely many active edges then it contains infinitely
many left edges and infinitely many right edges.

Proof. Suppose that there are only finitely many left edges on S. Then there is
some N such that k,, is a right edge, or an inactive edge, for all n > N. Let
an = |wy| — tgt(ky,). Obviously a,, > 0 for all n > N. On the other hand, the
subsequence of all a,,, n > N for which k,, is a right edge strictly decreases. This
gives a contradiction. a

Lemma 11. If s — t is a right-indigestible, single-threaded 1STS then A admits
an infinite computation.

Proof. Let s — t admit the infinite, single-threaded derivation wg — wy — .. ..
In order to work with Lemma 9, we need to ensure |z| < [t| for the left context
of the first rewrite step. This is not the case for an arbitrary derivation, but a
suitable derivation can be derived as follows.

By Lemma 10, the single-threaded path of wy — w; — ... contains a right
edge, at level i say. Then the derivation w;_1 — w; — ... starts with a right edge:
we have w;—1 = x8s,y’ and w; = xt,sy’ for some z,y’ € X* and o € OVL(%, s).
By Lemma 7 the prefix x remains unaffected by the derivation w;_; — w; — .. ..
Now for all j > — 1 let w} be defined by w; = zw};. Then D : wj — wy — ...
is again an infinite, single-threaded derivation. Moreover |¢,| < |¢| holds for the
left context ¢, of its first rewrite step. By Lemma 9, the automaton A put on D
admits an infinite computation. a

Ezample 11. Consider the well-behaved system abcd — cdedbabab taken from
[7], and the infinite derivation:

abeded — cdedbababed — cdedbabededbabab — cdedbededbababedbabab — . . .
The corresponding computation is:

(e,cd) F (ededbab, €) - (cdedb, cdbabab) b (ededbab, babab) - . . .

13



Definition 14. The uniform halting problem of pushdown automata is the fol-
lowing problem: ”Given a pushdown automaton (X,7Z,Q,F,qo,20) — is there
(z,y) € Q X Z* that initiates an infinite computation?”

Theorem 5. The uniform termination problem is decidable for the class of
1S8TS s — t that satisfy ~-BD A (—~RD V =LD).

Proof. By symmetry we may assume ~RD. By Lemmas 8 and 11, the uniform
termination problem is reduced to the uniform halting problem of pushdown
automata which is decidable [12]. O

4 Applications

There is a decidable sufficient criterion for both-sides-indigestibility of 1STSs.
First BD can be characterized by the existence of two peculiar single-threaded
derivations, then one can develop a simple test for non-existence of such deriva-
tions, based on the sets of suffixes of s and ¢ that can be consumed and intro-
duced, respectively. The question whether BD is decidable remains open.

We give several examples of systems to which this criterion and our theorems

apply.

Ezample 12. The 1STS R = {caabca — aabccaabe} is both-sides-indigestible,
satisfies "L D and RD and is not tame.

Ezample 13 ([2]). The SOF 1STS aaabbab — abbaaabba satisfies ~BD A—LD A
RD and is tame and terminating.

Ezample 14. The non-SOF 1STS R = {babbabb — abbabbbba} satisfies ~BD A
LD A —RD. 1t is non-tame and non-terminating.

Kobayashi et al. [4, page 603] find no instances for the case SOF A =BD A
RD A LD. Non-SOF systems satisfying ~BD A RD A LD however do exist:

Ezample 15. For every n > 3, the 1STS R = {ba(ab)™ — (ab)"*2a is not both-
sides-digestible. However R is both left-digestible ((ab)"™'a suffix of (ba)™*!)
and right-digestible (aba prefix of (ab)™).

5 Conclusion

We have shown that one-rule Semi-Thue Systems (1STSs) that satisfy =BD A
(=RD V =LD) have a decidable uniform termination problem, for their non-
terminating members admit infinite single-threaded derivations, which can be
simulated by pushdown automata. The uniform termination problem for 1STSs
that satisfy =BD A RD A LD is open.
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