
Walker White
Cornell University

Joint work with Al Demers, Johannes Gehrke,
Christoph Koch, and Rajamohan Rajagopolan

Scaling Computer Games
To Epic Proportions

SIGMOD 2007 Scaling Games to Epic Proportions

Computer Games

 $7B in sales in 2005
 Outperforming the

movie industry

 Unique challenges
 Virtual environments
 High degree of

interactivity

SIGMOD 2007 Scaling Games to Epic Proportions

Game Design

 Game design brings together many disciplines
 Art, music, computer science, etc...

 Development brings together different skills:
 Programmers: Create the game engine

 Focus on technological development
 Designers: Create the game content

 Typically artistic content
 But may include (programmed) character behavior

SIGMOD 2007 Scaling Games to Epic Proportions

Data-Driven Game Design

 Today’s games are data-driven
 Game content is separated from game code

 Examples:
 Art and music kept in industry-standard file formats
 Character data kept in XML or other data file formats
 Character behavior specified through scripts

 Programmed via scripting language

SIGMOD 2007 Scaling Games to Epic Proportions

Data-Driven Game Design

SIGMOD 2007 Scaling Games to Epic Proportions

Advantages of Data-Driven Design

 Engine is reusable.
 Able to recoup R&D costs over several games.
 Possible to license engine to other companies.

 Example: The Unreal engine

 Can extend the life span of the game
 Modder communities develop around the game

 Keep game fresh and new
 User-created content becoming very popular

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL
 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

This Talk: Simulation Games

 What are simulation games?
 Characters can interact w/o player input
 Non-Player Characters (NPCs): indirect control

 Example: Real-Time Strategy (RTS) games
 Troops move and fight in real time
 Player control via limited number of commands
 Player multitasks between large number of units

SIGMOD 2007 Scaling Games to Epic Proportions

RTS Demonstration

SIGMOD 2007 Scaling Games to Epic Proportions

Expressiveness vs. Performance
 Expressiveness:

the range of behavior
scriptable outside engine

 As # of NPCs increases
expressiveness decreases
 Neverwinter Nights

 Each NPC fully scriptable
 WarCraft III

 Script armies, not NPCs
 Can only “fake” NPC control
 Little NPC coordination

 Rome: Total War
 No individual control at all

Rome:
Total War

WarCraft III

The Sims 2

Neverwinter
Nights

Expressiveness

N
um

be
r

of
 N

PC
s

Low High
Lo
w

H
ig
h

SIGMOD 2007 Scaling Games to Epic Proportions

Expressiveness vs. Performance

Rome:
Total War

WarCraft III

The Sims 2

Neverwinter
Nights

Expressiveness

N
um

be
r

of
 N

PC
s

Low High
Lo
w

H
ig
h Goal

 Expressiveness:
the range of behavior
scriptable outside engine

 As # of NPCs increases
expressiveness decreases
 Neverwinter Nights

 Each NPC fully scriptable
 WarCraft III

 Script armies, not NPCs
 Can only “fake” NPC control
 Little NPC coordination

 Rome: Total War
 No individual control at all

SIGMOD 2007 Scaling Games to Epic Proportions

Why Is Scaling NPCs Hard?

Time per tick

3 units

2 units

1 unit

 Can be very expensive
 O(n) to process all units.
 Observations may be O(n)

 Example: morale
 Units afraid of skeletons
 Chance of running

proportional to # of
skeletons

 O(n) to count skeletons
 O(n2) to process all units.

SIGMOD 2007 Scaling Games to Epic Proportions

Why Is Scaling NPCs Hard?

Time per tick

3 units

2 units

1 unit

 Can be very expensive
 O(n) to process all units.
 Observations may be O(n)

 Example: morale
 Units afraid of skeletons
 Chance of running

proportional to # of
skeletons

 O(n) to count skeletons
 O(n2) to process all units.

 Want computation close
to graphics frame rate.

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL
 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

Scaling Scripts to Many NPCs

 Idea: Use declarative language for scripts.

 Analysis shows:
 Typically a set of if-then rules.
 Iteration is restricted to:

 Computing an aggregate of a collection of objects.
 Applying an update to the environment.
 Processing an array of fixed size.

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL

 Simulation == Queries and updates
 The SGL Language

 Optimizing SGL
 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

Inside the Simulation Engine

 Actions divided into “ticks”.
 During a tick, each unit

1. Reads the environment
2. Determines its current action
3. Performs action, creating one or more effects

 An effect may alter a unit’s own state
(i.e. movement)

 An effect may alter the state of others
(i.e. damage)

SIGMOD 2007 Scaling Games to Epic Proportions

Inside the Simulation Engine

 Actions divided into “ticks”.
 During a tick, each unit

 Database queries
1 Reads the environment
2 Determines its current action

 Database updates
3 Performs action, creating one or more effects

SIGMOD 2007 Scaling Games to Epic Proportions

The Environment Table

 The environment is a single table E.
 Each unit a row in the table.

 Schema is unit state and possible effects.
 Position: Unit state
 Movement: Unit effect

State Effect

013-4Doug

00-10Alice

23102Bob

Move_yMove_xPos_yPos_xName

SIGMOD 2007 Scaling Games to Epic Proportions

Processing Effects

 At end of tick, effects update environment
 All effects are processed simultaneously
 Have rules to combine effects

 Must be order independent
 Currently games use aggregate functions
 Examples: sum, product, min, max

 Combination is single effect, used for update

SIGMOD 2007 Scaling Games to Epic Proportions

The Environment Table

 The environment is a single table E.
 Each unit a row in the table.

 Schema is unit state and possible effects.

 Schema annotated to tell which is which.
 State subschema annotated by const.
 Effects annotated by combination function.

 Examples: sum, min, max

SIGMOD 2007 Scaling Games to Epic Proportions

Example Environment Table

E(keyconst, “Key”; used to identify unit.
playerconst, Player controlling unit
pos_xconst, Current x-position of unit
pos_yconst, Current y-position of unit
healthconst, Current health of unit

move_xsum, Amount to move unit on x-axis
move_ysum, Amount to move unit on y-axis
damagesum, Amount of damage to do to unit
heal_auramax Amount to heal unit
)

STATE

EFFECTS

SIGMOD 2007 Scaling Games to Epic Proportions

Formal Processing Model

 Each unit performs a single action.
 A query that produces a set of effects.
 Returns the subtable of affected units.

 Const attributes are unmodified.
 Effect attributes modified with effect amounts.

 Effects of each action are combined.
 Produces a new table Eu of all updated units.

 Post-processing step updates state from effects.
 Produces the new table E for the next tick.

SIGMOD 2007 Scaling Games to Epic Proportions

The Post-Processing Step

 Is just an SQL query!

 Example:

SELECT u.key, u.player,
 u.pos_x + u.move_x * norm AS pos_x,
 u.pos_y + u.move_y * norm AS pos_y,
 u.health - u.damage + u.heal_aura
 AS u.health,
FROM E u
WHERE u.health > 0

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL

 Simulation == Queries and updates
 The SGL Language

 Optimizing SGL
 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

Defining Actions: SGL
 Scalable Games Language

 Functional language
 Used to choose NPC actions

 Aggregate functions to perform observations
 Built-in or definable in SQL

 Action functions to produce effects
 Built-in or definable in SQL

SIGMOD 2007 Scaling Games to Epic Proportions

Example SGL Script
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector = (u.posx, u.posy) -
 CentroidOfEnemyUnits(u,u.range)) {
 perform MoveInDirection(u,away_vector);
 } else if (c > 0) then {
 if (u.cooldown = 0) then
 (let target_key = getNearestEnemy(u).key){
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Aggregate Function Definitions
function CountEnemiesInRange(u,range) returns

SELECT Count(*) FROM E
WHERE E.x >= u.pos_x - range AND
 E.x <= u.pos_x + range AND
 E.y >= u.pos_y - range AND
 E.y <= u.pos_y + range AND
 E.player <> u.player;

function CentroidOfEnemyUnits(u,range) returns
SELECT Avg(x) AS x, Avg(y) AS y FROM E
WHERE E.x >= u.pos_x - range AND
 E.x <= u.pos_x + range AND
 E.y >= u.pos_y - range AND
 E.y <= u.pos_y + range AND
 E.player <> u.player;

SIGMOD 2007 Scaling Games to Epic Proportions

Action Function Definitions
function MoveInDirection(u,x,y) returns

SELECT e.key,e.player,e.pos_x,e.pos_y,e.health,
 x-e.pos_x AS move_x, y-e.pos_y as move_y,
 e.damage,e.heal_aura
FROM E e WHERE e.key=u.key;

function FireAt(u,target_key) returns
SELECT e.key,e.player,e.pos_x,e.pos_y,e.health,
 e.move_x, e.move_y,
 e.damage+(_ARROW_HIT_DAMAGE - _ARMOR) *
 (Random(e,1) mod 2) as damage,
 e.heal_aura
FROM E e WHERE e.key=target_key;

SIGMOD 2007 Scaling Games to Epic Proportions

Advantage of this Model

 Units often perform a lot of shared computation.
 Example: Units all processing the same command
 Optimize with set-at-time processing.

 Determine all effects with a single database query.
 Apply all effects as single update at end of tick.

 Sometimes computation is only overlapping.
 Example: Counting number of skeletons.

 Units overlapping, not same, line-of-sight.
 Optimize with indexing techniques.

Let’s now model a simulation using database techniques!

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL

 Set-at-a-time processing
 Aggregate Indexing

 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

Combining Effects Together

 Combination operation ⊕.
 Operates on a set: ⊕ E
 Merges rows of same “key” according to annotation.
 Example:

 Gives formal definition for combining of effects.

4Bob2

2Bob1

3Bob1

DamageSumPlayerConstKeyConst

4Bob2

5Bob1

DamageSumPlayerConstKeyConst

=⊕

SIGMOD 2007 Scaling Games to Epic Proportions

Set-At-A-Time Processing

 Define [[f]]⊕ (E) = ⊕ (∪{[[f]]E(u) | u ∈ E})

 Process an entire “tick” as
[[main]]⊕(E)⊕E = ⊕ (∪ {[[main]]E (u) | u ∈ E})⊕E

 Suggests set-processing semantics:
[[(let A := a) f]]⊕(E) := [[f]]⊕(π,a() as A(E))
[[f1 ; f2]]⊕(E) := [[f1]]⊕(E) ⊕ [[f2]]⊕(E)
[[if ϕ then f]]⊕(E) := [[f]]⊕(σϕ(Ε))
[[perform G]]⊕(E) := [[g]]⊕(E)

→ →

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL

 Set-at-a-time processing
 Aggregate Indexing

 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

Optimizing Aggregates

 The problem:
 Script associated with each NPC
 Script performs aggregate computation

 Count number of skeletons
 In our query plans: !,agg()(R)

 Compute for every unit in the environment
 O(n2) cost!

 But we “understand” the scripts!
 Compute common aggregate for query plan

SIGMOD 2007 Scaling Games to Epic Proportions

Optimizing Aggregates (Contd.)

 The problem is actually a bit harder:
 Script associated with each NPC
 Script performs aggregate computation that

depends on the unit
 Count number of skeletons in my neighborhood
 In our query plans: !,agg()(σϕ (R))

 Compute for every unit in the environment
 O(n2) cost!

 But we “understand” the scripts!
 Compute common aggregate for query plan

SIGMOD 2007 Scaling Games to Epic Proportions

Solution: Aggregate Indexing

 Create an index to encode aggregates
 Replaces computation with index lookup
 !,agg()(σϕ (R)) now index nested loops join

 Indices for all aggregates in Warcraft III
 See the paper for technical details
 All indices are

 O(n logd n) to build
 O(logd n) to look-up
 where d depends on arity of ϕ

SIGMOD 2007 Scaling Games to Epic Proportions

Indices in the Processing Model

 Construct all indices at beginning of tick
 O(n logd n) for each aggregate index

 Scripts are read only queries on indices
 Aggregates are index nested loops join
 O(logd n) look-up for each unit
 O(n logd n) costed for nested loops join

 Linear cost to post-process updates

 Total cost for entire tick: O(n logd n)

SIGMOD 2007 Scaling Games to Epic Proportions

Indices in the Processing Model

 Construct all indices at beginning of tick
 O(n logd n) for each aggregate index

 Scripts are read only queries on indices
 Aggregates are index nested loops join
 O(logd n) look-up for each unit
 O(n logd n) costed for nested loops join

 Linear cost to post-process updates

 Total cost for entire tick: O(n logd n)

SIGMOD 2007 Scaling Games to Epic Proportions

Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL
 Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

Experimental Evaluation

 System is currently under construction
 But performed an evaluation of the

optimizations on a game simulation
 Do we really see n2 behavior in practice?
 What about overhead of index construction?

SIGMOD 2007 Scaling Games to Epic Proportions

Experimental Evaluation

 Combat simulation
 Three types of units: knights, healers, archers
 Complex, but reasonable NPC behavior.

 Archers use knights as cover.
 Compute centroids of archers, knights, enemies.
 Make sure in a line, with knights at center.

 Healers stay in between archers, knights.
 Spread out for maximum healing.

 Knights retreat to healers if too wounded.

 Uses d20 (D&D) mechanics for combat.

SIGMOD 2007 Scaling Games to Epic Proportions

Experimental Design

 Number of NPCs vs. time for 500 clock ticks.

 Pluggable simulation comparing query plans
1. Naive processing of aggregates.
2. Use of indexing techniques.

• The factor d from indexing techniques is d=1.
 Performance is thus O(n log n) for each aggregate

 Hardware parameters:
 2Ghz Intel Core Duo running OS X in 1.5 GB RAM.
 Compiled in C++ using GCC.

SIGMOD 2007 Scaling Games to Epic Proportions

Experimental Results

SIGMOD 2007 Scaling Games to Epic Proportions

Experimental Results

60 frames/s

10 frames/s

SIGMOD 2007 Scaling Games to Epic Proportions

Future Work

 Working to implement SGL in XNA
 Microsoft’s new game development platform
 Works on PC and XBox 360

 Lots of open problems:
 Query processing
 Query optimization
 Further indexing methods
 Implementation

SIGMOD 2007 Scaling Games to Epic Proportions

Final Words

 What was the success of databases?
 Declarative specification vs. procedural retrieval

 This is the same program for simulations
 Declarative behavior vs. procedural implementation

 Is a roadmap for multicore optimization
 Declarative languages are highly parallelizable
 What other problems can we apply them to?

Let’s Play!

Any questions?

SIGMOD 2007 Scaling Games to Epic Proportions

Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
 if (c > u.morale) then
 (let away_vector =

(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

 perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

 if (u.cooldown = 0) then
 (let target_key =

 getNearestEnemy(u).key) {
 perform FireAt(u,target_key);

 }
 }
} }

