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Computer Games

 $7B in sales in 2005
 Outperforming the

movie industry

 Unique challenges
 Virtual environments
 High degree of

interactivity
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Game Design

 Game design brings together many disciplines
 Art, music, computer science, etc...

 Development brings together different skills:
 Programmers: Create the game engine

 Focus on technological development
 Designers: Create the game content

 Typically artistic content
 But may include (programmed) character behavior
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Data-Driven Game Design

 Today’s games are data-driven
 Game content is separated from game code

 Examples:
 Art and music kept in industry-standard file formats
 Character data kept in XML or other data file formats
 Character behavior specified through scripts

 Programmed via scripting language
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Data-Driven Game Design
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Advantages of Data-Driven Design

 Engine is reusable.
 Able to recoup R&D costs over several games.
 Possible to license engine to other companies.

 Example: The Unreal engine

 Can extend the life span of the game
 Modder communities develop around the game

 Keep game fresh and new
 User-created content becoming very popular
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Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL
 Experimental Evaluation
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This Talk: Simulation Games

 What are simulation games?
 Characters can interact w/o player input
 Non-Player Characters (NPCs): indirect control

 Example: Real-Time Strategy (RTS) games
 Troops move and fight in real time
 Player control via limited number of commands
 Player multitasks between large number of units



SIGMOD 2007 Scaling Games to Epic Proportions

RTS Demonstration
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Expressiveness vs. Performance
 Expressiveness:

the range of behavior
scriptable outside engine

 As # of NPCs increases
expressiveness decreases
 Neverwinter Nights

 Each NPC fully scriptable
 WarCraft III

 Script armies, not NPCs
 Can only “fake” NPC control
 Little NPC coordination

 Rome: Total War
 No individual control at all
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 Expressiveness:
the range of behavior
scriptable outside engine

 As # of NPCs increases
expressiveness decreases
 Neverwinter Nights

 Each NPC fully scriptable
 WarCraft III

 Script armies, not NPCs
 Can only “fake” NPC control
 Little NPC coordination

 Rome: Total War
 No individual control at all
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Why Is Scaling NPCs Hard?

Time per tick

3 units

2 units

1 unit

 Can be very expensive
 O(n) to process all units.
 Observations may be O(n)

 Example: morale
 Units afraid of skeletons
 Chance of running

proportional to # of
skeletons

 O(n) to count skeletons
 O(n2) to process all units.
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Why Is Scaling NPCs Hard?

Time per tick

3 units

2 units

1 unit

 Can be very expensive
 O(n) to process all units.
 Observations may be O(n)

 Example: morale
 Units afraid of skeletons
 Chance of running

proportional to # of
skeletons

 O(n) to count skeletons
 O(n2) to process all units.

 Want computation close
to graphics frame rate.
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Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL
 Experimental Evaluation
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Scaling Scripts to Many NPCs

 Idea: Use declarative language for scripts.

 Analysis shows:
 Typically a set of if-then rules.
 Iteration is restricted to:

 Computing an aggregate of a collection of objects.
 Applying an update to the environment.
 Processing an array of fixed size.
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Talk Outline

 Simulation Games
 Scaling Games with SGL

 Simulation == Queries and updates
 The SGL Language

 Optimizing SGL
 Experimental Evaluation
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Inside the Simulation Engine

 Actions divided into “ticks”.
 During a tick, each unit

1. Reads the environment
2. Determines its current action
3. Performs action, creating one or more effects

 An effect may alter a unit’s own state
(i.e. movement)

 An effect may alter the state of others
(i.e. damage)
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Inside the Simulation Engine

 Actions divided into “ticks”.
 During a tick, each unit

 Database queries
1 Reads the environment
2 Determines its current action

 Database updates
3 Performs action, creating one or more effects
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The Environment Table

 The environment is a single table E.
 Each unit a row in the table.

 Schema is unit state and possible effects.
 Position: Unit state
 Movement: Unit effect

State Effect

013-4Doug

00-10Alice

23102Bob

Move_yMove_xPos_yPos_xName
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Processing Effects

 At end of tick, effects update environment
 All effects are processed simultaneously
 Have rules to combine effects

 Must be order independent
 Currently games use aggregate functions
 Examples: sum, product, min, max

 Combination is single effect, used for update



SIGMOD 2007 Scaling Games to Epic Proportions

The Environment Table

 The environment is a single table E.
 Each unit a row in the table.

 Schema is unit state and possible effects.

 Schema annotated to tell which is which.
 State subschema annotated by const.
 Effects annotated by combination function.

 Examples: sum, min, max
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Example Environment Table

E(keyconst,     “Key”; used to identify unit.
playerconst, Player controlling unit
pos_xconst, Current x-position of unit
pos_yconst, Current y-position of unit
healthconst, Current health of unit

move_xsum, Amount to move unit on x-axis
move_ysum, Amount to move unit on y-axis
damagesum, Amount of damage to do to unit
heal_auramax Amount to heal unit
)

STATE

EFFECTS
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Formal Processing Model

 Each unit performs a single action.
 A query that produces a set of effects.
 Returns the subtable of affected units.

 Const attributes are unmodified.
 Effect attributes modified with effect amounts.

 Effects of each action are combined.
 Produces a new table Eu of all updated units.

 Post-processing step updates state from effects.
 Produces the new table E for the next tick.
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The Post-Processing Step

 Is just an SQL query!

 Example:

SELECT u.key, u.player,
       u.pos_x + u.move_x * norm AS pos_x,
       u.pos_y + u.move_y * norm AS pos_y,
       u.health - u.damage + u.heal_aura
         AS u.health,
FROM E u
WHERE u.health > 0
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Talk Outline

 Simulation Games
 Scaling Games with SGL

 Simulation == Queries and updates
 The SGL Language

 Optimizing SGL
 Experimental Evaluation
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Defining Actions: SGL
 Scalable Games Language

 Functional language
 Used to choose NPC actions

 Aggregate functions to perform observations
 Built-in or definable in SQL

 Action functions to produce effects
 Built-in or definable in SQL



SIGMOD 2007 Scaling Games to Epic Proportions

Example SGL Script
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
    if (c > u.morale) then
      (let away_vector = (u.posx, u.posy) -
           CentroidOfEnemyUnits(u,u.range)) {
       perform MoveInDirection(u,away_vector);
    } else if (c > 0) then {
      if (u.cooldown = 0) then
        (let target_key = getNearestEnemy(u).key){
         perform FireAt(u,target_key);

  }
     }
} }
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Aggregate Function Definitions
function CountEnemiesInRange(u,range) returns

SELECT Count(*) FROM E
WHERE E.x >= u.pos_x - range AND
      E.x <= u.pos_x + range AND
      E.y >= u.pos_y - range AND
      E.y <= u.pos_y + range AND
      E.player <> u.player;

function CentroidOfEnemyUnits(u,range) returns
SELECT Avg(x) AS x, Avg(y) AS y FROM E
WHERE E.x >= u.pos_x - range AND
      E.x <= u.pos_x + range AND
      E.y >= u.pos_y - range AND
      E.y <= u.pos_y + range AND
      E.player <> u.player;



SIGMOD 2007 Scaling Games to Epic Proportions

Action Function Definitions
function MoveInDirection(u,x,y) returns

SELECT e.key,e.player,e.pos_x,e.pos_y,e.health,
       x-e.pos_x AS move_x, y-e.pos_y as move_y,
       e.damage,e.heal_aura
FROM E e WHERE e.key=u.key;

function FireAt(u,target_key) returns
SELECT e.key,e.player,e.pos_x,e.pos_y,e.health,
       e.move_x, e.move_y,
       e.damage+(_ARROW_HIT_DAMAGE - _ARMOR) *
                (Random(e,1) mod 2) as damage,
       e.heal_aura
FROM E e WHERE e.key=target_key;
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Advantage of this Model

 Units often perform a lot of shared computation.
 Example: Units all processing the same command
 Optimize with set-at-time processing.

 Determine all effects with a single database query.
 Apply all effects as single update at end of tick.

 Sometimes computation is only overlapping.
 Example: Counting number of skeletons.

 Units overlapping, not same, line-of-sight.
 Optimize with indexing techniques.

Let’s now model a simulation using database techniques!
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Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL

 Set-at-a-time processing
 Aggregate Indexing

 Experimental Evaluation
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Combining Effects Together

 Combination operation ⊕.
 Operates on a set: ⊕ E
 Merges rows of same “key” according to annotation.
 Example:

 Gives formal definition for combining of effects.

4Bob2

2Bob1

3Bob1

DamageSumPlayerConstKeyConst

4Bob2

5Bob1

DamageSumPlayerConstKeyConst

=⊕
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Set-At-A-Time Processing

 Define [[f]]⊕ (E) = ⊕ (∪{[[f]]E(u) | u ∈ E})

 Process an entire “tick” as
[[main]]⊕(E)⊕E = ⊕ (∪ {[[main]]E (u) | u ∈ E})⊕E

 Suggests set-processing semantics:
[[(let A := a) f ]]⊕(E) := [[f]]⊕(π,a() as A(E))
[[f1 ; f2]]⊕(E)            := [[f1]]⊕(E) ⊕ [[f2]]⊕(E)
[[if ϕ then f]]⊕(E)   := [[f]]⊕(σϕ(Ε))
[[perform G]]⊕(E)   := [[g]]⊕(E)

→ →
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Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
    if (c > u.morale) then
      (let away_vector =

(u.posx, u.posy) -        
CentroidOfEnemyUnits(u,u.range)) {

         perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

         if (u.cooldown = 0) then
    (let target_key =

  getNearestEnemy(u).key) {
    perform FireAt(u,target_key);

      }
     }
} }
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Algebraic Optimization
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Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL

 Set-at-a-time processing
 Aggregate Indexing

 Experimental Evaluation
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Optimizing Aggregates

 The problem:
 Script associated with each NPC
 Script performs aggregate computation

 Count number of skeletons
 In our query plans: !,agg()(R)

 Compute for every unit in the environment
 O(n2) cost!

 But we “understand” the scripts!
 Compute common aggregate for query plan
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Optimizing Aggregates (Contd.)

 The problem is actually a bit harder:
 Script associated with each NPC
 Script performs aggregate computation that

depends on the unit
 Count number of skeletons in my neighborhood
 In our query plans: !,agg()(σϕ (R))

 Compute for every unit in the environment
 O(n2) cost!

 But we “understand” the scripts!
 Compute common aggregate for query plan
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Solution: Aggregate Indexing

 Create an index to encode aggregates
 Replaces computation with index lookup
 !,agg()(σϕ (R))  now index nested loops join

 Indices for all aggregates in Warcraft III
 See the paper for technical details
 All indices are

 O(n logd n) to build
 O(logd n) to look-up
 where d depends on arity of ϕ
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Indices in the Processing Model

 Construct all indices at beginning of tick
 O(n logd n) for each aggregate index

 Scripts are read only queries on indices
 Aggregates are index nested loops join
 O(logd n) look-up for each unit
 O(n logd n) costed for nested loops join

 Linear cost to post-process updates

 Total cost for entire tick: O(n logd n)
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Talk Outline

 Simulation Games
 Scaling Games with SGL
 Optimizing SGL
 Experimental Evaluation
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Experimental Evaluation

 System is currently under construction
 But performed an evaluation of the

optimizations on a game simulation
 Do we really see n2 behavior in practice?
 What about overhead of index construction?
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Experimental Evaluation

 Combat simulation
 Three types of units: knights, healers, archers
 Complex, but reasonable NPC behavior.

 Archers use knights as cover.
 Compute centroids of archers, knights, enemies.
 Make sure in a line, with knights at center.

 Healers stay in between archers, knights.
 Spread out for maximum healing.

 Knights retreat to healers if too wounded.

 Uses d20 (D&D) mechanics for combat.
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Experimental Design

 Number of NPCs vs. time for 500 clock ticks.

 Pluggable simulation comparing query plans
1. Naive processing of aggregates.
2. Use of indexing techniques.

• The factor d from indexing techniques is d=1.
 Performance is thus O(n log n) for each aggregate

 Hardware parameters:
 2Ghz Intel Core Duo running OS X in 1.5 GB RAM.
 Compiled in C++ using GCC.
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Experimental Results
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Experimental Results

60 frames/s

10 frames/s
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Future Work

 Working to implement SGL in XNA
 Microsoft’s new game development platform
 Works on PC and XBox 360

 Lots of open problems:
 Query processing
 Query optimization
 Further indexing methods
 Implementation
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Final Words

 What was the success of databases?
 Declarative specification vs. procedural retrieval

 This is the same program for simulations
 Declarative behavior vs. procedural implementation

 Is a roadmap for multicore optimization
 Declarative languages are highly parallelizable
 What other problems can we apply them to?



Let’s Play!

Any questions?
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Algebraic Optimization
main(u) {

(let c = CountEnemiesInRange(u,u.range)) {
    if (c > u.morale) then
      (let away_vector =

(u.posx, u.posy) -        
CentroidOfEnemyUnits(u,u.range)) {

         perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

         if (u.cooldown = 0) then
    (let target_key =

  getNearestEnemy(u).key) {
    perform FireAt(u,target_key);

      }
     }
} }


