Scaling Computer Games
To Epic Proportions

Walker White
Cornell University

Joint work with Al Demers, Johannes Gehrke,
Christoph Koch, and Rajamohan Rajagopolan

Computer Games

» $7B in sales in 2005 g2 xw“)"i\lll_
* Outperforming the . WARCRAFT J

movie industry

* Unique challenges
¢+ Virtual environments
¢+ High degree of

Interactivity
: : : :“”"a) :
SIGMOD 2007 Scaling Games to Epic Proportions ‘:o Cornell University

Game Design

* Game design brings together many disciplines
+ Art, music, computer science, etc...

* Development brings together different skills:
¢ Programmers: Create the game engine
* Focus on technological development

¢+ Designers: Create the game content
* Typically artistic content
* But may include (programmed) character behavior

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Data-Driven Game Design

* Today’'s games are data-driven
¢+ Game content is separated from game code

* Examples:
¢+ Art and music kept in industry-standard file formats
¢+ Character data kept in XML or other data file formats

¢+ Character behavior specified through scripts
* Programmed via scripting language

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Data-Driven Game Design

Player
:Game Engine Input Devices GUI :
| X I
-1 . .
g '| Physics Engine F D; Rende?rlng Audlo :
g ! Discrete Engine Engine ||
S |) Simulation n :
%, Al Engine I Engine !
& |(e.g Pathfinding) !
. | | | :
: Compiler Data Management Layer :
IETEREE AR T | Y= —
S 5 :Game Content '
5 Character || Character Ul Models Sounds !
2> Scripts Data Elements ||and Textures :
AN TN Su— S S S S
SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Advantages of Data-Driven Design

* Engine is reusable.
* Able to recoup R&D costs over several games.

¢+ Possible to license engine to other companies.
 Example: The Unreal engine

* Can extend the life span of the game

* Modder communities develop around the game
* Keep game fresh and new

¢+ User-created content becoming very popular

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Talk Outline

e Simulation Games

* Scaling Games with SGL
* Optimizing SGL

* Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

.'
< B 8]
&
£Ep

This Talk: Simulation Games

WiR(RAF

' - o [WarCRATTs
» What are simulation games?

¢+ Characters can interact w/o player input
¢+ Non-Player Characters (NPCs): indirect control

* Example: Real-Time Strategy (RTS) games
¢+ Troops move and fight in real time
¢+ Player control via limited number of commands
¢+ Player multitasks between large number of units

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

RTS Demonstration

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

A
o
[
-

0

Expressiveness vs. Performance

* EXpressiveness:
the range of behavior
scriptable outside engine

Rome:
Total War

High

WarCraft 111
°

* As # of NPCs increases
expressiveness decreases
* Neverwinter Nights
* Each NPC fully scriptable .
+ WarCraft Il !
* Script armies, not NPCs
e Can only “fake” NPC control :
» Little NPC coordination Low Expressiveness High
¢+ Rome: Total War
* No individual control at all

The Sims 2
°

Number of NPCs

Low

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Expressiveness vs. Performance

* Expressiveness: -
the range of behavior Rome:
scriptable outside engine Total War

High

WarCraft 111
°

* As # of NPCs increases
expressiveness decreases
* Neverwinter Nights
* Each NPC fully scriptable .
+ WarCraft Il !
* Script armies, not NPCs
e Can only “fake” NPC control :
» Little NPC coordination Low Expressiveness High
¢+ Rome: Total War
* No individual control at all

The Sims 2
°

Number of NPCs

Low

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Why |s Scaling NPCs Hard?

 Can be very expensive IR ;-
¢ O(n) to process all units. -- .

¢+ Observations may be O(n)

* Example: morale [] 1 unit
+ Units afraid of skeletons >

¢+ Chance of running Time per tick
proportional to # of
skeletons

¢ O(n) to count skeletons
¢ O(n?) to process all units.

SIGMOD 2007 Scaling Games to Epic Proportions

Cornell University

Why |s Scaling NPCs Hard?

 Can be very expensive IR ;-
¢ O(n) to process all units. -- -

¢+ Observations may be O(n)

* Example: morale [] 1 unit
+ Units afraid of skeletons >

¢+ Chance of running Time per tick
proportional to # of
skeletons |

+ O(n) to count skeletons \Want computation close

+ O(n?) to process all units. to graphics frame rate.

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Talk Outline

* Simulation Games

e Scaling Games with SGL o
. WARCRAFT

* Optimizing SGL)’(’“" Y

 Experimental Evaluation b <,

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Scaling Scripts to Many NPCs

* |dea: Use declarative language for scripts.

* Analysis shows:
¢+ Typically a set of if-then rules.

¢ Iteration is restricted to:
e Computing an aggregate of a collection of objects.
* Applying an update to the environment.
* Processing an array of fixed size.

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Talk Outline

e Simulation Games

e Scaling Games with SGL
¢ Simulation == Queries and updates
* The SGL Language

* Optimizing SGL
* Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Inside the Simulation Engine

 Actions divided into “ticks”.

* During a tick, each unit
1. Reads the environment
2. Determines its current action

3. Performs action, creating one or more effects

* An effect may alter a unit's own state
(i.e. movement)

* An effect may alter the state of others
(i.e. damage)

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Inside the Simulation Engine

 Actions divided into “ticks”.
* During a tick, each unit

+ Database queries

1 Reads the environment
2 Determines its current action

+ Database updates
3 Performs action, creating one or more effects

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

The Environment Table

* The environment is a single table E.
¢+ Each unit a row in the table.

* Schema is unit state and possible effects.
¢+ Position: Unit state
+ Movement: Unit effect

State Effect
Name Pos X Pos y Move X Move_ y
Bob 2 10 3 2
Doug -4 3 1 0
Alice 0 -1 0 0

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Processing Effects

* At end of tick, effects update environment
¢+ All effects are processed simultaneously

* Have rules to combine effects
* Must be order independent
* Currently games use aggregate functions
* Examples: sum, product, min, max

+ Combination is single effect, used for update

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

The Environment Table

* The environment is a single table E.

+ Each unit a row in the table.

* Schema is unit state and possible effects.

* Schema annotated to tell which is which.

¢+ State subschema annotated by const.

+ Effects annotated by combination function.
e Examples: sum, min, max

SIGMOD 2007

Scaling Games to Epic Proportions

) Cornell University

Example Environment Table

E(keycerst, “Key”; used to identify unit.
playereconst, Player controlling unit
pos_xconst, Current x-position of unit STATE
pos_yconst, Current y-position of unit
healtheonst, Current health of unit
move XxSum, Amount to move unit on x-axis
move ySsum, Amount to move unit on y-axis FEFFECTS
damagesu®, Amount of damage to do to unit

heal aura™* Amount to heal unit

)

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Formal Processing Model

* Each unit performs a single action.
¢+ A query that produces a set of effects.

+ Returns the subtable of affected units.
* Const attributes are unmodified.
* Effect attributes modified with effect amounts.

» Effects of each action are combined.
* Produces a new table £, of all updated units.

* Post-processing step updates state from effects.
* Produces the new table £ for the next tick.

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

The Post-Processing Step
* |sjust an SQL query!

* Example:

SELECT u.key, u.player,
u.pos x + u.move_x * norm AS pos_ X,
u.pos y + u.move_y * norm AS pos Yy,
u.health - u.damage + u.heal aura
AS u.health,
FROM E u

WHERE u.health > 0

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Talk Outline

e Simulation Games

e Scaling Games with SGL

¢+ Simulation == Queries and updates
¢+ The SGL Language

* Optimizing SGL
* Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Defining Actions: SGL

* Scalable Games Language
* Functional language
* Used to choose NPC actions

¢+ Aggregate functions to perform observations
* Built-in or definable in SQL

¢+ Action functions to produce effects

e Built-in or definable in SQL

SIGMOD 2007

Scaling Games to Epic Proportions

) Cornell University

Example SGL Script

main(u) {
(let ¢ = CountEnemiesInRange(u,u.range)) {
if (¢ > u.morale) then
(let away vector = (u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {
perform MoveInDirection(u,away_vector);
} else if (¢ > 0) then {
if (u.cooldown = 0) then
(let target key = getNearestEnemy(u) .key){
perform FireAt (u,target key);

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Aggregate Function Definitions

function CountEnemiesInRange(u,range) returns
SELECT Count(*) FROM E
WHERE E.x >=

E.X <=
E.y >=
E.y <=

u.pos _x -
u.pos x +
u.pos y -
u.pos y +

range
range
range
range

E.player <> u.player;

AND
AND
AND
AND

function CentroidOfEnemyUnits(u,range) returns
SELECT Avg(x) AS x, Avg(y) AS y FROM E

WHERE E.x >=

SIGMOD 2007

E.X <=
E.y >=
E.y <=

u.pos_x - range AND
u.pos_x + range AND
u.pos_y - range AND
u.pos_y + range AND
E.player <> u.player;

Scaling Games to Epic Proportions

) Cornell University

Action Function Definitions

function MoveInDirection(u,x,y) returns
SELECT e.key,e.player,e.pos _x,e.pos_y,e.health,

X-e.pos_x AS move_Xx, y-e.pos_y as move_y,
e.damage,e.heal aura

FROM E e WHERE e.key=u.key;

function FireAt (u,target key) returns
SELECT e.key,e.player,e.pos _x,e.pos_y,e.health,

e.move_x, e.move_ Yy,
e.damage+(_ARROW HIT DAMAGE - _ARMOR) *

(Random(e, 1) mod 2) as damage,
e.heal aura

FROM E e WHERE e.key=target key;

SIGMOD 2007

Scaling Games to Epic Proportions Cornell University

Advantage of this Model

* Units often perform a lot of shared computation.
¢+ Example: Units all processing the same command
¢+ Optimize with set-at-time processing.
* Determine all effects with a single database query.
* Apply all effects as single update at end of tick.

* Sometimes computation is only overlapping.

¢+ Example: Counting number of skeletons.
* Units overlapping, not same, line-of-sight.

¢+ Optimize with indexing techniques.

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Talk Outline

e Simulation Games
* Scaling Games with SGL
e Optimizing SGL
¢ Set-at-a-time processing
¢+ Aggregate Indexing
* Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Combining Effects Together

e Combination operation ®.

* Operatesonaset: ® £
¢+ Merges rows of same “key” according to annotation.

¢+ Example:
KeYConst PlayerConst DamageSum
1 Bob 3
@ 1 Bob 2
2 Bob 4

KeYConst PlayerConst DamageSum
1 Bob 3}
2 Bob 4

* Gives formal definition for combining of effects.

SIGMOD 2007

Scaling Games to Epic Proportions

) Cornell University

Set-At-A-Time Processing
* Define [[]]*(E) = @ (U{[[flle(u) | u € E})

 Process an entire “tick” as
[[main]]*(E)®E = @ (U {[[main]]z (v) | u € E})®E

* Suggests set-processing semantics:

[(let A:=a) FIIE) = [[A1®(mx agx) as AE))
[fy 5 BIIY(E) = [[HII%(E) ® [[fz]]@(E)
[if @ then f]]%(E) = [[1*(o(E))
[perform G]*(E) = [[glI*(E)

SIGMOD 2007 Scaling Games to Epic Proportions = Cornell University

Algebraic Optimization

//®
&)
7\
act? a,ctg)
| |
,agg0 () W*,aglgg(*)
O'TS
O'T2
T¢y T-¢y
N
’T*,agg1g
E
SIGMOD 2007

main(u) {

} o}

(let ¢ = CountEnemiesInRange(u,u.range)) {
if (¢ > u.morale) then
(let away_ vector =
(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {
perform MoveInDirection(u,away_vector);
} else if (¢ > 0) then {
if (u.cooldown = 0) then
(let target _key =
getNearestEnemy (u) .key) {
perform FireAt(u,target key);

Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

main(u) {
//@ (let c CountEnemiesInRange(u,u.range)) K{
if TR T

D (let away vector =
t®// N (® (u.posx, u.posy) -
aﬂl aﬂQ CentroidOfEnemyUnits(u,u.range)) {
Te,aggy () Tx,aggs(+) perform MoveInDirection(u,away_vector);

| } else if (¢ > 0) then {

| if (u.cooldown = 0) then

Ty (let target _key =

| getNearestEnemy (u) .key) {

T¢q Ty)
perform FireAt (u,target_key);
ﬂ'*,aggl(*) }
E }
} o}
SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

O'TS
ng
O¢, T-¢,
/
Tx,agg] Q
E
SIGMOD 2007

main(u) {

} o}

(u.éasx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {
perform MoveInDirection(u,away_vector);
} else if (¢ > 0) then {
if (u.cooldown = 0) then
(let target _key =
getNearestEnemy (u) .key) {
perform FireAt(u,target key);

Scaling Games to Epic Proportions) Cornell University

Algebraic Optimization

main(u) {

> (let ¢ = CountEnemiesInRange(u,u.range)) {
// if (¢ > u.morale) then
&, (1 =\ F = ° =
am@// \:mﬁB (u.posx, u.posy) -
1 |2 CentroidOfEnemyUnits (u,u.range)) I

T agg, (%) | Tx,aggs () perform MoveInDirection(u,away_vector);
| } else if (¢ > 0) then {
| if (u.cooldown = 0) then
Ty (let target _key =
| getNearestEnemy (u) .key) {

T¢q Ty)
N perform FireAt (u,target_key);
’T*,agg1g }
E }
} o}
SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

main(u) {

> (let ¢ = CountEnemiesInRange(u,u.range)) {
// if (¢ > u.morale) then
®\\ (let away vector =
a,ctg) (u.pos:Ic, u.posy) —

entroildOfEnemvUnits

a$ } else 1f (c > 0) then
|3 if (u.cooldown = 0) then
Ty (let target _key =
0o, UJ%_ getNearestEnemy (u) .key) {
N perform FireAt(u,target key);
Tx,aggy () }
\E }
} o}
SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

main(u) {

> (let ¢ = CountEnemiesInRange(u,u.range)) {
// if (¢ > u.morale) then
D (let away vector =
7N\ (u.éasx u.posy) -
£& act® '
aﬂl |2 CentroidOfEnemyUnits (u,u.range)) {
Te,aggy () Tx,aggs(+) perform MoveInDirection(u,away_vector);
| }lelseif (¢ > 0) then {
o else

| 1 u.cooldown = 0) then
(let target _key =

getNearestEnemy (u) .key) {
perform FireAt(u,target key);

} o}

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

@ D
acicl a,(:;:2

Tx,aggy (x) Tx,aggs(x)

T3

SIGMOD 2007

main(u) {

} o}

(let ¢ = CountEnemiesInRange(u,u.range)) {
if (¢ > u.morale) then
(let away_ vector =
(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {
perform MovelInDirection(u,away_vector);
} else if then {
if (u.cooldown = 0) then
(let target _key =
getNearestEnemy (u) .key) {
perform FireAt(u,target key);

Scaling Games to Epic Proportions) Cornell University

Algebraic Optimization

Tx,aggy (x) Tx,aggs(x)

main(u) {
oy (let ¢ = CountEnemiesInRange(u,u.range)) {
if (¢ > u.morale) then
(let away_ vector =
(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {

) D
actl a,(:t2

perform MoveInDirection(u,away_vector);
} else if (c > 0) then {

T3

if)] then
Ty e arget key =

0o, Ujm_ getNearestEnemy (u) .key) {

N perform FireAt(u,target key);

Tx,agg1 () }

\E }
} o}

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

main(u) {
(let ¢ = CountEnemiesInRange(u,u.range)) {
if (¢ > u.morale) then
(let away_ vector =
(u.posx, u.posy) -
CentroidOfEnemyUnits(u,u.range)) {
perform MoveInDirection(u,away_vector);
} else if (¢ > 0) then {
if (u.cooldown = 0) then

} o}

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

main(u) {
> (let ¢ = CountEnemiesInRange(u,u.range)) {
// if (¢ > u.morale) then
(let away_ vector =
(u.posx, u.posy) -

aT? CentroidOfEnemyUnits(u,u.range)) {
Te,aggy () Tx,aggs(+) perform MoveInDirection(u,away_vector);
J$ } else if (c > 0) then {
|3 if (u.cooldown = 0) then
Ty (let target _key =
0o, UJ%_ getNearestEnemy (u) . ke {
\ [portorm + -ort n sarget xon)]
Tx,agg1 () }
\E }
} }
SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Algebraic Optimization

771.*|G}2.* 771.*|€B2.*
/ ’ /MK\ [TK
) @ @ /@
act? a,ctg) a,(:tiB actée actiB actg3
| | AN | | |
Tx,aggy () W*aaglgs(*) Tx,aggy () 7T=f=,ag|gg(=f=) Tx,aggy (*) Tx,aggs(*)
T i
Ty Oy OgaNo3
o) o |¢ O¢ a ¢/ T¢ O0-¢
1 -1 1 -1 1 -1
N S N S ~—
’T*,agg1g W*,aglgl(*) *,aglgl(*)
E E E
(a) (b) (c)

L

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Talk Outline

* Simulation Games
* Scaling Games with SGL
e Optimizing SGL
¢ Set-at-a-time processing
¢+ Aggregate Indexing
* Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Optimizing Aggregates

* The problem:
¢+ Script associated with each NPC

¢+ Script performs aggregate computation
e Count number of skeletons
* In our query plans: my ,qq%)(R)

+ Compute for every unit in the environment
* O(n?) cost!

* But we “understand” the scripts!
+ Compute common aggregate for query plan

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Optimizing Aggregates (Contd.)

* The problem is actually a bit harder:
¢+ Script associated with each NPC

¢ Script performs aggregate computation that
depends on the unit

* Count number of skeletons in my neighborhood
* In our query plans: my ,qq%)(0, (R))

+ Compute for every unit in the environment
* O(n?) cost!

* But we “understand” the scripts!
+ Compute common aggregate for query plan

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Solution: Aggregate Indexing

* Create an index to encode aggregates

* Replaces computation with index lookup
* My agqx)(0, (R)) Now index nested loops join

* Indices for all aggregates in Warcraft Il
¢+ See the paper for technical details

¢+ All indices are
* O(n log?n) to build
* O(log?n) to look-up
* where d depends on arity of ¢

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Indices Iin the Processing Model

* Construct all indices at beginning of tick
¢+ O(n log? n) for each aggregate index

* Scripts are read only queries on indices
¢+ Aggregates are index nested loops join
¢+ O(log? n) look-up for each unit
* O(n log?n) costed for nested loops join

* Linear cost to post-process updates

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Indices Iin the Processing Model

* Construct all indices at beginning of tick
¢+ O(n log? n) for each aggregate index

* Scripts are read only queries on indices
¢+ Aggregates are index nested loops join
¢+ O(log? n) look-up for each unit
* O(n log?n) costed for nested loops join

* Linear cost to post-process updates

* Total cost for entire tick: O(n log? n)

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Talk Outline

* Simulation Games

* Scaling Games with SGL
* Optimizing SGL

* Experimental Evaluation

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Experimental Evaluation

e System is currently under construction
* But performed an evaluation of the
optimizations on a game simulation

+ Do we really see n? behavior in practice?
* What about overhead of index construction?

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Experimental Evaluation

* Combat simulation
* Three types of units: knights, healers, archers

¢+ Complex, but reasonable NPC behavior.

* Archers use knights as cover.
¢+ Compute centroids of archers, knights, enemies.
+ Make sure in a line, with knights at center.

* Healers stay in between archers, knights.
¢+ Spread out for maximum healing.

e Knights retreat to healers if too wounded.

e Uses d20 (D&D) mechanics for combat.

SIGMOD 2007 Scaling Games to Epic Proportions

«-i& 5
(@g) Cornell University

Experimental Design

e Number of NPCs vs. time for 500 clock ticks.

* Pluggable simulation comparing query plans
1. Naive processing of aggregates.
2. Use of indexing techniques.

The factor d from indexing techniques is d=1.

Performance is thus O(n log n) for each aggregate

* Hardware parameters:
¢ 2Ghz Intel Core Duo running OS Xin 1.5 GB RAM.
¢+ Compiled in C++ using GCC.

SIGMOD 2007

Scaling Games to Epic Proportions

) Cornell University

Experimental Results

—#— Naive Algorithm
—@&— Optimized Algorithm

160

140

120

100

80

Total Time

60

40

20

Number of Units

SIGMOD 2007 Scaling Games to Epic Proportions

Experimental Results

[—#— Naive Algorithm
160 [~ —@— Optimized Algorithm
140 [
120 [
"E’ 100 |
= i
= 80
° [
[_
60 N
40 :_ E 10 frames/s
20 .
o - 60 frames/s :
J N I | 1;1 1 1 1 l | 1 1 I 1 1 1 I 1 1 1 l 1 1 | I .ﬂ 1 1 I 1 1
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
S S S S & & S

Number of Units

SIGMOD 2007 Scaling Games to Epic Proportions

Future Work

* Working to implement SGL in XNA
¢+ Microsoft's new game development platform
¢+ Works on PC and XBox 360

* Lots of open problems:
¢+ Query processing
¢+ Query optimization
¢ Further indexing methods
¢+ Implementation

SIGMOD 2007 Scaling Games to Epic Proportions

G\ N
) Cornell University

Final Words

* What was the success of databases?
¢+ Declarative specification vs. procedural retrieval

* This is the same program for simulations
¢+ Declarative behavior vs. procedural implementation

* |Is a roadmap for multicore optimization
¢+ Declarative languages are highly parallelizable
¢+ What other problems can we apply them to?

SIGMOD 2007 Scaling Games to Epic Proportions Cornell University

Let's Play!

Any questions?

Algebraic Optimization

main(u) {

(let ¢ 5 CountEnemiesInRange(u,u.range)) |{
// if (¢ > u. morale) | then
(let _away_vector =
(u.posx, u.posy) -

CentroidOfEnemyUnits(u,u.range)) |

erform MovelInDirection(u,away vector);

}if (c > 0) then {

if (u.cooldown = 0) then

(let target _key =
getNearestEnemy (u) .key) {

|perform FireAt(u,target_key)}
}

} o}

SIGMOD 2007 Scaling Games to Epic Proportions) Cornell University

