Thomas Finley, tomf@cs.cornell.edu

Linear Algebra

A subspace is a set $S \subseteq \mathbb{R}^{n}$ such that $\mathbf{0} \in S$ and $\forall \mathbf{x}, \mathbf{y} \in$ $S, \alpha, \beta \in \mathbb{R} . \alpha \mathbf{x}+\beta \mathbf{y} \in S$
The span of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is the set of all vectors in \mathbb{R}^{n} that are linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.
A basis B of subspace $S, B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} \subset S$ has $\operatorname{Span}(B)=S$ and all \mathbf{v}_{i} linearly independent.

The dimension of S is $|B|$ for a basis B of S.
For subspaces S, T with $S \subseteq T, \operatorname{dim}(S) \leq \operatorname{dim}(T)$, and further if $\operatorname{dim}(S)=\operatorname{dim}(T)$, then $S=T$.
A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has $\forall \mathbf{x}, \mathbf{y} \in$ $\mathbb{R}^{n}, \alpha, \beta \in \mathbb{R} . T(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha T(\mathbf{x})+\beta T(\mathbf{y})$. Further, $\exists A \in \mathbb{R}^{m \times n}$ such that $\forall \mathbf{x} . T(\mathbf{x}) \equiv A \mathbf{x}$
For two linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, S: \mathbb{R}^{m} \rightarrow$ $\mathbb{R}^{p}, S \circ T \equiv S(T(\mathbf{x}))$ is linear transformation. $(T(\mathbf{x}) \equiv$ $A \mathbf{x}) \wedge(S(\mathbf{y}) \equiv B) \Rightarrow(S \circ T)(\mathbf{x}) \equiv B A \mathbf{x}$.
The matrix's row space is the span of its rows, its column space or range is the span of its columns, and its rank is the dimension of either of these spaces.
For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. A has full row (or column) rank if $\operatorname{rank}(A)=m$ (or n).
A diagonal matrix $D \in \mathbb{R}^{n \times n}$ has $d_{j, k}=0$ for $j \neq k$. The diagonal identity matrix I has $i_{j, j}=1$.
The upper (or lower) bandwidth of A is max $|i-j|$ among i, j where $i \geq j$ (or $i \leq j$) such that $A_{i, j} \neq 0$.

A matrix with lower bandwidth 1 is upper Hessenberg.
For $A, B \in \mathbb{R}^{n \times n}, B$ is A 's inverse if $A B=B A=I$. If such a B exists, A is invertible or nonsingular. $B=A^{-1}$.
The inverse of A is $A^{-1}=\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right]$ where $A \mathbf{x}_{i}=\mathbf{e}_{i}$.
For $A \in \mathbb{R}^{n \times n}$ the following are equivalent: A is nonsin$\operatorname{gular}, \operatorname{rank}(A)=n, A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x} for any \mathbf{b}, if $A \mathbf{x}=\mathbf{0}$ then $\mathbf{x}=\mathbf{0}$.
The nullspace of $A \in \mathbb{R}^{m \times n}$ is $\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}$.
For $A \in \mathbb{R}^{m \times n}$, Range (A) and Nullspace $\left(A^{T}\right)$ are orthogonal complements, i.e., $\mathbf{x} \in \operatorname{Range}(A), \mathbf{y} \in$ N ullspace $\left(A^{T}\right) \Rightarrow \mathbf{x}^{T} \mathbf{y}=0$, and for all $\mathbf{p} \in \mathbb{R}^{m}, \mathbf{p}=\mathbf{x}+\mathbf{y}$ for unique \mathbf{x} and \mathbf{y}
For a permutation matrix $P \in \mathbb{R}^{n \times n}, P A$ permutes the rows of $A, A P$ the columns of $A . P^{-1}=P^{T}$

Gaussian Elimination

GE produces a factorization $A=L U$, GEPP $P A=L U$. Plain GE

GEPP

1: for $k=1$ to $n-1$ do \quad 1: for $k=1$ to $n-1$ do if $a_{k k}=0$ then stop $\quad 2: \quad \gamma=\underset{i \in\{k+1, \ldots, n\}}{\operatorname{argmax}}\left|a_{i k}\right|$
$\ell_{k+1: n, k}=a_{k+1: n k} / a_{k k}$
$\ell_{k+1: n, k}=a_{k+1: n, k} / a_{k k}$
$a_{k+1 n}=a_{k+1}$ $a_{k+1: n, k: n}=a_{k+1: n, k: n}-{ }_{4:}^{3:} \quad a_{[\gamma, k], k: n}=a_{[k, \gamma], k: n}$ $\ell_{k+1: n, k} a_{k, k: n}$ 5: end for
Backward Substitution
1: $\mathbf{x}=\operatorname{zeros}(n, 1)$
2: for $j=n$ to 1 do
2: for $j=n$ to 1 do
3. $\quad x_{j}=\underline{w_{j}-u_{j, j+1: n} x_{j+1: n}}$
4: end for
To solve $A \mathbf{x}=\mathbf{b}$, factor $A=L U$ (or $A=P^{T} L U$), solve $L \mathbf{w}=\mathbf{b}$ (or $L \mathbf{w}=\hat{\mathbf{b}}$ where $\hat{\mathbf{b}}=P \mathbf{b}$) for \mathbf{w} using forward substitution, then solve $U \mathbf{x}=\mathbf{w}$ for \mathbf{x} using backward substitution. The complexity of GE and GEPP is $\frac{2}{3} n^{3}+O\left(n^{2}\right)$. GEPP encounters an exact 0 pivot iff A is singular.
For banded $A, L+U$ has the same bandwidths as A

Norms

A vector norm function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies:

1. $\|\mathbf{x}\| \geq 0$, and $\|\mathbf{x}\|=0 \Leftrightarrow \mathbf{x}=\overrightarrow{0}$.
2. $\|\gamma \mathbf{x}\|=|\gamma| \cdot\|\mathbf{x}\|$ for all $\gamma \in \mathbb{R}$, and all $\mathbf{x} \in \mathbb{R}^{n}$
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$, for all $x, y \in \mathbb{R}^{n}$

Common norms include:

1. $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$
2. $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x}$
3. $\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}=\max _{i=1 . . n}\left|x_{i}\right|$

An induced matrix norm is $\|A\|_{\square}=\sup _{\mathbf{x} \neq 0} \frac{\left\|A \mathbf{x}_{\square}\right\|_{\square}}{\|\mathbf{x}\|_{\square}}$. It satisfies the three properties of norms.
$\forall \mathbf{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n},\|A \mathbf{x}\|_{\square} \leq\|A\|_{\square}\|\mathbf{x}\|_{\square}$.
$\|A B\|_{\square} \leq\|A\|_{\square}\|B\|_{\square}$, called submultiplicativity.
$\mathbf{a}^{T} \mathbf{b} \leq\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{2}$, called Cauchy-Schwarz inequality.

1. $\|A\|_{\infty}=\max _{i=1, \ldots, m \sum_{i=1}^{n}\left|a_{i, j}\right| \text { (max row sum). }}$
2. $\|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i, j}\right|$ (max column sum).
3. $\|A\|_{2}$ is hard: it takes $O\left(n^{3}\right)$, not $O\left(n^{2}\right)$ operations
4. $\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j}^{2}} \cdot\|\cdot\|_{F}$ often replaces $\|\cdot\|_{2}$

Numerical Stability

Six sources of error in scientific computing: modeling errors, measurement or data errors, blunders, discretization or truncation errors, convergence tolerance, and rounding errors.

$$
\underbrace{ \pm}_{\text {sign }} \underbrace{d_{1} \cdot d_{2} d_{3} \cdots d_{t}}_{\text {mantissa }} \times \underbrace{\beta}_{\text {base }} \overbrace{e}^{\text {exponent }} \begin{array}{l}
\text { For single and double: } \\
t=24, e \in\{-126, \ldots, 127\} \\
t=53, e \in\{-1022, \ldots, 1023\}
\end{array}\}
$$

The relative error in $\hat{\mathbf{x}}$ approximating \mathbf{x} is $\frac{|\hat{\mathbf{x}}-\mathbf{x}|}{|\mathbf{x}|}$.
Unit roundoff or machine epsilon is $\epsilon_{\text {mach }}=\beta^{-t+1}$ Arithmetic operations have relative error bounded by $\epsilon_{\text {mach }}$.
E.g., consider $z=x-y$ with input x, y. This program has three roundoff errors. $\hat{z}=\left(\left(1+\delta_{1}\right) x-\left(1+\delta_{2}\right) y\right)\left(1+\delta_{3}\right)$, where $\delta_{1}, \delta_{2}, \delta_{3} \in\left[-\epsilon_{\text {mach }}, \epsilon_{\text {mach }}\right]$.
$\frac{|z-\hat{z}|}{|z|}=\frac{\left|\left(\delta_{1}+\delta_{3}\right) x-\left(\delta_{2}+\delta_{3}\right) y+O\left(\epsilon_{\text {mach }}^{2}\right)\right|}{|x-y|}$
The bad case is where $\delta_{1}=\epsilon_{\text {mach }}, \delta_{2}=-\epsilon_{\text {mach }}, \delta_{3}=0$:

$$
\frac{|z-\hat{z}|}{|z|}=\epsilon_{\text {mach }} \frac{|x+y|}{|x-y|}
$$

㲘

Conditioning \& Backwards Stability
A problem instance is ill conditioned if the solution is sen sitive to perturbations of the data. For example, $\sin 1$ is well conditioned, but $\sin 12392193$ is ill conditioned.
$\underset{\|E\|}{\text { Suppose we perturb } A \mathbf{x}=\mathbf{b} \text { by }(A+E) \hat{\mathbf{x}}=\mathbf{b}+\mathbf{e} \text { where }}$
$\frac{\|E\|}{\|A\|} \leq \delta, \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \leq \delta$. Then $\frac{\|\hat{\mathbf{x}} \mathbf{x}\|}{\|\mathbf{x}\|} \leq 2 \delta \kappa(A)+O\left(\delta^{2}\right)$, where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is the condition number of A.

1. $\forall A \in \mathbb{R}^{n \times n}, \kappa(A) \geq 1$.
2. $\kappa(I)=1$.
3. For $\gamma \neq 0, \kappa(\gamma A)=\kappa(A)$
4. For diagonal D and all $p,\|D\|_{p}=\max _{i=1 . . n}\left|d_{i i}\right|$. So $\kappa(D)=\frac{\max _{i=1 . . n}\left|d_{i i}\right|}{\min _{i=1 . . n}\left|d_{i i}\right|}$.
If $\kappa(A) \geq \frac{1}{\epsilon}, A$ may as well be singular.
An algorithm is backwards stable if in the presence of roundoff error it returns the exact solution to a nearby problem instance.

GEPP solves $A \mathbf{x}=\mathbf{b}$ by returning $\hat{\mathbf{x}}$ where $(A+E) \hat{\mathbf{x}}=\mathbf{b}$ It is backwards stable if $\frac{\|E\|_{\infty}}{\|A\|_{\infty}} \leq O\left(\epsilon_{\text {mach }}\right)$. With GEPP $\frac{\|E\|_{\infty}}{\|A\|_{\infty}} \leq c_{n} \epsilon_{\text {mach }}+O\left(\epsilon_{\text {mach }}^{2}\right)$, where c_{n} is worst case exponential in n, but in practice almost always low order polynomial.
Combining stability and conditioning analysis yield $\frac{\|\hat{\mathbf{x}}-\mathbf{x}\|}{\|\mathbf{x}\|} \leq c_{n} \cdot \kappa(A) \epsilon_{\text {mach }}+O\left(\epsilon_{\text {mach }}^{2}\right)$.

Determinant

For $A \in \mathbb{R}^{m \times n}$, if $\operatorname{rank}(A)=n$, then $A^{T} A$ is SPD

Basic Linear Algebra Subroutines

0 . Scalar ops, like $\sqrt{x^{2}+y^{2}}$. $O(1)$ flops, $O(1)$ data

1. Vector ops, like $\mathbf{y}=a \mathbf{x}+\mathbf{y} . O(n)$ flops, $O(n)$ data.
2. Matrix-vector ops, like rank-one update $A=A+\mathbf{x y}^{T}$ $O\left(n^{2}\right)$ flops, $O\left(n^{2}\right)$ data.
3. Matrix-matrix ops, like $C=C+A B . O\left(n^{2}\right)$ data $O\left(n^{3}\right)$ flops.
Use the highest BLAS level possible. Operators are ar chitecture tuned, e.g., data processed in cache-sized bites

Linear Least Squares

Suppose we have points $\left(u_{1}, v_{1}\right), \ldots,\left(u_{5}, v_{5}\right)$ that we want to fit a quadratic curve $a u^{2}+b u+c$ through. We want to solve for

$$
\left[\begin{array}{ccc}
u_{1}^{2} & u_{1} & 1 \\
\vdots & \vdots & \vdots \\
u_{5}^{2} & u_{5} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{5}
\end{array}\right]
$$

This is overdetermined so an exact solution is out. Instead find the least squares solution \mathbf{x} that minimizes $\|A \mathbf{x}-\mathbf{b}\|_{2}$. For the method of normal equations, solve for \mathbf{x} in $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ by using Cholesky factorization. This takes $A n^{2}+\frac{n^{3}}{3}+O(m n)$ flops. It is conditionally but not backwards stable: $A^{T} A$ doubles the condition number.
Alternatively, factor $A=Q R$. Let $\mathbf{c}=\left[\begin{array}{ll}\mathbf{c}_{1} & \mathbf{c}_{2}\end{array}\right]^{T}=$ $Q^{T} \mathbf{b}$. The least squares solution is $\mathbf{x}=R_{1}^{-1} \mathbf{c}_{1}$.
If $\operatorname{rank}(A)=r$ and $r<n$ (rank deficient), factor $A=$ $U \Sigma V^{T}$, let $y=V^{T} x$ and $c=U^{T} b$. Then, $\min \| A \mathbf{x}-$ $\mathbf{b} \|_{2}=\min \sqrt{\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-c_{i}\right)^{2}+\sum_{i=r+1}^{m} c_{i}^{2}}$, so $y_{i}=\frac{c_{i}}{\sigma_{i}}$. For $i=r+1: n, y_{i}$ is arbitrary.

Singular Value Decomposition

For any $A \in \mathbb{R}^{m \times n}$, we can express $A=U \Sigma V^{T}$ such that $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{p}\right) \in \mathbb{R}^{m \times n}$ where $p=\min (m, n)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$. The σ_{i} are singular values.

1. Matrix 2 -norm, where $\|A\|_{2}=\sigma_{1}$.
2. The condition number $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{n}}$, or rectangular condition number $\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{\min (m, n)}}$. Note that $\kappa_{2}\left(A^{T} A\right)=\kappa_{2}(A)^{2}$.
3. For a rank k approximation to A, let $\Sigma_{k}=$ $\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, \mathbf{0}^{T}\right)$. Then $A_{k}=U \Sigma_{k} V^{T} . \operatorname{rank}\left(A_{k}\right) \leq$ k and $\operatorname{rank}\left(A_{k}\right)=k$ iff $\sigma_{k}>0$. Among rank k or lower matrices, A_{k} minimizes $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$
4. Rank determination, since $\operatorname{rank}(A)=r$ equals the number of nonzero σ, or in machine arithmetic, perhaps the number of $\sigma \geq \epsilon_{\text {mach }} \times \sigma_{1}$.
$A=U \Sigma V^{T}=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]\left[\begin{array}{cc}\Sigma(1: r, 1: r) & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$
See that $\operatorname{range}\left(U_{1}\right)=\operatorname{range}(A)$. The SVD gives an orthonormal basis for the range and nullspace of A and A^{T} Compute the SVD by using shifted QR on $A^{T} A$

Information Retrival \& LSI

In the bag of words model, $\mathbf{w}_{d} \in \mathbb{R}^{m}$, where $\mathbf{w}_{d}(i)$ is the (perhaps weighted) frequency of term i in document d. The corpus matrix is $A=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}\right] \in \mathbb{R}^{m \times n}$. For a query $\mathbf{q} \in \mathbb{R}^{m}$, rank documents according to a $\frac{\mathbf{q}^{T} \mathbf{w}_{d}}{\left\|\mathbf{w}_{d}\right\|_{2}}$ score.

In latent semantic indexing, you do the same, but in k dimensional subspace. Factor $A=U \Sigma V^{T}$, then defin $A^{*}=\Sigma_{1: k, 1: k} V_{:, 1: k}^{T} \in \mathbb{R}^{k \times n}$. Each $\mathbf{w}_{d}^{*}=A_{:, d}^{*}=U_{:, 1: k}^{T} \mathbf{w}_{d}$, and $\mathbf{q}^{*}=U_{:, 1: k}^{T} \mathbf{q}$.

In the Ando-Lee analysis, for a corpus with k topics, for Arnoldi and Lanczos $t \in 1: k$ and $d \in 1: n$, let $R_{t, d} \geq 0$ be document d 's relevance to topic t. $\left\|R_{;, d}\right\|_{2}=1$. True document similarity is $R R^{T}=\mathbb{R}^{n \times n}$, where entry (i, j) is relevance of i to j. Using LSI, if A contains information about $R R^{T}$, then $\left(A^{*}\right)^{T} A^{*}$ will approximate $R R^{T}$ well. LSI depends on even distribution of topics, where distribution is $\rho=\frac{\max t\left\|R_{t},\right\|_{2}}{\min t\left\|R_{t}\right\|_{2}}$. Great for ρ is near 1 , but if $\rho \gg 1$, LSI does worse.

Complex Numbers

Complex numbers are written $z=x+i y \in \mathbb{C}$ for $i=\sqrt{-1}$. The real part is $x=\Re(z)$. The imaginary part is $y=\Re(z)$. The conjugate of z is $\bar{z}=x-i y$. $\bar{A} \overline{\mathbf{x}}=\overline{(A \mathbf{x})}, \bar{A} \bar{B}=\overline{(A B)}$ The absolute value of z is $|z|=\sqrt{x^{2}+y^{2}}$
The conjugate transpose of \mathbf{x} is $\mathbf{x}^{H}=(\overline{\mathbf{x}})^{T} . A \in \mathbb{C}^{n \times n}$ is Hermitian or self-adjoint if $A=A^{H}$

If $Q^{H} Q=I, Q$ is unitary.

Eigenvalues \& Eigenvectors

$\neq 0, x$ is
of A and λ is the corresponding eigenvalue.
Remember, $A-\lambda \mathbf{x}$ is singular iff $\operatorname{det}(A-\lambda I)=0$. With λ as a variable, $\operatorname{det}(A-\lambda I)$ is A 's characteristic polynomial. For nonsingular $T \in \mathbb{C}^{n \times n}, T^{-1} A T$ (the similarity transformation) is similar to A. Similar matrices have the same characteristic polynomial and hence the same eigenvalues (though probably different eigenvectors). This relationship reflexive, transitive, and symmetric
A is diagonalizable if A is similar to a diagonal matrix $D=T^{-1} A T$. A's eigenvalues are D 's diagonals, and the eigenvectors are columns of T since $A T_{:, i}=D_{i, i} T_{:, i} . \quad A$ is diagonalizable iff it has n linearly independent eigenvectors.
For symmetric $A \in \mathbb{R}^{n \times n}, A$ is diagonalizable, has all eal eigenvalues, and the eigenvectors may be chosen as the columns of an orthogonal matrix $Q . A=Q D Q^{T}$ is the eigendecomposition of A. Further for symmetric A :

1. The singular values are absolute values of eigenvalues 2. Is SPD (or SPSD) iff eigenvalues >0 (or ≥ 0).
2. For SPD, singular values equal eigenvalues.
3. For $B \in \mathbb{R}^{m \times n}, m \geq n$, singular values of B are the square roots of $B^{T} B$'s eigenvalues
For any $A \in \mathbb{C}^{n \times n}$, the Schur form of A is $A=Q T Q^{H}$ with unitary $Q \in \mathbb{C}^{n \times n}$ and upper triangular $T \in \mathbb{C}^{n \times n}$.
In this sheet I denote $\lambda_{|\max |}=\max _{\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}}|\lambda|$.
For $B \in \mathbb{C}^{n \times n}$, then $\lim _{k \rightarrow \infty} B^{k}=0$ if $\lambda_{\mid \max } \mid(B)<1$.

Power Methods for Eigenvalues

$\mathbf{x}^{(k+1)}=A \mathbf{x}^{(k)}$ converges to $\lambda_{|\max |}(A)$'s eigenvector

Once you find an eigenvector \mathbf{x}, find the associated eigen value λ through the Raleigh quotient $\lambda=\frac{\mathbf{x}^{(k)} A \mathbf{x}^{(k)}}{\mathbf{x}^{(k)} \mathbf{x}^{(k)}}$
The inverse shifted power method is $\mathbf{x}^{(k+1)}=(A-$ $\sigma I)^{-1} \mathbf{x}^{(k)}$. If A has eigenpairs $\left(\lambda_{1}, \mathbf{u}_{1}\right), \ldots,\left(\lambda_{n}, \mathbf{u}_{n}\right)$, then $(A-\sigma I)^{-1}$ has eigenpairs $\left(\frac{1}{\lambda_{1}-\sigma}, \mathbf{u}_{1}\right), \ldots,\left(\frac{1}{\lambda_{n}-\sigma}, \mathbf{u}_{n}\right)$. Factor $A=Q H Q^{T}$ where H is upper Hessenberg.
To factor $A=Q H Q^{T}$, find successive Householder reflections H_{1}, H_{2}, \ldots that zero out rows 2 and lower of column 1 , rows 3 and lower of column 2 , etc. Then $Q=H_{1}^{T} \cdots H_{n-2}^{T}$. 1: $A^{(0)}=A \quad A^{(k)}$ is similar to A by $\begin{array}{ll}\text { 2: for } k=0,1,2, \ldots \text { do } & \text { orthog. trans. } \quad U^{(k)}= \\ \text { 3: } \quad \text { Set } A^{(k)}-\sigma^{(k)} I=Q^{(k)} R^{(k)} Q^{(0)} \cdots Q^{(k+1)} . & \text { Perhaps }\end{array}$ $\begin{array}{ll}\text { : } & \text { Set } A^{(k)}-\sigma^{(k)} I=Q^{(k)} R^{(k)} Q^{(0)} \cdots Q^{(k+1)} \text {. Perhaps } \\ : & A^{(k+1)}=R^{(k)} Q^{(k)}+\sigma^{(k)} I \quad \text { choose } \sigma^{(k)} \text { as eigenval- }\end{array}$ 5: end for
ues of submatrices of A.
such that $A=Q H Q^{T}$.

Arnoldi

Lanczos

for $k=1: n-1$ do	$1: \beta_{0}=\left\\|\mathbf{w}_{0}\right\\|_{2}$
$\tilde{\mathbf{q}}_{k+1}=A \mathbf{q}_{k}$	2: for $k=1,2, \ldots$ do
for $\ell=1: k$ do	$3: \quad \mathbf{q}_{k}=\frac{\mathbf{w}_{k-1}}{\beta_{k-1}}$
$H(\ell, k)=\mathbf{q}_{\ell}^{T} \tilde{\mathbf{q}}_{k+1}$	$4: \quad \mathbf{u}_{k}=A \mathbf{q}_{k}$
$\tilde{\mathbf{q}}_{k+1}=\tilde{\mathbf{q}}_{k+1}-H(\ell, k) \mathbf{q}_{\ell}$	$5: \quad \mathbf{v}_{k}=\mathbf{u}_{k}-\beta_{k-1} \mathbf{q}_{k-1}$
end for	$6: \quad \alpha_{k}=\mathbf{q}_{k}^{T} \mathbf{v}_{k}$
$H(k+1, k)=\left\\|\tilde{\mathbf{q}}_{k+1}\right\\|_{2}$	$7: \mathbf{w}_{k}=\mathbf{v}_{k}-\alpha_{k} \mathbf{q}_{k}$
$\mathbf{q}_{k+1}=\frac{\tilde{\mathbf{q}}_{k+1}}{H(k+1, k)}$	$8: \quad \beta_{k}=\left\\|\mathbf{w}_{k}\right\\|_{2}$
end for	9: end for

end for ${ }^{H(k+1, k)}$
9: end for
For Lanczos, the α_{k} and β_{k} are diagonal and subdiagonal entries of the Hermitian tridiagonal T_{k}, and we have H in Arnoldi. After very few iterations of either method, the eigenvalues of T_{k} and H will be excellent approximations to the "extreme" eigenvalues of A.
For k iterations, Arnoldi is $O\left(n k^{2}\right)$ times and $O(n k)$ space, Lanczos is $O(n k)+k \cdot \mathcal{M}$ time (\mathcal{M} is time for matrix vector multiplication) and $O(n k)$ space, or $O(n+k)$ space if old \mathbf{q}_{k} 's are discarded.

Iterative Methods for $A \mathbf{x}=\mathbf{b}$

Useful for sparse A where GE would cause fill-in.
In the splitting method, $A=M-N$ and $M \mathbf{v}=\mathbf{c}$ is easily solvable. Then, $\mathbf{x}^{(k+1)}=M^{-1}\left(N \mathbf{x}^{(k)}+\mathbf{b}\right)$. If it converges, the limit point \mathbf{x}^{*} is a solution to $A \mathbf{x}=\mathbf{b}$.
The error is $\mathbf{e}^{(k)}=\left(M^{-1} N\right)^{k} \mathbf{e}_{0}$, so splitting methods converge if $\lambda_{|\max |}\left(M^{-1} N\right)<1$.
In the Jacobi method, consider M as the diagonals of A This will fail of A has any zero diagonals.

Conjugate Gradient

Conjugate gradient iteratively solve $A \mathbf{x}=\mathbf{b}$ for SPD A It is derived from Lanczos and takes advantage of if A is SPD then T is SPD. It produces the exact solution after n iterations. Time per iteration is $O(n)+\mathcal{M}$.
1: $\mathbf{x}^{(0)}=\operatorname{arbitrary}(0$ is okay) Error is reduced by
2: $\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}^{(0)}$
3: $\mathbf{p}_{0}=\mathbf{r}_{0}$
4: for $\mathrm{k}=0,1,2, \ldots$ do
5: $\quad \alpha_{k}=\left(\mathbf{r}_{k}^{T} \mathbf{r}_{k}\right) /\left(\mathbf{p}_{k}^{T} A \mathbf{p}_{k}\right)$
$\alpha_{k}=\left(\mathbf{r}_{k} \mathbf{r}_{k}\right)\left(\mathbf{p}_{k}^{T} A \mathbf{p}_{k}\right)$
$\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k} \mathbf{p}_{k}$
$\mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k}$
$\mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}^{2}$
$\beta_{k+1}=\left(\mathbf{r}_{k+1}^{T} \mathbf{r}_{k+1}\right) /\left(\mathbf{r}_{r}^{T} \mathbf{r}_{k}\right) \kappa(M A)<\kappa(A)$ and that
9: $\quad \mathbf{p}_{k+1}=\mathbf{r}_{k+1}-\beta_{k+1} \mathbf{p}_{k} \quad M A \mathbf{x}=M \mathbf{b}$ instead.
10: end for

Multivariate Calculus

Provided $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient and Hessian are

$$
\nabla f=\left[\begin{array}{c}
\frac{\delta f}{\delta x_{1}} \\
\vdots \\
\frac{\delta f}{\delta x_{n}}
\end{array}\right], \nabla^{2} f=\left[\begin{array}{cccc}
\frac{\delta^{2} f}{\delta x_{1}^{2}} & \frac{\delta^{2} f}{\delta x_{1} \delta x_{2}} & \cdots & \frac{\delta^{2} f}{\delta x_{1} \delta x_{n}} \\
\vdots & & & \vdots \\
\frac{\delta^{2} f}{\delta x_{n} \delta x_{1}} & \frac{\delta^{2} f}{\delta x_{n} \delta x_{2}} & \cdots & \frac{\delta^{2} f}{\delta x_{n}^{2}}
\end{array}\right]
$$

If f is c^{2} (2 $2^{\text {nd }}$ partials are all continuous), $\nabla^{2} f$ is symmetric
The Taylor expansion for f is
$f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+\mathbf{h}^{T} \nabla f(\mathbf{x})+\frac{1}{2} \mathbf{h}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)$
Provided $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the Jacobian is
$\nabla \mathbf{f}=$
$\delta f_{1} / \delta x_{n}$
$\delta f_{m} / \delta x_{1}$
$\delta f_{m} / \delta x_{n}$
\mathbf{f} 's Taylor expansion is $\mathbf{f}(\mathbf{x}+\mathbf{h})=\mathbf{f}(\mathbf{x})+\nabla \mathbf{f}(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{2}\right)$.

A linear (or quadratic) model approximates a function \mathbf{f}

y the first two (or three) terms of f's Taylor expansion.

Nonlinear Equation Solving

Given $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we want \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$.

In fixed point iteration, we choose $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\mathbf{x}^{(k+1)}=\mathbf{g}\left(\mathbf{x}^{(k)}\right)$. If it converges to $\mathbf{x}^{*}, \mathbf{g}\left(\mathbf{x}^{*}\right)-\mathbf{x}^{*}=\mathbf{0}$
$\mathbf{g}\left(\mathbf{x}^{(k)}\right)=\mathbf{g}\left(\mathbf{x}^{*}\right)+\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)+O\left(\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|^{2}\right)$ For mall $\mathbf{e}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}^{*}$, ignore the last term. If $\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)$ has $\lambda_{|\max |}<1$, then $\mathbf{x}^{(k)} \rightarrow \mathbf{x}^{*}$ as $\left\|\mathbf{e}^{(k)}\right\| \leq c^{k}\left\|\mathbf{e}^{(0)}\right\|$ for large k, where $c=\lambda_{|\max |}+\epsilon$, where ϵ is the influence of the ignored last term. This indicates a linear rate of convergence.
Suppose for $\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)=Q T Q^{H}, T$ is non-normal, i.e.,
T 's superdiagonal portion is large relative to the diagonal. Then this may not converge as $\left\|\left(\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\right)^{k}\right\|$ initially grows! In Newton's method, $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left(\nabla \mathbf{f}\left(\mathbf{x}^{(k)}\right)\right)^{-1} \mathbf{f}\left(\mathbf{x}^{(k)}\right)$. This converges quadratically, i.e., $\left\|\mathbf{e}^{(k+1)}\right\| \leq c\left\|\mathbf{e}^{(k)}\right\|^{2}$.
Automatic differentiation takes advantage of the notion that a computer program is nothing but arithmetic operations, and one can apply the chain rule to get the derivative. This may be used to compute Jacobians and determinants.

Optimization

In continuous optimization, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function, $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ holds equality constraints, $\mathbf{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$
$\min f(\mathbf{x})$
s.t. $g(x)=\mathbf{0}$
$\mathbf{h}(\mathrm{x}) \geq 0$ holds inequality constraints.
We did unrestricted optimization $\min f(\mathbf{x})$ in the course.
A ball is a set $B(\mathbf{x}, r)=\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{x}-\mathbf{y}\|<r\right\}$.
We have local minimizers \mathbf{x}^{*} which are the best in a region, i.e., $\exists r>0$ such that $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in$ $B\left(\mathbf{x}^{*}, r\right)$. A global minizer is the best local minimizer
Assume f is c^{2}. If \mathbf{x}^{*} is a local minimizer, then $\nabla f\left(\mathbf{x}^{*}\right)=$ $\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is PSD. Semi-conversely, if $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is PD, then x^{*} is a local minimizer

Steepest Descent

Go where the function (locally) decreases most rapidly via $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha_{k} \nabla f\left(\mathbf{x}^{(k)} . \alpha_{k}\right.$ is explained later. SD is stateless: depends only on the current point. Too slow
Newton's Method for Unconstrained Min.
Iterate by $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left(\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)$, derived by solving for where $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$. If $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ is PD and $\nabla f\left(\mathbf{x}^{(k)}\right) \neq \mathbf{0}$, the step is a descent direction.
What if the Hessian isn't PD? Use (a) secant method, (b) direction of negative curvature where $\mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{(k)}\right) \mathbf{h}<0$ where \mathbf{h} or $-\mathbf{h}$ (doesn't work well in practice), (c) trust region idea so $\mathbf{h}=-\left(\nabla^{2} f\left(\mathbf{x}^{(k)}\right)+t I\right)^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)$ (interpoation of NMUM and SD), (d) factor $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ by Cholesky when checking for PD , detect 0 pivots, modify that diagonal in $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ and keep going (unjustified by theory, but works in practice)

Line Search

Line search, given $\mathbf{x}^{(k)}$ and step \mathbf{h} (perhaps derived from SD or NMUM), finds a $\alpha>0$ for $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha \mathbf{h}$.
In exact line search, optimize $\min f\left(\mathbf{x}^{(k)}+\alpha \mathbf{h}\right)$ over α. Frowned upon because it's computationally expensive.
In Armijo or backtrack line search, initialize α. While $f\left(\mathbf{x}^{(k)}+\alpha \mathbf{h}\right)>f\left(\mathbf{x}^{(k)}\right)+0.1 \alpha \nabla f\left(\mathbf{x}^{(k)}\right)^{T} \mathbf{h}$, halve α.
Secant/quasi Newton methods use an approximate always PD $\nabla^{2} f$. In Broyden-Fletcher-Goldfarb-Shanno
1: $B_{0}=$ initial approximate Hessian \{OK to use I.\}
2: for $k=0,1,2, \ldots$ do
3: $\quad \mathbf{s}_{k}=-B_{k}^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)$
$\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k} \mathbf{s}_{k}\left\{\right.$ Use special line search for $\left.\alpha_{k}!\right\}$ $\mathbf{y}_{k}=\nabla f\left(\mathbf{x}^{(k+1)}\right)-\nabla f\left(\mathbf{x}^{(k)}\right)$
$B_{k+1}=B_{k}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\alpha \mathbf{y}_{k}^{T} \mathbf{s}_{k}}-\frac{B_{k} \mathbf{s}_{\mathbf{s}} \mathbf{s}_{k}^{T} B_{k}}{\mathbf{s}_{k}^{T} B_{k} \mathbf{s}_{k}}$
7: end for
By maintaining B_{k} in factored form, can iterate in $O\left(n^{2}\right)$ flops. B_{k} is SPD provided $\mathbf{s}_{k}^{T} \mathbf{y}>0$ (use line search to increase α_{k} if needed). The secant condition $\alpha_{k} B_{k+1} \mathbf{s}_{k}=$ \mathbf{y}_{k} holds. If BFCS converges, it converges superlinearly.

Non-linear Least Squares

For $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \geq n$, we want the \mathbf{x} for $\min \|\mathbf{g}(\mathbf{x})\|_{2}$. In the Gauss-Newton method, $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\mathbf{h}$ where $\mathbf{h}=\left(\nabla \mathbf{g}(\mathbf{x})^{T} \nabla \mathbf{g}(\mathbf{x})\right)^{-1} \nabla \mathbf{g}(\mathbf{x})^{T} \mathbf{g}(\mathbf{x})$. Note that \mathbf{h} is a solution to a linear least squares problem $\min \| \nabla \mathbf{g}\left(\mathbf{x}^{(k)}\right) \mathbf{h}$ $\mathbf{g}\left(\mathbf{x}^{(k)}\right) \|!\quad$ GN is derived by applying NMUM to to $\mathbf{g}(\mathbf{x})^{T} \mathbf{g}(\mathbf{x})$, and dropping a resulting tensor (derivative of Jacobian). You keep the quadratic convergence when $\mathbf{g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$, since the tensor $\rightarrow 0$ as $k \rightarrow \infty$.

Ordinary Differential Equations

ODE (or PDE) has one (or multiple) independent variables

 In initial value problems, given $\frac{d \mathbf{y}}{d t}=f(\mathbf{y}, t), \mathbf{y}(t) \in \mathbb{R}^{n}$ and $\mathbf{y}(0)=\mathbf{y}_{0}$, we want $\mathbf{y}(t)$ for $t>0$. Examples include:1. Exponential growth/decay with $\frac{d \mathbf{y}}{d t}=a \mathbf{y}$, with close form $\mathbf{y}(t)=\mathbf{y}_{0} e^{a t}$. Growth if $a>0$, decay if $a<0$.
2. Ecological models, $\frac{d y_{i}}{d t}=f_{i}\left(y_{1}, \ldots, y_{n}, t\right)$ for species $i=1, \ldots, n . y_{i}$ is population size, f_{i} encodes species relationships.
3. Mechanics, e.g. wall-spring-block models for $F=m a$ $\left(a=\frac{d^{2} x}{d t^{2}}\right)$ and $F=-k x$, so $\frac{d^{2} x}{d t^{2}}=\frac{-k x}{m}$. Yields $\frac{d[x, v]^{T}}{d t}=$
$\left[\begin{array}{ll}v & \frac{-k x}{m}\end{array}\right]^{T}$ with \mathbf{y}_{0} as initial position and velocity.
For stability of an $O D E$, let $\frac{d \mathbf{y}}{d t}=A \mathbf{y}$ for $A \in \mathbb{C}^{n \times n}$ The stable or neutrally spable or unstable case is wher $\max _{i} \Re\left(\lambda_{i}(A)\right)<0$ or $=0$ or >0 respectively

In finite difference methods, approximate $\mathbf{y}(t)$ by discrete points \mathbf{y}_{0} (given), $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots$ so $\mathbf{y}_{k} \approx \mathbf{y}\left(t_{k}\right)$ for increasing t_{k} For many IVPs and FDMs, if the local truncation erro (error at each step) is $O\left(h^{p+1}\right)$, the global truncation error (error overall) is $O\left(h^{p}\right)$. Call p the order of accuracy.
To find p, substitute the exact solution into FDM formula, insert a remainder term $+R$ on RHS, use a Taylo series expansion, solve for R, keep only the leading term.

In Euler's method, let $\mathbf{y}_{k+1}=\mathbf{y}_{k}+\mathbf{f}\left(\mathbf{y}_{k}, t_{k}\right) h_{k}$ where $h_{k}=t_{k+1}-t_{k}$ is the step size, and $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y}, t)$ is perhaps computed by finite difference. $p=1$, very low. Explicit!
A stiff problem has widely ranging time scales in the so lution, e.g., a transient initial velocity that in the true so lution disappears immediately, chemical reaction rate variability over temperature, transients in electical circuits. An explicit method requires h_{k} to be on the smallest scale

Backward Euler has $\mathbf{y}_{k+1}=\mathbf{y}_{k}+h \mathbf{f}\left(\mathbf{y}_{k+1}, t_{k+1}\right)$. BE is implicit (\mathbf{y}_{k+1} on the RHS). If the original program is stable, any h will work!

Miscellaneous

$\sum_{k=1}^{n \pm \text { constant }} k^{p}=\frac{n^{p+1}}{p+1}+O\left(n^{p}\right)$
$a x^{2}+b x+c=0 . r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} . r_{1} r_{2}=\frac{c}{a}$
Exact arithmetic is slow, futile for inexact observations and NA relies on approximate algorithms.

