
Thomas Finley, tomf@cs.cornell.edu

Linear Algebra
A subspace is a set S ⊆ R

n such that 0 ∈ S and ∀x,y ∈
S, α, β ∈ R . αx + βy ∈ S.

The span of {v1, . . . ,vk} is the set of all vectors in R
n

that are linear combinations of v1, . . . ,vk.

A basis B of subspace S, B = {v1, . . . ,vk} ⊂ S has
Span(B) = S and all vi linearly independent.

The dimension of S is |B| for a basis B of S.

For subspaces S, T with S ⊆ T , dim(S) ≤ dim(T), and
further if dim(S) = dim(T), then S = T .

A linear transformation T : R
n → R

m has ∀x,y ∈
R

n,α,β ∈ R . T (αx + βy) = αT (x) + βT (y). Further,
∃A ∈ R

m×n such that ∀x . T (x) ≡ Ax.

For two linear transformations T : R
n → R

m, S : R
m →

R
p, S ◦ T ≡ S(T (x)) is linear transformation. (T (x) ≡

Ax) ∧ (S(y) ≡ B) ⇒ (S ◦ T)(x) ≡ BAx.

The matrix’s row space is the span of its rows, its column
space or range is the span of its columns, and its rank is
the dimension of either of these spaces.

For A ∈ R
m×n, rank(A) ≤ min(m,n). A has full row (or

column) rank if rank(A) = m (or n).

A diagonal matrix D ∈ R
n×n has dj,k = 0 for j ,= k. The

diagonal identity matrix I has ij,j = 1.

The upper (or lower) bandwidth of A is max |i−j| among
i, j where i ≥ j (or i ≤ j) such that Ai,j ,= 0.

A matrix with lower bandwidth 1 is upper Hessenberg.

For A,B ∈ R
n×n, B is A’s inverse if AB = BA = I. If

such a B exists, A is invertible or nonsingular. B = A−1.

The inverse of A is A−1 = [x1, · · · ,xn] where Axi = ei.

For A ∈ R
n×n the following are equivalent: A is nonsin-

gular, rank(A) = n, Ax = b has a solution x for any b, if
Ax = 0 then x = 0.

The nullspace of A ∈ R
m×n is {x ∈ R

n : Ax = 0}.

For A ∈ R
m×n, Range(A) and Nullspace(AT) are

orthogonal complements, i.e., x ∈ Range(A),y ∈
Nullspace(AT) ⇒ xTy = 0, and for all p ∈ R

m, p = x + y

for unique x and y.

For a permutation matrix P ∈ R
n×n, PA permutes the

rows of A, AP the columns of A. P−1 = P T .

Gaussian Elimination
GE produces a factorization A = LU , GEPP PA = LU .

Plain GE

1: for k = 1 to n − 1 do

2: if akk = 0 then stop
3: ℓk+1:n,k = ak+1:n,k/akk

4: ak+1:n,k:n = ak+1:n,k:n −
ℓk+1:n,kak,k:n

5: end for

Backward Substitution

1: x = zeros(n, 1)
2: for j = n to 1 do

3: xj =
wj − uj,j+1:nxj+1:n

uj,j

4: end for

GEPP

1: for k = 1 to n − 1 do

2: γ = argmax
i∈{k+1,...,n}

|aik|

3: a[γ,k],k:n = a[k,γ],k:n

4: ℓ[γ,k],1:k−1 = ℓ[k,γ],1:k−1

5: pk = γ

6: ℓk:n,k = ak:n,k/akk

7: ak+1:n,k:n = ak+1:n,k:n−
ℓk+1:n,kak,k:n

8: end for

To solve Ax = b, factor A = LU (or A = P T LU), solve
Lw = b (or Lw = b̂ where b̂ = Pb) for w using forward
substitution, then solve Ux = w for x using backward sub-
stitution. The complexity of GE and GEPP is 2

3n3+O(n2).
GEPP encounters an exact 0 pivot iff A is singular.

For banded A, L + U has the same bandwidths as A.

Norms
A vector norm function ‖ · ‖ : R

n → R satisfies:
1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = %0.

2. ‖γx‖ = |γ| · ‖x‖ for all γ ∈ R, and all x ∈ R
n.

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖, for all x, y ∈ R
n.

Common norms include:
1. ‖x‖1 = |x1| + |x2| + · · · + |xn|

2. ‖x‖2 =
√

x2
1 + x2

2 + · · · + x2
n

3. ‖x‖∞ = lim
p→∞

(|x1|
p + · · · + |xn|

p)
1
p = max

i=1..n
|xi|

An induced matrix norm is ‖A‖! = supx&=0
‖Ax‖!

‖x‖!

. It
satisfies the three properties of norms.
∀x ∈ R

n, A ∈ R
m×n, ‖Ax‖! ≤ ‖A‖!‖x‖!.

‖AB‖! ≤ ‖A‖!‖B‖!, called submultiplicativity.
aTb ≤ ‖a‖2‖b‖2, called Cauchy-Schwarz inequality.
1. ‖A‖∞ = maxi=1,...,m

∑n
j=1 |ai,j | (max row sum).

2. ‖A‖1 = maxj=1,...,n
∑m

i=1 |ai,j | (max column sum).

3. ‖A‖2 is hard: it takes O(n3), not O(n2) operations.

4. ‖A‖F =
√

∑n
i=1

∑m
j=1 a2

i,j . ‖ · ‖F often replaces ‖ · ‖2.

Numerical Stability
Six sources of error in scientific computing: modeling er-
rors, measurement or data errors, blunders, discretization
or truncation errors, convergence tolerance, and rounding
errors.

±
︸︷︷︸

sign

d1.d2d3 · · · dt
︸ ︷︷ ︸

mantissa

× β
︸︷︷︸

base

exponent
︷︸︸︷

e
For single and double:

t = 24, e ∈ {−126, . . . , 127}

t = 53, e ∈ {−1022, . . . , 1023}

The relative error in x̂ approximating x is |x̂−x|
|x| .

Unit roundoff or machine epsilon is ǫmach = β−t+1.
Arithmetic operations have relative error bounded by ǫmach.

E.g., consider z = x−y with input x, y. This program has
three roundoff errors. ẑ = ((1 + δ1)x − (1 + δ2)y) (1 + δ3),
where δ1, δ2, δ3 ∈ [−ǫmach, ǫmach].

|z−ẑ|
|z| =

|(δ1+δ3)x−(δ2+δ3)y+O(ǫ2
mach

)|

|x−y|

The bad case is where δ1 = ǫmach, δ2 = −ǫmach, δ3 = 0:
|z−ẑ|
|z| = ǫmach

|x+y|
|x−y|

Inaccuracy if |x+y|≫ |x−y| called catastrophic calcellation.

Conditioning & Backwards Stability
A problem instance is ill conditioned if the solution is sen-
sitive to perturbations of the data. For example, sin 1 is
well conditioned, but sin 12392193 is ill conditioned.

Suppose we perturb Ax = b by (A + E)x̂ = b + e where
‖E‖
‖A‖ ≤ δ, ‖e‖‖b‖ ≤ δ. Then ‖x̂+x‖

‖x‖ ≤ 2δκ(A) + O(δ2), where

κ(A) = ‖A‖‖A−1‖ is the condition number of A.
1. ∀A ∈ R

n×n, κ(A) ≥ 1.

2. κ(I) = 1.

3. For γ ,= 0, κ(γA) = κ(A).

4. For diagonal D and all p, ‖D‖p = maxi=1..n |dii|. So,

κ(D) = maxi=1..n |dii|
mini=1..n |dii|

.

If κ(A) ≥ 1
ǫmach

, A may as well be singular.
An algorithm is backwards stable if in the presence of

roundoff error it returns the exact solution to a nearby
problem instance.

GEPP solves Ax = b by returning x̂ where (A+E)x̂ = b.

It is backwards stable if ‖E‖∞
‖A‖∞ ≤ O(ǫmach). With GEPP,

‖E‖∞
‖A‖∞ ≤ cnǫmach + O(ǫ2mach), where cn is worst case expo-
nential in n, but in practice almost always low order poly-
nomial.

Combining stability and conditioning analysis yields
‖x̂−x‖
‖x‖ ≤ cn · κ(A)ǫmach + O(ǫ2mach).

Determinant
The determinant det : R

n×n → R satisfies:
1. det(AB) = det(A) det(B).

2. det(A) = 0 iff A is singular.

3. det(L) = ℓ1,1ℓ2,2 · · · ℓn,n for triangular L.

4. det(A) = det(AT).
To compute det(A) factor A = P T LU . det(P) = (−1)s

where s is the number of swaps, det(L) = 1. When com-
puting det(U) watch out for overflow!

Orthogonal Matrices
For Q ∈ R

n×n, these statements are equivalent:
1. QT Q = QQT = I (i.e., Q is orthogonal)

2. The ‖ · ‖2 for each row and column of Q. The inner
product of any row (or column) with another is 0.

3. For all x ∈ R
n, ‖Qx‖2 = ‖x‖2.

A matrix Q ∈ R
m×n with m > n has orthonormal columns

if the columns are orthonormal, and QT Q = I.
The product of orthogonal matrices is orthogonal.
For orthogonal Q, ‖QA‖2 = ‖A‖2 and ‖AQ‖2 = ‖A‖2.

QR-factorization
For any A ∈ R

m×n with m ≥ n, we can factor A = QR,
where Q ∈ R

m×m is orthogonal, and R = [R1 0]T ∈
R

m×n is upper triangular. rank(A) = n iff R1 is invertible.
Q’s first n (or last m− n) columns form an orthonormal

basis for span(A) (or nullspace(AT)).

A Householder reflection is H = I − 2vvT

vT v
. H is symmet-

ric and orthogonal. Explicit H.H. QR-factorization is:

1: for k = 1 : n do

2: v = A(k : m, k) ± ‖A(k : m, k)‖2e1

3: A(k : m, k : n) =
(

I − 2vvT

vT v

)

A(k : m, k : n)

4: end for

We get HnHn−1 · · ·H1A = R, so then, Q = H1H2 · · ·Hn.
This takes 2mn2 − 2

3n3 + O(mn) flops.
Givens requires 50% more flops. Preferable for sparse A.
The Gram-Schmidt produces a skinny/reduced QR-

factorization A = Q1R1, where Q1 ∈ R
m×n has or-

thonormal columns. The Gram-Schmidt algorithm is:
Left Looking

1: for k = 1 : n do

2: qk = ak

3: for j = 1 : k − 1 do

4: R(j, k) = qT
j ak

5: qk = qk − R(j, k)qj

6: end for

7: R(k, k) = ‖qk‖2

8: qk = qk/R(k, k)
9: end for

Right Looking

1: Q = A
2: for k = 1 : n do

3: R(k, k) = ‖qk‖2

4: qk = qk/R(k, k)
5: for j = k + 1 : n do

6: R(k, j) = qT
k qj

7: qj = qj − R(k, j)qk

8: end for

9: end for

In left looking, let line 6 be qT
j qj−1 for modified G.S. to

make it backwards stable.

Positive Definite, A = LDL
T

A ∈ R
n×n is positive definite (PD) (or semidefinite (PSD))

if xT Ax > 0 (or xT Ax ≥ 0).
When LU -factorizing symmetric A, the result is A =

LDLT ; L is unit lower triangular, D is diagonal. A is SPD
iff D has all positive entries. The Cholesky factorization is
A = LDLT = LD1/2D1/2LT = GGT . Can be done directly
in n3

3 +O(n2) flops. If G has all positive diagonal A is SPD.
To solve Ax = b for SPD A, factor A = GGT , solve

Gw = b by forward substitution, then solve GTx = w

with backwards substitution, which takes n3

3 +O(n2) flops.

For A ∈ R
m×n, if rank(A) = n, then AT A is SPD.

Basic Linear Algebra Subroutines
0. Scalar ops, like

√

x2 + y2. O(1) flops, O(1) data.

1. Vector ops, like y = ax + y. O(n) flops, O(n) data.

2. Matrix-vector ops, like rank-one update A = A+xyT .
O(n2) flops, O(n2) data.

3. Matrix-matrix ops, like C = C + AB. O(n2) data,
O(n3) flops.

Use the highest BLAS level possible. Operators are ar-
chitecture tuned, e.g., data processed in cache-sized bites.

Linear Least Squares
Suppose we have points (u1, v1), . . . , (u5, v5) that we want
to fit a quadratic curve au2 + bu + c through. We want to
solve for

u2
1 u1 1
...

...
...

u2
5 u5 1

a
b
c

 =

v1
...
v5

This is overdetermined so an exact solution is out. Instead,
find the least squares solution x that minimizes ‖Ax−b‖2.

For the method of normal equations, solve for x in
AT Ax = ATb by using Cholesky factorization. This takes
mn2 + n3

3 + O(mn) flops. It is conditionally but not back-
wards stable: AT A doubles the condition number.

Alternatively, factor A = QR. Let c = [c1 c2]T =

QTb. The least squares solution is x = R−1
1 c1.

If rank(A) = r and r < n (rank deficient), factor A =
UΣV T , let y = V T x and c = UT b. Then, min ‖Ax −
b‖2 = min

√
∑r

i=1(σiyi − ci)2 +
∑m

i=r+1 c2
i , so yi = ci

σi
. For

i = r + 1 : n, yi is arbitrary.

Singular Value Decomposition
For any A ∈ R

m×n, we can express A = UΣV T such
that U ∈ R

m×m and V ∈ R
n×n are orthogonal, and

Σ = diag(σ1, · · · ,σp) ∈ R
m×n where p = min(m,n) and

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. The σi are singular values.
1. Matrix 2-norm, where ‖A‖2 = σ1.

2. The condition number κ2(A) = ‖A‖2‖A−1‖2 = σ1
σn

, or
rectangular condition number κ2(A) = σ1

σmin(m,n)
. Note

that κ2(A
T A) = κ2(A)2.

3. For a rank k approximation to A, let Σk =
diag(σ1, · · · ,σk,0

T). Then Ak = UΣkV
T . rank(Ak) ≤

k and rank(Ak) = k iff σk > 0. Among rank k or lower
matrices, Ak minimizes ‖A − Ak‖2 = σk+1.

4. Rank determination, since rank(A) = r equals the
number of nonzero σ, or in machine arithmetic, per-
haps the number of σ ≥ ǫmach × σ1.

A = UΣV T =
[

U1 U2

]
[

Σ(1 : r, 1 : r) 0
0 0

] [
V T

1

V T
2

]

See that range(U1) = range(A). The SVD gives an or-
thonormal basis for the range and nullspace of A and AT .

Compute the SVD by using shifted QR on AT A.

Information Retrival & LSI
In the bag of words model, wd ∈ R

m, where wd(i) is the
(perhaps weighted) frequency of term i in document d. The
corpus matrix is A = [w1, · · · ,wn] ∈ R

m×n. For a query

q ∈ R
m, rank documents according to a qT wd

‖wd‖2
score.

In latent semantic indexing, you do the same, but in a
k dimensional subspace. Factor A = UΣV T , then define
A∗ = Σ1:k,1:kV

T
:,1:k ∈ R

k×n. Each w∗
d = A∗

:,d = UT
:,1:kwd, and

q∗ = UT
:,1:kq.

In the Ando-Lee analysis, for a corpus with k topics, for
t ∈ 1 : k and d ∈ 1 : n, let Rt,d ≥ 0 be document d’s
relevance to topic t. ‖R:,d‖2 = 1. True document similar-
ity is RRT = R

n×n, where entry (i, j) is relevance of i to
j. Using LSI, if A contains information about RRT , then
(A∗)T A∗ will approximate RRT well. LSI depends on even

distribution of topics, where distribution is ρ =
maxt ‖Rt,:‖2

mint ‖Rt,:‖2
.

Great for ρ is near 1, but if ρ ≫ 1, LSI does worse.

Complex Numbers
Complex numbers are written z = x + iy ∈ C for i =

√
−1.

The real part is x = ℜ(z). The imaginary part is y = ℜ(z).

The conjugate of z is z = x−iy. Ax = (Ax), A B = (AB)

The absolute value of z is |z| =
√

x2 + y2.

The conjugate transpose of x is xH = (x)T . A ∈ C
n×n is

Hermitian or self-adjoint if A = AH .

If QHQ = I, Q is unitary.

Eigenvalues & Eigenvectors
For A ∈ C

n×n, if Ax = λx where x ,= 0, x is an eigenvector
of A and λ is the corresponding eigenvalue.

Remember, A− λx is singular iff det(A− λI) = 0. With
λ as a variable, det(A−λI) is A’s characteristic polynomial.

For nonsingular T ∈ C
n×n, T−1AT (the similarity trans-

formation) is similar to A. Similar matrices have the same
characteristic polynomial and hence the same eigenvalues
(though probably different eigenvectors). This relationship
is reflexive, transitive, and symmetric.

A is diagonalizable if A is similar to a diagonal matrix
D = T−1AT . A’s eigenvalues are D’s diagonals, and the
eigenvectors are columns of T since AT:,i = Di,iT:,i. A is
diagonalizable iff it has n linearly independent eigenvectors.

For symmetric A ∈ R
n×n, A is diagonalizable, has all

real eigenvalues, and the eigenvectors may be chosen as the
columns of an orthogonal matrix Q. A = QDQT is the
eigendecomposition of A. Further for symmetric A:

1. The singular values are absolute values of eigenvalues.

2. Is SPD (or SPSD) iff eigenvalues > 0 (or ≥ 0).

3. For SPD, singular values equal eigenvalues.

4. For B ∈ R
m×n, m ≥ n, singular values of B are the

square roots of BT B’s eigenvalues.

For any A ∈ C
n×n, the Schur form of A is A = QTQH

with unitary Q ∈ C
n×n and upper triangular T ∈ C

n×n.

In this sheet I denote λ|max | = maxλ∈{λ1,...,λn} |λ|.

For B ∈ C
n×n, then limk→∞ Bk = 0 if λ|max |(B) < 1.

Power Methods for Eigenvalues
x(k+1) = Ax(k) converges to λ|max |(A)’s eigenvector.

Once you find an eigenvector x, find the associated eigen-

value λ through the Raleigh quotient λ = x(k)T
Ax(k)

x(k)T
x(k)

.

The inverse shifted power method is x(k+1) = (A −
σI)−1x(k). If A has eigenpairs (λ1,u1), . . . , (λn,un), then

(A − σI)−1 has eigenpairs
(

1
λ1−σ

,u1

)

, . . . ,
(

1
λn−σ

,un

)

.

Factor A = QHQT where H is upper Hessenberg.

To factor A = QHQT , find successive Householder reflec-
tions H1,H2, . . . that zero out rows 2 and lower of column 1,
rows 3 and lower of column 2, etc. Then Q = HT

1 · · ·HT
n−2.

1: A(0) = A
2: for k = 0, 1, 2, . . . do

3: Set A(k) − σ(k)I = Q(k)R(k)

4: A(k+1) = R(k)Q(k) + σ(k)I
5: end for

A(k) is similar to A by
orthog. trans. U (k) =
Q(0) · · ·Q(k+1). Perhaps
choose σ(k) as eigenval-
ues of submatrices of A.

Arnoldi and Lanczos
Given A ∈ R

n×n and unit length q1 ∈ R
n, output Q,H

such that A = QHQT . Use Lanczos for symmetric A.
Arnoldi

1: for k = 1 : n − 1 do

2: q̃k+1 = Aqk

3: for ℓ = 1 : k do

4: H(ℓ, k) = qT
ℓ q̃k+1

5: q̃k+1 = q̃k+1 − H(ℓ, k)qℓ

6: end for

7: H(k + 1, k) = ‖q̃k+1‖2

8: qk+1 =
q̃k+1

H(k+1,k)
9: end for

Lanczos

1: β0 = ‖w0‖2

2: for k = 1, 2, . . . do

3: qk =
wk−1

βk−1

4: uk = Aqk

5: vk = uk − βk−1qk−1

6: αk = qT
k vk

7: wk = vk − αkqk

8: βk = ‖wk‖2

9: end for

For Lanczos, the αk and βk are diagonal and subdiagonal
entries of the Hermitian tridiagonal Tk, and we have H in
Arnoldi. After very few iterations of either method, the
eigenvalues of Tk and H will be excellent approximations
to the “extreme” eigenvalues of A.

For k iterations, Arnoldi is O(nk2) times and O(nk)
space, Lanczos is O(nk)+k ·M time (M is time for matrix-
vector multiplication) and O(nk) space, or O(n + k) space
if old qk’s are discarded.

Iterative Methods for Ax = b
Useful for sparse A where GE would cause fill-in.

In the splitting method, A = M−N and Mv = c is easily
solvable. Then, x(k+1) = M−1

(
Nx(k) + b

)
. If it converges,

the limit point x∗ is a solution to Ax = b.
The error is e(k) = (M−1N)ke0, so splitting methods

converge if λ|max |(M
−1N) < 1.

In the Jacobi method, consider M as the diagonals of A.
This will fail of A has any zero diagonals.

Conjugate Gradient
Conjugate gradient iteratively solve Ax = b for SPD A.
It is derived from Lanczos and takes advantage of if A is
SPD then T is SPD. It produces the exact solution after n
iterations. Time per iteration is O(n) + M.

1: x(0) = arbitrary (0 is okay)
2: r0 = b − Ax(0)

3: p0 = r0

4: for k=0,1,2,. . . do

5: αk = (rT
k rk)/(pT

k Apk)
6: x(k+1) = x(k) + αkpk

7: rk+1 = rk − αkApk

8: βk+1 = (rT
k+1rk+1)/(rT

k rk)
9: pk+1 = rk+1 − βk+1pk

10: end for

Error is reduced by
(
√

κ(A)− 1)/(
√

κ(A) + 1)
per iteration. Thus, for
κ(A) = 1, CG converges
after 1 iteration. To
speed up CG, use a per-
conditioner M such that
κ(MA) ≪ κ(A) and solve
MAx = Mb instead.

Multivariate Calculus
Provided f : R

n → R, the gradient and Hessian are

∇f =

δf
δx1
...

δf
δxn

 ,∇2f =

δ2f
δx2

1

δ2f
δx1δx2

· · · δ2f
δx1δxn

...
...

δ2f
δxnδx1

δ2f
δxnδx2

· · · δ2f
δx2

n

If f is c2 (2nd partials are all continuous), ∇2f is symmetric.
The Taylor expansion for f is
f(x + h) = f(x) + hT∇f(x) + 1

2h
T∇2f(x)h + O(‖h‖3)

Provided f : R
n → R

m, the Jacobian is

∇f =

δf1/δx1 · · · δf1/δxn
...

. . .
...

δfm/δx1 · · · δfm/δxn

f ’s Taylor expansion is f(x+h) = f(x)+∇f(x)h+O(‖h‖2).

A linear (or quadratic) model approximates a function f

by the first two (or three) terms of f ’s Taylor expansion.

Nonlinear Equation Solving
Given f : R

n → R
m, we want x such that f(x) = 0.

In fixed point iteration, we choose g : R
n → R

n such that
x(k+1) = g(x(k)). If it converges to x∗, g(x∗) − x∗ = 0.

g(x(k)) = g(x∗)+∇g(x∗)(x(k)−x∗)+O(‖x(k)−x∗‖2) For
small e(k) = x(k) − x∗, ignore the last term. If ∇g(x∗) has
λ|max | < 1, then x(k) → x∗ as ‖e(k)‖ ≤ ck‖e(0)‖ for large k,
where c = λ|max |+ǫ, where ǫ is the influence of the ignored
last term. This indicates a linear rate of convergence.

Suppose for ∇g(x∗) = QTQH , T is non-normal, i.e.,
T ’s superdiagonal portion is large relative to the diagonal.
Then this may not converge as ‖(∇g(x∗))k‖ initially grows!

In Newton’s method, x(k+1) = x(k) − (∇f(x(k)))−1f(x(k)).
This converges quadratically, i.e., ‖e(k+1)‖ ≤ c‖e(k)‖2.

Automatic differentiation takes advantage of the notion
that a computer program is nothing but arithmetic opera-
tions, and one can apply the chain rule to get the derivative.
This may be used to compute Jacobians and determinants.

Optimization
In continuous optimization, f : R

n → R

is the objective function, g : R
n → R

m

holds equality constraints, h : R
n → R

p

holds inequality constraints.

min f(x)
s.t. g(x) = 0

h(x) ≥ 0

We did unrestricted optimization min f(x) in the course.
A ball is a set B(x, r) = {y ∈ R

n : ‖x − y‖ < r}.
We have local minimizers x∗ which are the best in a

region, i.e., ∃r > 0 such that f(x∗) ≤ f(x) for all x ∈
B(x∗, r). A global minizer is the best local minimizer.

Assume f is c2. If x∗ is a local minimizer, then ∇f(x∗) =
0 and ∇2f(x∗) is PSD. Semi-conversely, if ∇f(x∗) = 0 and
∇2f(x∗) is PD, then x∗ is a local minimizer.

Steepest Descent
Go where the function (locally) decreases most rapidly via
x(k+1) = x(k) − αk∇f(x(k). αk is explained later. SD is
stateless: depends only on the current point. Too slow.

Newton’s Method for Unconstrained Min.
Iterate by x(k+1) = x(k) − (∇2f(x(k)))−1∇f(x(k)), derived
by solving for where ∇f(x∗) = 0. If ∇2f(x(k)) is PD and
∇f(x(k)) ,= 0, the step is a descent direction.

What if the Hessian isn’t PD? Use (a) secant method, (b)
direction of negative curvature where hT∇2f(x(k))h < 0
where h or −h (doesn’t work well in practice), (c) trust
region idea so h = −(∇2f(x(k)) + tI)−1∇f(x(k)) (interpo-
lation of NMUM and SD), (d) factor ∇2f(x(k)) by Cholesky
when checking for PD, detect 0 pivots, modify that diago-
nal in ∇2f(x(k)) and keep going (unjustified by theory, but
works in practice).

Line Search
Line search, given x(k) and step h (perhaps derived from
SD or NMUM), finds a α > 0 for x(k+1) = x(k) + αh.

In exact line search, optimize min f(x(k) + αh) over α.
Frowned upon because it’s computationally expensive.

In Armijo or backtrack line search, initialize α. While
f(x(k) + αh) > f(x(k)) + 0.1α∇f(x(k))Th, halve α.

Secant/quasi Newton methods use an approximate al-
ways PD ∇2f . In Broyden-Fletcher-Goldfarb-Shanno:

1: B0 = initial approximate Hessian {OK to use I.}
2: for k = 0, 1, 2, . . . do

3: sk = −B−1
k ∇f(x(k))

4: x(k+1) = x(k) +αksk {Use special line search for αk!}
5: yk = ∇f(x(k+1)) −∇f(x(k))

6: Bk+1 = Bk +
yky

T
k

αyT
k sk

− Bksks
T
k Bk

sT
k Bksk

7: end for

By maintaining Bk in factored form, can iterate in O(n2)
flops. Bk is SPD provided sT

k y > 0 (use line search to
increase αk if needed). The secant condition αkBk+1sk =
yk holds. If BFCS converges, it converges superlinearly.

Non-linear Least Squares
For g : R

n → R
m, m ≥ n, we want the x for min ‖g(x)‖2.

In the Gauss-Newton method, x(k+1) = x(k) − h where
h = (∇g(x)T∇g(x))−1∇g(x)Tg(x). Note that h is a solu-
tion to a linear least squares problem min ‖∇g(x(k))h −
g(x(k))‖! GN is derived by applying NMUM to to
g(x)Tg(x), and dropping a resulting tensor (derivative
of Jacobian). You keep the quadratic convergence when
g(x∗) = 0, since the tensor → 0 as k → ∞.

Ordinary Differential Equations
ODE (or PDE) has one (or multiple) independent variables.

In initial value problems, given dy
dt = f(y, t), y(t) ∈ R

n,
and y(0) = y0, we want y(t) for t > 0. Examples include:

1. Exponential growth/decay with dy
dt = ay, with closed

form y(t) = y0e
at. Growth if a > 0, decay if a < 0.

2. Ecological models, dyi

dt = fi(y1, . . . , yn, t) for species
i = 1, . . . , n. yi is population size, fi encodes species
relationships.

3. Mechanics, e.g. wall-spring-block models for F = ma

(a = d2x
dt2

) and F = −kx, so d2x
dt2

= −kx
m . Yields d[x,v]T

dt =
[

v −kx
m

]T
with y0 as initial position and velocity.

For stability of an ODE, let dy
dt = Ay for A ∈ C

n×n.
The stable or neutrally spable or unstable case is where
maxi ℜ(λi(A)) < 0 or = 0 or > 0 respectively.

In finite difference methods, approximate y(t) by discrete
points y0 (given), y1,y2, . . . so yk ≈ y(tk) for increasing tk.

For many IVPs and FDMs, if the local truncation error
(error at each step) is O(hp+1), the global truncation error
(error overall) is O(hp). Call p the order of accuracy.

To find p, substitute the exact solution into FDM for-
mula, insert a remainder term +R on RHS, use a Taylor
series expansion, solve for R, keep only the leading term.

In Euler’s method, let yk+1 = yk + f(yk, tk)hk where
hk = tk+1 − tk is the step size, and y′ = f(y, t) is perhaps
computed by finite difference. p = 1, very low. Explicit!

A stiff problem has widely ranging time scales in the so-
lution, e.g., a transient initial velocity that in the true so-
lution disappears immediately, chemical reaction rate vari-
ability over temperature, transients in electical circuits. An
explicit method requires hk to be on the smallest scale!

Backward Euler has yk+1 = yk + hf(yk+1, tk+1). BE
is implicit (yk+1 on the RHS). If the original program is
stable, any h will work!

Miscellaneous
∑n±constant

k=1 kp = np+1

p+1 + O(np)

ax2 + bx + c = 0. r1, r2 = −b±
√

b2−4ac
2a . r1r2 = c

a
Exact arithmetic is slow, futile for inexact observations,

and NA relies on approximate algorithms.

C7

0
1

2
8

00

1 D 1 E9 9F 6 7 1 A AE 9 B A 0
2

0
3

D6

88 7 D 5 69 6 E 9 2 3 5 622C 4 F 0 2 72 8 0 E 2 7 2 69 9A 5 8 E 1 C

0
01 D 2

7

9
9

966 80 3 1 CC 0E 4 C 8 1 E1 F 0 E 2
0

2
1

9 9C E E C 2 5C 0
26

2 5 B A2 48 2 7 1 2 7
2
8A A 0

2 F A0 1E 6 9 B 201 F 2 8 2
2

2
1

F A8 C 8 6 D62 4
23

