People-Aware Computing Improving Quality of Life using Mobile Devices

THE DARTMOUTH INSTITUTE

Community-Scale Modeling of Human Behavior

Develop technology that is easy to use, unobtrusive, and adaptive, which enables us to:

- Record, review, search, and reflect on our real-world activities and interactions
- Analyze how behavior patterns impact quality of life
- Provide relevant feedback to individuals, family, and health-care professionals

Physical Health

Emotional Health

Cognitive Health

Family and Community Wellness

Improve Health, Family, and Community Well-being

Increased access to care

Continuous and in-situ monitoring of individual and population health

Improved quality of care

Detailed analysis of behavioral factors that influence physical, social, and cognitive well being

Reduced cost and improved effectiveness of care

Lowering effort needed for early diagnosis, behavioral interventions and self-monitoring

Goals

Sense

Capturing behavioral data unobtrusively

Different generations of Mobile Sensing Platforms for continuous data collection

Current smart

phones have many o the sensors we need

Sensors capture sound, movement, light, location, elevation

Places

Infer

Continuously inferring fine-grained patterns of human behaviors

automatically, unobtrusively, and with user consent at individual, family, neighborhood, and societal scales

Activities

Activities modeled: walking, running, taking stairs up/down, taking elevator up/down, cooking, working on computer, eating, watching TV, talking, cycling, using an elliptical trainer, using a stair machine

Places modeled: home, work, gym, restaurant, coffee-shop, library, bank, grocery-store, indoor/outdoor

Social Networks

Building models of social networks that enable analysis of global structure as well as individual profiles and their impact on the network

Conversational attributes modeled: who talks to whom, frequency, durations, speaking styles that include loudness, speaking rate, emotions

Societal Impact

Inform

Providing relevant feedback

Individuals

Behavioral feedback that encourages healthy life-style by:

raising awareness

providing in-situ feedback

sleeping having meals computer usage watching TV

standing

stairs up

stairs down

elevator up

elevator down

walking

Daily Activity Summary

Activities of Daily Living lousework Social Interaction 🕢 📗

Family members and Caregivers

Reduce elder-care burden by:

- automating daily activity monitoring
- raising alerts as needed

■ Elder-care monitoring

Doctors and **Public Health Official**

Monitor health outside the doctor's office at an individual and population level

- early detection and prevention of health problems
- analysis of environmental and demographic factors

Acknowledgement: National Science Foundation IIS Grant #0845683 and # 0433637 Graduate Students: Daniel Peebles, Mu Lin, Hong Lu, Nic Lane, Danny Wyatt

Principal Investigator: Prof. Tanzeem Choudhury Collaborators: Prof. Ethan Berke and Prof. Andrew Campbell