
Derivations for appendix of

“Light Scattering from Hair Fibers”

Steve Marschner

August 2003

1 Loci of reflections

Consider light arriving from a single direction, denoted by the unit vector ωi.
Let u be the axis of the hair (the tangent to the fiber). Wherever a ray traveling
in the direction ωi hits the cylinder, it will encounter a surface normal n that
is perpendicular to u and that has n · u > 0.

Since all the surface normals lie in the plane perpendicular to u (the “normal
plane”), it’s obvious from the symmetry of specular reflection that the directions
in which the reflected rays leave the hair will all make the same angle with that
plane as the incident direction does. To make this a little more formal, Figure 1
contains a diagram showing all these direction vectors drawn on the unit sphere.

In this figure, all the surface normals lie in the horizontal plane. Two par-
ticular surface normals n1 and n2 are drawn, together with the corresponding
reflection vectors ωr,1 and ωr,2. The rule for specular reflection is that ωi, n,
and ωr are coplanar and the components of ωi and ωr perpendicular to the
normal are equal. In the diagram these projections are denoted hi and hr. For
each reflection, hi and hr are equal in length and parallel, so the heights on the
Gauss sphere of ωi and ωr above the normal plane are equal. This means that
we know exactly where on the Gauss sphere we will find the surface reflection:
on the circle parallel to the normal plane containing ωi.

The rule for specular transmission (Snell’s law) is similar: ωi, n, and ωt are
coplanar and the components of ωi and ωt perpendicular to the normal have
the constant ratio η. Figure 2 is analogous to the previous figure, but shows
the refracted directions instead. Since the distances hi and ht are in the ratio η
and are parallel, the heights on the Gauss sphere of ωi and ωt above the normal
plane are also in the ratio η. This means the transmitted vectors all lie on a
circle that is a factor of η closer to the normal plane than the incident vector,
so they all make the same angle with the cylinder axis.

By the same argument, the rays that refract again on the way out of the
cylinder will still all make the same angle with the axis. It’s obvious from looking
at the ray that passes through the axis that the angle of the twice-refracted rays
is the same as the rays that are reflected off the surface. What’s more, the rays
can reflect inside the cylinder as many times as they want without changing
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Figure 1: Reflected vectors from a cylinder lie in a cone.
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Figure 2: Refracted vectors from a cylinder lie in a cone.
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Figure 3: Derivation of the Bravais refractive index.

their inclination. This means we will find all rays that exit the cylinder, after
any sequence of reflections and transmissions, in the same cone where we find
the reflected rays! This holds for any cross section of the cylinder.

2 The Bravais index

When computing refractions, it is sometimes convenient to work with the pro-
jections of the direction vectors in question onto some convenient plane (in our
case it will be a plane perpendicular to the hair’s tangent). As illustrated in
Figure 3, one cannot simply apply Snell’s law to the projected vectors. In this
figure, vi is a direction vector coming into a horizontal surface with surface nor-
mal n, and s(η, vi) is the refracted vector, which is computed by applying Snell’s
law in the plane containing vi and n. The key thing is that the projections of
the incoming and refracted vectors into the surface plane are in the ratio η.

Looking at the projection into the plane of the paper, we have another
similar diagram that has incoming direction v′i and refracted direction s(η, vi)

′

with their projections in the proper ratio. The only thing keeping this from
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being another Snell’s law diagram is that the lengths of these two vectors are
not equal: |v′i| = cos γ but |s(η, vi)

′| = cos δ. Scaling the refracted vector by
cosγ/ cos δ produces a Snell’s law diagram for refractive index η′ = η cos δ/ cosγ.
From the two similar triangles in the ground plane, η sin δ = sin γ, from which
it follows that η2 cos2 δ = η2 − sin2γ and finally,

η′ =

√

η2 − sin2 γ

/

cosγ.

Incidentally, the fact that δ can be computed from just γ and η is another
proof that the refracted directions form a cone about the tangent.

The implication of this is that for an incident ray that makes an angle
γ with the projection plane, we can compute the projection of the refracted
direction from the projection of the incident direction using the usual Snell’s
law but substituting the fictitious index of refraction η′. Since η′ depends on
γ, this is really only interesting if we have a whole set of rays that all have the
same inclination. From the previous discussion, though, this is exactly what
we have: the incident rays across the whole cylinder surface all have the same
inclination to the normal plane, and since we showed that the reflected and
refracted directions form cones centered on the hair tangent, we can continue
to use this property to process further reflections and refractions.

3 Bravais and Fresnel

If we’re going to compute reflected intensity we’re going to need Fresnel’s for-
mulas too. Unfortunately, evaluating the Fresnel reflectance using the projected
vectors and the Bravais refractive index does not work. However, it does work
for the perpendicular-polarization component of the Fresnel reflectance; for the
parallel-polarization component, we have to instead use the “anti-Bravais” re-
fractive index:

η′′ = η cos γ/ cos δ = η cos γ

/

√

1 − η−2 sin2 γ .

Proof: First, the angles of the projected vectors with the normal satisfy
cos θ′i = cos θi/ cosγ and cos θ′t = cos θt/ cos δ.

Fp =
η cos θi − cos θt

η cos θi + cos θt

=
η cos γ

cos δ
cos θi

cos γ
− cos θt

cos δ

η cos γ
cos δ

cos θi

cos γ
+ cos θt

cos δ

=
η′′ cos θ′i − cos θ′t
η′′ cos θ′i + cos θ′t
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Similarly,

Fs =
cos θi − η cos θt

cos θi + η cos θt

=

cos θi

cos γ
− η cos δ

cos γ
cos θt

cos δ

cos θi

cos γ
+ η cos γ

cos γ
cos θt

cos δ

=
cos θ′i − η′ cos θ′t
cos θ′i + η′ cos θ′t

Another way to write all this, which could be more symmetrical, is that
Bravais gives you a “Bravais factor” b(η, γ) = (η2− sin2 γ)

1

2 /η cos γ and you use
bη for Snell and for perpendicular Fresnel and η/b for parallel Fresnel.
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