
Learning
From An Optimization Viewpoint

by

Karthik Sridharan

Submitted to :

Toyota Technological Institute at Chicago
6045 S. Kenwood Ave, Chicago, IL, 60637

For the degree of Doctor of Philosophy in Computer Science

Thesis Committee :

Nathan Srebro (Thesis Supervisor),

David McAllester,

Arkadi Nemirovski,

Alexander Razborov

In memory of my dear father, Raghavan Sridharan . . .

i

Acknowledgements

Starting to write this acknowledgement I realized that I owed thanks to many people who

have directly or indirectly influenced my research and have helped me complete this dis-

sertation.

First and foremost, I would like to thank my advisor Nati Srebro for his encouragement,

guidance and patience throughout my PhD. One too many times I have walked into Nati’s

office with vague questions and still unformed ideas and every time I walked out with

crisp and formalized ideas and clear thoughts on how to approach problems. Nati was the

one who inspired me to look at learning alternatively as an optimization problem, which

culminated into the central idea of this thesis. Besides research skills, I also learned (or at

least started the process of learning) other skills including scientific writing, presenting my

ideas succinctly and choosing the right problems to work on. Perhaps the most important

thing I learned from Nati is that asking the right questions and formalizing these questions

precisely is as important as, if not more than, finding answers.

I would like to thank Sham Kakade with whom I worked during the first three years of my

PhD on many exciting projects and learned many things from. I am greatly indebted to Shai

Shalev-Shwartz; apart from being a wonderful collaborator, Shai has guided me in many

ways and greatly influence my research and thinking. I express my heartfelt gratitude to

Alexander Rakhlin, Ohad Shamir and Ambuj Tewari. Besides being my close collaborators

and friends, they gave me timely advice and help, and taught me many things regarding

research and other aspects. I would like to also thank my other research collaborators who

influenced and guided my research: Shai Ben-David, Kamalika Chaudhuri, Andrew Cotter,

Ofer Dekel, Dean Foster, Rina Foygel, Claudio Gentile, Karen Livescue and David Loker.

ii

I would like to thank my committee members David McAllester, Arkadi Nemirovski and

Alexander Razborov for all their help in guiding and shaping this thesis work. I enjoyed the

many insightful discussions with David; I will especially remember the ones we had fairly

early in the morning at TTI-Chicago when it used to be the start of Davids day and most

likely the end of mine. I am grateful to Arkadi Nemirovski for his valuable suggestions that

helped resolve issues I was struggling with, and also make my thesis better . I am grateful

to Alexander Razborov for his valuable guidance and advice. Overall I feel privileged and

honored to have a thesis committee that guided and moulded my research and the way I

think about problems.

I greatly acknowledge the most wonderful staff at TTI-Chicago who made my stay at

Chicago so memorable and pleasant. I would like to specially thank Carole Flemming,

Gary Hamburg, Liv Leader and Christina Novak for helping me with numerous things

throughout my PhD. I also thank Avleen Bijral, Wonseok Chae, Heejin Choi, Andrew Cot-

ter, Patrick Donovan, Taehwan Kim, Jianzhu Ma, Arild Brandrud Nss, Jian Peng, Ankan

Saha, Allie Shapiro, Hao Tang, Hoang Trinh, Zhiyong Wang, Xing Xu, Payman Yadol-

lahpour, Jian Yao and Feng Zhao for their friendship and making my time at TTI-Chicago

fun. Thanks also to the other students and faculty at TTI-Chicago with whom I have had

insightful discussions and pleasant conversations.

Last, but not the least, I would like to express my deepest gratitude to my family and

relatives, without whose support I would not have been able to complete my PhD. To Aditi,

Pranav, Lavan, Sreeram and Amma, thanks for all the love and encouragement you have

given me. I thank my parents for their unconditional support and confidence they have

shown in me. I dedicate this dissertation to my late father, Raghavan Sridharan, whose

greatest dream was to see me complete my PhD.

iii

Abstract

Optimization has always played a central role in machine learning and advances in the field of optimization
and mathematical programming have greatly influenced machine learning models. However the connection
between optimization and learning is much deeper : one can phrase statistical and online learning problems
directly as corresponding optimization problems. In this dissertation I take this viewpoint and analyze learn-
ing problems in both the statistical and online learning frameworks from an optimization perspective. In
doing so we develop a deeper understanding of the connections between statistical and online learning and
between learning and optimization.

The dissertation can roughly be divided into two parts. In the first part we consider the question of learnability
and possible learning rates for general statistical and online learning problems without regard to tractability
issues. In the second part we restrict ourselves to convex learning problems and address the issue of tractabil-
ity for both online and statistical learning problems by considering the oracle complexity of these learning
problems.

I. We first consider the question of learnability and possible learning rates for statistical learning problems
under the general learning setting. The notion of learnability was first introduced by Valiant (1984) for
the problem of binary classification in the realizable case. Vapnik (1995) introduced the general learn-
ing setting as a unifying framework for the general problem of statistical learning from empirical data.
In this framework the learner is provided with a sample of instances drawn i.i.d. from some distribution
unknown to the learner. The goal of the learner is to pick a hypothesis with low expected loss based
on the sample received. The question of learnability is well studied and fully characterized for bi-
nary classification using the Vapnik Chervonenkis (VC) theory and for real valued supervised learning
problems using the theory of uniform convergence with tools like Rademacher complexity, covering
numbers and fat-shattering dimension etc. However we show that for the general learning setting the
traditional approach of using uniform convergence theory to characterize learnability fails. Specifi-
cally we phrase the learning problem as a stochastic optimization problem and construct an example of
a convex problem where Stochastic Approximation (SA) approach provides successful learning guar-
antee but Empirical Risk Minimization (ERM) (or equivalently Sample Average Approximation (SAA)
approach) fails to give any meaningful learning guarantee. This example establishes that for general
learning problems the concept of uniform convergence fails to capture learnability and ERM/SAA ap-

iv

proaches can fail to provided successful learning algorithms. To fill this void in the theory of statistical
learnability in the general setting we instead turned to the concept of stability of learning algorithms to
fully characterize learnability in the general setting. We specifically show that a problem is learnable
if and only if there exists a stable approximate minimizer of average loss over the sample. Using this
notion of stability, we also provide a universal learning procedure that guarantees success whenever
the problem is learnable.

Next we consider the problem of online learning in the general setting. Online learning is a continual
and sequential learning process where instances provided to the learner round by round and can be cho-
sen adversarially (as opposed to stochastically). The goal of the learner for an online learning problem
is to minimize regret with respect to the single best hypothesis that can be chosen in hindsight. Most
of the work on online learning problems so far have been algorithmic and problem specific. The usual
approach has been to build algorithm for the specific problem at hand and prove regret guarantees for
this algorithm which in turn implies learnability with associated learning rates. Unlike the statistical
learning framework there is a dearth of generic tools that can be used to establish learnability and rates
for online learning problems in general. Only recently, Ben-David, Pal and Shalev-Shwartz (2009)
showed that the Littlestone dimension (introduced by Littlestone (1988)) is an online analog to the VC
dimension and fully characterizes learnability for online binary classification problems. However the
question of characterizing online learnability for even the real valued supervised learning problems in
the online framework was open. In this dissertation, analyzing the so called value of the online learn-
ing game, we provide online analogs to classical tools from statistical learning theory like Rademacher
complexity, covering numbers, fat-shattering dimension etc. While these tools can be used to provide
upper bounds for more general online learning problems, the results mirror uniform convergence the-
ory for online learning problems. Hence analogous to the statistical learning case, we used these tools
to fully characterize learnability and rates for real valued online supervised learning problems. We also
provide a generic algorithm for the real valued online supervised learning problem. However unlike
the statistical learning case, we don’t yet have a full characterization of learnability for general online
learning problems and leave this as open problem for future work.

II. In the first part of the dissertation we focused on the question of learnability and rates for statistical
and online learning problems without paying attention to tractability or efficiency of the learning al-
gorithms that could be used. Even the generic algorithms provided in the first part are in general not
at all tractable. In the second part of the dissertation we address the issue of building tractable or ef-
ficient learning algorithms by first focusing our attention specifically on convex learning problems. In
the second part, for general classes of convex learning problems, we provide appropriate mirror de-
scent updates that are guaranteed to be successful for online and statistical learning of these convex
problems. Further, using and extending results from the geometry of Banach spaces, we show that the
the mirror descent method (with appropriate prox-function and step-size) is near optimal for online
convex learning problems and for most reasonable cases, is also near optimal for statistical convex

v

learning problems. Further noting that when used for statistical convex learning, the mirror descent al-
gorithm is a first-order (gradient based), O(1) memory, single pass algorithm, we conclude that mirror
descent method is also near optimal in terms of number of gradient accesses and for many commonly
encountered problems, optimal also in terms of computational time. We next consider the problem
of (offline) convex optimization and to capture the notion of efficiency of optimization procedures for
these problems, we use the notion of oracle complexity of the problem introduced by Nemirovski and
Yudin (1978). We show that for a general class of convex optimization problems, oracle complexity
of the problem can be lower bounded by the so called fat-shattering dimension of the associated linear
class. Thus we establish a strong connection between offline convex optimization problems and statis-
tical convex learning problems. We further show that for a large class of infinite dimensional (or high
dimensional) optimization problems, mirror descent is in fact near optimal in terms of oracle efficiency
even for these offline convex optimization problems.

vi

Contents

1 Introduction 1

1.1 Learning and Optimization . 2

1.2 Overview of the Thesis . 3

1.2.1 Part I : Statistical and Online Learning : Learnability and Rates . . 3

1.2.2 Part II : Convex Problems : Oracle Efficient Learning/Optimization 4

1.3 Main Contributions . 5

1.4 Bibliographic Notes . 6

I Statistical and Online Learning : Learnability and Rates 7

2 Preliminary Setup and Notations 8

2.1 General Learning Problem Setup . 8

2.2 More Definitions and Notations . 9

3 Statistical Learning/Optimization 12

3.1 The Statistical Learning Problem and Learnability 13

3.2 Background . 16

3.2.1 Learnability and Uniform Convergence 16

3.2.2 Various Complexity Measures and Uniform Convergence 18

3.2.3 Learnability and Stability . 20

vii

3.3 Failure of Uniform Convergence and ERM/SAA Approaches 21

3.3.1 Learning without Uniform Convergence : Stochastic Convex Opti-

mization . 21

3.3.2 Learnability via Stability : Role of Regularization 24

3.3.3 Contradiction to Vapnik? . 26

3.4 Stability of Learning Rules . 27

3.4.1 Comparison with Existing Literature and Other Notions of Stability 28

3.5 Characterizing Learnability : Main Results 32

3.6 Randomization, Convexification, and a Generic Learning Rule 34

3.6.1 Stronger Results with Randomized Learning Rules 34

3.6.2 A Generic Learning Rule . 36

3.7 Detailed Results and Proofs . 37

3.7.1 Detailed Proof of Main Result (Section 3.5) 37

3.7.2 Other Proofs . 45

3.8 Discussion . 50

4 Online Learning/Optimization 52

4.1 The Online Learning Problem . 53

4.2 Online Learnability and the Value of the Game 54

4.3 Sequential Rademacher Complexity . 56

4.3.1 Structural Results . 58

4.4 Sequential Covering Number and Combinatorial Parameters 60

4.4.1 A Combinatorial Upper Bound . 62

4.4.2 Finite Class Lemma and the Chaining Method 63

4.5 Martingale Uniform Convergence . 64

4.6 Charecterizing Learnability of Supervised Learning Problem 66

4.6.1 Generic Algorithm for Supervised Learning Problem 68

viii

4.7 Examples . 70

4.7.1 Example: Margin Based Regret 70

4.7.2 Example : Neural Networks . 70

4.7.3 Example: Decision Trees . 71

4.7.4 Example: Online Transductive Learning 72

4.7.5 Example: Isotron . 73

4.8 Detailed Proofs and More Results . 74

4.8.1 Proofs . 74

4.8.2 Exponentially Weighted Average (EWA) Algorithm on Countable

Experts . 100

4.9 Discussion . 103

II Convex Problems : Oracle Efficient Learning/Optimization 104

5 Convex Learning and Optimization Problem Setup 105

5.1 Convex Problems . 105

5.2 Various Convex Learning/Optimization Problems 106

5.3 Discussion . 108

6 Mirror Descent Methods 109

6.1 The Mirror Descent Update . 109

6.2 Online Mirror Descent . 110

6.3 Stochastic Mirror Descent . 113

6.4 Mirror Descent for Offline Optimization 115

6.5 Detailed Proofs . 116

6.6 Discussion . 122

7 Optimality of Mirror Descent for Online Convex Learning Problem 124

ix

7.1 Value of the Linear Game . 125

7.2 Value and Martingale Type . 126

7.3 Martingale Type and Uniform Convexity 128

7.4 Main Result : Optimality of Online Mirror Descent 129

7.4.1 Smooth Loss Case . 130

7.4.2 Uniformly Convex Loss Case . 132

7.5 Examples . 133

7.5.1 Example : `p non-dual pairs . 133

7.5.2 Example : Non-dual Schatten norm pairs in finite dimensions . . . 134

7.5.3 Example : Non-dual group norm pairs in finite dimensions 134

7.5.4 Example : Max Norm . 134

7.5.5 Example : Interpolation Norms 135

7.6 Detailed Proofs . 136

7.7 Discussion . 150

8 Optimality of Mirror Descent for Statistical Convex Learning Problems 151

8.1 Lower Bounds for Statistical Learning Rates 152

8.1.1 Lower Bounds for Smooth Losses 154

8.2 Optimal Rates and Rademacher Type . 154

8.3 Main Result : Optimality of Stochastic Mirror Descent 155

8.3.1 Banach Lattices . 157

8.3.2 Decoupling Inequalities . 159

8.3.3 Optimality of Mirror Descent in Terms of Efficiency 161

8.4 Examples . 162

8.4.1 Example : `p non-dual pairs . 162

8.4.2 Example : Non-dual Schatten norm pairs in finite dimensions . . . 162

8.4.3 Example : Non-dual group norm pairs in finite dimensions 163

x

8.4.4 Computational Efficiency Issues 163

8.5 Detailed Proofs . 163

8.6 Discussion . 174

9 Optimality of Mirror Descent for Offline Convex Optimization 175

9.1 Oracle-based Offline Convex Optimization 176

9.2 Lower Bounding Oracle Complexity: Connections to Statistical Convex

Learning . 178

9.3 Main Result : Optimality of Mirror Descent for Offline Convex Optimization180

9.4 Statistical Learning With Distributed Oracles 181

9.5 Detailed Proofs . 183

9.6 Discussion . 186

10 Conclusion and Future Work 187

10.1 Open Problems . 187

10.1.1 Online Optimization and Stability 187

10.1.2 Upper Bounding Oracle Complexity in Terms of Fat-Shattering Di-

mension . 187

10.2 Further Directions . 188

10.3 Summary . 188

Bibliography 189

A Relating Various Complexity Measures : Statistical Learning 197

A.1 The Refined Dudley Integral: Bounding Rademacher Complexity with L2

Covering Numbers . 197

A.2 Bounding L∞ covering number by Fat-shattering Dimension 199

A.3 Relating Fat-shattering Dimension and Rademacher complexity 201

xi

List of Figures

3.1 An example of a “trivial” learning situation. Each line represents some

h ∈ H, and shows the value of `(h, z) for all z ∈ Z . The hypothesis h̃

dominates any other hypothesis (e.g., `(h̃; z) < `(h; z) uniformly for all

z), and thus the problem is learnable without uniform convergence or any

other property ofH . 17

7.1 Relationship between the various constants 129

8.1 Relationship between the various constants in statistical setting 155

8.2 Relationship between the various constants in both online and statistical

settings. Red inequality is not always true but true for

most commonly encountered problems. 161

xii

List of Tables

2.1 Summary of Notations . 11

xiii

Chapter 1

Introduction

There are two main paradigms under which machine learning problems have been commonly studied; these
are the statistical learning framework and the online learning framework. In the statistical learning frame-
work, the data source is said to be iid, that is data (or instances) are assumed to be drawn independently from
some fixed but unknown (to the learner) source distribution. The goal of the learner in this setting is to pick a
hypothesis that minimizes expected error on future examples drawn from the source distribution. The statis-
tical learning framework is well suited for applications like object recognition, natural language processing
and other applications where the data generation process is unchanging with time. For instance when we
consider a problem of image classification between cat and dog images, it is not unreasonable to assume the
data source does not vary over time and each time we sample repeatedly form the same distribution over input
images. Roughly speaking cats and dogs would look the same even 10 years from now and so we can think
of the distribution from which we draw the image label pair to be fixed.

The online learning framework on the other hand is a learning scenario where the learner is faced with a data
source that changes over time or even reacts to the learners choices. The online learning framework is often
studied as a multiple round game where the data source could even be adversarial. The instances produced
by the adversary at any round could depend on the past hypotheses chosen by the learner. The online learning
framework is better suited for more interactive learning tasks like spam mail detection and stock market
prediction where decisions of the learner could affect future instances the learner receives. For instance in a
spam mail filter application, while the company providing the spam filter service works on filtering out spam
mails, the spammers themselves try to outwit the system by adapting to how the spam detection software
works. In a sense there is a continuous game played between the company providing spam filtering service
and the spammers where each one tries to outwit the other. Such a scenario is naturally captured by the online
learning framework.

In this dissertation we consider learning in both online and statistical learning frameworks. We view learning
problems in both the frameworks from an optimization viewpoint and establish connections between learning
and optimization. Specifically, in the first part of the dissertation we consider very general learning problems

1

in both the statistical and online learning frameworks and focus on the question of when a given learning
problem is learnable and at what rates. Of course at that generality we restrict our focus to only questions of
learnability and rates for the learning problems and do not pay attention to tractability/efficiency of possible
learning algorithms that can be used for these problems.

In the second half of the thesis, we restrict our focus to convex learning problems and beyond just char-
acterizing optimal rates for these learning problems, we also provide simple first order methods based on
mirror descent and show that they are near optimal both in terms of rate of convergence and in terms of their
efficiency. Specifically we establish that for a large family of general convex learning problems, mirror de-
scent algorithm is universal and near optimal for the online learning framework. We also show that for most
reasonable cases, mirror descent is near optimal for these convex learning problems even in the statistical
learning framework. Further, the fact that mirror descent is an order O(1) memory, simple first order method
makes it near optimal even in terms of efficiency for many of these learning problems. We also establish that
for several high dimensional problems, mirror descent could be near optimal (in terms of oracle efficiency)
for (offline) convex optimization problems. In the second half of the thesis we establish some interesting con-
nections between convex learning problems and convex optimization. We establish that for most reasonable
cases online convex learning and statistical convex learning are equally hard (or easy). The main contention
of the sec on part of the thesis is that for a large family of convex learning problems, whether it is online or
statistical learning framework, the simple one pass, first order method of mirror descent is optimal both in
terms of rates and efficiency.

While the work in this dissertation is of a theoretical in nature, we believe that the results and viewpoints
provided will drive the choice of learning algorithms considered for various problems and models chosen for
learning. Further the second part of the thesis has more direct practical implications and advocates the use of
simple first order online learning methods for convex learning problems even when our end goal is statistical
learning.

1.1 Learning and Optimization

Optimization has always played a central role in shaping machine learning algorithms and models. The
typical approach taken to tackle learning problems has been to pick a suitable set of models or hypotheses
or predictors, pick appropriate empirical cost over the training sample and finally solve the optimization
problem of picking the hypothesis from the set of hypotheses that minimize the empirical cost over training
sample. The learning algorithm itself in this case corresponds to the optimization algorithm that solves the
minimization problem of picking that hypothesis from the set of hypotheses that minimizes empirical cost
over training sample. Theoretical guarantees on learning rates are typically provided by decomposing error
term into two terms. The first term, the estimation error that accounts for error we would incur if we picked the
hypothesis that minimizes empirical cost over training sample chosen. The second term is the optimization
error term that accounts for the sub-optimality of the optimization algorithm in minimizing the empirical cost
chosen.

2

Overall, we see that optimization plays a critical role in the design and analysis of algorithms for learning
problems. However the connection between optimization and learning is much deeper. Learning problems
under both statistical and online learning frameworks can be directly framed as optimization problems and
analysis of the sub-optimality of algorithms the . In this dissertation I will take this viewpoint that learning
problems can be viewed as optimization problems and using this point of view establish connections between
learning in statistical and online frameworks and optimization. Specifically in the second half of the disser-
tation, focusing on convex learning problems, we show that mirror descent method originally introduced for
convex optimization problems by Nemirovski and Yudin [1], is always near optimal for online learning prob-
lems, near optimal for most reasonable statistical learning problems and even near optimal for several high
dimensional offline convex optimization problems. We use concepts from the geometry of Banach spaces to
establish these optimality results for mirror descent. We also establish some interesting connections between
convex learning and convex optimization.

1.2 Overview of the Thesis

The dissertation can be split into two parts; the first part focuses on the question of learnability and learning
rates for fairly general class of learning problems in both the statistical and online learning frameworks. In
the first part, we do not concern ourselves with questions of efficiency or tractability of the learning meth-
ods/algorithms for solving these problems. In the second part of this dissertation, we restrict ourselves to
convex learning problems and show that for most reasonable problems, the first order method of mirror de-
scent is near optimal for both statistical and online convex learning problems. We also establish connections
between convex learning and (offline) convex optimization and establish that for several high dimensional
(offline) convex optimization problems, mirror descent is optimal in terms of efficiency for (offline) con-
vex optimization problem. The notion of efficiency we use in this case is the notion of oracle complexity
introduced by Nemirovski and Yudin (1978).

1.2.1 Part I : Statistical and Online Learning : Learnability and Rates

The first part of this dissertation contains two chapters. The first one, Chapter 3, is dedicated to the question
of learnability in the statistical learning framework. In this chapter, through an example that is an instance
of a stochastic convex optimization problem, we show that the concept of uniform convergence (and hence
tools like Rademacher complexity, fat-shattering dimension) that are commonly used to analyze learning
rates in the supervised learning settings fail in the general. Thus we establish that the folklore of uniform
convergence is necessary and sufficient for learnability is not true in general. This of course opens up the
question : “How can one characterize learnability of general learning problems, in the statistical framework
?”. We provide an answer to this question in this chapter by turning to the concept of stability of learning
algorithms. We show that learnability in the general setting can be characterized by existence of learning
algorithm that is stable and an approximate empirical minimizer. We further proceed to show that if we are
allowed to consider randomized learning rules, then we can provide a “Universal Learning Algorithm” which

3

has non-trivial learning rate whenever the problem is learnable.

Chapter 4, is the second chapter in the first part of the dissertation. It deals with the question of learnability
and rates for online learning problems. While the question of learnability is well studied in the statistical
framework, the question of learnability in the online setting has relatively less explored. Most of the work on
online learning problems so far have been algorithmic and problem specific. The usual approach has been to
build algorithm for the specific problem at hand and prove regret guarantees for this algorithm which in turn
implies learnability with associated learning rates. Unlike the statistical learning framework there is a dearth
of generic tools that can be used to establish learnability and rates for online learning problems in general.
Only recently, Ben-David, Pal and Shalev-Shwartz (2009) showed that the Littlestone dimension (introduced
by Littlestone (1988)) is an online analog to the VC dimension and fully characterizes learnability for on-
line binary classification problems. In general there have been no generic tools like Rademacher complexity,
covering numbers and fat-shattering dimension that are present for analyzing statistical learning problems.
In this chapter we explore the the question of learnability and optimal rates for online learning by first for-
malizing them as value of the online learning game. We then build complexity measures analogous to those
in the statistical framework like Rademacher complexity, covering numbers and fat-shattering dimension and
show that these tools can be used to bound learning rates for online learning problems. These tools can be
seen as tools for studying uniform convergence for general stochastic processes (non iid). We go ahead and
show that these tools can even characterize learnability and learning rates of real valued supervised learning
problems in the online learning framework. Based on these complexity measures, we also provide a generic
algorithm for the supervised learning problem in the online learning framework that has diminishing regret
whenever the problem is online learnable.

1.2.2 Part II : Convex Problems : Oracle Efficient Learning/Optimization

In the first part of this thesis while we even provide generic learning algorithms for fairly general class of
problems in both statistical and online learning frameworks, we never concerned ourselves with any form of
tractability of these learning algorithms. However, in the second part of this dissertation, focusing on convex
learning problems, we aim at providing optimal and efficient learning algorithms for both the statistical
and online learning frameworks. In doing so we also explore connections between learning and convex
optimization. There are five chapters in this part. The first chapter of this part, Chapter 5, introduces the
basic set up of the convex learning and optimization problems we consider in this part, describes the online
and statistical learning protocols/frameworks for these convex problems and introduces the oracle model
for offline convex optimization. The next chapter, Chapter 6 introduces the mirror descent methods (see
[1]) for the statistical and online convex learning problems described in the previous chapter and provides
upper bounds on learning rate for them. Upper bounds on rate of optimization of the mirror descent method
for offline convex optimization problems are also provided. Chapter ?? deals with online convex learning
problems and in the chapter we show that mirror descent algorithm is universal near optimal for online
convex learning problems. In Chapter 8 statistical convex learning problems are considered and lower bounds
on learning rates for these problems are provided. Using these lower bounds we further show that for most

4

reasonable cases, the mirror descent method for statistical learning (stochastic mirror descent method) is
near optimal even for statistical learning. In the final chapter of the second part of this dissertation, Chapter 9,
(offline) convex optimization problems are considered. As mentioned earlier, we use oracle complexity of the
learning problem (ie. minimum number of calls to any local oracle needed by any method to achieve desired
accuracy) as a measure of efficiency of the optimization procedure. We show that the oracle complexity
of convex optimization problems can be lower bounded by fat-shattering dimension of the associated linear
function class (a classic concept form statistical learning theory). Using this lower bound and results from
previous chapters we show that for certain classes of convex optimization problems (high dimensional),
mirror descent method is near optimal even for offline convex optimization problem. These results are also
further used to argue that for certain statistical convex learning problems, mirror descent method is near
optimal even when the learner has access to a parallel computation oracles (i.e. oracle query on entire sample
is considered as one oracle call in the model). This in turn implies that for these convex learning problems,
parallelization does not help.

1.3 Main Contributions

1. Part I :

(a) Statistical learning

• Illustrate limitations of uniform convergence and ERM/SAA

• Provide characterization of statistical learning in general through stability

• Provide universal randomized learning rule

(b) Online learning

• Introduce analogs of various complexity measures of hypothesis class for online learning,
provide tools martingale uniform convergence theory

• Characterize Online learnability for supervised learning problems

• Generic algorithm for online supervised learning

2. Part II :

(a) Online convex learning problems

• Characterize learnability and rates for various convex learning problems through notion of
martingale type

• Show universality and near optimality of online mirror descent for online convex learning
problems

(b) Statistical convex learning problems

• Establish lower bounds for oracle complexity and learning rates for various convex learning
problems in statistical framework using Rademacher complexity of linear class

5

• Show that for most reasonable statistical convex learning problems, mirror descent algorithm
is near optimal both in terms of learning rates and number of oracle (gradient) access

(c) Offline convex optimization problems

• Generic lower bound on convex optimization problem by fat-shattering dimension of associ-
ated linear class

• Show that for a large class of large dimensional convex optimization problems, mirror de-
scent is near optimal even for offline convex optimization

1.4 Bibliographic Notes

Results in Chapter 3 are from joint work with Shai Shalev-Shwartz, Ohad Shamir and Nati Srebro. Early
versions of the results can be found in [2, 3]. See [4] for later version which is closer to the one presented
in the chapter. The results in Chapter 4 are from joint work with Alexander Rakhlin and Ambuj Tewari and
can be found in [5]. In the second part of the dissertation, few of the result from Chapter 6 can be found
in [6]. The results in Chapter 7 is from joint work with Nathan Srebro and Ambuj Tewari. Relating basic
concept of martingale type and certain online convex learning problems was first done in [7]. In [6] the result
of universality and near optimality of mirror descent method from Chapter 7 is provided. Chapters 8 and 9
are joint work with Nati Srebro.

6

Part I

Statistical and Online Learning :
Learnability and Rates

7

Chapter 2

Preliminary Setup and Notations

In this chapter we provide the basic setup, some preliminary definitions and notations used throughout this
dissertation.

2.1 General Learning Problem Setup

In all the learning problems we consider instances provided to the learner are chosen from the instance set Z .
The learner in picks hypotheses from set H̄. The instantaneous loss incurred by learner on instance z ∈ Z
for picking hypothesis h ∈ H̄ is given by `(h, z) where ` : H̄ × Z 7→ R is the “loss” or cost function.
The exact setup of the learning problem and the goal of the learner depends on whether we consider the
statistical learning framework or the online learning framework and will formally be specified later on in
the corresponding chapters or sections. However, irrespective of the exact framework, the rough goal of the
learner for the learning problems we consider, is to pick hypotheses that are competitive with respect to the
best hypothesis from a set of hypotheses H ⊆ H̄. Notice that usually, in most of the learning problems
considered in literature, the setting considered is one where learner also picks hypothesis from set H. In
contrast we shall consider the so called “Improper learning setting” here and allow learner to pick hypothesis
from a set H̄ while the goal is to compete with the best hypothesis from a smaller set H. Whenever H̄ = H
we call this setting as the proper learning setting. This framework is sufficiently general to include a large
portion of the learning and optimization problems we are aware of, such as:

• Binary Classification: Let Z = X × {0, 1}, let H̄ be a set of functions h : X 7→ {0, 1}, and let
`(h; (x, y)) = 1{h(x)6=y}. Here, loss function is simply the 0 − 1 loss, measuring whether the binary
hypothesis h misclassified the example (x, y).

• Regression: Let Z = X ×Y where X and Y are bounded subsets of Rd and R respectively. Let H̄ be
a set of bounded functions h : X 7→ R, and let `(h; (x, y)) = (h(x) − y)2. Here, the loss function is

8

simply the squared loss.

• Large Margin Classification in a Reproducing Kernel Hilbert Space (RKHS): LetZ = X×{0, 1},
where X is a bounded subset of an RKHS, let H̄ be another bounded subset of the same RKHS, and
let `(h; (x, y)) = max{0, 1− y 〈x,h〉}. Here, the loss function is the well known hinge loss function,
and our goal is to perform margin-based linear classification in the RKHS.

• K-Means Clustering in Euclidean Space: Let Z = Rn, let H̄ be all subsets of Rn of size k, and let
`(h; z) = minc∈h ‖c− z‖2. Here, each h represents a set of k centroids, and the loss ` measures the
Euclidean distance squared between an instance z and its nearest centroid, according to the hypothesis
h.

• Density Estimation: LetZ be a subset of Rn, let H̄ be a set of bounded probability densities onZ , and
let `(h; z) = − log(h(z)). Here, loss function ` is simply the negative log-likelihood of an instance z
according to the hypothesis density h.

• Convex Learning Problems: Let Z be an arbitrary measurable set, let H̄ be a closed, convex subset
of a vector space, and for each z ∈ Z , let the function `(h; z) be convex w.r.t. its first argument.

We shall use the letter S to denote a sample of instances, that is a sample S ∈
⋃
n∈NZn is a sequence of

instances. For instance S = (z1, . . . , zn) is a sample of size n, note that the order and and multiplicity of
instances may be important. Given a sample S we shall denote the empirical average loss over this sample S
as :

LS(h) =
1

|S|

|S|∑
i=1

`(h, zi)

We shall also use the notation L̂(h) to refer LS(h) whenever the sample S is well understood under the
context. Further, given a distribution D on instance space Z , we shall use the notation

LD(h) = Ez∼D [`(h, z)]

Further we shall use the notation L(h) to refer to LD(h) whenever the distribution is understood under the
context.

2.2 More Definitions and Notations

An important object that we will encounter especially while analyzing online learning are trees. Unless
specified, all trees considered in this paper are either rooted complete binary trees. While it is useful to have
the tree picture in mind when reading the paper, it is also necessary to precisely define trees as mathematical
objects. We opt for the following definition.

Definition 1 (Trees). Given some set Z , a Z-valued tree z, of depth n is a sequence (z1, . . . ,zn) of n

mappings zi : {±1}i−1 7→ Z . The root of the tree z is the constant function z1 ∈ Z .

9

A tree of infinite depth is defined exactly as above as an infinite sequence (zn)n∈N.

Armed with this definition, we can talk about various operations on trees. For a function f : Z 7→ U , f(z)

denotes the U-valued tree defined by the mappings (f ◦ z1, . . . , f ◦ zn). Analogously, for f : Z × Z 7→ U ,
the U-valued tree f(z, z′) is defined as mappings (f(z1, z

′
1), . . . , f(zn, z

′
n)). In particular, this defines the

usual binary arithmetic operations on real-valued trees. Furthermore, for a class of functions F and a tree z,
the projection of F onto z is F(z) = {f(z) : f ∈ F}.

Definition 2 (Path). A path of length n is a sequence ε = (ε1, . . . , εn−1) ∈ {±1}n−1.

We shall abuse notation by referring to zi(ε1, . . . , εi−1) by zi(ε). Clearly zi only depends on the first i − 1

elements of ε. We will also refer to ε = (ε1, . . . , εn) ∈ {±1}n as a path in a tree of depth T even though the
value of εT is inconsequential. Next we define the notion of subtrees.

Definition 3 (Subtrees). The left subtree z` of z at the root is defined as n−1 mappings (z`1, . . . ,z
`
n−1) with

z`i (ε) = zi+1({−1} × ε) for ε ∈ {±1}n−1. The right subtree zr is defined analogously by conditioning on

the first coordinate of zi+1 to be +1.

Given two subtrees z, v of the same depth n − 1 and a constant mapping z1, we can join the two subtrees
to obtain a new set of mappings (x1, . . . ,xn) as follows. The root is the constant mapping z1. For i ∈
{2, . . . , n} and ε ∈ {±1}n, xi(ε) = zi−1(ε) if ε1 = −1 and wi(ε) = vi−1(ε) if ε1 = +1.

We will also need to talk about the values given by the tree z over all the paths. Formally, let Img(z) =

z ({±1}n) = {xt(ε) : t ∈ [n], ε ∈ {±1}n} be the image of the mappings of z.

Table 2.1 contains a list of the basic notations used.

10

N The set of natural numbers
R The set of real numbers
R+ The set of non-negative real numbers
[n] The set {1, 2, . . . , n}
1{A} 1 if predicate A holds and 0 otherwise
[a]+ max{0, a}
x,w Scalars
x,w Vectors
X,W Matrices
x[i] ith element of vector x
X[i, j] i× jth entry of matrix X
B Vector space
B? Dual of vector space B
〈x,w〉 Linear functional x ∈ B? applied to w ∈ B
f, g Functions
∆(X) Set of Borel probability measures on set X
f? The Fenchel conjugate of function f
∇f(w) A sub-gradient of f at w
‖·‖∗ Dual norm of the norm ‖·‖
E [Z] Expectation of random variable Z
P [A] Probability that event A occurs

Table 2.1: Summary of Notations

11

Chapter 3

Statistical Learning/Optimization

In this chapter we consider the problem of statistical learning in the general learning problems introduced by
[8] where we would like to minimize a population risk functional (stochastic objective)

L(h) = Ez∼D [`(h; z)] (3.0.1)

based on i.i.d. sample z1, . . . , zn drawn fromD over some target hypothesis classH. The distributionD over
instance space Z is unknown to the learner. Notice that this is basically a stochastic optimization problem.
In this chapter we are mainly concerned with the question of statistical “learnability”. That is, when can
Eq. (3.0.1) be minimized to within arbitrary precision based only on a finite sample z1, . . . , zn, as n→∞?

For supervised classification and regression problems, it is well known that a problem is learnable if and only
if the empirical risks

LS(h) = 1
n

n∑
i=1

`(h, zi) (3.0.2)

for all h ∈ H converge uniformly to the population risk ([9, 10]). If uniform convergence holds, then the
empirical risk minimizer (ERM) is consistent, i.e. the population risk of the ERM converges to the optimal
population risk, and the problem is learnable using the ERM. We therefore have:

• A necessary and sufficient condition for learnability, namely uniform convergence of the empirical
risks. Furthermore, this can be shown to be equivalent to a combinatorial condition: having finite
VC-dimension in the case of classification, and having finite fat-shattering dimensions in the case of
regression.

• A complete understanding of how to learn: since learnability is equivalent to learnability by ERM, we
can focus our attention solely on empirical risk minimizers.

The situation, for supervised classification and regression, can be depicted as follows:

12

Finite Dim.
Uniform

Convergence

Learnable

with ERM
Learnable

In this chapter we start by showing that the situation for general learning problems in the statistical learning
framework is actually much more complex. In particular, in Subsection 3.3 we show an example of a learning
problem which is learnable (using Stochastic Approximation approch), but is not learnable using empirical
risk minimization and uniform convergence fails. We discuss how notion stability (through regularization)
plays an important role in learnability of the problem. Having shown that uniform convergence fails to charac-
terize learnability for general learning problems we then approach the question of characterizing learnability
in general for statistical learning problems. To do so in Section 3.4 we first introduce definitions of stability
of learning rules we consider using for characterizing learnability. In section ??, we show that any problem
that is learnable, is always learnable with some learning rule which is an “asymptotically ERM”. Moreover,
such an AERM must be stable (under a suitable notion of stability). Namely, we provide following charac-
terization of learnability for general statistical learning problems and this can be considered as the highlight
of this chapter :

Exists Stable

AERM

Learnable

with AERM
Learnable

Note that this characterization holds even for learnable problems with no uniform convergence. In this sense,
stability emerges as a strictly more powerful notion than uniform convergence for characterizing learnabil-
ity. Finally in Section 3.6 we show how we can get stronger results by considering randomized learning
algorithms and we go on to provide a generic learning rule that is guaranteed to be successful whenever the
problem is learnable.

Section 3.7 contains the details of the proofs and technical results used in the chapter. Following that we
conclude with Bibliographic notes and Discussion.

3.1 The Statistical Learning Problem and Learnability

In the statistical learning problem, instances are drawn i.i.d. from some fixed distribution D unknown to the
learner. Given a sample S = z1, . . . , zn of size n, the goal of the learner then is to pick a hypothesis h ∈ H̄
based only on the sample S that has small expected loss LD(h). This problem of learning can in turn be
phrased as a stochastic optimization problem where our goal is the minimization problem

min
h∈H̄

LD(h)

The term LD(h) is often referred to as the risk of choosing hypothesis h. However given a target hypothesis
classH our goal is only to do as well as the best hypothesis in this target class and so the sub-optimality (also

13

refered to as) of any hypothesis h ∈ H̄ is given by

LD(h)− inf
h∈H

LD(h) .

Of course notice that for proper learning case, the problem is exactly that of stochastic optimization.

To formally refer to the strategy or algorithm used by the learner to pick hypotheses based on sample provided,
we now define the notion of learning algorithm for statistical learning problems.

Definition 4. A “Statistical Learning Rule” A :
⋃
n∈NZn 7→ H̄ is a mapping from sequences of instances

in Z to the set of Hypothesis H̄.

We shall refer to any “Learning Rule” A that only outputs hypothesis in the set H instead of entire H̄ as a
“Proper Learning Rule”.

Learnability deals with the question of when it is even possible (information theoretically) to drive the sub-
optimality for a given problems to 0 with increase in sample size. Note that since we are given a randomly
drawn sample we shall requires all results in expectation over draw of sample. Later on we illustrate how
such a result can be converted to a result that hold with high probability over the sample.

Definition 5. We say that a problem is “Statistically Learnable” given a target hypothesis class H with rate

εcons(n) if there exists a Statistical Learning Rule, A, such that :

sup
D

ES∼Dn
[
LD(A(S))− inf

h∈H
LD(h)

]
≤ εcons(n)

Further as long as εcons(n)→ 0 we simply say that the problem is statistically learnable/optimizable.

Whenever a problem is learnable, we will refer to any learning rule A such that

sup
D

ES∼Dn
[
LD(A(S))− inf

h∈H
LD(h)

]
→ 0

as a universally consistent learning rule. This definition of learnability, requiring a uniform rate for all distri-
butions, is the relevant notion for studying learnability of a hypothesis class. It is a direct generalization of
agnostic PAC-learnability ([11]) to Vapnik”s General Setting of Learning as studied by [12] and others.

A closely related notion to learnability is that of the sample complexity of a problem. We first define the
sample complexity of a given learning rule and then proceed to define sample complexity of a learning
problem.

Definition 6. Given a learning rule A, and ε > 0, the sample complexity of the rule for ε is defined as

n(ε,A,Z) = inf

{
n ∈ N

∣∣∣∣ sup
D

ES∼Dn
[
LD(A(S))− inf

h∈H
LD(h)

]
≤ ε
}

Sample complexity of the learning problem is defined as n(ε,Z) = infA n(ε,A,Z).

14

Obviously a problem is learnable if and only if for each ε > 0, n(ε) < ∞ and for any universally consistent
learning rule A and any ε > 0, n(ε,A) <∞.

The notion of sample complexity talked about above is the worst case one in the sense that we want learnabil-
ity with uniform rates, irrespective of the distribution chosen. Sometimes one might have prior knowledge or
restrictions on distributions that can occur and so one might only need rates to hold uniformly over a specific
family of distributions. To capture this notion we define below sample complexity of a learning problem
given a specific family of distributions D over instances Z .

Definition 7. Given a family D of Borel distributions over instance space Z and an ε > 0, the sample

complexity of any rule A is defined as

nD(ε,A) = inf

{
n ∈ N

∣∣∣∣ sup
D∈D

ES∼Dn
[
LD(A(S))− inf

h∈H
LD(h)

]
≤ ε
}

Further the sample complexity of the learning problem over this family of distributions D is defined as

nD(ε,Z) = infA n
D(ε,A,Z).

A concept closely related to statistical learning that plays an important role in characterizing learnability is
the notion of generalization.

Definition 8. A learning rule A generalizes with rate εgen(n) under distribution D if for all n ∈ N,

ES∼Dn [|L(A(S))− LS(A(S))|] ≤ εgen(n). (3.1.1)

The rule A is said to universally generalize with rate εgen(n) if it generalizes with rate εgen(n) under all

distributions D over Z .

We note that other authors sometimes define “consistent”, and thus also “learnable” as a combination of our
notions of “consistent” and “generalizing”.

Empirical Risk Minimization (Sample Average Approximation Approach) and Re-
lated Notions :

Perhaps the most common approach used for learning problems is Empirical Risk Minimization (ERM) as
it is referred to in machine learning terminology or Sample Average Approximation (SAA) approach as is
widely referred to in the stochastic optimization terminology. The basic idea is for the learning algorithm
to return hypothesis in target class H that minimizes average loss over sample. Specifically a learning rule
AERM is an ERM (Empirical Risk Minimizer) if it minimizes the average loss, that is :

LS(AERM(S)) = LS(ĥS) = inf
h∈H

LS(h). (3.1.2)

15

where we use LS(ĥS) = infh∈H LS(h) to refer to the minimal empirical loss. But since there might be
several hypotheses minimizing the empirical risk, ĥS does not refer to a specific hypotheses and there might
be many rules which are all ERM’s. While Empirical Risk Minimization (or equivalently the Sample Average
Approximation approach) is a widely used learning rule, we now introduce a closely related concept of an
Asymptotic Empirical Risk Minimizer which will play an important role in characterizing learnability in
general problems.

Definition 9. We say that a rule A is an AERM (Asymptotic Empirical Risk Minimizer) with rate εerm(n)

under distribution D if:

ES∼Dn
[
L̂(A(S))− L̂(ĥS)

]
≤ εerm(n) (3.1.3)

Further, a learning rule is universally an AERM with rate εerm(n), if it is an AERM with rate εerm(n) under

all distributions D over Z . A

Yet another closely related notion of an approximate ERM is the following notion of alway AERM.

Definition 10. A learning rule A is an always AERM with rate εerm(n), if for any sample S of size n, it

holds that

L̂(A(S))− L̂(ĥS) ≤ εerm(n) (3.1.4)

3.2 Background

3.2.1 Learnability and Uniform Convergence

As discussed in the introduction, a central notion for characterizing learnability is uniform convergence.
Formally, we say that uniform convergence holds for a learning problem, if the empirical risks of hypotheses
in the hypothesis class converges to their population risk uniformly, with a distribution-independent rate:

sup
D

ES∼Dn
[

sup
h∈H
|L(h)− LS(h)|

]
n→∞−→ 0. (3.2.1)

It is straightforward to show that if uniform convergence holds, then a problem can be learned with the ERM
learning rule.

For binary classification problems (where Z = X × {0, 1}, each hypothesis is a mapping from X to {0, 1},
and `(h; (x, y)) = 1{h(x)6=y}), [13] showed that the finiteness of a simple combinatorial measure known
as the VC-dimension implies uniform convergence. Furthermore, it can be shown that binary classification
problems with infinite VC-dimension are not learnable in a distribution-independent sense. This establishes
the condition of having finite VC-dimension, and thus also uniform convergence, as a necessary and sufficient
condition for learnability.

Such a characterization can also be extended to regression, such as regression with squared loss, where h is
now a real-valued function, and `(h; (x, y)) = (h(x) − y)2. The property of having finite fat-shattering di-

16

0

1

�

Figure 3.1: An example of a “trivial” learning situation. Each line represents some h ∈ H, and shows the
value of `(h, z) for all z ∈ Z . The hypothesis h̃ dominates any other hypothesis (e.g., `(h̃; z) < `(h; z)
uniformly for all z), and thus the problem is learnable without uniform convergence or any other property of
H .

mension at all finite scales now replaces the property of having finite VC-dimension, but the basic equivalence
still holds: a problem is learnable if and only if uniform convergence holds ([10], see also [14], Chapter 19).
These results are usually based on clever reductions to binary classification. However, the General Learning
Setting that we consider is much more general than classification and regression, and includes setting where
a reduction to binary classification is impossible.

To justify the necessity of uniform convergence even in the General Learning Setting, Vapnik attempted
to show that in this setting, learnability with the ERM learning rule is equivalent to uniform convergence
([15]). Vapnik noted that this result does not hold, due to “trivial” situations. In particular, consider the case
where we take an arbitrary learning problem (with hypothesis class H), and add to H a single hypothesis
h̃ such that `(h̃, z) < infh∈H `(h, z) for all z ∈ Z (see figure 3.1 below). This learning problem is now
trivially learnable, with the ERM learning rule which always picks h̃. Note that no assumptions whatsoever
are made on H - in particular, it can be arbitrarily complex, with no uniform convergence or any other
particular property. Note also that such a phenomenon is not possible in the binary classification setting,
where `(h; (x, y)) = 1{h(x)6=y}, since on any (x, y) we will have hypotheses with `(h; (x, y)) = `(h̃; (x, y))

and thus if H is very complex (has infinite VC dimension) then on every training set there will be many
hypotheses with zero empirical error.

To exclude such “trivial” cases, Vapnik introduced a stronger notion of consistency, termed as “strict consis-
tency”, which in our notation is defined as

∀c ∈ R, inf
h:L(h)≥c

LS(h)
n→∞−→ inf

h:L(h)≥c
L(h) ,

where the convergence is in probability. The intuition is that we require the empirical risk of the ERM to

17

converge to the lowest possible risk, even after discarding all the “good” hypotheses whose risk is smaller
than some threshold. Vapnik then showed that such strict consistency of the ERM is in fact equivalent to
(one-sided) uniform convergence, of the form

sup
h∈H

(L(h)− LS(h))
n→∞−→ 0 (3.2.2)

in probability. Note that this equivalence holds for every distribution separately, and does not rely on universal
consistency of the ERM.

These results seem to imply that up to “trivial” situations, a uniform convergence property indeed character-
izes learnability, at least using the ERM learning rule. However, as we will see later on, the situation is in
fact not that simple.

3.2.2 Various Complexity Measures and Uniform Convergence

We begin by defining the class of functions F ⊆ RZ we will often refer to the loss class, as :

F(H,Z) := {z 7→ `(h, z) : h ∈ H} (3.2.3)

We shall often drop the arguments H and Z and simply use F to mean F(H,Z). Notice that the function
class is indexed by hypotheses in class H. Note that the notion uniform convergence in Equation 3.2.1 can
now be rewritten as :

sup
D

ES∼Dn
[

sup
f∈F

(
E [f]− ÊS [f]

)]
n→∞−→ 0.

Various complexity measures have been introduced in machine learning and empirical process theory lit-
erature to bound rates if uniform convergence and thus get upper bounds on learning rates for ERM/SA
algorithms. We introduce and discuss about a few of these below. See Appendix ?? for the relationships
among these various complexity measures.

Definition 11 (Statistical Rademacher Complexity). The empirical Rademacher Complexity of a function

class F ⊂ RZ given a sample S = {z1, . . . , z|S|} is defined as :

R̂S(F) := Eε

sup
f∈F

1

|S|

|S|∑
i=1

εtf(zi)


Further for any n ∈ N, we define the worst-case statistical Rademacher complexity as :

Riid
n (F) = sup

z1,...,zn∈Z
Eε

[
sup
f∈F

1

n

n∑
i=1

εif(zi)

]
(3.2.4)

18

It can be easily shown that for any distribution D,

ES∼Dn
[

sup
f∈F

(
E [f]− ÊS [f]

)]
≤ 2ES∼Dn

[
R̂S(F)

]
≤ 2Riid

n (F)

and so the empirical Rademacher complexity and so also the worst case statistical Rademacher complexity
provide upper bound on the rate of uniform convergence over any function class F .

Another tool from empirical process theory that is often used to upper bound rates of uniform convergence is
covering numbers of the function class. The statistical covering number of a function class is defined below.

Definition 12 (Statistical Covering Number). A set V ⊂ Rn is an α-cover (with respect to `p-norm) of a

function class F ⊆ RZ on a sample S = z1, . . . , zn if,

∀f ∈ F , ∀ε ∈ {±1}n ∃v ∈ V s.t.

(
1

n

n∑
t=1

|vt − f(zt)|p
)1/p

≤ α

The statistical covering number of a function class F on a given sample S = z1, . . . , zn is defined as

N iid
p (α,F , S) = min{|V | : V is an α− cover w.r.t. `p-norm of F on S}.

Further defineN iid
p (α,F , n) = supS∈Zn N iid

p (α,F , S), the maximal `p covering number ofF over samples

of size n.

Pollard’s bound [16] and Dudley integral bound [17] can be used to bound rates of uniform convergence in
terms of covering numbers. See A.1 in the appendix for a bound on statistical Rademacher complexity in
terms of covering numbers through a refined Dudley bound. Yet another combinatorial tool that can be used
to bound rates of uniform convergence is the so called fat-shattering dimension defined below.

Definition 13 (Fat-Shattering Dimension). A sample S = z1, . . . , zd is said to be α-shattered by a function

class F ⊆ RX , if there exists s1, . . . , sd ∈ R such that

∀ε ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], εt(f(zt)− st) ≥ α/2

The sequence s1, . . . , sd is called the witness to shattering. The statistical fat-shattering dimension fatiid
α (F ,Z)

at scale α is the largest d such that F α-shatters some sample S of size d.

One can upper bound covering numbers in terms of fat-shattering dimension. See Section A.2 of Appendix
A for a bound on covering number in terms of fat shattering dimension of function class.

19

3.2.3 Learnability and Stability

Instead of focusing on the hypothesis class, and ensuring uniform convergence of the empirical risks of
hypothesis in this class, an alternative approach is to directly control the variance of the learning rule. Here, it
is not the complexity of the hypothesis class which matters, but rather the way that the learning rule explores
this hypothesis class. This alternative approach leads to the notion of stability in learning. It is important to
note that stability is a property of a learning rule, not of the hypothesis class.

In the context of modern learning theory1, the use of stability can be traced back at least to the work of [21],
which noted that the sensitivity of a learning algorithm with regard to small changes in the sample controls
the variance of the leave-one-out estimate. The authors used this observation to obtain generalization bounds
(w.r.t. the leave-one-out estimate) for the k-nearest neighbor algorithm. It is interesting to note that a uniform
convergence approach for analyzing this algorithm simply cannot work, because the “hypothesis class” in
this case has unbounded complexity. These results were later extended to other “local” learning algorithms
(see [22] and references therein). In addition, practical methods have been developed to introduce stability
into learning algorithms, in particular the Bagging technique introduced by [23].

Over the last decade, stability was studied as a generic condition for learnability. [24] showed that an algo-
rithm operating on a hypothesis class with finite VC dimension is also stable (under a certain definition of
stability). [25] introduced a strong notion of stability (denoted as uniform stability) and showed that it is a
sufficient condition for learnability, satisfied by popular learning algorithms such as regularized linear clas-
sifiers and regressors in Hilbert spaces (including several variants of SVM). [26] introduced several weaker
variants of stability, and showed how they are sufficient to obtain generalization bounds for algorithms stable
in their sense.

The works cited above mainly considered stability as a sufficient condition for learnability. A more recent line
of work ([27],[28]) studied stability as a necessary condition for learnability. However, the line of argument
is specific to settings where uniform convergence holds and is necessary for learning. With this assumption,
it is possible to show that the ERM algorithm is stable, and thus stability is also a necessary condition for
learning. However, as we will see later on in this chapter, uniform convergence is in fact not necessary for
learning in the General Learning Setting, and stability plays there a key role which has nothing to do with
uniform convergence.

Finally, it is important to note that the results cited above make use of many different definitions of stability,
which unfortunately are not always comparable. All of them measure stability as the amount of change in
the algorithm’s output as a function of small changes to the sample on which the algorithm is run. However,
“amount of change to the output” and “small changes to the sample” can be defined in many different ways.
“Amount of change to the output” can mean change in risk, change in loss with respect to particular examples,
or supremum of change in loss over all examples. “Small changes to the sample” usually mean either deleting
one example or replacing it with another one (and even here, one can talk about removing/replacing one
instance at random, or in some arbitrary manner). Finally, this measure of change can be measured with

1In a more general mathematical context, stability has been around for much longer. The necessity of stability for so-called inverse
problems to be well posed was first recognized by [18]. The idea of regularization (that is, introducing stability into ill-posed inverse
problems) became widely known through the works of [19] and [20]. We return to the notion of regularization later on.

20

respect to any arbitrary sample, in expectation over samples drawn from the underlying distribution; or in
high probability over samples. .

3.3 Failure of Uniform Convergence and ERM/SAA Approaches

In this section, we study a special case of the General Learning Setting, where there is a real gap between
learnability and uniform convergence, in the sense that there are non-trivial problems where no uniform
convergence holds (not even in a local sense), but they are still learnable. Moreover, some of these problems
are learnable with an ERM (again, without any uniform convergence), and some are not learnable with an
ERM, but rather with a different mechanism. We also discuss why this peculiar behavior does not formally
contradict Vapnik’s results on the equivalence of strict consistency of the ERM and uniform convergence,
as well as the important role that regularization seems to play here, but in a different way than in standard
theory.

3.3.1 Learning without Uniform Convergence : Stochastic Convex Optimization

A stochastic convex optimization problem is a special case of the General Learning Setting discussed above,
with the added constraints that the objective function `(h; z) is Lipschitz-continuous and convex in h for
every z, and that H is closed, convex and bounded. We will focus here on problems where H is a subset of
a Hilbert space. A special case is the familiar linear prediction setting, where z = (x, y) is an instance-label
pair, each hypothesis h belongs to a subset H of a Hilbert space, and `(h;x, y) = `(〈h, φ(x)〉 , y) for some
feature mapping φ and a loss function ` : R× Y → R, which is convex w.r.t. its first argument.

The situation in which the stochastic dependence on h is linear, as in the preceding example, is fairly well
understood. When the domainH and the mapping φ are bounded, we have uniform convergence, in the sense
that |L(h) − L̂(h)| is uniformly bounded over all h ∈ H (see [29]). This uniform convergence of L̂(h)

to L(h) justifies choosing the empirical minimizer ĥS = arg minh L̂(h), and guarantees that the expected
value of L(ĥS) converges to the optimal value L∗ = infh L(h).

Even if the dependence on h is not linear, it is still possible to establish uniform convergence (using covering
number arguments) provided thatH is finite dimensional. Unfortunately, when we turn to infinite dimensional
hypothesis spaces, uniform convergence might not hold and the problem might not be learnable with empirical
minimization. Surprisingly, it turns out that this does not imply that the problem is unlearnable. We will show
that using a regularization mechanism, it is possible to devise a learning algorithm for any stochastic convex
optimization problem, even when uniform convergence does not hold. This mechanism is fundamentally
related to the idea of stability, and will be a good starting point for our more general treatment of stability and
learnability in the next section of this chapter.

We now turn to discuss our first concrete example. Consider the convex stochastic optimization problem

21

given by

`Eq. (3.3.1)(h; (x, α)) = ‖α ∗ (h− x)‖ =

√∑
i

α2[i](h[i]− x[i])2 , (3.3.1)

where for now we let H to be the d-dimensional unit sphere H =
{
h ∈ Rd : ‖h‖ ≤ 1

}
, we let z = (x, α)

with α ∈ [0, 1]d and x ∈ H, and we define u ∗ v to be an element-wise product. We will first consider a
sequence of problems, where d = 2n for any sample size n, and establish that we cannot expect a convergence
rate which is independent of the dimensionality d. We then formalize this example in infinite dimensions.

One can think of the problem in Eq. (3.3.1) as that of finding the “center” of an unknown distribution over
x ∈ Rd, where we also have stochastic per-coordinate “confidence” measures α[i]. We will actually focus on
the case where some coordinates are missing, namely that α[i] = 0.

Consider the following distribution over (x, α): x = 0 with probability one, and α is uniform over {0, 1}d.
That is, α[i] are i.i.d. uniform Bernoulli. For a random sample (x1, α1), . . . , (xn, αn) if d > 2n then we have
that with probability greater than 1−e−1 > 0.63, there exists a coordinate j ∈ 1 . . . d such that all confidence
vectors αi in the sample are zero on the coordinate j, that is αi[j] = 0 for all i = 1..n. Let ej ∈ H be the
standard basis vector corresponding to this coordinate. Then

L̂Eq. (3.3.1)(ej) =
1

n

n∑
i=1

‖αi ∗ (ej − 0)‖ =
1

n

n∑
i=1

|αi[j]| = 0,

where L̂Eq. (3.3.1)(·) denotes the empirical risk w.r.t. the function `Eq. (3.3.1)(·). On the other hand, letting
LEq. (3.3.1)(·) denote the actual risk w.r.t. `Eq. (3.3.1)(·), we have

LEq. (3.3.1)(ej) = Ex,α [‖α ∗ (ej − 0)‖] = Ex,α [|α[j]|] = 1/2.

Therefore, for any n, we can construct a convex Lipschitz-continuous objective in a high enough dimension
such that with probability at least 0.63 over the sample, suph

∣∣∣LEq. (3.3.1)(h)− L̂Eq. (3.3.1)(h)
∣∣∣ ≥ 1/2.

Furthermore, since `(·; ·) is non-negative, we have that ej is an empirical minimizer, but its expected value
LEq. (3.3.1)(ej) = 1/2 is far from the optimal expected value minh LEq. (3.3.1)(h) = LEq. (3.3.1)(0) = 0.

To formalize the example in a sample-size independent way, take H to be the unit sphere of an infinite-
dimensional Hilbert space with orthonormal basis e1, e2, . . ., where for v ∈ H, we refer to its coordinates
v[j] = 〈v, ej〉 w.r.t this basis. The confidences α are now a mapping of each coordinate to [0, 1]. That is, an
infinite sequence of reals in [0, 1]. The element-wise product operation α ∗ v is defined with respect to this
basis and the objective function `Eq. (3.3.1)(·) of Eq. (3.3.1) is well defined in this infinite-dimensional space.

We again take a distribution over z = (x, α) where x = 0 and α is an infinite i.i.d. sequence of uniform
Bernoulli random variables (that is, a Bernoulli process with each αi uniform over {0, 1} and independent of
all other αj). Now, for any finite sample there is almost surely a coordinate j with αi[j] = 0 for all i, and so
we a.s. have an empirical minimizer L̂Eq. (3.3.1)(ej) = 0 with LEq. (3.3.1)(ej) = 1/2 > 0 = LEq. (3.3.1)(0).

As a result, we see that the empirical values L̂Eq. (3.3.1)(h) do not converge uniformly to their expectations,
and empirical minimization is not guaranteed to solve the problem. Moreover, it is possible to construct a

22

sharper counterexample, in which the unique empirical minimizer ĥS is far from having optimal expected
value. To do so, we augment `Eq. (3.3.1)(·) by a small term which ensures its empirical minimizer is unique,
and far from the origin. Consider:

`Eq. (3.3.2)(h; (x, α)) = `Eq. (3.3.1)(h; (x, α)) + ε
∑
i

2−i(h[i]−1)2 (3.3.2)

where ε = 0.01. The objective is still convex and (1 + ε)-Lipschitz. Furthermore, since the additional term
is strictly convex, we have that `Eq. (3.3.2)(h; z) is strictly convex w.r.t. h and so the empirical minimizer is
unique.

Consider the same distribution over z: x = 0 while α[i] are i.i.d. uniform zero or one. The empirical
minimizer is the minimizer of L̂Eq. (3.3.2)(h) subject to the constraints ‖h‖ ≤ 1. Identifying the solution to
this constrained optimization problem is tricky, but fortunately not necessary. It is enough to show that the
optimum of the unconstrained optimization problem h∗UC = arg min L̂Eq. (3.3.2)(h) (without constraining
h ∈ H) has norm ‖h∗UC‖ ≥ 1. Notice that in the unconstrained problem, whenever αi[j] = 0 for all i = 1..n,
only the second term of `Eq. (3.3.2) depends on h[j] and we have h∗UC[j] = 1. Since this happens a.s. for some
coordinate j, we can conclude that the solution to the constrained optimization problem lies on the boundary
ofH, that is

∥∥∥ĥS∥∥∥ = 1. But for such a solution we have

LEq. (3.3.2)(ĥS) ≥ Eα

√∑
i

α[i]ĥ2
S [i]

 ≥ Eα

[∑
i

α[i]ĥ2
S [i]

]
=
∑
i

ĥ2
S [i]Eα [α[i]] =

1

2

∥∥∥ĥS∥∥∥2

=
1

2
,

while L∗ ≤ L(0) = ε.

In conclusion, no matter how big the sample size is, the unique empirical minimizer ĥS of the stochastic
convex optimization problem in Eq. (3.3.2) is a.s. much worse than the population optimum, L(ĥS) ≥ 1

2 >

ε ≥ L∗, and certainly does not converge to it.

Still Learnable Using Stochastic Approximation (SA) Approach :

So far we established that the learning problem specified in Equation 3.3.2 fails to satisfy uniform conver-
gence and further ERM/SAA approach fails to provide any non-trivial guarantee. Specifically we saw that
with the particular distribution over α as the uniform distribution over {±1}N, we have that L(ĥS) ≥ 1

2 but
however L∗ ≤ ε = 0.01. However we shall show that this problem is still learnable. Specifically we will see
that using the so called Stochastic Approximation (SA) approach, we can get a guarantee over learning rate
of order 1/

√
n for the problem.

The first thing we already noticed was that the problem specified in Equation 3.3.2 is (1 + ε)-Lipschitz.
Further note that the hypothesis set H is the unit ball in a Hilbert space and that the problem is convex in
its first argument. In the second part of this dissertation we will formally define Stochastic Approximation
(SA) approach for convex learning problems and in a more general way than usually described in literature.
For now we will informally use the term Stochastic Approximation approach to refer to stochastic gradient

23

descent (or online gradient descent followed by averaging). To this end consider the learning algorithm for
the problem which given sample S = {(x1, α1), . . . , (xn, αn)} is described below :

Stochastic Gradient Descent for problem Eq. (3.3.2):

Initialize h1 = 0 and η = 1/
√
|S|

for t = 1 to |S|
h′t+1 = ht − η∇`Eq. (3.3.2)(ht; (xt, αt))

ht+1 =

 h′t+1 if
∥∥h′t+1

∥∥ ≤ 1
h′t+1

‖h′t+1‖
otherwise

end for
Return hS = 1

|S|
∑|S|
t=1 ht.

Since the problem is convex and (1 + ε)-Lipschitz and sinceH is the unit ball in the Hilbert space it follows
(for instance from [30] + online to batch conversion) that irrespective of which distribution D over instances
we use,

LD(hS)− inf
h∈H

LD(h) ≤
√

2(1 + ε)

n

Thus we can conclude that the problem is learnable and in fact enjoys a rate of order 1√
n

, yet as we already
say both uniform convergence and ERM (SAA approach) fails.

3.3.2 Learnability via Stability : Role of Regularization

At this point, we have seen an example in the stochastic convex optimization framework where uniform
convergence does not hold, and the ERM algorithm fails. Yet we saw that the problem was learnable using
SA approach. We will now see an alternate explanation for why the problem is learnable that mainly uses
stability to explain the success. We will specifically consider an algorithm that minimizes a regularized
average loss and show that this algorithm can guarantee a similar learning rate as the stochastic gradient
descent approach. We will show that the regularization induces stability to the learning problem and this
stability in turn assures learnability.

Given a stochastic convex optimization problem with an objective function `(h; z), consider a regularized

version of it: instead of minimizing the expected risk Ez [`(h; z)] over h ∈ H, we will try to minimize

Ez
[
`(h; z) +

λ

2
‖h‖2

]
for some λ > 0. Notice that this is simply a stochastic convex optimization problem w.r.t. the objective
function `(h; z) + λ

2 ‖h‖
2. We will show that this regularized problem is learnable using the ERM algorithm

(namely, by attempting to minimize 1
n

∑
i `(h; zi) + λ

2 ‖h‖
2), by showing that the ERM algorithm is stable.

By taking λ→ 0 at an appropriate rate as the sample size increases, we are able to solve the original stochastic
problem optimization problem, w.r.t. `(h; z).

24

The key characteristic of the regularized objective function we need is that it is λ-strongly convex. Formally,
we say that a real function g(·) over a domainH in a Hilbert space is λ-strongly convex (where λ ≥ 0), if the
function g(·)− λ

2 ‖ · ‖
2 is convex. In this case, it is easy to verify that if h minimizes g then

∀h′, g(h′)− g(h) ≥ λ
2 ‖h

′ − h‖2 .

When λ = 0, strong convexity corresponds to standard convexity. In particular, it is immediate from the
defintion that `(h; z) + λ

2 ‖h‖
2 is λ-strongly convex w.r.t. h (assuming `(h; z) is convex).

The arguments above are formalized in the following two theorems:

Theorem 1. Consider a stochastic convex optimization problem such that `(h; z) is λ-strongly convex and

L-Lipschitz with respect to h ∈ H. Let z1, . . . , zn be an i.i.d. sample and let ĥS be the empirical minimizer.

Then, we have that :

ES
[
L(ĥS)− inf

h∈H
L(h)

]
≤ 4L2

λn
. (3.3.3)

Theorem 2. Let f : H×Z → R be such thatH is bounded by B and `(h, z) is convex and L-Lipschitz with

respect to h. Let z1, . . . , zn be an i.i.d. sample, let λ =
√

16L2

B2 n and let ĥλ be the minimizer of

ĥλ = min
h∈H

(
1
n

n∑
i=1

`(h, zi) + λ
2 ‖h‖

2

)
(3.3.4)

Then, we have that

ES
[
L(ĥλ)− inf

h∈H
L(h)

]
≤ 4

√
L2B2

n

(
1 +

8

n

)
.

From the above theorem, we see that regularization is essential for convex stochastic optimization. It is
important to note that even for the strongly convex optimization problem in Theorem 1, where the ERM
algorithm does work, it is not due to uniform convergence. To see this, consider augmenting the objective
function `Eq. (3.3.1)(·) from Eq. (3.3.1) with a strongly convex term:

`Eq. (3.3.5)(h;x, α) = `Eq. (3.3.1)(h;x, α) +
λ

2
‖h‖2 . (3.3.5)

The modified objective `Eq. (3.3.5)(·; ·) is λ-strongly convex and (1 + λ)-Lipschitz overH = {h : ‖h‖ ≤ 1}
and thus satisfies the conditions of Theorem 1. Now, consider the same distribution over z = (x, α) used
earlier: x = 0 and α is an i.i.d. sequence of uniform zero/one Bernoulli variables. Recall that almost surely
we have a coordinate j that is never “observed”, namely such that ∀iαi[j] = 0. Consider a vector tej of
magnitude 0 < t ≤ 1 in the direction of this coordinate. We have that L̂Eq. (3.3.5)(tej) = λ

2 t
2 (where

L̂Eq. (3.3.5)(·) is the empirical risk w.r.t. `Eq. (3.3.5)(·)) but LEq. (3.3.5)(tej) = 1
2 t + λ

2 t
2. Hence, letting

LEq. (3.3.5)(·) denote the risk w.r.t. `Eq. (3.3.5)(·), we have that LEq. (3.3.5)(tej) − L̂Eq. (3.3.5)(tej) = t/2.
In particular, we can set t = 1 and establish suph∈H(LEq. (3.3.5)(h)− L̂Eq. (3.3.5)(h)) ≥ 1

2 regardless of the
sample size.

We see then that the empirical averages L̂Eq. (3.3.5)(h) do not converge uniformly to their expectations.

25

Moreover, the example above shows that there is no uniform convergence even in a local sense, namely over
all hypotheses whose risk is close enough toL∗, or those close enough to the minimizer of `Eq. (3.3.5)(h;x, α).

Regularization Vs Constrained Minimization

The technique of regularizing the objective function by adding a “bias” term is old and well known. In
particular, adding ‖h‖2 is the so-called Tikhonov Regularization technique, which has been known for more
than half a century (see [19]). However, the role of regularization in our case is very different than in familiar
settings such as `2 regularization in SVMs and `1 regularization in LASSO. In those settings regularization
serves to constrain our domain to a low-complexity domain (e.g., low-norm predictors), where we rely on
uniform convergence. In fact, almost all learning guarantees that we are aware of can be expressed in terms
of some sort of uniform convergence.

In our case, constraining the norm of h does not ensure uniform convergence. Consider the example `Eq. (3.3.1)(·)
we have seen earlier. Even over a restricted domainHr = {h : ‖h‖ ≤ r}, for arbitrarily small r > 0, the em-
pirical averages L̂(h) do not uniformly converge to L(h). Furthermore, consider replacing the regularization
term λ ‖h‖2 with a constraint on the norm of ‖h‖, namely, solving the problem

h̃r = arg min
‖h‖≤r

L̂(h) (3.3.6)

We cannot solve the stochastic optimization problem by setting r in a distribution-independent way (i.e.,
without knowing the solution...). To see this, note that when x = 0 a.s. we must have r → 0 to ensure
L(h̃r)→ L∗. However, if x = e1 a.s., we must set r → 1. No constraint will work for all distributions over
Z = (X , α)! This sharply contrasts with traditional uses of regularization, where learning guarantees are
typically stated in terms of a constraint on the norm rather than in terms of a parameter such as λ, and adding
a regularization term of the form λ

2 ‖h‖
2 is viewed as a proxy for bounding the norm ‖h‖.

3.3.3 Contradiction to Vapnik?

In Subsection 3.2.1, we discussed how Vapnik showed that uniform convergence is in fact necessary for
learnability with the ERM. At first glance, this might seem confusing in light of the examples presented
above, where we have problems learnable with the ERM without uniform convergence whatsoever.

The solution for this apparent paradox is that our examples are not “strictly consistent” in Vapnik’s sense.
Recall that in order to exclude “trivial” cases, Vapnik defined strict consistency of empirical minimization as
(in our notation):

∀c ∈ R, inf
h:L(h)≥c

LS(h) −→ inf
h:L(h)≥c

L(h) , (3.3.7)

where the convergence is in probability. This condition indeed ensures that L(ĥS)
P→ L∗. Vapnik’s Key

Theorem on Learning Theory [15, Theorem 3.1] then states that strict consistency of empirical minimization

26

is equivalent to one-sided 2 uniform convergence. In the example presented above, even though Theorem 1
establishes LEq. (3.3.5)(ĥS)

P→ L∗, the consistency isn’t “strict” by the definition above. To see this, for any
c > 0, consider the vector tej (where ∀iαi[j] = 0) with t = 2c. We have LEq. (3.3.5)(tej) = 1

2 t + λ
2 t

2 > c

but L̂Eq. (3.3.5)(tej) = λ
2 t

2 = 2λc2. Focusing on λ = 1
2 we get:

inf
LEq. (3.3.5)(h)≥c

L̂Eq. (3.3.5)(h) ≤ c2 (3.3.8)

almost surely for any sample size n, violating the strict consistency requirement Eq. (3.3.7).

We emphasize that stochastic convex optimization is far from “trivial” in that there is no dominating hypoth-
esis that will always be selected. Although for convenience of analysis we took x = 0, one should think of
situations in which x is stochastic with an unknown distribution. This shows that uniform convergence is a
sufficient, but not at all necessary, condition for consistency of empirical minimization in non-trivial settings.

3.4 Stability of Learning Rules

In the previous section, we have shown that in the General Learning Setting, it is possible for problems
to be learnable without uniform convergence, in sharp contrast to previously considered settings. The key
underlying mechanism which allowed us to learn is stability. In this section, we study the connection between
learnability and stability in greater depth, and show that stability can in fact characterize learnability. Also,
we will see how various “common knowledge facts”, which we usually take for granted and are based on a
“uniform convergence equivalent to learnability” assumption, do not hold in the General Learning Setting,
and things can be much more delicate.

We will refer to settings where learnability is equivalent to uniform convergence as “supervised classification”
settings. While supervised classification does not encompass all settings where this equivalence holds, most
equivalence results refer to it either explicitly or implicitly (by reduction to a classification problem).

We start by giving the exact definition of the stability notions that we will use. As discussed earlier, there
are many possible stability measures, some of which can be used to obtain results of a similar flavor to the
ones below. The definition we use seems to be the most convenient for the goal of characterizing learnability
in the General Learning Setting. In subsection 3.4.1, we provide a few illustrating examples to the subtle
differences that can arise from slight variations in the stability measure.

Our two stability notions are based on replacing one of the training sample instances. For a sample S of size
n, let S(i) = {z1, ..., zi−1, z

′
i, zi+1, ..., zn} be a sample obtained by replacing the i-th observation of S with

some different instance z′i. When not discussed explicitly, the nature of how z′i is obtained should be obvious
from context.

2“One-sided” meaning requiring only sup(L(h)− LS(h)) −→ 0, rather then sup |L(h)− LS(h)| −→ 0.

27

Definition 14. A rule A is uniform-RO stable3 with rate εstable(n), if for all possible S(i) and any z′ ∈ Z ,

1

n

n∑
i=1

∣∣∣`(A(S(i)); z′)− `(A(S); z′)
∣∣∣ ≤ εstable(n).

Definition 15. A rule A is average-RO stable with rate εstable(n) under distributions D if∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,(z′1,...,z′n)∼Dn
[
`(A(S(i)); z′i)− `(A(S); z′i)

]∣∣∣∣∣ ≤ εstable(n).

Note that this definition corresponds to assuming that the expected empirical risk of the learning rule con-
verges to the expected risk - see Lemma 13.

We say that a rule is universally stable with rate εstable(n), if the stability property holds with rate εstable(n)

for all distributions.

Claim 3. Uniform-RO stability with rate εstable(n) implies average-RO stability with rate εstable(n).

The following subsection contains a brief literature survey on various definitions of stability and discusses
and illustrates the differences between these various notions. The main results in this chapter are only based
on the two definitions of stability we introduced so far and the following subsection is mainly for pedantic
purposes and the reader may choose to skip it.

3.4.1 Comparison with Existing Literature and Other Notions of Stability

The existing literature on stability in learning, briefly surveyed in Subsection 3.2.3, utilizes many different
stability measures. All of them measure the amount of change in the algorithm’s output as a function of
small changes to the sample on which the algorithm is run. However, they differ in how “output”, “amount of
change to the output”, and “small changes to the sample” are defined. In Section ??, we used three stability
measures. Roughly speaking, one measure (average-RO stability) is the expected change in the objective
value on a particular instance, after that instance is replaced with a different instance. The second measure
and third measure (uniform-RO stability and strongly-uniform-RO stability respectively) basically deal with
the maximal possible change in the objective value with respect to a particular instance, by replacing a
single instance in the training set. However, instead of measuring the objective value on a specific instance,
we could have measured the change in the risk of the returned hypothesis, or any other distance measure
between hypotheses. Instead of replacing an instance, we could have talked about adding or removing one
instance from the sample, either in expectation or in some arbitrary manner. Such variations are common in
the literature.

To relate our stability definitions to the ones in the literature, we note that our definitions of uniform-RO
stability and strongly-uniform-RO stability are somewhat similar to uniform stability ([25]), which in our

3RO is short for “replace-one”.

28

notation is defined as supS,z maxi |`(A(S; z))− `(A(S\i); z)|, where S\i is the training sample S with in-
stance zi removed. Compared to uniform-RO stability, here we measure maximal change over any particular
instance, rather than average change over all instances in the training sample. Also, we deal with remov-
ing an instance rather than replacing it. Strongly-uniform-RO stability is more similar, with the only formal
difference being removal vs. replacement of an instance. However, the results for uniform stability mostly
assume deterministic learning rules, while in this work we have used strongly-uniform-RO stability solely in
the context of randomized learning rules. For deterministic learning rules, the differences outlined above are
sufficient to make uniform stability a strictly stronger requirement than uniform-RO stability, since it is easy
to come up with learning problems and (non-symmetric) learning rules which are uniform-RO stable but not
uniformly stable. Moreover, we show that uniform-RO stable AERM’s characterize learnability, while it is
well known that uniformly stable AERM’s are not necessary for learnability (see [26]). For the same reason,
our notion of strongly-uniform-RO stability is apparently too strong to characterize learnability when we deal
with deterministic learning rules, as opposed to randomized learning rules.

Our definition of average-RO stable is similar to “average stability” defined in [27], which in our notation is
defined as ES∼Dn,z′1

[
`(A(S(i)); z1)− `(A(S); z1)

]
. Compared to average-RO stability, the main difference

is that the change in the objective value is measured with respect to z1 rather than an average over zi for all
i, and stems from the assumption there that the learning algorithm is symmetric. Notice however that we do
not make such an assumption.

For an elaborate study on other stability notions and their relationships, see [26].

Unfortunately, many of the stability notions in the literature are incomparable, and even slight changes in the
definition radically affect their behavior. WE shall now investigate these differences in more detail.

LOO Stability vs. RO Stability

The stability definitions we saw introduced up to now were all based on the idea of replacing one instance
in the training sample by another instance (e.g., “RO” or “replace-one” stability). An alternative set of
definitions can be obtained based on removing one instance in the training sample (e.g., “LOO” or “leave-
one-out” stability). Despite seeming like a small change, it turns out there is a considerable discrepancy
in terms of the obtainable results, compared to RO stability. In this subsection, we wish to discuss these
discrepancies, as well as show how small changes to the stability definition can materially affect its strength.

Specifically, we consider the following four LOO stability measures, each slightly weaker than the previous
one. The first and last are similar to our notion of uniform-RO stability and average-RO stability respectively.
However, we emphasize that RO stability and LOO stability are in general incomparable notions, as we shall
see later on. Also, we note that some of these definitions appeared in previous literature. For instance, the
notion of “all-i-LOO” below has been studied by several authors under different names [25, 28, 27]. The
notation S\i below refer to a training sample S with instance zi removed.

Definition 16. A rule A is uniform-LOO stable with rate εstable(n) if for all samples S of n points and for

29

all i: ∣∣∣`(A(S\i); zi)− `(A(S); zi)
∣∣∣ ≤ εstable(n).

Definition 17. A rule A is all-i-LOO stable with rate εstable(n) under distribution D if for all i:

ES∼Dn
[∣∣∣`(A(S\i); zi)− `(A(S); zi)

∣∣∣] ≤ εstable(n).

Definition 18. A rule A is LOO stable with rate εstable(n) under distribution D if

1

n

n∑
i=1

ES∼Dn
[∣∣∣`(A(S\i); zi)− `(A(S); zi)

∣∣∣] ≤ εstable(n).

Definition 19. A rule A is on-average-LOO stable with rate εstable(n) under distribution D if∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn
[
`(A(S\i); zi)− `(A(S); zi)

]∣∣∣∣∣ ≤ εstable(n).

While some of the definitions above might look rather similar, we show below that each one is strictly stronger
than the other. Example 3 is interesting in its own right, since it presents a learning problem and an AERM
that is universally consistent, but not LOO stable. While this is possible in the General Learning Setting, in
supervised classification every such AERM has to be LOO stable (this is essentially proven in [28]).

Example 1. There exists a learning problem with a universally consistent and all-i-LOO stable learning rule,

but there is no universally consistent and uniform LOO stable learning rule.

Proof. This example is taken from [26]. Consider the hypothesis space {0, 1}, the instance space {0, 1}, and

the objective function `(h, z) = |h− z|.

It is straightforward to verify that an ERM is a universally consistent learning rule. It is also universally

all-i-LOO stable, because removing an instance can change the hypothesis only if the original sample had an

equal number of 0’s and 1’s (plus or minus one), which happens with probability at most O(1/
√
n) where n

is the sample size. However, it is not hard to see that the only uniform LOO stable learning rule, at least for

large enough sample sizes, is a constant rule which always returns the same hypothesis h regardless of the

sample. Such a learning rule is obviously not universally consistent.

Example 2. There exists a learning problem with a universally consistent and LOO-stable AERM, which is

not symmetric and is not all-i-LOO stable.

Proof. Let the instance space be [0, 1], the hypothesis space [0, 1] ∪ 2, and the objective function `(h, z) =

1{h=z}. Consider the following learning rule A: given a sample, check if the value z1 appears more than

once in the sample. If no, return z1, otherwise return 2.

30

Since LS(2) = 0, and z1 returns only if this value constitutes 1/n of the sample, the rule above is an

AERM with rate εerm(n) = 1/n. To see universal consistency, let Pr z1 = p. With probability (1 − p)n−2,

z1 /∈ {z2, . . . , zn}, and the returned hypothesis is z1, with L(z1) = p. Otherwise, the returned hypothesis is

2, with L(2) = 0. Hence ES [L(A(S))] ≤ p(1−p)n−2, which can be easily verified to be at most 1/(n−1),

so the learning rule is consistent with rate εcons(n) ≤ 1/(n − 1). To see LOO-stability, notice that our

learning hypothesis can change by deleting zi, i > 1, only if zi is the only instance in z2, . . . , zn equal to z1.

So εstable(n) ≤ 2/n (in fact, LOO-stability holds even without the expectation). However, this learning rule

is not all-i-LOO-stable. For instance, for any continuous distribution, |`(A(S\1), z1) − `(A(S), z1)| = 1

with probability 1, so it obviously cannot be all-i-LOO-stable with respect to i = 1.

Example 3. There exists a learning problem with a universally consistent (and on-average-LOO stable)

AERM, which is not LOO stable.

Proof. Let the instance space, hypothesis space and objective function be as in Example 1. Consider the

following learning rule, based on a sample S = (z1, . . . , zn): if
∑
i 1{zi=1}/n > 1/2 +

√
log(4)/2n, return

1. If
∑
i 1{zi=1}/n < 1/2−

√
log(4)/2n, return 0. Otherwise, return Parity(S) = (z1 + . . . zn) mod 2.

This learning rule is an AERM, with εerm(n) =
√

2 log(4)/n. Since we have only two hypotheses, we have

uniform convergence of LS(·) to L(·) for any hypothesis. Therefore, our learning rule universally generalizes

(with rate εgen(n) =
√

log(4/δ)/2n), and by Theorem 7, this implies that the learning rule is also universally

consistent and on-average-LOO stable.

However, the learning rule is not LOO stable. Consider the uniform distribution on the instance space. By

Hoeffding’s inequality, |
∑
i 1{zi=1}/n − 1/2| ≤

√
log(4)/2n with probability at least 1/2 for any sample

size n. In that case, the returned hypothesis is the parity function (even when we remove an instance from

the sample, assuming n ≥ 3). When this happens, it is not hard to see that for any i,

`(A(S), zi)− `(A(S\i), zi) = 1{zi=1}(−1)Parity(S).

This implies that

E

[
1

n

n∑
i=1

∣∣∣(`(A(S\i); zi)− `(A(S); zi)
)∣∣∣] (3.4.1)

≥ 1

2
E

[
1

n

n∑
i=1

1{zi=1}

∣∣∣∣∣
√

log(4)

2n
≥
∣∣∣ n∑
i=1

1{zi=1}

n
− 1

2

∣∣∣]

≥ 1

2

(
1

2
−
√

log(4)

2n

)
−→ 1

4
,

which does not converge to zero with the sample size n. Therefore, the learning rule is not LOO stable.

Note that the proof implies that on-average-LOO stability cannot be replaced even by something between

31

on-average-LOO stability and LOO stability. For instance, a natural candidate would be

ES∼Dn
[∣∣∣∣∣ 1n

n∑
i=1

(
`(A(S\i); zi)− `(A(S); zi)

)∣∣∣∣∣
]
, (3.4.2)

where the absolute value is now over the entire sum, but inside the expectation. In the example used in the
proof, Eq. (3.4.2) is still lower bounded by Eq. (3.4.1), which does not converge to zero with the sample size.

After showing that the hierarchy of definitions above is indeed strict, we turn to the question of what can be
characterized in terms of LOO stability. In [31], we show a version of Theorem 5, which asserts that a problem
is learnable if and only if there is an on-average-LOO stable AERM. However, on-average-LOO stability is
qualitatively much weaker than the notion of uniform-RO stability used in Theorem 5 (see Definition 14).
Rather, we would expect to prove a version of the theorem with the notion of unform-LOO stability or at
least LOO stability, which are more analogous to uniform-RO stability. However, the proof of Theorem 5
does not work for these stability definitions (technically, this is because the proof relies on the sample size
remaining constant, which is true for replacement stability, but not when we remove an instance as in LOO
stability). We do not know if one can prove a version of Theorem 5 with an LOO stability notion stronger
than on-average-LOO stability.

On the plus side, LOO stability allows us to prove the following interesting result, specific to ERM learning
rules.

Theorem 4. For an ERM the following are equivalent:

• Universal LOO stability.

• Universal consistency.

• Universal generalization.

In particular, the theorem implies that LOO stability is a necessary property for consistent ERM learning
rules. This parallels Theorem 7, which dealt with AERM’s in general, and used RO stability. As before, we
do not know how to obtain something akin to Theorem 7 with RO stability.

3.5 Characterizing Learnability : Main Results

Our overall goal is to characterize learnable problems (namely, problems for which there exists a universally
consistent learning rule, as in Eq. (??)). That means finding some condition which is both necessary and
sufficient for learnability. In the uniform convergence setting, such a condition is the stability of the ERM
(under any of several possible stability measures, including both variants of RO-stability defined above). This
is still sufficient for learnability in the General Learning Setting, but far from being necessary, as we have
seen in Section ??.

The most important result in this section is a condition which is necessary and sufficient for learnability in
the General Learning Setting:

32

Theorem 5. A learning problem is learnable if and only if there exists a uniform-RO stable, universally

AERM learning rule.

In particular, if there exists a εcons(n)-universally consistent rule, then there exists a rule that is εstable(n)-

uniform-RO stable and universally εerm(n)-AERM where:

εerm(n) = 3εcons(n
1/4) + 8B√

n
,

εstable(n) = 2B√
n
.

(3.5.1)

In the opposite direction, if a learning rule is εstable(n)-uniform-RO stable and universally εerm(n)-AERM,

then it is universally consistent with rate

εcons(n) ≤ εstable(n) + εerm(n)

Thus, while we have seen in Section ?? that the ERM rule might fail for learning problems which are in
fact learnable, there is always an AERM rule which will work. In other words, when designing learning
rules, we might need to look beyond empirical risk minimization, but not beyond AERM learning rules. On
the downside, we must choose our AERM carefully, since not any AERM will work. This contrasts with
supervised classification, where any AERM will work if the problem is learnable at all.

How do we go about proving this assertion? The easier part is showing sufficiency. Namely, that a stable
AERM must be consistent (and generalizing). In fact, this holds both separately for any particular distribution
Ds, and uniformly over all distributions:

Theorem 6. If a rule is an AERM with rate εerm(n) and average-RO stable (or uniform-RO stable) with rate

εstable(n) under D, then it is consistent and generalizes under D with rates

εcons(n) ≤ εstable(n) + εerm(n)

εgen(n) ≤ εstable(n) + 2εerm(n) + 2B√
n

The second part of Theorem 5 follows as a direct corollary. We note that close variants of Theorem 6 has
already appeared in previous literature (e.g., [28] and [27]).

The harder part is showing that a uniform-RO stable AERM is necessary for learnability. This is done in
several steps.

First, we show that consistent AERMs have to be average-RO stable:

Theorem 7. For an AERM, the following are equivalent:

• Universal average-RO stability.

• Universal consistency.

• Universal generalization.

33

The exact conversion rate of Theorem 7 is specified in the corresponding proof (Sub-section 3.7), and are all
polynomial. In particular, an εcons-universal consistent εerm-AERM is average-RO stable with rate

εstable(n) ≤ εerm(n) + 3εcons(n
1/4) + 4B√

n
.

Next, we show that if we seek universally consistent and generalizing learning rules, then we must consider
only AERMs:

Theorem 8. If a rule A is universally consistent with rate εcons(n) and generalizing with rate εgen(n), then

it is universally an AERM with rate

εerm(n) ≤ εgen(n) + 3εcons(n
1/4) +

4B√
n

Now, recall that learnability is defined as the existence of some universally consistent learning rule. Such a
rule might not be generalizing, stable or even an AERM (see example 5 below). However, it turns out that if
a universally consistent learning rule exist, then there is another learning rule for the same problem, which is
generalizing (Lemma 22). Thus, by Theorems 7-8, this rule must also be average-RO stable AERM. In fact,
by another application of Lemma 22, such an AERM must also be uniform-RO stable, leading to Theorem 5.

3.6 Randomization, Convexification, and a Generic Learning Rule

In this section we show that when one considers randomized learning rules, it is possible to get stronger
results and we even propose a generic randomized algorithm for statistical learning problem that guarantees
non-trivial learning rate whenever the problem is learnable.

3.6.1 Stronger Results with Randomized Learning Rules

The strongest result we were able to obtain for characterizing learnability so far is Theorem 5, which stated
that a problem is learnable if and only if there exists a universally uniform-RO stable AERM. In fact, this
result was obtained under the assumption that the learning rule A is deterministic: given a fixed sample
S, A returns a single specific hypothesis h. However, we might relax this assumption and also consider
randomized learning rules: given any fixed S, A(S) returns a distribution over the hypothesis classH.

With this relaxation, we will see that we can obtain a stronger version of Theorem 5, and even provide a
generic learning algorithm (at least for computationally unbounded learners) which successfully learns any
learnable problem.

To simplify notation, we will override the notations `(A(S), z),L(A(S)) andLS(A(S)) to mean Eh∼A(S) [`(h, z)],
Eh∼A(S) [L(h)] and Eh∼A(S) [LS(h)]. In other words, A returns a distribution over H and `(A(S), z)

for some fixed S, z is the expected loss of a random hypothesis picked according to that distribution, with

34

respect to z. Similarly, L(A(S)) for some fixed S is the expected generalization error, and LS(A(S))

is the expected empirical risk on the fixed sample S. With this slight abuse of notation, all our previ-
ous definitions hold. For instance, we still define a learning rule A to be consistent with rate εcons(n) if
ES∼Dn [L(A(S))− L∗] ≤ εcons(n), only now we actually mean

ES∼Dn
[
Eh∼A(S) [L(h)− L∗]

]
≤ εcons(n).

The definitions for AERM, generalization etc. also hold with this subtle change in meaning.

An alternative way to view randomization is as a method to linearize the learning problem. In other words,
randomization implicitly replaces the arbitrary hypothesis class H by the space of probability distributions
overH,

M =

{
α : H → [0, 1] s.t.

∫
α[h] = 1

}
,

and replaces the arbitrary function `(h; z) by a linear function in its first argument

`(α; z) = Eh∼α [`(h, z)] =

∫
`(h; z)α[h] .

Linearity of the loss and convexity of M are the key mechanism which allows us to obtain our stronger
results. Moreover, if the learning problem is already convex (i.e., f is convex and H is covex), we can
achieve the same results using a deterministic learning rule, as the following claim demonstrates:

Claim 9. Assume that the hypothesis class H is convex subset of a vector space, such that Eh∼A(S) [h]

is a well-defined element of H for any S. Moreover, assume that `(h; z) is convex in h. Then from any

(possibly randomized) learning rule A, it is possible to construct a deterministic learning rule A′, such

that `(A′(S), z) ≤ `(A(S), z) for any S, z. As a result, it also holds that LS(A′(S)) ≤ LS(A(S)) and

L(A′(S)) ≤ L(A(S)).

Proof. Given a sample S, define A′(S; z) as the single hypothesis Eh∼A(S) [h]. The proof of the theorem is

immediate by Jensen’s inequality: since `() is convex in its first argument,

`(A′(S); z) = `(Eh∼A(S) [h] , z) ≤ Eh∼A(S) [`(h, z)] ,

where the r.h.s. is in fact `(A(S), z) by the abuse of notation we have defined previously.

Although linearization is the real mechanism at play here, we find it more convenient to display our results
and proofs in the language of randomized learning rules.

Allowing randomization allows us to obtain results with respect to the following very strong notion of stabil-
ity4:

4This definition of stability is very similar to the so-called “uniform stability”, discussed in [25], although [25] consider deterministic
learning rules.

35

Definition 20. A rule A is strongly-uniform-RO stable with rate εstable(n) if for all samples S of n points,

for all i, and any z′, z′i ∈ Z , it holds that∣∣∣`(A(S(i)); z′)− `(A(S); z′)
∣∣∣ ≤ εstable(n).

The strengthening of Theorem 5 that we will prove here is the following:

Theorem 10. A learning problem is learnable if and only if there exists a (possibly randomized) learning

rule which is an always AERM and strongly-uniform-RO stable.

Compared to Theorem 5, we have replaced universal AERM by the stronger notion of an always AERM, and
uniform-RO stability by strongly-uniform-RO stability. This makes the result strong enough to formulate a
generic learning algorithm, as we will see later on.

The theorem is an immediate consequence of Theorem 5 and the following lemma:

Lemma 11. For any deterministic learning rule A, there exists a randomized learning rule A′ such that:

• For any D, if A is εcons-consistent under D then A′ is εcons(b
√
nc) consistent under D.

• A′ universally generalizes with rate 4B/
√
n.

• If A is uniform-RO stable with rate εstable(n), then A′ is strongly-uniform-RO stable with rate εstable(b
√
nc).

• If A is universally εcons-consistent, then A′ is an always AERM with rate 2εcons(b
√
nc).

Moreover, A′ is a symmetric learning rule (it does not depend on the order of elements in the sample on

which it is applied).

3.6.2 A Generic Learning Rule

Recall that a symmetric learning rule A is such that A(S) = A(S′) whenever S, S′ are identical samples up
to permutation. When we deal with randomized learning rules, we assume that the distribution of A(S) is
identical to the distribution of A(S′). Also, let H̄ denote the set of all distributions onH. An element h̄ ∈ H̄
will be thought of as a possible outcome of a randomized learning rule.

Consider the following learning rule: given a sample size n, find a minimizer over all symmetric5 functions
A : Zn → H̄ of

sup
S∈Zn

(
LS(A(S))− LS(ĥS)

)
+ sup

S∈Zn,z′

∣∣∣`(A(S); z′)− `(A(S(i); z′)
∣∣∣ , (3.6.1)

with i being an arbitrary fixed element in {1, . . . , n}. Once such a function A is found, return An(S).

5The algorithm would still work, with slight modifications, if we minimize over all functions - symmetric or not. However, the search
space would be larger.

36

Theorem 12. If a learning problem is learnable (namely, there exist a universally consistent learning rule

with rate εcons(n)), the learning algorithm described above is universally consistent with rate

4εcons(b
√
nc) +

8B√
n
.

The main drawback of the algorithm we described is that it is completely infeasible: in practice, we cannot
hope to efficiently perform minimization of Eq. (3.6.1) over all functions from Zn to H̄. Nevertheless,
we believe it is conceptually important for three reasons: First, it hints that generic methods to develop
learning algorithms might be possible in the General Learning Setting (similar to the more specific supervised
classification setting); Second, it shows that stability might play a crucial role in the way such methods will
work; And third, that stability might act in a similar manner to regularization. Indeed, Eq. (3.6.1) can be seen
as a “regularized ERM” in the space of learning rules (i.e., functions from samples to hypotheses): if we take
just the first term in Eq. (3.6.1), supS∈Zn

(
LS(A(S))− LS(ĥS)

)
, then its minimizer is trivially the ERM

learning rule. If we take just the second term in Eq. (3.6.1), supS∈Zn,z
∣∣`(A(S); z′)− `(A(S(i)); z′)

∣∣, then
its minimizers are trivial learning rules which return the same hypothesis irrespective of the training sample.
Minimizing a sum of both terms forces us to choose a learning rule which is an “almost”-ERM but also stable
- a learning rule which must exist if the problem is learnable at all, as Theorem 10 proves.

3.7 Detailed Results and Proofs

3.7.1 Detailed Proof of Main Result (Section 3.5)

In this subsection we provide proofs for the main results contained in Section 3.5. We first establish that for
AERMs, average-RO stability and generalization are equivalent.

Equivalence of Stability and Generalization

It will be convenient to work with a weaker version of generalization as an intermediate step: We say a rule
A on-average generalizes with rate εoag(n) under distribution D if for all n,

|ES∼Dn [L(A(S))− LS(A(S))]| ≤ εoag(n). (3.7.1)

It is straightforward to see that generalization implies on-average generalization with the same rate. We show
that for AERMs, the converse is also true, and also that on-average generalization is equivalent to average-RO
stability. This establishes the equivalence between generalization and average-RO stability (for AERMs).

Lemma 13 (on-average generalization⇔ average-RO stability). If A is on-average generalizing with rate

εoag(n) then it is average-RO stable with rate εoag(n). If A is average-RO stable with rate εstable(n) then it

is on-average generalizing with rate εstable(n).

37

Proof. For any i, zi and z′i are both drawn i.i.d. from D, we have that

ES∼Dn [`(A(S); zi)] = ES∼Dn,z′i∼D
[
`(A(S(i)); z′i)

]
.

Hence,

ES∼Dn [LS(A(S))] = ES∼Dn
[

1

n

n∑
i=1

`(A(S); zi)

]

=
1

n

n∑
i=1

ES∼Dn [`(A(S); zi)]

=
1

n

n∑
i=1

ES∼Dn,z′i∼D
[
`(A(S(i)); z′i)

]
Also note that L(A(S)) = Ez′i∼D [`(A(S); z′i)] = 1

n

∑n
i=1 Ez′i∼D [`(A(S); z′i)]. Hence we can conclude

that

ES∼Dn [L(A(S))− LS(A(S))] =
1

n

n∑
i=1

ES∼Dn,(z′1,...,z′n)∼Dn
[
`(A(S); z′i)− `(A(S(i)); z′i)

]
Hence we have the required result.

For the next result, we will need the following two short utility lemmas.

Utility Lemma 14. For i.i.d. Xi, |Xi| ≤ B and X = 1
n

∑n
i=1Xi we have E [|X − E [X]|] ≤ B/

√
n.

Proof. E [|X − E [X]|] ≤
√

E
[
|X − E [X]|2

]
≤
√

Var[X] =
√

Var[Xi]/n ≤ B/
√
n.

Utility Lemma 15. Let X,Y be random variables s.t. X ≤
a.s.

Y . Then E [|X|] ≤ |E [X]|+ 2E [|Y |].

Proof. E [|X|] = E [|(Y −X)− Y |] ≤ E [Y −X] + E [|Y |] ≤ |E [X]|+ 2 |E [Y]| .

Lemma 16 (AERM + on-average generalization⇒ generalization). If A is an AERM with rate εerm(n)

and on-average generalizes with rate εoag(n) underD, then A generalizes with rate εoag(n)+2εerm(n)+ 2B√
n

under D.

Proof. Recall that L∗ = infh∈H L(h). For an arbitrarily small ν > 0, let hν be a fixed hypothesis such that

L(hν) ≤ F ∗ + ν. Using respective optimalities of ĥS and L∗ we can bound:

LS(A(S))− L(A(S))

= LS(A(S))− LS(ĥS) + LS(ĥS)− LS(hν) + LS(hν)− L(hν) + L(hν)− L(A(S))

≤ LS(A(S))− LS(ĥS) + LS(hν)− L(hν) + ν = Yν

38

Where the final equality defines a new random variable Yν . By Lemma 14 and the AERM guarantee we have

E [|Yν |] ≤ εerm(n) +B/
√
n+ ν. From Lemma 15 we can conclude that

E [|LS(A(S))− L(A(S))|] ≤ |E [LS(A(S))− L(A(S))]|+ 2E [|Yν |] ≤ εoag(n) + 2εerm(n) + 2B√
n

+ ν.

Notice that the l.h.s. is a fixed quantity which does not depend on ν. Therefore, we can take ν in the r.h.s. to

zero, and the result follows.

Combining Lemma 13 and Lemma 16, we have now established the stability↔generalization parts of
Theorem 6 and Theorem 7 (in fact, even a slightly stronger converse than in Theorem 7, as it does not
require universality).

A Sufficient Condition for Consistency

It is fairly straightforward to see that generalization (or even on-average generalization) of an AERM implies
its consistency:

Lemma 17 (AERM+generalization⇒consistency). If A is AERM with rate εerm(n) and it on-average

generalizes with rate εoag(n) under D then it is consistent with rate εoag(n) + εerm(n) under D.

Proof. For any ν > 0, let hν be a hypothesis such that L(hν) ≤ L∗ + ν. We have

E [L(A(S))− L∗] = E [L(A(S))− LS(hν) + ν]

= E [L(A(S))− LS(A(S))] + E [LS(A(S))− LS(hν)] + ν

≤ E [L(A(S))− LS(A(S))] + E
[
LS(A(S))− LS(ĥS)

]
+ ν

≤ εoag(n) + εerm(n) + ν.

Since this upper bound holds for any ν, we can take ν to zero, and the result follows.

Combined with the results of Lemma 13, this completes the proof of Theorem 6 and the stability →
consistency and generalization→ consistency parts of Theorem 7.

Converse Direction

Lemma 13 already provides a converse result, establishing that stability is necessary for generalization. How-
ever, as it will turn out, in order to establish that stability is also necessary for universal consistency, we must
prove that universal consistency of an AERM implies universal generalization. The assumption of universal

consistency for the AERM is crucial here: mere consistency of an AERM with respect to a specific distri-
bution does not imply generalization nor stability with respect to that distribution. The following example
briefly illustrates this point.

39

Example 4. There exists a learning problem and a distribution on the instance space, such that the ERM

(or any AERM) is consistent with rate εcons(n) = 0, but does not generalize and is not average-RO stable

(namely, εgen(n), εstable(n) = Ω(1)).

Proof. Let the instance space be [0, 1], the hypothesis space consist of all finite subsets of [0, 1], and define the

objective function as `(h, z) = 1{z/∈h}). Consider any continuous distribution on the instance space. Since

the underlying distribution D is continuous, we have L(h) = 1 for any hypothesis h. Therefore, any learning

rule (including any AERM) will be consistent with L(A(S)) = 1. On the other hand, the ERM here always

achieves LS(ĥS) = 0, so any AERM cannot generalize, or even on-average-generalize (by Lemma 16),

hence cannot be average-RO stable (by Lemma 13).

The main tool we use to prove our desired converse result is the following lemma. It is here that we crucially
use the universal consistency assumption (i.e., consistency with respect to any distribution). Intuitively, it
states that if a problem is learnable at all, then although the ERM rule might fail, its empirical risk is a
consistent estimator of the minimal achievable risk.

Lemma 18 (Main Converse Lemma). If a problem is learnable, namely there exists a universally consistent

rule A with rate εcons(n), then under any distribution,

E
[∣∣∣LS(ĥS)− L∗

∣∣∣] ≤ εemp(n) where (3.7.2)

εemp(n) = 2εcons(n
′) + 2B√

n
+ 2Bn′2

n

for any n′ such that 2 ≤ n′ ≤ n/2.

Proof. Let I = {I1, . . . , In′} be a random sample of n′ indexes in the range 1..n where each Ii is indepen-

dently uniformly distributed, and I is independent of S. Let S′ = {zIi}n
′

i=1, i.e. a sample of size n′ drawn

from the uniform distribution over samples in S (with replacements). We first bound the probability that I

has no repeated indexes (“duplicates”):

Pr I has duplicates ≤
∑n′

i=1(i− 1)

n
≤ n′

2

2n
(3.7.3)

Conditioned on not having duplicates in I , the sample S′ is actually distributed according to Dn′ , i.e. can be

viewed as a sample from the original distribution. We therefore have by universal consistency:

E [|L(A(S′))− L∗| | no dups] ≤ εcons(n
′) (3.7.4)

But viewed as a sample drawn from the uniform distribution over instances in S, we also have:

ES′
[∣∣∣LS(A(S′))− LS(ĥS)

∣∣∣] ≤ εcons(n
′) (3.7.5)

40

Conditioned on having no duplications in I , the set of those samples in S not chosen by I (i.e. S \ S′) is

independent of S′, and |S \ S′| = n− n′, and so by Lemma 14:

ES
[∣∣L(A(S′))− LS\S′(A(S′))

∣∣] ≤ B√
n− n′

(3.7.6)

Finally, if there are no duplicates, then for any hypothesis, and in particular for A(S′) we have:

∣∣LS(A(S′))− LS\S′(A(S′))
∣∣ ≤ 2Bn′

n
(3.7.7)

Combining Eq. (3.7.4),Eq. (3.7.5),Eq. (3.7.6) and Eq. (3.7.7), accounting for a maximal discrepancy of B

when we do have duplicates, and assuming 2 ≤ n′ ≤ n/2, we get the desired bound.

Equipped with Lemma 18, we are now ready to show that universal consistency of an AERM implies universal
generalization and that any universally consistent and generalizing rule must be an AERM. What we show
is actually a bit stronger: that if a problem is learnable, and so Lemma 18 holds, then for any distribution
D separately, consistency of an AERM under D implies generalization under D and also any consistent and
generalizing rule under D must be an AERM.

Lemma 19 (learnable+AERM+consistent⇒generalizing). If Eq. (3.7.2) in Lemma 18 holds with rate

εemp(n), and A is an εerm-AERM and εcons-consistent under D, then it is generalizing under D with rate

εemp(n) + εerm(n) + εcons(n).

Proof.

E [|LS(A(S))− L(A(S))|] ≤ E
[∣∣∣LS(A(S))− LS(ĥS)

∣∣∣]+ E [|L∗ − L(A(S))|] + E
[∣∣∣LS(ĥS)− L∗

∣∣∣]
≤ εerm(n) + εcons(n) + εemp(n) .

Lemma 20 (learnable+consistent+generalizing⇒AERM). If Eq. (3.7.2) in Lemma 18 holds with rate

εemp(n), and A is εcons-consistent and εgen-generalizing under D, then it is AERM under D with rate

εemp(n) + εgen(n) + εcons(n).

Proof.

E
[∣∣∣LS(A(S))− LS(ĥS)

∣∣∣] ≤ E [|LS(A(S))− L(A(S))|] + E [|L(A(S))− L∗|] + E
[∣∣∣L∗ − LS(ĥS)

∣∣∣]
≤ εgen(n) + εcons(n) + εemp(n) .

41

Lemma 19 establishes that universal consistency of an AERM implies universal generalization, and thus
completes the proof of Theorem 7. Lemma 20 establishes Theorem 8. To get the rates in Subsection ??,
we use n′ = n1/4 in Lemma 18.

Lemma 17, Lemma 19 and Lemma 20 together establish an interesting relationship:

Corollary 21. For a (universally) learnable problem, for any distribution D and learning rule A, any two of

the following imply the third :

•A is an AERM under D.

•A is consistent under D.

•A generalizes under D.

Note, however, that any one property by itself is possible, even universally:

• In Subsection 3.3.1, we have discussed an example where the ERM learning rule is neither consistent
nor generalizing, despite the problem being learnable.

• In the next subsection (Example 5) we demonstrate a universally consistent learning rule which is
neither generalizing nor an AERM.

• A rule returning a fixed hypothesis always generalizes, but of course need not be consistent nor an
AERM.

In contrast, for learnable supervised classification problems, it is not possible for a learning rule to be just
universally consistent, without being an AERM and without generalization. Nor is it possible for a learning
rule to be a universal AERM for a learnable problem, without being generalizing and consistent.

Corollary 21 can also provide a certificate of non-learnability. In other words, for the problem in Example
4 we show a specific distribution for which there is a consistent AERM that does not generalize. We can
conclude that there is no universally consistent learning rule for the problem, otherwise the corollary is
violated.

Existence of a Stable Rule

Theorem 7 and Theorem 8, which we just completed proving, already establish that for AERMs, universal
consistency is equivalent to universal average-RO stability. Existence of a universally average-RO stable
AERM is thus sufficient for learnability. In order to prove that it is also necessary, it is enough to show that
existence of a universally consistent learning rule implies existence of a universally consistent AERM. This
AERM must then be average-RO stable by Theorem 7.

We actually show how to transform a consistent rule to a consistent and generalizing rule (Lemma 22 below).
If this rule is universally consistent, then by Lemma 20 we can then conclude it must be an AERM, and by
Lemma 13 it must be average-RO stable.

42

Lemma 22. For any rule A there exists a rule A′, such that:

•A′ universally generalizes with rate 3B√
n

.

• For any D, if A is εcons-consistent under D then A′ is εcons(b
√
nc) consistent under D.

•A′ is uniformly-RO-stable with rate 2B√
n

.

Proof. For a sample S of size n, let S′ be a sub-sample consisting of some b
√
nc observation in S. To

simplify the presentation, assume that b
√
nc is an integer. Define A′(S) = A(S′). That is, A′ applies A to

only
√
n of the observation in S.

A′ generalizes: We can decompose:

LS(A(S′))−L(A(S′)) = 1√
n

(LS′(A(S′))− L(A(S′))) + (1− 1√
n

)(LS\S′(A(S′))− L(A(S′)))

The first term can be bounded by 2B/
√
n. As for the second term, S \ S′ is statistically independent of S′

and so we can use Lemma 14 to bound its expected magnitude to obtain:

E [|LS(A(S′))− L(A(S′))|] ≤ 2B√
n

+ (1− 1√
n

) B√
n−
√
n
≤ 3B√

n
(3.7.8)

A′ is consistent: If A is consistent, then:

E
[
L(A′(S))− inf

h∈H
L(h)

]
= E

[
L(A(S′))− inf

h∈H
L(h)

]
≤ εcons(

√
n)

A′ is uniformly-RO-stable: Since A′ only uses the first
√
n samples of S, for any i >

√
n we have

A′(S(i)) = A′(S) and so:

1

n

n∑
i=1

∣∣∣`(A′(S(i)); z′)− `(A′(S); z′)
∣∣∣ =

1

n

√
n∑

i=1

∣∣∣`(A′(S(i)); z′)− `(A′(S); z′)
∣∣∣ ≤ 2B√

n

Proof of Converse in Theorem 5 If there exists a universally consistent rule with rate εcons(n), by Lemma 22
there exists A′ which is εcons(

√
n)- universally consistent, 2B√

n
-generalizing and 2B√

n
-uniformly-RO-stable.

Further by Lemma 20 and Lemma 18 (with n′ = n1/4), we can conclude that A′ is εerm-universally AERM
where,

εerm(n) ≤ 3εcons(n
1/4) +

8B√
n
.

Hence we get the specified rate for the converse direction. To see that if there exists a rule that is a universal
AERM and stable it is consistent, we simply use Lemma 17.

43

As a final note, the following example shows that while learnability is equivalent to the existence of stable
and consistent AERM’s (Theorem 5 and Theorem 7), there might still exist other learning rules, which are
neither stable, nor generalize, nor AERM’s. In this sense, our results characterize learnability, but do not
characterize all learning rules which “work”.

Example 5. There exists a learning problem with a universally consistent learning rule, which is not average-

RO stable, generalizing nor an AERM.

Proof. Let the instance space be [0, 1]. Let the hypothesis space consist of all finite subsets of [0, 1], and the

objective function be the indicator function `(h, z) = 1{z∈h}. Consider the following learning rule: given a

sample S ⊆ [0, 1], the learning rule checks if there are any two identical instances in the sample. If so, the

learning rule returns the empty set ∅. Otherwise, it returns the sample.

Consider any continuous distribution on [0, 1]. In that case, the probability of having two identical instances

is 0. Therefore, the learning rule always returns a countable non-empty set A(S), with LS(A(S)) = 1, while

LS(∅) = 0 (so it is not an AERM) and L(A(S)) = 0 (so it does not generalize). Also, `(A(S), zi) = 1

while `(A(S(i)), zi) = 0 with probability 1, so it is not average-RO stable either.

However, the learning rule is universally consistent. If the underlying distribution is continuous on [0, 1], then

the returned hypothesis is S, which is countable hence , L(S) = 0 = infh L(h). For discrete distributions, let

M1 denote the proportion of instances in the sample which appear exactly once, and letM0 be the probability

mass of instances which did not appear in the sample. Using [32, Theorem 3], we have that for any δ, it holds

with probability at least 1− δ over a sample of size n that

|M0 −M1| ≤ O
(

log(n/δ)√
n

)
,

uniformly for any discrete distribution. If this occurs, then either M1 < 1, or M0 ≥ 1 − O(log(n/δ)/
√
n).

But in the first event, we get duplicate instances in the sample, so the returned hypothesis is the optimal ∅,
and in the second case, the returned hypothesis is the sample, which has a total probability mass of at most

O(log(n/δ)/
√
n), and therefore L(A(S)) ≤ O(log(n/δ)/

√
n). As a result, regardless of the underlying

distribution, with probability of at least 1− δ over the sample,

L(A(S)) ≤ O
(

log(n/δ)√
n

)
.

Since the r.h.s. converges to 0 with n for any δ, it is easy to see that the learning rule is universally consistent.

44

3.7.2 Other Proofs

Proof of Theorem 1. To prove the theorem, we use a stability argument. Denote

F̂ (i)(h) =
1

n

`(h, z′i) +
∑
j 6=i

`(h, zj)

 .

the empirical average with zi replaced by an independently and identically drawn z′i, and consider its mini-

mizer:

ĥ
(i)
S = arg min

h∈H
F̂ (i)(h).

We first use strong convexity and Lipschitz-continuity to establish that empirical minimization is stable in the

following sense:

∀z ∈ Z,
∣∣∣`(ĥS , z)− `(ĥ(i)

S , z)
∣∣∣ ≤ 4L2

λn . (3.7.9)

We have that

L̂(ĥ
(i)
S)− L̂(ĥS)

=
`(ĥ

(i)
S , zi)− `(ĥS , zi)

n
+

∑
j 6=i

(
`(ĥ

(i)
S , zj)− `(ĥS , zj)

)
n

=
`(ĥ

(i)
S , zi)− `(ĥS , zi)

n
+
`(ĥS , z

′
i)− `(ĥ

(i)
S , z′i)

n

+
(
F̂ (i)(ĥ

(i)
S)− F̂ (i)(ĥS)

)
≤
|`(ĥ(i)

S , zi)− `(ĥS , zi)|
n

+
|`(ĥS , z′i)− `(ĥ

(i)
S , z′i)|

n

≤ 2L

n

∥∥∥ĥ(i)
S − ĥS

∥∥∥ (3.7.10)

where the first inequality follows from the fact that ĥ(i)
S is the minimizer of F̂ (i)(h) and for the second

inequality we use Lipschitz continuity. But from strong convexity of L̂(h) and the fact that ĥS minimizes

L̂(h) we also have that

L̂(ĥ
(i)
S) ≥ L̂(ĥS) + λ

2

∥∥∥ĥ(i)
S − ĥS

∥∥∥2

. (3.7.11)

Combining Eq. (3.7.11) with Eq. (3.7.10) we get
∥∥∥ĥ(i)

S − ĥS

∥∥∥ ≤ 4L/(λn) and combining this with Lipschitz

continuity of f we obtain that Eq. (3.7.9) holds. Later in this chapter we show that a stable ERM is sufficient

for learnability. More formally, Eq. (3.7.9) implies that the ERM is uniform-RO stability (Definition 14)

with rate εstable(n) = 4L2/(λn) and therefore Theorem 6 implies that the ERM is consistent with rate

≤ εstable(n), namely

ES∼Dn
[
L(ĥS)− L∗

]
≤ 4L2

λn .

This concludes the proof.

45

We now turn to the proof of Theorem 2.

Proof of Theorem 2. Let r(h; z) = λ
2 ‖h‖

2 + `(h; z) and let R(h) = Ez [r(h, z)]. Note that ĥλ is the

empirical minimizer for the stochastic optimization problem defined by r(h; z).

We apply Theorem 1 to r(h; z), to this end note that since f is L-Lipschitz and ∀h ∈ H, ‖h‖ ≤ B we see

that r is in fact L+ λB-Lipschitz. Applying Theorem 1, we see that

λ
2

∥∥∥ĥλ∥∥∥2

+ ES
[
L(ĥλ)

]
= ES

[
R(ĥλ)

]
≤ inf

h
R(h) +

4(L+ λB)2

λn

Now note that infhR(h) ≤ infh∈H L(h) + λ
2B

2 = L∗ + λ
2B

2, and so we get that

ES
[
L(ĥλ)

]
≤ inf

h∈H
L(h) +

λ

2
B2 +

4(L+ λB)2

λn

≤ inf
h∈H

L(h) +
λ

2
B2 +

8L2

λn
+

8λB2

n

Plugging in the value of λ given in the theorem statement we see that

L(ĥλ) ≤ inf
h∈H

L(h) + 4

√
L2B2

n
+

32

n

√
L2B2

n

This gives us the required bound.

Proof of Theorem 4. Lemma 17 and Lemma 19 from subsection 3.7.1 already tell us that for ERM’s, uni-

versal consistency is equivalent to universal generalization. Moreover, Lemma 16 implies that for ERM’s,

generalization is equivalent to on-average generalization (see Eq. (3.7.1) for the exact definition). Thus, is

left to prove that for ERM’s, generalization implies LOO stability, and LOO stability implies on-average

generalization. stability.

First, suppose the ERM learning rule is generalizing with rate εgen(n). Note that `(ĥS\i ; zi) − `(ĥS ; zi) is

46

always nonnegative. Therefore the LOO stability of the ERM can be upper bounded as follows:

1

n

n∑
i=1

E
[
|`(ĥS\i ; zi)− `(ĥS ; zi)|

]
=

1

n

n∑
i=1

E
[
`(ĥS\i ; zi)− `(ĥS ; zi)

]
=

1

n

n∑
i=1

E
[
L(ĥS\i)

]
− E

[
1

n

n∑
i=1

`(ĥS ; zi)

]

≤ 1

n

n∑
i=1

E
[
LS\i(ĥS\i) + εgen(n− 1)

]
− E

[
LS(ĥS)

]
= εgen(n− 1) + E

[
1

n

n∑
i=1

LS\i(ĥS\i)− LS(ĥS)

]
≤ εgen(n− 1).

For the opposite direction, suppose the ERM learning rule is LOO stable with rate εstable(n). Notice that we

can get any sample of size n − 1 by picking a sample S of size n and discarding any instance i. Therefore,

the on-average generalization rate of the ERM for samples of size n− 1 is equal to the following:∣∣∣E [L(ĥS\i)− LS\i(ĥS\i)
]∣∣∣

=

∣∣∣∣∣ 1n
n∑
i=1

E
[
L(ĥS\i)− LS\i(ĥS\i)

]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

E
[
`(ĥS\i ; zi)

]
− 1

n

n∑
i=1

E
[
LS\i(ĥS\i)

]∣∣∣∣∣

Now, note that for the ERM’s of S and S\i we have
∣∣∣LS\i(ĥS\i)− LS(ĥS)

∣∣∣ ≤ 2B
n . Therefore, we can upper

bound the above by ∣∣∣∣∣ 1n
n∑
i=1

E
[
`(ĥS\i ; zi)

]
− E

[
LS(ĥS)

]∣∣∣∣∣+
2B

n

=

∣∣∣∣∣ 1n
n∑
i=1

E
[
`(ĥS\i ; zi)− `(ĥS , ; zi)

]∣∣∣∣∣
≤ εstable(n)

using the assumption that the learning rule is εstable(n)-stable.

Proof of Lemma 11. Consider the learning rule A′ which given a sample S, returns a uniform distribution

47

over A(S′), where S′ ranges over all subsets of S of size b
√
nc.

The fact that A′ is symmetric is trivial. We now prove the other assertions in the lemma.

A′ is consistent: First note that L(A′(S)) = ES′ [L(A(S′))], and so:

ES [|L(A′(S))− L∗|] ≤ ES,S′ [|L(A(S′))− L∗|] = E[S′]

[
ES|[S′] [|L(A(S′))− L∗|]

]
where [S′] designates a choice of indices for S′. This decomposition of the random choice of S′ (e.g., first

deciding on the indices and only then sampling S) allows us think of [S′] and S as statistically independent.

Given a fixed choice of indices [S′], S′ is simply an i.i.d. sample of size b
√
nc. Therefore, if A is consistent,

|L(A(S′))− L∗| ≤ εcons(b
√
nc), this holds for any possible fixed [S′], and therefore

E[S′]

[
ES|[S′] [|L(A(S′))− L∗|]

]
= E[S′]

[
εcons(b

√
nc)
]
≤ εcons(b

√
nc).

A′ generalizes: For convenience, let b(S, S′) = |LS(A(S′))− L(A(S′))|. Using similar arguments and

notation as above:

ES [|LS(A′(S))− L(A′(S))|]

≤ E[S′]

[
ES|[S′] [b(S, S′)]

]
≤ E[S′]

[
ES|[S′]

[
b
√
nc
n

b(S′, S′)

]
+ ES|[S′]

[(
1− b

√
nc
n

)
b(S \ S′, S′)

]]
≤ E[S′]

[
b
√
nc
n

2B +

(
1− b

√
nc
n

)
B√

n− b
√
nc+ 1

]
,

where the last line follows from Lemma 14 and the fact that b(S, S′) ≤ 2B for any S, S′. It is not hard to

show that the expression above is at most 4B/
√
n, assuming n ≥ 1.

A′ is strongly-uniform-RO stable: For any sample S, any i and replacement instance zi, and any instance

z′, we have that∣∣∣`(A′(S(i)); z′)− `(A′(S); z′)
∣∣∣ ≤ ES′

[∣∣∣`(A(S′(i)); z′)− `(A(S′); z′)
∣∣∣] ,

where we take S′(i) in the expectation to mean S′ if i /∈ [S′]. Notice that if i /∈ [S′], then `(A(S′(i)); zi) −
`(A(S′); zi) is trivially 0. Thus, we can upper bound the expression above by

ES′
[∣∣`(A(S′i); z′)− `(A(S′); z′)

∣∣ ∣∣∣ i ∈ [S′]
]
.

48

Since S′ is chosen uniformly over all b
√
nc-subsets of S, all permutations of [S′] are equally happen to occur,

and therefore the above is equal to

ES′

 1

b
√
nc
∑
j∈S′

∣∣∣`(A(S′(j)); z′)− `(A(S′); z′)
∣∣∣
 ≤ ES′

[
εstable(b

√
nc)
]

= εstable(b
√
nc).

A′ is an always AERM: For any fixed sample S, we note that

|LS(A′(S))− LS(ĥS)| = ES′
[
LS(A(S′))− LS(ĥS)

]
= ES′∼U(S)b

√
nc

[
LS(A(S′))− LS(ĥS) | no dups

]
,

where U(S)b
√
nc signifies the distribution of i.i.d. samples of size b

√
nc, picked uniformly at random (with

replacement) from b
√
nc, and ’no dups’ signifies the event that no element in S was picked twice. By the law

of total expectation, this is at most

ES′∼U(S)b
√
nc

[
LS(A(S′))− LS(ĥS)

]
Pr no dups

.

Since the learning rule A is universally consistent, it is in particular consistent with respect to the distribution

U(S), and therefore the expectation in the expression above is at most εcons(b
√
nc). As to Pr no dups, an

analysis identical to the one performed in the proof of Lemma 18 (see Eq. (3.7.3)) implies that it is at least

1− (b
√
nc)2/n ≥ 1/2. Overall, we get that LS(A′(S))− LS(ĥS) ≤ 2εcons(b

√
nc), so in particular

ES′∼U(S)b
√
nc

[
LS(A(S′))− LS(ĥS)

]
Pr no dups

≤ 2εcons(b
√
nc),

from which the claim follows.

Proof of Theorem 12. By Lemma 11, if a learning problem is learnable, there exists a (possibly randomized)

symmetric learning rule A′, which is an always AERM and strongly-uniform-RO stable. More specifically,

we have that

sup
S∈Zn

(
LS(A′(S))− LS(ĥS)

)
≤ 2εcons(b

√
nc),

as well as

sup
S∈Zn,z′

∣∣∣`(A′(S); z′)− `(A′(S(i)); z′)
∣∣∣ ≤ 4B√

n
.

In particular, there exists some symmetric A : Zn → H̄, for which the expression in Eq. (3.6.1) is at most

2εcons(b
√
nc) +

4B√
n
.

49

Therefore, by definition, the A found satisfies

sup
S∈Zn

(
LS(An(S))− LS(ĥS)

)
≤ 2εcons(b

√
nc) +

4B√
n
, (3.7.12)

as well as

sup
S∈Zn

∣∣∣`(An(S); z′)− `(An(S(i)); z′)
∣∣∣ ≤ 2εcons(b

√
nc) +

4B√
n
. (3.7.13)

In Theorem 7, we have seen that a universally average-RO stable AERM learning rule has to be universally

consistent. The inequalities above essentially say that A is in fact both strongly-uniform-RO stable (and in

particular, universally average-RO stable) and an AERM, and thus is a universally consistent learning rule.

Formally speaking, this is not entirely accurate, because A is defined only with respect to samples of size

n, and hence is not formally a learning rule which can be applied to samples of any size. However, the

analysis we have done earlier in fact carries through also for learning rules A which are defined just on a

specific sample size n. In particular, the analysis of Lemma 13 and Lemma 17 hold verbatim for A (with

trivial modifications due to the fact that A is randomized), and together imply that since Eq. (3.7.12) and

Eq. (3.7.13) hold, then

E [L(A(S))− L∗] ≤ 4εcons(b
√
nc) +

8B√
n
.

Therefore, our learning algorithm is consistent with rate 4εcons(b
√
nc) + 8B√

n
.

3.8 Discussion

In this chapter we begun exploring the issue of statistical learnability in the General Setting, and uncovered
important relationships between learnability and stability. However problems are left open and avenues left
to explore, some of which are listed below.

First, a natural question that might arise is whether it is possible to come up with well-known machine learn-
ing applications, where learnability is achievable despite uniform convergence failing to hold. Subsequently
in a very recent work [33] it was shows that for multi-class learning problems with large number of classes,
problems could still be learnable while uniform convergence fails and ERM approach may not be successful
(at least not all ERM’s are good).

In Section 3.6.2, we have managed to obtain a completely generic learning algorithm: an algorithm which in
principle allows us to learn any learnable problem. However, the algorithm suffers from the severe drawback
that in general, it requires unbounded computational power and is not in any succinct form. Can we derive an
algorithm in a simple form, or characterize classes of learning problems where our algorithm, or some other
generic learning algorithm utilizing the notion of stability, can be written for instance, as a regularized ERM
learning rule?

On a related vein, it would be interesting to develop learning algorithms (perhaps for specific settings rather
than generic learning problems) which directly use stability in order to learn. Convex regularization is one

50

such mechanism, as discussed earlier to induce stability. Are there other mechanisms, which use the notion
of stability in a different way?

Another issue is that even the existence of uniform-RO stable AERM (or strongly-uniform-RO stable, always-
AERM allowing for convexity/randomization) is not as elegant and simple as having finite VC dimension or
fat-shattering dimension. It would be very interesting to derive equivalent but more “combinatorial” condi-
tions for learnability.

51

Chapter 4

Online Learning/Optimization

In the online learning framework, the learner is faced with a sequence of data appearing at discrete time in-
tervals. In contrast to statistical’ learning scenario where the learner is being evaluated after the sequence is
completely revealed, in the online framework the learner is evaluated at every round. Furthermore, in the sta-
tistical learning scenario the data source is typically assumed to be drawn i.i.d.while in the online framework
we relax or eliminate any stochastic assumptions on the data source. As such, the online learning problem
can be phrased as a repeated two-player game between the learner (player) and the adversary (Nature).

Unlike the statistical learning framework, there has been surprisingly little work on characterizing learn-
ability and developing generic tools to obtain rates for the online learning framework. Littlestone [34] has
shown that, in the setting of prediction of binary outcomes, a certain combinatorial property of the binary-
valued function class characterizes learnability in the realizable case (that is, when the outcomes presented
by the adversary are given according to some function in the class F). The result has been extended to
the non-realizable case by Shai Ben-David, Dávid Pál and Shai Shalev-Shwartz [35] who named this com-
binatorial quantity the Littlestone’s dimension. Coincident with [35], minimax analysis of online convex
optimization yielded new insights into the value of the game, its minimax dual representation, as well as
algorithm-independent upper and lower bounds [36, 7]. In this chapter we will build tools analogous to the
ones we have to analyze statistical learning problems like Rademacher complexity, covering numbers etc that
work for online learning framework.

Section 4.1 introduces the problem at hand formally and provides various key definitions like that of online
learning algorithm. Section 4.2 formally defines value of the online learning game and uses it to define
learnability of an online learning problem and provides the main minimax theorem which is key in getting
many results. In Section 4.3 we formally define the sequential Rademacher complexity and shows that it can
be used to bound the value and hence get bounds on optimal rates for online learning problems. Structural
properties of this complexity measure is also provided. This is perhaps the most important tool we introduce
in this chapter. Section 4.4 introduces sequential covering numbers and sequential fat-shattering dimension
and shows relation between them and how they can be used to bound the sequential Rademacher complexity.

52

Section 4.5 shows how these complexity tools provide a martingale uniform convergence story for online
learning. Section 4.6 shows how these complexity measures can be used to characterize online learnability
of supervised learning problems and goes on to provide a generic algorithm for online supervised learning
problems. Section 4.7 provides various examples illustrating how the results can be used to obtain bounds
for various online learning problems.

4.1 The Online Learning Problem

The online learning problem is a continual learning process that proceeds in rounds where in each round
adversary picks an instance, learner in turn picks a hypothesis. At the end of the round, the learner pays loss
for picking the particular hypothesis against the instance chosen by the adversary for that round. Specifically
the online learning protocol can be written as :

Online Learning Protocol :

for t = 1 to n
Learner picks hypothesis ht ∈ H̄
Adversary simultaneously picks instance zt ∈ Z
Learner pays loss `(ht, zt)

end for

Notice that unlike the statistical learning framework, the instances need not be selected statistically according
to some fixed distribution. The adversary at round t can select the instance zt in an adversarial worst case
fashion based on previous instances z1, . . . , zt−1 and based on previous hypotheses h1, . . . ,ht−1 selected by
the learner. The automatic question that will rise in the reader’s mind would be what is the goal of the learner
in this online learning framework. The goal we consider for this online learning framework at the end of n
rounds is to have low “regret” w.r.t. the best single hypothesis from target classH that the learner could have
picked at hind-sight after knowing z1, . . . , zn. That is, the regret after n rounds is defined as :

Rn ((h1, z1), . . . , (hn, zn)) =
1

n

n∑
t=1

`(ht, zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt) (4.1.1)

On the Importance of Randomization : Unlike the statistical learning framework, due to the adversar-
ial nature of the online learning framework, randomization of learning rules become necessary even for
very simple (non-convex) problems. To illustrate this let us consider the simple problem of binary clas-
sification w.r.t. target hypothesis class H consisting of exactly two functions, the constant mapping to 1

and the constant mapping to −1. Now if we consider only deterministic rule, the adversary (knowing the
learning rule of the learner), at each round can pick label yt to be opposite of what the learner predicts.
At the end of n rounds, the average loss suffered by the learner is 1

n

∑n
t=1 `(ht, (xt, yt)) = 1. However

infh∈H
1
n

∑n
t=1 `(h, (xt, yt)) ≤

1
2 Hence regret is lower bounded by 1/2. This example can easily be ex-

tended to other non-convex (in H) supervised learning problems. Thus we see that in the online learning

53

framework considering randomized learning rules is imperative to get useful results. However whenever H̄ is
a vector space and loss ` is convex in its first argument, simple application of Jensen’s inequality shows that
it is enough to consider only deterministic learning rules.

Just like we introduced the notion of ”Statistical Learning Rule” to refer to the way the learner picks hypothe-
sis for statistical learning problems, we now formally define online learning rules to refer to learner’s strategy
for an online learning problem. However as discussed in the previous paragraph, we shall right from the start
define learning rule to be a randomized one.

Definition 21. A “Randomized Online Learning Rule” A :
⋃
n∈N∪{}

(
H̄n ×Zn

)
7→ ∆(H̄) is a mapping

from sequences of hypothesis, instance pair in H̄ × Z to the set of all Borel distributions over hypothesis set

H̄.

Given a “Randomized Online Learning Rule” A, the way the learner uses this for picking the hypothesis
for each round is as follows. On any round 1, learner simply sampling h1 ∼ A({}) which is some fixed
distribution over the set H̄. Further recursively at each round t, the learner uses the learning rule on instances
z1, . . . , zt−1 seen so far and hypotheses h1, . . . ,ht−1 sampled so far to pick the hypothesis for current round
as ht ∼ A(h1:t−1, z1:t−1). For a randomized learning algorithm our aim will be to ensure that under expec-
tation over randomization, the regret of the learner is small.

We shall often refer to the the “Randomized Online Learning Rule” as player/learner’s strategy as well.
Further, whenever the output of the learning rule is deterministic, ie. whenever for each input sequence, the
learning rule picks a particular hypothesis with probability one, we will refer to the rule as a “Deterministic
Online Learning Rule”. Notice that if the learning rule is deterministic then at any round t, giving hypotheses
h1, . . . ,ht−1 as argument to the learning is redundant as they can be calculated using just the instances.
Hence we see that when we talk of “Deterministic Learning Rule”, it is no different in form from “Statistical
Learning Rules” which are mapping from sequence of instances to hypothesis set H̄.

4.2 Online Learnability and the Value of the Game

How can one define learnability in the online learning framework? Of course, we will refer to a problem
as online learnable if there exists a randomized online learning algorithm which can guarantee diminishing
expected regret against any strategy of the adversary. We can use the concept of value of a game to succinctly
write down that it means for a problem to be online learnable. We will assume that ∆(H̄), the set of all Borel
probability measures on H̄ is weakly compact. Note that if H̄ is a compact set or is the unit ball of a reflexive
Banach space then one can guarantee that ∆(H̄) is automatically weakly compact. Hence this restriction
is automatically true in most practical cases. We consider randomized learners who predicts a distribution
qt ∈ ∆(H̄) on every round. We can define the value of the game as

Vn(H,Z) = inf
q1∈∆(H̄)

sup
z1∈Z

E
h1∼q1

· · · inf
qn∈∆(H̄)

sup
zn∈Z

E
hn∼qn

[
1

n

n∑
t=1

`(ht, zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt)

]
(4.2.1)

54

where ht has distribution qt. We consider here the adaptive adversary who gets to choose instance zt at round
t based on the history of moves h1:t−1 and z1:t−1.

The above definition is stated in the extensive form, but can be equivalently written in a strategic form. Just
like we used A to describe the learner’s strategy, analogously we can define the adversarial strategy as a
sequence of τ :

⋃
n∈N (Hn ×Zn) 7→ ∆(Z) where ∆(Z) refers to the set of all Borel probability distribution

on Z . The value can then be written as

Vn(H,Z) = inf
A

sup
τ

E

{
1

n

n∑
t=1

`(ht, zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt)

}
. (4.2.2)

where it is understood that each ht and zt are successively drawn according to law A(h1:t−1, z1:t−1) and
τ(h1:t−1, z1:t−1) respectively. While the strategic notation is more succinct, it hides the important sequential
structure of the problem. This is the reason why we opt for the more explicit, yet more cumbersome, extensive
form. We are now ready to formally define online learnability of a problem.

Definition 22. We say that a problem is online learnable with respect to the given instance space Z against

target hypothesis setH if

lim sup
n→∞

Vn(H,Z) = 0 .

The first key step is to appeal to the minimax theorem and exchange the pairs of infima and suprema in
Eq. (4.2.1). This dual formulation is easier to analyze because the choice of the player comes after the choice
of the mixed strategy of the adversary. We remark that the minimax theorem holds under a very general
assumption of weak compactness of ∆(H̄). The assumptions on H̄ that translate into weak compactness of
∆(H̄) are discussed in Appendix ??. Compactness under weak topology allows us to appeal to Theorem 23
stated below.

Theorem 23. Let H̄ and Z be the sets satisfying the necessary conditions for the minimax theorem to hold,

then

Vn(H,Z) = inf
q1∈∆(H̄)

sup
z1∈Z

E
h1∼q1

· · · inf
qn∈∆(H̄)

sup
zn∈Z

E
hn∼qn

[
1

n

n∑
t=1

`(ht, zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt)

]

= sup
p1∈∆(Z)

E
z1∼p1

. . . sup
pn∈∆(Z)

E
zn∼pn

[
1

n

n∑
t=1

inf
ht∈H̄

E
zt∼pt

[`(ht, zt)]− inf
h∈H

1

n

n∑
t=1

`(h, zt)

]
(4.2.3)

The question of learnability in the online learning model is now reduced to the study of Vn(H,Z), tak-
ing Eq. Eq. (4.2.3) as the starting point. In particular, under our definition, showing that the value grows
sublinearly with n is equivalent to showing learnability.

One of the key notions introduced in this chapter is the complexity which we term Sequential Rademacher

complexity. A natural generalization of Rademacher complexity [37, 38, 39], the sequential analogue pos-
sesses many of the nice properties of its classical cousin. The properties are proved in Section 4.3.1 and
then used to show learnability for many of the examples in Section ??. The first step, however, is to show

55

that Sequential Rademacher complexity upper bounds the value of the game. This is the subject of the next
section.

4.3 Sequential Rademacher Complexity

We propose the following definition of sequential Rademacher complexity of any function class F ⊂ RZ .
The key difference from the classical notion is the dependence of the sequence of data on the sequence of
signs (Rademacher random variables). As shown in the sequel, this dependence captures the sequential nature
of the problem.

Definition 23. The Sequential Rademacher Complexity of a function class F ⊆ RZ is defined as

Rseq
n (F) = sup

z
Eε

[
sup
f∈F

1

n

n∑
t=1

εtf(zt(ε))

]

where the outer supremum is taken over all Z-valued trees (z) of depth n and ε = (ε1, . . . , εn) is a sequence

of i.i.d. Rademacher random variables.

In statistical learning, Rademacher complexity is shown to control uniform deviations of means and expecta-
tions, and this control is key for learnability in the “batch” setting. We now show that Sequential Rademacher
complexity upper-bounds the value of the game, suggesting its importance for online learning (see Section ??
for a lower bound).

Theorem 24. The minimax value of a randomized game is bounded as

Vn(H,Z) ≤ 2Rseq
n (F)

where the function class F is given by, F = {z 7→ `(h, z) : h ∈ H} .

Proof. From Eq. Eq. (4.2.3),

Vn(H,Z) = sup
p1

Ez1∼p1
. . . sup

pn

Ezn∼pn

[
1

n

n∑
t=1

inf
ht∈H̄

Ezt∼pt [`(ht, zt)]− inf
h∈H

1

n

n∑
t=1

`(h, zt)

]

= sup
p1

Ez1∼p1 . . . sup
pn

Ezn∼pn

[
sup
h∈H

{
1

n

n∑
t=1

inf
ht∈H̄

Ezt∼pt [`(ht, zt)]−
1

n

n∑
t=1

`(h, zt)

}]

≤ sup
p1

Ez1∼p1 . . . sup
pn

Ezn∼pn

[
sup
h∈H

{
1

n

n∑
t=1

Ezt∼pt [`(h, zt)]−
1

n

n∑
t=1

`(h, zt)

}]
(4.3.1)

The last step, in fact, is the first time we deviated from keeping equalities. The upper bound is obtained by

56

replacing each infimum by a particular choice h. Now renaming variables we have,

Vn(H,Z) = sup
p1

Ez1∼p1
. . . sup

pn

Ezn∼pn

[
sup
h∈H

{
1

n

n∑
t=1

Ez′t∼pt [`(h, z′t)]−
1

n

n∑
t=1

`(h, zt)

}]

≤ sup
p1

Ez1∼p1
. . . sup

pn

Ezn∼pn

[
Ez′1∼p1

. . .Ez′n∼pn sup
h∈H

{
1

n

n∑
t=1

`(h, z′t)−
1

n

n∑
t=1

`(h, zt)

}]

≤ sup
p1

Ez1,z′1∼p1
. . . sup

pn

Ezn,z′n∼pn

[
sup
h∈H

{
1

n

n∑
t=1

`(h, z′t)−
1

n

n∑
t=1

`(h, zt)

}]
.

where the last two steps are using Jensen inequality for the supremum.

By the Key Technical Lemma (see Lemma 25 below) with φ(u) = u,

sup
p1

Ez1,z′1∼p1
. . . sup

pn

Ezn,z′n∼pn

[
sup
h∈H

{
1

n

n∑
t=1

`(h, z′t)− `(h, zt)

}]

≤ sup
z1,z′1

Eε1 . . . sup
zn,z′n

Eεn

[
sup
h∈H

1

n

n∑
t=1

εt (`(h, z′t)− `(h, zt))

]

Thus,

Vn(F) ≤ sup
z1,z′1

Eε1 . . . sup
zn,z′n

Eεn

[
sup
h∈H

1

n

n∑
t=1

εt (`(h, z′t)− `(hzt))

]

≤ sup
z1,z′1

Eε1 . . . sup
zn,z′n

Eεn

[
sup
h∈H

{
1

n

n∑
t=1

εt`(h, z
′
t)

}
+ sup

h∈H

{
1

n

n∑
t=1

−εt`(h, zt)

}]

= 2 sup
z1

Eε1 . . . sup
zn

Eεn

[
sup
h∈H

1

n

n∑
t=1

εt`(h, zt)

]

Now, we need to move the suprema over zt’s outside. This is achieved via an idea similar to skolemization

in logic. We basically exploit the identity

Eε1:t−1

[
sup
zt

G(ε1:t−1, zt)

]
= sup

zt

Eε1:t−1
[G(ε1:t−1, zt(ε1:t−1))]

that holds for any G : {±1}t−1 ×Z 7→ R. On the right the supremum is over functions zt : {±1}t−1 → Z .

Using this identity once, we get,

Vn(F) ≤ 2

n
sup
z1,z2

{
Eε1,ε2

[
sup
z3

. . . sup
zn

{
Eεn

[
sup
h∈H

{
ε1`(h, z1) + ε2`(h, z2(ε1)) +

n∑
t=3

εt`(h, zt)

}]}
. . .

]}

57

Now, use the identity n− 2 more times to successively move the supremums over z3, . . . , zn outside, to get

Vn(F) ≤ 2

n
sup

z1,z2,...,zn

Eε1,...,εn

[
sup
h∈H

{
ε1`(h, z1) +

n∑
t=2

εt`(h, zt(ε1:t−1))

}]

= 2 sup
z

Eε1,...,εn

[
sup
h∈H

{
1

n

n∑
t=1

εt`(h, zt(ε))

}]

where the last supremum is over Z-valued trees of depth n. Thus we have proved the required statement.

Theorem 24 relies on the following technical lemma, which will be used again in Section ??. Its proof
requires considerably more work than the classical symmetrization proof [40, 39] due to the non-i.i.d. nature
of the sequences.

Lemma 25 (Key Technical Lemma). Let (z1, . . . , zn) ∈ Zn be a sequence distributed according to D and

let (z′1, . . . , z
′
n) ∈ Zn be a tangent sequence. Let φ : R 7→ R be a measurable function. Then

sup
p1

E
z1,z′1∼p1

. . . sup
pn

E
zn,z′n∼pn

[
φ

(
sup
h∈H

1

n

n∑
t=1

∆h(zt, z
′
t)

)]

≤ sup
z1,z′1

Eε1 . . . sup
zn,z′n

Eεn

[
φ

(
sup
h∈H

1

n

n∑
t=1

εt∆h(zt, z
′
t)

)]

where ε1, . . . , εn are independent (of each other and everything else) Rademacher random variables and

∆h(xt, x
′
t) = 1

n (`(h, z′t)− `(h, zt)). The inequality also holds when an absolute value of the sum is intro-

duced on both sides.

Before proceeding, let us give some intuition behind the attained bounds. Theorem 23 establishes an upper
bound on the value of the game in terms of a stochastic process on Z . In general, it is difficult to get a handle
on the behavior of this process. The key idea is to relate this process to a symmetrized version, and then
pass to a new process obtained by fixing a binary tree z and then following a path in z using i.i.d. coin flips.
In some sense, we are replacing the σ-algebra generated by the random process of Theorem 23 by a simpler
process generated by Rademacher random variables and a tree z. It can be shown that the original process and
the simpler process are in fact close in a certain sense, yet the process generated by the Rademacher random
variables is much easier to work with. It is precisely due to symmetrization that the trees we consider in this
work are binary trees and not full game trees. Passing to binary trees allows us to define covering numbers,
combinatorial parameters, and other analogues of the classical notions from statistical learning theory.

4.3.1 Structural Results

Being able to bound complexity of a function class by a complexity of a simpler class is of great utility
for proving bounds. In statistical learning theory, such structural results are obtained through properties of
Rademacher averages [39, 38]. In particular, the contraction inequality due to Ledoux and Talagrand [41,

58

Corollary 3.17], allows one to pass from a composition of a Lipschitz function with a class to the function
class itself. This wonderful property permits easy convergence proofs for a vast array of problems.

We show that the notion of Sequential Rademacher complexity also enjoys many of the same properties. In
Section ??, the effectiveness of the results is illustrated on a number of examples.

The next lemma bounds the Sequential Rademacher complexity for the product of function classes.

Lemma 26. Let F = F1 × . . . × Fk where each Fj ⊂ [−1, 1]Z . Also let φ : Rk × Z 7→ R be such that

φ(·, z) is L-Lipschitz w.r.t. ‖ · ‖∞ norm for any z ∈ Z . Then we have that

Rseq
n (φ ◦ F) ≤ 8L

(
1 + 4

√
2 log3/2(en2)

) k∑
j=1

Rseq
n (Fj)

as long as Rseq
n (Fj) ≥ 1 for each j.

As a special case of the result, we get a sequential counterpart of the Ledoux-Talagrand [41] contraction
inequality.

Lemma 27. Fix a class F ⊆ [−1, 1]Z with Rseq
n (F) ≥ 1 and a function φ : R × Z 7→ R. Assume, for all

z ∈ Z , φ(·, z) is a Lipschitz function with a constant L.

Rseq(φ(F)) ≤ 8L
(

1 + 4
√

2 log3/2(en2)
)
·Rseq

n (F)

where φ(F) = {z 7→ φ(f(z), z) : f ∈ F}.

We remark that the lemma above encompasses the case of a Lipschitz φ : R 7→ R, as stated in [41, 38].
However, here we get an extra logarithmic factor in n which is absent in the classical case. Whether the same
can be proved in the sequential case remains an open question.

We state another useful corollary of Lemma 26.

Corollary 28. For a fixed binary function b : {±1}k 7→ {±1} and classes F1, . . . ,Fk of {±1}-valued

functions,

Rseq
n (g(F1, . . . ,Fk)) ≤ O

(
log3/2(n)

) k∑
j=1

Rseq
n (Fj)

In the next proposition, we summarize some useful properties of Sequential Rademacher complexity (see
[39, 38] for the results in the i.i.d. setting)

Proposition 29. Sequential Rademacher complexity satisfies the following properties.

1. If F ⊂ G, then Rseq
n (F) ≤ Rseq

n (G).

2. Rseq
n (F) = Rseq(conv(F)).

59

3. Rseq
n (cF) = |c|Rseq

n (F) for all c ∈ R.

4. For any h, Rseq
n (F + h) = Rseq

n (F) where F + h = {f + h : f ∈ F}.

4.4 Sequential Covering Number and Combinatorial Parameters

In statistical learning theory, learnability for binary classes of functions is characterized by the Vapnik-
Chervonenkis combinatorial dimension [42]. For real-valued function classes, the corresponding notions
are the scale-sensitive dimensions, such as Pγ [43, 44]. For online learning, the notion characterizing learn-
ability for binary prediction in the realizable case has been introduced by Littlestone [34] and extended to
the non-realizable case of binary prediction by Shai Ben-David, Dávid Pál and Shai Shalev-Shwartz [35].
Next, we define the Littlestone’s dimension [34, 35] and propose its scale-sensitive versions for real-valued
function classes. In the sequel, these combinatorial parameters are shown to control the growth of covering
numbers on trees. In the setting of prediction, the combinatorial parameters are shown to exactly characterize
learnability (see Section ??).

Definition 24. AZ-valued tree z of depth d is shattered by a function classF ⊆ {±1}Z if for all ε ∈ {±1}d,

there exists f ∈ F such that f(zt(ε)) = εt for all t ∈ [d]. The Littlestone dimension Ldim(F ,Z) is the

largest d such that F shatters an Z-valued tree of depth d.

Definition 25. An Z-valued tree z of depth d is α-shattered by a function class F ⊆ RZ , if there exists an

R-valued tree s of depth d such that

∀ε ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], εt(f(zt(ε))− st(ε)) ≥ α/2

The tree s is called the witness to shattering. The fat-shattering dimension fatseq
α (F ,Z) at scale α is the

largest d such that F α-shatters an Z-valued tree of depth d.

With these definitions it is easy to see that fatseq
α (F ,Z) = Ldim(F ,Z) for a binary-valued function class

F ⊆ {±1}Z for any 0 < α ≤ 2.

When Z and/or F is understood from the context, we will simply write fatseq
α or fatseq

α (F) instead of
fatseq

α (F ,Z). Furthermore, we will write fatseq
α (F , z) for fatseq

α (F , Img(z)). In other words, fatseq
α (F , z) is

the largest d such that F α-shatters a tree y of depth d with Img(y) ⊆ Img(z).

Let us mention that if trees z are defined by constant mappings zt(ε) = zt, the combinatorial parameters
coincide with the Vapnik-Chervonenkis dimension and with the scale-sensitive dimension Pγ . Therefore, the
notions we are studying are strict “temporal” generalizations of the VC theory.

As in statistical learning theory, the combinatorial parameters are only useful if they can be shown to capture
that aspect of F which is important for learnability. In particular, a “size” of a function class is known to be
related to complexity of learning from i.i.d. data., and the classical way to measure “size” is through a cover
or of a packing set. We propose the following definitions for online learning.

60

Definition 26. A set V of R-valued trees of depth n is an α-cover (with respect to `p-norm) of F ⊆ RZ on

a tree z of depth n if

∀f ∈ F , ∀ε ∈ {±1}n ∃v ∈ V s.t.

(
1

n

n∑
t=1

|vt(ε)− f(zt(ε))|p
)1/p

≤ α

The covering number of a function class F on a given tree z is defined as

Nseq
p (α,F , z) = min{|V | : V is an α− cover w.r.t. `p-norm of F on z}.

Further define Nseq
p (α,F , n) = supz N

seq
p (α,F , z), the maximal `p covering number of F over depth n

trees.

In particular, a set V of R-valued trees of depth n is a 0-cover of F ⊆ RZ on a tree z of depth n if

∀f ∈ F , ∀ε ∈ {±1}n ∃v ∈ V s.t. vt(ε) = f(zt(ε))

We denote by Nseq(0,F , z) the size of a smallest 0-cover on z and Nseq(0,F , n) = supz N
seq(0,F , z).

Let us discuss a subtle point. The 0-cover should not be mistaken for the size |F(z)| of the projection of F
onto the tree z, and the same care should be taken when dealing with α-covers. Let us illustrate this with an
example. Consider a tree z of depth n and suppose for simplicity that |Img(z)| = 2n− 1, i.e. the values of z
are all distinct. Suppose F consists of 2n−1 binary-valued functions defined as zero on all of Img(z) except
for a single value of Img(zn). In plain words, each function is zero everywhere on the tree except for a single
leaf. While the projection F(z) has 2n−1 distinct trees, the size of a 0-cover is only 2. It is enough to take
an all-zero function g0 along with a function g1 which is zero on all of Img(z) except Img(zn) (i.e. on the
leaves). It is easy to verify that g0(z) and g1(z) provide a 0-cover for F on z, and therefore, unlike |F(z)|,
the size of the cover does not grow with n. The example is encouraging: our definition of a cover captures
the fact that the function class is “simple” for any given path.

Next, we naturally propose a definition of a packing.

Definition 27. A set V of R-valued trees of depth n is said to be α-separated if

∀v ∈ V, ∃ε ∈ {±1}n s.t. ∀w ∈ V \ {v}

(
1

n

n∑
t=1

|vt(ε)−wt(ε)|p
)1/p

> α

The weak packing number Dp(α,F , z) of a function class F on a given tree z is the size of the largest

α-separated subset of {f(z) : f ∈ F}.

Definition 28. A set V of R-valued trees of depth n is said to be strongly α-separated if

∃ε ∈ {±1}n s.t. ∀v,w ∈ V,v 6= w

(
1

n

n∑
t=1

|vt(ε)−wt(ε)|p
)1/p

> α

61

The strong packing number Mp(α,F , z) of a function class F on a given tree z is the size of the largest

strongly α-separated subset of {f(z) : f ∈ F}.

Note the distinction between the packing number and the strong packing number. For the former, it must
be that every member of the packing is α-separated from every other member on some path. For the latter,
there must be a path on which every member of the packing is α-separated from every other member. This
distinction does not arise in the classical scenario of “batch” learning. We observe that if a tree z is defined
by constant mappings zt = xt, the two notions of packing and strong packing coincide, i.e. Dp(α,F , z) =

Mp(α,F , z). The following lemma gives a relationship between covering numbers and the two notions of
packing numbers. The form of this should be familiar, except for the distinction between the two types of
packing numbers.

Lemma 30. For any F ⊆ RZ , any Z-valued tree z of depth n, and any α > 0

Mp(2α,F , z) ≤ Nseq
p (α,F , z) ≤ Dp(α,F , z).

It is important to note that the gap between the two types of packing can be as much as 2n.

4.4.1 A Combinatorial Upper Bound

We now relate the combinatorial parameters introduced in the previous section to the size of a cover. In the
binary case (k = 1 below), a reader might notice a similarity of Theorems 31 and 33 to the classical results
due to Sauer [45], Shelah [46] (also, Perles and Shelah), and Vapnik and Chervonenkis [42]. There are several
approaches to proving what is often called the Sauer-Shelah lemma. We opt for the inductive-style proof (e.g.
Alon and Spencer [47]). Dealing with trees, however, requires more work than in the VC case .

Theorem 31. Let F ⊆ {0, . . . , k}Z be a class of functions with fatseq
2 (F) = d. Then

Nseq
∞ (1/2,F , n) ≤

d∑
i=0

(
n

i

)
ki ≤ (ekn)

d
.

Furthermore, for n ≥ d
d∑
i=0

(
n

i

)
ki ≤

(
ekn

d

)d
.

Armed with Theorem 31, we can approach the problem of bounding the size of a cover at an α scale by a
discretization trick. For the classical case of a cover based on a set points, the discretization idea appears
in [43, 48]. When passing from the combinatorial result to the cover at scale α in Corollary 32, it is crucial
that Theorem 31 is in terms of fatseq

2 (F) and not fatseq
1 (F). This point can be seen in the proof of Corol-

lary 32 (also see [48]): the discretization process can assign almost identical function values to discrete values
which differ by 1. This explains why the combinatorial result of Theorem 31 is proved for the 2-shattering
dimension.

62

We now show that the covering numbers are bounded in terms of the fat-shattering dimension.

Corollary 32. Suppose F is a class of [−1, 1]-valued functions on Z . Then for any α > 0, any n > 0, and

any Z-valued tree z of depth n,

Nseq
1 (α,F , z) ≤ Nseq

2 (α,F , z) ≤ Nseq
∞ (α,F , z) ≤

(
2en

α

)fatseq
α (F)

With a proof similar to Theorem 31, a bound on the 0-cover can be proved in terms of the fatseq
1 (F) combi-

natorial parameter. Of particular interest is the case k = 1, when fatseq
1 (F) = Ldim(F).

Theorem 33. Let F ⊆ {0, . . . , k}Z be a class of functions with fatseq
1 (F) = d. Then

Nseq(0,F , n) ≤
d∑
i=0

(
n

i

)
ki ≤ (ekn)

d
.

Furthermore, for n ≥ d
d∑
i=0

(
n

i

)
ki ≤

(
ekn

d

)d
.

In particular, the result holds for binary-valued function classes (k = 1), in which case fatseq
1 (F) =

Ldim(F).

When bounding deviations of means from expectations uniformly over the function class, the usual approach
proceeds by a symmetrization argument [49] followed by passing to a cover of the function class and a union
bound (e.g. [39]). Alternatively, a more refined chaining analysis integrates over covering at different scales
(e.g. [50]). By following the same path, we are able to prove a number of similar results for our setting.
In the next section we present a bound similar to Massart’s finite class lemma [51, Lemma 5.2], and in the
following section this result will be used when integrating over different scales for the cover.

4.4.2 Finite Class Lemma and the Chaining Method

Lemma 34. For any finite set V of R-valued trees of depth n we have that

Eε

[
max
v∈V

n∑
t=1

εtvt(ε)

]
≤

√√√√2 log(|V |) max
v∈V

max
ε∈{±1}n

n∑
t=1

vt(ε)2

A simple consequence of the above lemma is that if F ⊆ [0, 1]Z is a finite class, then for any given tree z we
have that

Eε

[
max
f∈F

1

n

n∑
t=1

εtf(zt(ε))

]
≤ 1

n
Eε

[
max

v∈F(z)

n∑
t=1

εtvt(ε)

]
≤
√

2 log |F|
n

.

Note that if f ∈ F is associated with an “expert”, this result combined with Theorem 24 yields a bound given

63

by the exponential weighted average forecaster algorithm (see [52]). In Section ?? we discuss this case in
more detail. However, as we show next, Lemma 34 goes well beyond just finite classes and can be used to
get an analog of Dudley entropy bound [17] for the online setting through a chaining argument.

Definition 29. The Integrated complexity of a function class F ⊆ [−1, 1]Z is defined as

Dseq
n (F) = inf

α

{
4α+ 12

∫ 1

α

√
log N2(δ,F , n)

n
dδ

}
.

To prove the next theorem, we consider covers of the classF at different scales that form a geometric progres-
sion. We zoom into a given function f ∈ F using covering elements at successive scales. This zooming in
procedure is visualized as forming a chain that consists of links connecting elements of covers at successive
scales. The Rademacher complexity of F can then be bounded by controlling the Rademacher complexity of
the link classes, i.e. the class consisting of differences of functions from covers at neighbouring scales. This
last part of the argument is the place where our proof becomes a bit more involved than the classical case.

Theorem 35. For any function class F ⊆ [−1, 1]Z ,

Rseq
n (F) ≤ Dseq

n (F) .

If a fat-shattering dimension of the class can be controlled, Corollary 32 together with Theorem 35 yield an
upper bound on the value.

We can now show that, in fact, the two complexity measures Rseq
n (F) and Dseq

n (F) are equivalent, up to a
logarithmic factor. Before stating this result formally, we prove the following lemma which asserts that the
fat-shattering dimensions at “large enough” scales cannot be too large.

Lemma 36. For any β > 2
nR

seq
n (F), we have that fatseq

β (F) < n.

The following lemma complements Theorem 35.

Lemma 37. For any function class F ⊆ [−1, 1]Z , we have that

Dseq
n (F) ≤ 8 Rseq

n (F)
(

1 + 4
√

2 log3/2
(
en2
))

as long as Rseq
n (F) ≥ 1

n .

4.5 Martingale Uniform Convergence

As we discussed in the previous chapter, in the statistical learning setting learnability of supervised learn-
ing problem is equivalent to the so called uniform Glivenko-Cantelli property (uniform convergence) of the
class. The property refers to the empirical averages converging to expected value of the function for any fixed

64

distribution (samples drawn i.i.d.) and uniformly over the function class almost surely. Tools like classical
Rademacher complexity, statistical covering numbers and statistical fat-shattering dimension can be used in
analyzing rate of uniform convergence of empirical average to expected value of the function for samples
drawn i.i.d from any fixed distribution. Analogously sequential counterparts of these complexity measures
can be used to bound rate of uniform convergence of average value of the function to average conditional
expectation of the function values for arbitrary distributions over sequence of random variables. In fact in
the proof of Theorem 24 we already encountered this general martingale uniform convergence in expecta-
tion. Specifically Equation 4.3.1 which we showed is bounded by the sequential Rademacher complexity.
We now formally define Universal Uniform Convergence which is analogous to the usual definition of uni-
form Glivenko-Cantelli property for general dependent processes and in this section we will show how the
sequential complexity measures provide tools for bounding this martingale version of uniform convergence.

Definition 30. A function class F satisfies a Universal Uniform Convergence if for all α > 0,

lim
N→∞

sup
D

PD

(
sup
n≥N

sup
f∈F

1

n

∣∣∣∣∣
n∑
t=1

(f(zt)− Et−1[f(zt)])

∣∣∣∣∣ > α

)
= 0

where the supremum is over distributions D over infinite sequences (x1, . . . , xn, . . .)

We remark that the notion of uniform Glivenko-Cantelli classes is recovered if the supremum is taken over
i.i.d. distributions. The theorem below shows that finite fat shattering dimension at all scales is a sufficient
condition for Universal Uniform Convergence.

Theorem 38. LetF be a class of [−1, 1]-valued functions. If fatseq
α (F) is finite for all α > 0, thenF satisfies

Universal Uniform Convergence.

The proof follows from the Lemma 39 and Lemma 40 below, while Lemma 41 is an even stronger version of
Lemma 40. We remark that Lemma 39 is the “in-probability” version of sequential symmetrization technique
of Theorem 24 and Lemma 41 is the “in-probability” version of Theorem 35.

Lemma 39. Let F be a class of [−1, 1]-valued functions. Then for any α > 0

PD

(
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

(f(zt)− Et−1[f(zt)])

∣∣∣∣∣ > α

)
≤ 4 sup

z
Pε

(
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > α/4

)

Lemma 40. Let F be a class of [−1, 1]-valued functions. For any Z-valued tree z of depth n and α > 0

Pε

(
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > α/4

)
≤ 2N1(α/8,F , z)e−nα

2/128 ≤ 2

(
16en

α

)fatseq
α/8

e−nα
2/128

Next, we show that the sequential Rademacher complexity is, in some sense, the “right” complexity measure
even when one considers high probability statements.

65

Lemma 41. Let F be a class of [−1, 1]-valued functions and suppose fatseq
α (F) is finite for all α > 0. Then

for any θ >
√

8/n, for any Z-valued tree z of depth n,

Pε

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > 128
(

1 + θ
√
n log3/2(2n)

)
·Rseq

n (F)

)

≤ Pε

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > inf
α>0

{
4α+ 12θ

∫ 1

α

√
logNseq

∞ (δ,F , n)

n
dδ

})
≤ Le−nθ

2

4

where L is a constant such L >
∑∞
j=1 N

seq
∞ (2−j ,F , n)−1 .

While throughout this chapter we are mostly concerned with expected versions of minimax regret and the cor-
responding complexities, the above lemmas can be employed to give an analogous in-probability treatment.
To obtain such in-probability statements, the value is defined as the minimax probability of regret exceeding
a threshold.

4.6 Charecterizing Learnability of Supervised Learning Problem

In this section we study the specific case of online supervised learning problem. In this setting, the instance
space Z is of form Z = X × Y where X is some arbitrary input space and Y ⊂ R. We shall assume that
Y ⊆ [−1, 1] (of course the bound of 1 can be changed to an arbitrary value). The target hypothesis set H for
the supervised learning problem corresponds to a set of functions that map input instances from X to some
predicted label in [−1, 1], that is H ⊂ [−1, 1]X . H̄ ⊂ [−1, 1]X can be an arbitrary superset of H and the
results in fact hold even if H̄ = H (ie. proper learning setting). The loss function we consider is for the form

`(h, (x, y)) = |h(x)− y|

In the online supervised learning problem at each round t, the player picks hypothesis ht ∈ H̄ and the
adversary provides input target pair (xt, yt) and the player suffers loss |ht(xt)−yt|. Note that if H̄ ⊆ {±1}X

and each yt ∈ {±1} then the problem boils down to binary classification problem.

Though we use the absolute loss in this section, it is easy to see that all the results hold (with modified rates)
for any loss `(h(x), y) which is such that for all h, x and y,

φ(`(ŷ, y)) ≤ |ŷ − y| ≤ Φ(`(ŷ, y))

where Φ and φ are monotonically increasing functions. For instance the squared loss is a classic example.

To formally define the value of the online supervised learning game, fix a set of labels Y ⊆ [−1, 1]. For
the sake of brevity, we shall use the notation VS

n(H) = Vn(H,X × Y). Binary classification is, of course, a
special case when Y = {±1} and H̄ ⊆ {±1}X . In that case, we simply use VBinary

n (H) for VS
n(H).

66

Proposition 42. For the supervised learning game played with a target hypothesis class H ⊆ [−1, 1]X , for

any n ≥ 2

1

4
√

2
sup
α

{
α
√
nmin {fatseq

α (H), n}
}
≤ 1

2
VSn (H) ≤ Dseq

n (H) ≤ inf
α

{
4α+

12√
n

∫ 1

α

√
fatseq

β (H) log

(
2en

β

)
dβ

}
≤ 58 log

3
2 n Rseq

n (H) . (4.6.1)

Moreover, the lower bound Rseq
n (H) ≤ VS

n(H) on the value of the supervised game also holds.

The proposition above implies that finiteness of the fat-shattering dimension is necessary and sufficient for
learnability of a supervised game. Further, all the complexity notions introduced so far are within a loga-
rithmic factor from each other whenever the problem is learnable. These results are summarized in the next
theorem.

Theorem 43. For any target hypothesis classH ⊆ [−1, 1]X , the following statements are equivalent

1. Target hypothesis classH is online learnable in the supervised setting.

2. For any α > 0, fatseq
α (H) is finite.

Moreover, if the function class is online learnable, then the value of the supervised game VS
n(H), the Sequen-

tial Rademacher complexity Rseq
n (H), and the Integrated complexity Dseq

n (H) are within a multiplicative

factor of O(log3/2 n) of each other.

Proof. The equivalence of 1 and 2 follows directly from Proposition 42. As for relating the various complex-

ity measures, note that again by Proposition 42, Rseq
n (H) ≤ VS

n(H), VS
n(H) ≤ 2Dseq

n (H) and Dseq
n (H) ≤

58 log
3
2 nRseq

n (H). Hence VS
n(H) and Dseq

n (H) are sandwiched between Rseq
n (H) andO(log3/2 n)Rseq

n (H)

which concludes the proof.

Corollary 44. For the binary classification game played with function class F we have that

K1

√
nmin {Ldim(H), n} ≤ VBinary

n (H) ≤ K2

√
n Ldim(H) log n

for some universal constants K1,K2.

We wish to point out that the lower bound of Proposition 42 holds for arbitrary class H̄ that is a superset of
the target hypothesis class H. Since a proper learning rule can always be seen also as an improper learning
rule, we trivially have that if class is properly online learnable in the supervised setting then it is improperly
online learnable too. However by the above mentioned fact that the lower bound of Proposition 42 holds
for arbitrary class H̄, we also have the non-trivial reverse implication that : if a class is improperly online
learnable in the supervised setting, it is online learnable.

67

It is natural to ask whether being able to learn in the online model is different from learning in a batch
model (in the supervised setting). The standard example (e.g. [34, 35]) is the class of step functions on
a bounded interval, which has a VC dimension 1, but is not learnable in the online setting. Indeed, it is
possible to verify that the Littlestone’s dimension is not bounded. Interestingly, the closely-related class of
“ramp” functions (modified step functions with a Lipschitz transition between 0’s and 1’s) is learnable in
the online setting (and in the batch case). We extend this example as follows. By taking a convex hull of
step-up and step-down functions on a unit interval, we arrive at a class of functions of bounded variation,
which is learnable in the batch model, but not in the online learning model. However, the class of Lipschitz

functions of bounded variation is learnable in both models. Online learnability of the latter class is shown
with techniques analogous to Section 4.7.5.

4.6.1 Generic Algorithm for Supervised Learning Problem

We shall now present a generic improper learning algorithm for the online supervised setting that achieves a
low regret bound whenever the function class is online learnable. For any α > 0 define an α-discretization of
the [−1, 1] interval asBα = {−1+α/2,−1+3α/2, . . . ,−1+(2k+1)α/2, . . .} for 0 ≤ k and (2k+1)α ≤ 4.
Also for any a ∈ [−1, 1] define bacα = argmin

r∈Bα
|r − a|. For a set of functions V ⊆ H, any r ∈ Bα and

x ∈ X define
V (r, x) = {h ∈ V | h(x) ∈ (r − α/2, r + α/2]}

Algorithm 1 Fat-SOA Algorithm (F , α)
V1 ← F
for t = 1 to n do
Rt(x) = {r ∈ Bα : fatseq

α (Vt(r, x)) = maxr′∈Bα fat
seq
α (Vt(r

′, x))}
For each x ∈ X , let ht(x) = 1

|Rt(x)|
∑
r∈Rt(x) r

Play ht and receive (xt, yt)
if |ht(xt)− yt| ≤ α then
Vt+1 = Vt

else
Vt+1 = Vt(bytcα, xt)

end if
end for

Lemma 45. Let H ⊆ [−1, 1]X be a function class with finite fatseq
α (H). Suppose the learner is presented

with a sequence (x1, y1), . . . , (xn, yn), where yt = h(xt) for some fixed h ∈ H unknown to the player. Then

for ht’s computed by the Algorithm 1 it must hold that

T∑
t=1

1{|ht(xt)−yt|>α} ≤ fatseq
α (H).

Lemma 45 proves a bound on the performance of Algorithm 1 in the realizable setting. We now provide an

68

algorithm for the agnostic setting. We achieve this by generating “experts” in a way similar to [35]. Using
these experts along with the exponentially weighted average (EWA) algorithm we shall provide the generic
algorithm for online supervised learning. The EWA (Algorithm 3) and its regret bound are provided in the
appendix for completeness (p. 101).

Algorithm 2 Expert (F , α, 1 ≤ i1 < . . . < iL ≤ n, Y1, . . . , YL)
V1 ← F
for t = 1 to n do
Rt(x) = {r ∈ Bα : fatseq

α (Vt(r, x)) = maxr′∈Bα fat
seq
α (Vt(r

′, x))}
For each x ∈ X , let f ′t(x) = 1

|Rt(x)|
∑
r∈Rt(x) r

if t ∈ {i1, . . . , iL} then
∀x ∈ X ,ht(x) = Yj where j is s.t. t = ij
Play ht and receive xt
Vt+1 = Vt(ht(xt), xt)

else
Play ht = h′t and receive xt
Vt+1 = Vt

end if
end for

For each L ≤ fatseq
α (H) and every possible choice of 1 ≤ i1 < . . . < iL ≤ n and Y1, . . . , YL ∈ Bα we

generate an expert. Denote this set of experts as En. Each expert outputs a function ht ∈ H at every round
n. Hence each expert e ∈ En can be seen as a sequence (e1, . . . , en) of mappings et : X t−1 7→ H. The total
number of unique experts is clearly

|En| =
fatseq

α∑
L=0

(
n

L

)
(|Bα| − 1)

L ≤
(

2n

α

)fatseq
α

Lemma 46. For any h ∈ H there exists an expert e ∈ En such that for any t ∈ [n],

|h(xt)− e(x1:t−1)(xt)| ≤ α

Proof. By Lemma 45, for any function h ∈ H, the number of rounds on which |ht(xt)−h(xt)| > α for the

output of the fat-SOA algorithm ht is bounded by fatseq
α (H). Further on each such round there are |Bα| − 1

other possibilities. For any possible such sequence of “mistakes”, there is an expert that predicts the right

label on those time steps and on the remaining time agrees with the fat-SOA algorithm for that target function.

Hence we see that there is always an expert e ∈ En such that

|h(xt)− e(x1:t−1)(xt)| ≤ α

Theorem 47. For any α > 0 if we run the exponentially weighted average (EWA) algorithm with the set En

69

of experts then the expected regret of the algorithm is bounded as

E [Rn] ≤ α+

√
fatseq

α log
(

2n
α

)
n

Proof. For any α ≥ 0 if we run EWA with corresponding set of experts En then we can guarantee that regret

w.r.t. best expert in the set En is bounded by
√
nfatseq

α log
(

2n
α

)
. However by Lemma 46 we have that the

regret of the best expert in En w.r.t. best function in function class H is at most αn. Combining we get the

required result.

The above theorem holds for a fixed α. To provide a regret statement that optimizes over α we consider αi’s
of form 2−i and assign weights pi = 6

π2 i
−2 to experts generated in above theorem for each αi and run EWA

on the entire set of experts with these initial weights. Hence we get the following corollary.

Corollary 48. LetH ⊆ [−1, 1]X . The expected regret of the algorithm described above is bounded as

E [Rn] ≤ inf
α

α+

√
fatseq

α log
(

2n
α

)
n

+

(
3 + 2 log log

(
1
α

))
√
n


4.7 Examples

4.7.1 Example: Margin Based Regret

In the classical statistical setting, margin bounds provide guarantees on expected zero-one loss of a classifier
based on the empirical margin zero-one error. These results form the basis of the theory of large margin
classifiers (see [53, 54]). Recently, in the online setting, margin bounds have been shown through the concept
of margin via the Littlestone dimension [35]. We show that our machinery can easily lead to margin bounds
for the binary classification games for general function classes F based on their sequential Rademacher
Complexity. We use ideas from [54] to do this.

Proposition 49. For any target hypothesis class H ⊂ [−1, 1]Z , there exists a randomized online algorithm

A such that for any sequence z1, . . . , zn where each zt = (xt, yt) ∈ Z × {±1}, played by the adversary,

E

[
1

n

n∑
t=1

Eht∼A(z1:t−1)

[
1{ht(xt)yt<0}

]]
≤ inf
γ>0

 inf
h∈H

1

n

n∑
t=1

1{h(xt)yt<γ} +
4

γ
Rseq
n (H) +

(
3 + log log

(
1
γ

))
√
n


4.7.2 Example : Neural Networks

We provide below a bound on sequential Rademacher complexity for classic multi-layer neural networks thus
showing they are learnable in the online setting. The model of neural network we consider below and the

70

bounds we provide are analogous to the ones considered in the batch setting in [38]. We now consider a
k-layer 1-norm neural network. To this end let function class F1 be given by

F1 =

x 7→∑
j

w1
jxj

∣∣∣ ‖w‖1 ≤ B1


and further for each 2 ≤ i ≤ k define

Fi =

x 7→∑
j

wijσ (fj(x))
∣∣∣ ∀j fj ∈ Fi−1, ‖wi‖1 ≤ Bi


Proposition 50. Say σ : R 7→ [−1, 1] is L-Lipschitz, then

Rseq
n (Fk) ≤

(
k∏
i=1

2Bi

)
Lk−1X∞

√
2 log d

n

where X∞ is such that ∀x ∈ Z , ‖x‖∞ ≤ X∞ and Z ⊂ Rd

4.7.3 Example: Decision Trees

We consider here the supervised learning game where adversary provides instances from input space X and
binary labels ±1 corresponding to the input and the player plays decision trees of depth no more than d with
decision functions from set C ⊂ {±1}X of binary valued functions. The following proposition shows that
there exists a randomized learning algorithm which under certain circumstances could have low regret for
the supervised learning (binary) game played with class of decision trees of depth at most d with decision
functions from C. The proposition is analogous to the one in [38] considered in the batch (classical) setting.

Proposition 51. Denote by T the class of decision trees of depth at most d with decision functions in

C. There exists a randomized online learning algorithm A such that for any sequence of instances z1 =

(x1, y1), . . . , zn = (xn, yn) ∈ (X × {±1})n played by the adversary,

E

[
1

n

n∑
t=1

Eτt∼A(z1:t−1)

[
1{τt(xt) 6=yt}

]]
≤ inf
τ∈T

1

n

n∑
t=1

1{τ(xt)6=yt}

+O

(∑
l

min
(
C̃n(l), d log3/2(n) Rseq

n (H)
)

+
(3 + 2 log(Nleaf))√

n

)

where C̃n(l) denotes the number of instances which reach the leaf l and are correctly classified in the decision

tree t that minimizes
∑n
t=1 1{τ(xt)6=yt} and let Nleaf be the number of leaves in this tree.

71

4.7.4 Example: Online Transductive Learning

Let F be a class of functions from Z to R. Let

N̂∞(α,F) = min
{
|G| : G ⊆ RZ s.t. ∀f ∈ F ∃g ∈ G satisfying ‖f − g‖∞ ≤ α

}
. (4.7.1)

be the `∞ covering number at scale α, where the cover is pointwise on all of Z . It is easy to verify that

∀n, N∞(α,F , n) ≤ N̂∞(α,F) (4.7.2)

Indeed, let G be a minimal cover of F at scale α. We claim that the set V = {vg = g(z) : g ∈ G} of
R-valued trees is an `∞ cover of F on z. Fix any ε ∈ {±1}n and f ∈ F , and let g ∈ G be such that
‖f − g‖∞ ≤ α. Then clearly |vgt (ε)− f(zt(ε))| for any 1 ≤ t ≤ n, which concludes the proof.

This simple observation can be applied in several situations. First, consider the problem of transductive

learning, where the set Z = {z1, . . . , zm} is a finite set. To ensure online learnability, it is sufficient to
consider an assumption on the dependence of N̂∞(α,F) on α. An obvious example of such a class is a
VC-type class with N̂∞(α,F) ≤ (c/α)d for some c which can depend on m. Assume that F ⊂ [−1, 1]Z .
Substituting this bound on the covering number into

Dseq
n (F) = inf

α

{
4α+ 12

∫ 1

α

√
log N2(δ,F , n)

n
dδ

}

and choosing α = 0, we observe that the value of the supervised game is upper bounded by 2Dseq
n (F) ≤

4
√

d log c
n by Proposition 42. It is easy to see that if m is fixed and the problem is learnable in the batch (e.g.

PAC) setting, then the problem is learnable in the online transductive model.

In the transductive setting considered by Kakade and Kalai [55], it is assumed that m ≤ n and F are binary-
valued. If F is a class with VC dimension d, the Sauer-Shelah lemma ensures that the `∞ cover is smaller
than (em/d)d ≤ (en/d)d. Using the previous argument with c = en, we obtain a bound of 4

√
dn log(en)

for the value of the game, matching [55] up to a constant 2.

We also consider the problem of prediction of individual sequences, which has been studied both in informa-
tion theory and in learning theory. In particular, in the case of binary prediction, Cesa-Bianchi and Lugosi
[56] proved upper bounds on the value of the game in terms of the (classical) Rademacher complexity and
the (classical) Dudley integral. The particular assumption made in [56] is that experts are static. That is,
their prediction only depends on the current round, not on the past information. Formally, we define static
experts as mappings f : {1, . . . , n} 7→ Y = [−1, 1], and let F denote a class of such experts. Defining
Z = {1, . . . , n} puts us in the setting considered earlier withm = n. We immediately obtain 4

√
dn log(en),

matching the results on [56, p. 1873]. We mention that the upper bound in Theorem 4 in [56] is tighter by
a log n factor if a sharper bound on the `2 cover is considered. Finally, for the case of a finite number of
experts, clearly N̂∞ ≤ N which gives the classical O(

√
n logN) bound on the value of the game [52].

72

4.7.5 Example: Isotron

Recently, Kalai and Sastry [57] introduced a method called Isotron for learning Single Index Models (SIM).
These models generalize linear and logistic regression, generalized linear models, and classification by linear
threshold functions. For brevity, we only describe the Idealized SIM problem from [57]. In its “batch”
version, we assume that the data is revealed at once as a set {(xi, yi)}nt=1 ∈ Rd × R where yt = u(〈w,xt〉)
for some unknown w ∈ Rd of bounded norm and an unknown non-decreasing u : R 7→ R with a bounded
Lipschitz constant. Given this data, the goal is to iteratively find the function u and the direction w, making
as few mistakes as possible. The error is measured as 1

n

∑n
t=1(hi(xt) − yt)2, where hi(x) = ui(〈wi,x〉)

is the iterative approximation found by the algorithm on the ith round. The elegant computationally efficient
method presented in [57] is motivated by Perceptron, and a natural open question posed by the authors is
whether there is an online variant of Isotron. Before even attempting a quest for such an algorithm, we can
ask a more basic question: is the (Idealized) SIM problem even learnable in the online framework? After all,
most online methods deal with convex functions, but u is only assumed to be Lipschitz and non-decreasing.
We answer the question easily with the tools we have developed.

We are interested in online learnability of the above described problem. Specifically, the setting of the prob-
lem is a supervised learning one where instance set is Z = X × Y where X = B2 (the unit Euclidean ball
in Rd) and Y = [−1, 1]. The target hypothesis set is given by H = U × B2 where U = {u : [−1, 1] 7→
[−1, 1] : u is 1-Lipschitz}. Finally the loss function is the squared loss, that is given hypothesis h = (u,x)

and instance z = (x, y), the loss function if given by `(h, z) = (u(〈x,w〉)− y)
2. It is evident that the

loss class F associated with the problem is a composition with three levels: the squared loss, the Lipschitz
non-decreasing function, and the linear function. That is

F = {(x, y) 7→ (y − u(〈w,x〉))2 | u ∈ U , ‖w‖2 ≤ 1} (4.7.3)

The proof of the following Proposition boils down to showing that the covering number of the class does not
increase much under these compositions.

Proposition 52. The target classH = U ×B2 is online learnable in the supervised setting. Moreover,

Vn(H,X × Y) = O

√ log3 n

n

 .

73

4.8 Detailed Proofs and More Results

4.8.1 Proofs

Proof of Theorem 23. For brevity, denote ψ(z1:n) = infh∈H
1
n

∑n
t=1 `(h, zt). The first step in the proof is

to appeal to the minimax theorem for every couple of inf and sup:

Vn(H,Z) = inf
q1∈∆(H̄)

sup
p1∈∆(Z)

E
h1∼q1
z1∼p1

. . . inf
qn∈∆(H̄)

sup
pn∈∆(Z)

E
hn∼qn
zn∼pn

{
1

n

n∑
t=1

`(ht, zt)− ψ(z1:n)

}

= sup
p1∈∆(Z)

inf
q1∈∆(H̄)

E
h1∼q1
z1∼p1

. . . sup
pn∈∆(Z)

inf
qn∈∆(H̄)

E
hn∼qn
zn∼pn

{
1

n

n∑
t=1

`(ht, zt)− ψ(z1:n)

}

= sup
p1∈∆(Z)

inf
h1∈H̄

Ex1∼p1
. . . sup

pn∈∆(Z)

inf
hn∈H̄

Ezn∼pn

{
1

n

n∑
t=1

`(ht, zt)− ψ(z1:n)

}

From now on, it will be understood that zt has distribution pt. Moving the expectation with respect to zn and

then the infimum with respect to hn inside the expression, we arrive at,

= sup
p1∈∆(Z)

inf
h1∈H̄

E
z1
. . . sup

pn−1

inf
hn−1∈H̄

E
zn−1

sup
pn∈∆(Z)

{
1

n

n−1∑
t=1

`(ht, zt) +
1

n
inf

hn∈H̄
Ezn`(hn, zn)− Eznψ(z1:n)

}

= sup
p1∈∆(Z)

inf
h1∈H̄

Ez1 . . . sup
pn−1

inf
hn−1

Ezn−1
sup

pn∈∆(Z)

Ezn

[
1

n

n−1∑
t=1

`(ht, zt) +
1

n
inf

hn∈H̄
Ezn`(hn, zn)− ψ(z1:n)

]

Repeating the procedure for step n− 1,

= sup
p1∈∆(Z)

inf
h1∈H̄

E
z1
. . . sup

pn−1

inf
hn−1

E
zn−1

[
1

n

n−1∑
t=1

`(ht, zt) + sup
pn∈∆(Z)

Ezn
[

1

n
inf

hn∈H̄
Ezn`(hn, zn)− ψ(z1:n)

]]

= sup
p1∈∆(Z)

inf
h1∈H̄

E
z1
. . . sup

pn−1∈∆(Z)

{
1

n

n−2∑
t=1

`(ht, zt) +
1

n

[
inf

hn−1∈H̄
Ezn−1

`(hn−1, zn−1)

]
+Ezn−1 sup

pn

E
zn

[
1

n
inf

hn∈H̄
Ezn`(hn, zn)− ψ(z1:n)

]}
= sup
p1∈∆(Z)

inf
h1∈H̄

Ez1 . . . sup
pn∈∆(Z)

Ezn

{
1

n

n−2∑
t=1

`(ht, zt) +
1

n

n∑
t=n−1

inf
ht∈H̄

Ezt`(ht, zt)− ψ(z1:n)

}

Continuing in this fashion for n− 2 and all the way down to t = 1 proves the theorem.

Proof of the Key Technical Lemma (Lemma 25). We start by noting that since zn, z′n are both drawn from

74

pn,

Ezn,z′n∼pn

[
Φ

(
n∑
t=1

∆h(zt, z
′
t)

)]
= Ezn,z′n∼pn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t) + ∆h(zn, z

′
n)

)]

= Ez′n,zn∼pn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t) + ∆h(zn, z

′
n)

)]

= Ezn,z′n∼pn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t)−∆h(zn, z

′
n)

)]
,

where the last line is by antisymmetry of ∆h. Since the first and last lines are equal, they are both equal to

their average and hence

Ezn,z′n∼pn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t)

)]
= Ezn,z′n∼pn

[
Eεn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t) + εn∆h(zn, z

′
n)

)]]
.

Hence we conclude that

sup
pn

Ezn,z′n∼pn

[
Φ

(
n∑
t=1

∆h(zt, z
′
t)

)]

= sup
pn

Ezn,z′n∼pn

[
Eεn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t) + εn∆h(zn, z

′
n)

)]]

≤ sup
zn,z′n

Eεn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t) + εn∆h(zn, z

′
n)

)]
.

Using the above and noting that zn−1, z
′
n−1 are both drawn from pn−1 and hence similar to previous step

introducing Rademacher variable εn−1 we get that

sup
pn−1

Ezn−1,z′n−1∼pn−1
sup
pn

Ezn,z′n∼pn

[
Φ

(
n∑
t=1

∆h(zt, z
′
t)

)]

≤ sup
pn−1

Ezn−1,z′n−1∼pn−1

[
sup
zn,z′n

Eεn

[
Φ

(
n−1∑
t=1

∆h(zt, z
′
t) + εn∆h(zn, z

′
n)

)]]

= sup
pn−1

Ezn−1,z′n−1∼pnEεn−1

[
sup
zn,z′n

Eεn

[
Φ

(
n−2∑
t=1

∆h(zt, z
′
t) + εn−1∆h(zn−1, z

′
n−1) + εn∆h(zn, z

′
n)

)]]

≤ sup
zn−1,z′n−1

Eεn−1

[
sup
zn,z′n

Eεn

[
Φ

(
n−2∑
t=1

∆h(zt, z
′
t) + εn−1∆h(zn−1, z

′
n−1) + εn∆h(zn, z

′
n)

)]]
.

Proceeding in similar fashion introducing Rademacher variables all the way upto ε1 we finally get the required

75

statement that

sup
p1

Ez1,z′1∼p1
. . . sup

pn

Ezn,z′n∼pn

[
Φ

(
n∑
t=1

∆h(zt, z
′
t)

)]

≤ sup
z1,z′1

{
Eε1

[
. . . sup

zn,z′n

{
Eεn

[
Φ

(
n∑
t=1

εt∆h(zt, z
′
t)

)]}
. . .

]}

Proof of Lemma 26. Without loss of generality assume that the Lipschitz constantL = 1 because the general

case follows by scaling φ. Now note that by Theorem 35 we have that

Rseq
n (φ ◦ F) ≤ inf

α

{
4α+ 12

∫ 1

α

√
log N2(δ, φ ◦ F , n)

n
dδ

}
(4.8.1)

Now we claim that we can bound

log N2(δ, φ ◦ F , n) ≤
k∑
j=1

log N∞(δ,Fj , n)

To see this we first start by noting that√√√√ 1

n

n∑
t=1

(φ(f(zt(ε)), zt(ε))− φ(vt(ε), zt(ε)))
2

≤

√√√√ 1

n

n∑
t=1

max
j

(
fj(zt(ε)))− vjt (ε)

)2

≤

√
max
t∈[n]

max
j

(
fj(zt(ε)))− vjt (ε)

)2

≤ max
j∈[k],t∈[n]

|fj(zt(ε)))− vjt (ε)|

Now suppose we have V1, . . . , Vk that are minimal `∞-covers forF1, . . . ,Fk on the tree z at level δ. Consider

the set:

Vφ = {vφ : v ∈ V1 × . . .× Vk}

where vφ is the tree such that (vφ)t(ε) = φ(vt(ε), zt(ε)). Then, for any f = (f1, . . . , fk) ∈ F (with

76

representatives (v1, . . . ,vk) ∈ V1 × . . .× Vk) and any ε ∈ {±1}n, we have,√√√√ 1

n

n∑
t=1

(φ(f(zt(ε)), zt(ε))− (vφ)t(ε))
2

=

√√√√ 1

n

n∑
t=1

(φ(f(zt(ε)), zt(ε))− φ(vt(ε), zt(ε)))
2

≤ max
j∈[k]

max
t∈[n]
|fj(zt(ε)))− vjt (ε)| ≤ δ

Thus we see that Vφ is an `∞-cover at scale δ for φ ◦ F on z. Hence

log N2(δ, φ ◦ F , n) ≤ log N∞(δ, φ ◦ F , n)

≤ log(|V |) =

k∑
j=1

log(|Vj |)

=

k∑
j=1

log N∞(δ,Fj , n)

as claimed. Now using this in Equation 4.8.1 we have that

Rseq
n (φ ◦ F) ≤ inf

α

4α+ 12

∫ 1

α

√∑k
j=1 log N∞(δ,Fj , n)

n
dδ


≤ inf

α

4α+ 12

k∑
j=1

∫ 1

α

√
log N∞(δ,Fj , n)

n
dδ


≤

k∑
j=1

inf
α

{
4α+ 12

∫ 1

α

√
log N∞(δ,Fj , n)

n
dδ

}

Now applying Lemma37 we conclude, as required, that

Rseq
n (φ ◦ F) ≤ 8

(
1 + 4

√
2 log3/2(en2)

) k∑
j=1

Rseq
n (Fj)

as long as Rseq
n (Fj) ≥ 1 for each j.

Proof of Corollary 28. We first extend the binary function b to a function b̄ to any x ∈ Rk as follows :

b̄(x) =

{
(1− ‖x− a‖∞)b(a) if ‖x− a‖∞ < 1 for some a ∈ {±1}k

0 otherwise

First note that b̄ is well-defined since all points in the k-cube are separated by L∞ distance 2. Further

77

note that b̄ is 1-Lipschitz w.r.t. the L∞ norm and so applying Lemma 26 we conclude the statement of the

corollary.

Proof of Proposition 29. The most difficult of these is Part 4, which follows immediately by Lemma 27

by taking φ(·, z) there to be simply φ(·). The other items follow similarly to Theorem 15 in [39] and we

provide the proofs for completeness. Note that, unlike Rademacher complexity defined in [39], Sequential

Rademacher complexity does not have the absolute value around the sum.

Part 1 is immediate because for any fixed tree z and fixed realization of {εi},

sup
f∈F

n∑
t=1

εtf(zt(ε)) ≤ sup
f∈G

n∑
t=1

εtf(zt(ε)) ,

Now taking expectation over ε and supremum over z completes the argument.

To show Part 2, first observe that, according to Part 1,

Rseq
n (F) ≤ Rseq

n (conv(F)) .

Now, any h ∈ conv(F) can be written as h =
∑m
j=1 αjfj with

∑m
j=1 αj = 1, αj ≥ 0. Then, for fixed tree

z and sequence ε,
n∑
t=1

εth(zt(ε) =

m∑
j=1

αj

n∑
t=1

εtfj(zt(ε) ≤ sup
f∈F

n∑
t=1

εtf(zt(ε))

and thus

sup
h∈conv(F)

n∑
t=1

εth(zt(ε) ≤ sup
f∈F

n∑
t=1

εtf(zt(ε) .

Taking expectation over ε and supremum over z completes the proof.

To prove Part 3, first observe that the statement is easily seem to hold for c ≥ 0. That is, Rseq
n (cF) =

cRseq
n (F) follows directly from the definition. Hence, it remains to convince ourselves of the statement for

c = −1. That is, Rseq
n (−F) = Rseq

n (F). To prove this, consider a tree zR that is a reflection of z. That is,

zRt (ε) = zt(−ε) for all t ∈ [n]. It is then enough to observe that

Eε

[
sup
f∈−F

n∑
t=1

εtf(zt(ε))

]
= Eε

[
sup
f∈F

n∑
t=1

−εtf(zt(ε))

]

= Eε

[
sup
f∈F

n∑
t=1

εtf(zt(−ε))

]
= Eε

[
sup
f∈F

n∑
t=1

εtf(zRt (ε))

]

where we used the fact that ε and −ε have the same distribution. As z varies over all trees, zR also varies

over all trees. Hence taking the supremum over z above finishes the argument.

78

Finally, for Part 5,

sup
f∈F

{
n∑
t=1

εt (f + h) (zt(ε))

}
=

{
sup
f∈F

n∑
t=1

εtf(zt(ε))

}
+

{
n∑
t=1

εth(zt(ε))

}

Note that, since h(zt(ε)) only depends on ε1:t−1, we have

Eε [εth(zt(ε))] = Eε1:t−1 [E [εt|ε1:t−1]h(zt(ε)] = 0 .

Thus,

Rseq
n (F + h) = Rseq

n (F) .

Proof of Lemma 34. For any λ > 0, we invoke Jensen’s inequality to get

M(λ) := exp

{
λEε

[
max
v∈V

n∑
t=1

εtvt(ε)

]}
≤ Eε

[
exp

{
λmax

v∈V

n∑
t=1

εtvt(ε)

}]

≤ Eε

[
max
v∈V

exp

{
λ

n∑
t=1

εtvt(ε)

}]
≤ Eε

[∑
v∈V

exp

{
λ

n∑
t=1

εtvt(ε)

}]

With the usual technique of peeling from the end,

M(λ) ≤
∑
v∈V

Eε1,...,εn

[
n∏
t=1

exp {λεtvt(ε1:t−1)}

]

=
∑
v∈V

Eε1,...,εn−1

[
n−1∏
t=1

exp {λεtvt(ε1:t−1)} ×
(

exp {λvn(ε1:n−1)}+ exp {−λvn(ε1:n−1)}
2

)]

≤
∑
v∈V

Eε1,...,εn−1

[
n−1∏
t=1

exp {λεtvt(ε1:t−1)} × exp

{
λ2vn(ε1:n−1)2

2

}]

where we used the inequality 1
2 {exp(a) + exp(−a)} ≤ exp(a2/2), valid for all a ∈ R. Peeling off the

second term is a bit more involved:

M(λ) ≤
∑
v∈V

Eε1,...,εn−2

[
n−2∏
t=1

exp {λεtvt(ε1:t−1)}×

1

2

(
exp {λvn−1(ε1:n−2)} exp

{
λ2vn((ε1:n−2, 1))2

2

}
+ exp {−λvn−1(ε1:n−2)} exp

{
λ2vn((ε1:n−2,−1))2

2

})]

79

Consider the term inside:

1

2

(
exp {λvn−1(ε1:n−2)} exp

{
λ2vn((ε1:n−2, 1))2

2

}
+ exp {−λvn−1(ε1:n−2)} exp

{
λ2vn((ε1:n−2,−1))2

2

})
≤ max

εn−1

(
exp

{
λ2vn((ε1:n−2, εn−1))2

2

})
exp {λvn−1(ε1:n−2)}+ exp {−λvn−1(ε1:n−2)}

2

≤ max
εn−1

(
exp

{
λ2vn((ε1:n−2, εn−1))2

2

})
exp

{
λ2vn−1(ε1:n−2)2

2

}
= exp

{
λ2 maxεn−1∈{±1}

(
vn−1(ε1:n−2)2 + vn(ε1:n−1)2

)
2

}

Repeating the last steps, we show that for any i,

M(λ) ≤
∑
v∈V

Eε1,...,εi−1

[
i−1∏
t=1

exp {λεtvt(ε1:t−1)} × exp

{
λ2 maxεi...εn−1∈{±1}

∑n
t=i vt(ε1:t−1)2

2

}]

We arrive at

M(λ) ≤
∑
v∈V

exp

{
λ2 maxε1...εn−1∈{±1}

∑n
t=1 vt(ε1:t−1)2

2

}

≤ |V | exp

{
λ2 maxv∈V maxε∈{±1}n

∑n
t=1 vt(ε)

2

2

}

Taking logarithms on both sides, dividing by λ and setting λ =
√

2 log(|V |)
maxv∈V maxε∈{±1}n

∑n
t=1 vt(ε)2 we conclude

that

Eε1,...,εn

[
max
v∈V

n∑
t=1

εtvt(ε)

]
≤

√√√√2 log(|V |) max
v∈V

max
ε∈{±1}n

n∑
t=1

vt(ε)2

Proof of Lemma 30. We prove the first inequality. Let {w1, . . . ,wM} be a largest strongly 2α-separated

set of F(z) with M = Mp(2α,F , z). Let {v1, . . . ,vN} be a smallest α-cover of F on z with N =

Nseq
p (α,F , z). For the sake of contradiction, assume M > N . Consider a path ε ∈ {±1}n on which all the

trees {w1, . . . ,wM} are (2α)-separated. By the definition of a cover, for any wi there exists a tree vj such

that (
1

n

n∑
t=1

|vjt (ε)−wi
t(ε)|p

)1/p

≤ α.

Since M > N , there must exist distinct wi and wk, for which the covering tree vj is the same for the given

path ε. By triangle inequality, (
1

n

n∑
t=1

|wi
t(ε)−wk

t (ε)|p
)1/p

≤ 2α,

80

which is a contradiction. We conclude that M ≤ N .

Now, we prove the second inequality. Consider a maximal α-packing V ⊆ F(z) of size Dp(α,F , z). Since

this is a maximal α-packing, for any f ∈ F , there is no path on which f(z) is α-separated from every member

of the packing. In other words, for every path ε ∈ {±1}n, there is a member of the packing v ∈ V such that

(
1

n

n∑
t=1

|vt(ε)− f(zt(ε))|p
)1/p

≤ α

which means that the packing V is a cover.

Proof of Theorem 31. For any d ≥ 0 and n ≥ 0, define the function

gk(d, n) =

d∑
i=0

(
n

i

)
ki.

It is not difficult to verify that this function satisfies the recurrence

gk(d, n) = gk(d, n− 1) + kgk(d− 1, n− 1)

for all d, n ≥ 1. To visualize this recursion, consider a k × n matrix and ask for ways to choose at most

d columns followed by a choice among the k rows for each chosen column. The task can be decomposed

into (a) making the d column choices out of the first n − 1 columns, followed by picking rows (there are

gk(d, n − 1) ways to do it) or (b) choosing d − 1 columns (followed by row choices) out of the first n − 1

columns and choosing a row for the nth column (there are kgk(d − 1, n − 1) ways to do it). This gives the

recursive formula.

In what follows, we shall refer to an L∞ cover at scale 1/2 simply as a 1/2-cover. The theorem claims that

the size of a minimal 1/2-cover is at most gk(d, n). The proof proceeds by induction on n+ d.

Base: For d = 1 and n = 1, there is only one node in the tree, i.e. the tree is defined by the constant

z1 ∈ Z . Functions in F can take up to k + 1 values on z1, i.e. Nseq(0,F , 1) ≤ k + 1 (and, thus, also for

the 1/2-cover). Using the convention
(
n
0

)
= 1, we indeed verify that gk(1, 1) = 1 + k = k + 1. The same

calculation gives the base case for n = 1 and any d ∈ N. Furthermore, for any n ∈ N if d = 0, then there

is no point which is 2-shattered by F . This means that functions in F differ by at most 1 on any point of Z .

Thus, there is a 1/2 cover of size 1 = gk(0, n), verifying this base case.

Induction step: Suppose by the way of induction that the statement holds for (d, n− 1) and (d− 1, n− 1).

Consider any tree z of depth n with fatseq
2 (F , z) = d. Define the partition F = F0 ∪ . . . ∪ Fk with

Fi = {f ∈ F : f(z1) = i} for i ∈ {0, . . . , k}, where z1 is the root of z. Let n = |{i : fatseq
2 (Fi, z) = d}|.

Suppose first, for the sake of contradiction, that fatseq
2 (Fi, z) = fatseq

2 (Fj , z) = d for |i − j| ≥ 2.

Then there exist two trees z and v of depth d which are 2-shattered by Fi and Fj , respectively, and with

81

Img(z), Img(v) ⊆ Img(z). Since functions within each subset Fi take on the same values on z1, we con-

clude that z1 /∈ Img(z), z1 /∈ Img(v). This follows immediately from the definition of shattering. We now

join the two shattered z and v trees with z1 at the root and observe that Fi ∪ Fj 2-shatters this resulting tree

of depth d+ 1, which is a contradiction. Indeed, the witness R-valued tree s is constructed by joining the two

witnesses for the 2-shattered trees z and v and by defining the root as s1 = (i+ j)/2. It is easy to see that s

is a witness to the shattering. Given any ε ∈ {±1}d+1, there is a function f i ∈ Fi which realizes the desired

separation under the signs (ε2, . . . , εd+1) for the tree z and there is a function f j ∈ Fj which does the same

for v. Depending on ε1 = +1 or ε1 = −1, either f i or f j realize the separation over ε.

We conclude that the number of subsets of F with fat-shattering dimension equal to d cannot be more than

two (for otherwise at least two indices will be separated by 2 or more). We have three cases: n = 0, n = 1,

or n = 2, and in the last case it must be that the indices of the two subsets differ by 1.

First, consider any Fi with fatseq
2 (Fi, z) ≤ d− 1, i ∈ {0, . . . , k}. By induction, there are 1/2-covers V ` and

V r ofFi on the subtrees z` and zr, respectively, both of size at most gk(d−1, n−1). Informally, out of these

1/2-covers we can create a 1/2-cover V for Fi on z by pairing the 1/2-covers in V ` and V r. The resulting

cover of Fi will be of size gk(d− 1, n− 1). Formally, consider a set of pairs (v`,vr) of trees, with v` ∈ V `,
vr ∈ V r and such that each tree in V ` and V r appears in at least one of the pairs. Clearly, this can be done

using at most gk(d − 1, n − 1) pairs, and such a pairing is not unique. We join the subtrees in every pair

(v`,vr) with a constant i as the root, thus creating a set V of trees, |V | ≤ gk(d−1, n−1). We claim that V is

a 1/2-cover for Fi on z. Note that all the functions in Fi take on the same value i on z1 and by construction

v1 = i for any v ∈ V . Now, consider any f ∈ Fi and ε ∈ {±1}n. Without loss of generality, assume

ε1 = −1. By assumption, there is a v` ∈ V ` such that |v`t(ε2:n)− f(zt+1(ε1:n))| ≤ 1/2 for any t ∈ [n− 1].

By construction v` appears as a left subtree of at least one tree in V , which, therefore, matches the values of

f for ε1:n. The same argument holds for ε1 = +1 by finding an appropriate subtree in V r. We conclude that

V is a 1/2-cover of Fi on z, and this holds for any i ∈ {0, . . . , k} with fatseq
2 (Fi, z) ≤ d− 1. Therefore, the

total size of a 1/2-cover for the union ∪i:fatseq
2 (Fi,z)≤d−1Fi is at most (k+ 1−n)gk(d− 1, n− 1). If n = 0,

the induction step is proven because gk(d− 1, n− 1) ≤ gk(d, n− 1) and so the total size of the constructed

cover is at most

(k + 1)gk(d− 1, n− 1) ≤ gk(d, n− 1) + kgk(d− 1, n− 1) = gk(d, n).

Now, consider the case n = 1 and let fatseq
2 (Fi, z) = d. An argument exactly as above yields a 1/2-cover

for Fi, and this cover is of size at most gk(d, n− 1) by induction. The total 1/2-cover is therefore of size at

most

gk(d, n− 1) + kgk(d− 1, n− 1) = gk(d, n).

Lastly, for n = 2, suppose fatseq
2 (Fi, z) = fatseq

2 (Fj , z) = d for |i − j| = 1. Let F ′ = Fi ∪ Fj . Note that

fatseq
2 (F ′, z) = d. Just as before, the 1/2-covering for z can be constructed by considering the 1/2-covers

82

for the two subtrees. However, when joining any (v`,vr), we take (i+ j)/2 as the root. It is straightforward

to check that the resulting cover is indeed an 1/2-cover, thanks to the relation |i − j| = 1. The size of the

constructed cover is, by induction, gk(d, n− 1), and the induction step follows. This concludes the induction

proof, yielding the main statement of the theorem.

Finally, the upper bound on gk(d, n) is

d∑
i=1

(
n

i

)
ki ≤

(
kn

d

)d d∑
i=1

(
n

i

)(
d

n

)i
≤
(
kn

d

)d(
1 +

d

n

)n
≤
(
ekn

d

)d
whenever n ≥ d.

Proof of Theorem 33. The proof is very close to the proof of Theorem 31, with a few key differences. As

before, for any d ≥ 0 and n ≥ 0, define the function gk(d, n) =
∑d
i=0

(
n
i

)
ki.

The theorem claims that the size of a minimal 0-cover is at most gk(d, n). The proof proceeds by induction

on n+ d.

Base: For d = 1 and n = 1, there is only one node in the tree, i.e. the tree is defined by the constant z1 ∈ Z .

Functions in F can take up to k+ 1 values on z1, i.e. Nseq(0,F , 1) ≤ k+ 1. Using the convention
(
n
0

)
= 1,

we indeed verify that gk(1, 1) = 1 + k = k + 1. The same calculation gives the base case for n = 1 and any

d ∈ N. Furthermore, for any n ∈ N if d = 0, then there is no point which is 1-shattered by F . This means

that all functions in F are identical, proving that there is a 0-cover of size 1 = gk(0, n).

Induction step: Suppose by the way of induction that the statement holds for (d, n− 1) and (d− 1, n− 1).

Consider any tree z of depth n with fatseq
1 (F , z) = d. Define the partition F = F0 ∪ . . . ∪ Fk with

Fi = {f ∈ F : f(z1) = i} for i ∈ {0, . . . , k}, where z1 is the root of z.

We first argue that fatseq
1 (Fi, z) = d for at most one value i ∈ {0, . . . , k}. By the way of contradiction,

suppose we do have fatseq
1 (Fi, z) = fatseq

1 (Fj , z) = d for i 6= j. Then there exist two trees z and v of

depth d 1-shattered by Fi and Fj , respectively, and with Img(z), Img(v) ⊆ Img(z). Since functions within

each subset Fi take on the same values on z1, we conclude that z1 /∈ Img(z), z1 /∈ Img(v). This follows

immediately from the definition of shattering. We now join the two shattered z and v trees with z1 at the

root and observe that Fi ∪ Fj 1-shatters this resulting tree of depth d + 1, which is a contradiction. Indeed,

the witness R-valued tree s is constructed by joining the two witnesses for the 1-shattered trees z and v

and by defining the root as s1 = (i + j)/2. It is easy to see that s is a witness to the shattering. Given any

ε ∈ {±1}d+1, there is a function f i ∈ Fi which realizes the desired separation under the signs (ε2, . . . , εd+1)

for the tree z and there is a function f j ∈ Fj which does the same for v. Depending on ε1 = +1 or ε1 = −1,

either f i or f j realize the separation over ε.

We conclude that fatseq
1 (Fi, z) = d for at most one i ∈ {0, . . . , k}. Without loss of generality, assume

fatseq
1 (F0, z) ≤ d and fatseq

1 (Fi, z) ≤ d − 1 for i ∈ {1, . . . , k}. By induction, for any Fi, i ∈ {1, . . . , k},

83

there are 0-covers V ` and V r of Fi on the subtrees z` and zr, respectively, both of size at most gk(d −
1, n− 1). Out of these 0-covers we can create a 0-cover V for Fi on z by pairing the 0-covers in V ` and V r.

Formally, consider a set of pairs (v`,vr) of trees, with v` ∈ V `, vr ∈ V r and such that each tree in V ` and

V r appears in at least one of the pairs. Clearly, this can be done using at most gk(d−1, n−1) pairs, and such

a pairing is not unique. We join the subtrees in every pair (v`,vr) with a constant i as the root, thus creating

a set V of trees, |V | ≤ gk(d− 1, n− 1). We claim that V is a 0-cover for Fi on z. Note that all the functions

in Fi take on the same value i on z1 and by construction v1 = i for any v ∈ V . Now, consider any f ∈ Fi
and ε ∈ {±1}n. Without loss of generality, assume ε1 = −1. By assumption, there is a v` ∈ V ` such that

v`t(ε2:n) = f(zt+1(ε1:n)) for any t ∈ [n− 1]. By construction v` appears as a left subtree of at least one tree

in V , which, therefore, matches the values of f for ε1:n. The same argument holds for ε1 = +1 by finding an

appropriate subtree in V r. We conclude that V is a 0-cover of Fi on z, and this holds for any i ∈ {1, . . . , k}.

Therefore, the total size of a 0-cover for F1∪ . . .∪Fk is at most kgk(d−1, n−1). A similar argument yields

a 0-cover for F0 on z of size at most gk(d, n− 1) by induction. Thus, the size of the resulting 0-cover of F
on z is at most

gk(d, n− 1) + kgk(d− 1, n− 1) = gk(d, n),

completing the induction step and yielding the main statement of the theorem.

The upper bound on gk(d, n) appears in the proof of Theorem 31.

Proof of Corollary 32. The first two inequalities follow by simple comparison of norms. It remains to prove

the bound for the `∞ covering. For any α > 0 define an α-discretization of the [−1, 1] interval as Bα =

{−1 +α/2,−1 + 3α/2, . . . ,−1 + (2k+ 1)α/2, . . .} for 0 ≤ k and (2k+ 1)α ≤ 4. Also for any a ∈ [−1, 1]

define bacα = argmin
r∈Bα

|r − a| with ties being broken by choosing the smaller discretization point. For a

function f : Z 7→ [−1, 1] let the function bfcα be defined pointwise as bf(x)cα, and let bFcα = {bfcα :

f ∈ F}. First, we prove that Nseq
∞ (α,F , z) ≤ Nseq

∞ (α/2, bFcα, z). Indeed, suppose the set of trees V is a

minimal α/2-cover of bFcα on z. That is,

∀fα ∈ bFcα, ∀ε ∈ {±1}n ∃v ∈ V s.t. |vt(ε)− fα(zt(ε))| ≤ α/2

Pick any f ∈ F and let fα = bfcα. Then ‖f − fα‖∞ ≤ α/2. Then for all ε ∈ {±1}n and any t ∈ [n]

|f(zt(ε))− vt(ε)| ≤ |f(zt(ε))− fα(zt(ε))|+ |fα(zt(ε))− vt(ε)| ≤ α,

and so V also provides an L∞ cover at scale α.

We conclude that Nseq
∞ (α,F , z) ≤ Nseq

∞ (α/2, bFcα, z) = Nseq
∞ (1/2,G, z) where G = 1

αbFcα. The func-

tions of G take on a discrete set of at most b2/αc + 1 values. Obviously, by adding a constant to all the

functions in G, we can make the set of values to be {0, . . . , b2/αc}. We now apply Theorem 31 with an upper

84

bound
∑d
i=0

(
n
i

)
ki ≤ (ekn)

d which holds for any n > 0. This yields Nseq
∞ (1/2,G, z) ≤ (2en/α)

fatseq
2 (G).

It remains to prove fatseq
2 (G) ≤ fatseq

α (F), or, equivalently (by scaling) fatseq
2α (bFcα) ≤ fatseq

α (F). To this

end, suppose there exists an R-valued tree z of depth d = fatseq
2α (bFcα) such that there is an witness tree s

with

∀ε ∈ {±1}d, ∃fα ∈ bFcα s.t. ∀t ∈ [d], εt(fα(zt(ε))− st(ε)) ≥ α

Using the fact that for any f ∈ F and fα = bfcα we have ‖f − fα‖∞ ≤ α/2, it follows that

∀ε ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], εt(f(zt(ε))− st(ε)) ≥ α/2

That is, s is a witness to α-shattering by F . Thus for any z,

Nseq
∞ (α,F , z) ≤ Nseq

∞ (α/2, bFcα, z) ≤
(

2en

α

)fatseq
2α (bFcα)

≤
(

2en

α

)fatseq
α (F)

Proof of Theorem 35. Define β0 = 1 and βj = 2−j . For a fixed tree z of depth n, let Vj be an `2-cover at

scale βj . For any path ε ∈ {±1}n and any f ∈ F , let v[f, ε]j ∈ Vj the element of the cover such that√√√√ 1

n

n∑
t=1

|v[f, ε]jt (ε)− f(zt(ε))|2 ≤ βj

By the definition such a v[f, ε]j ∈ Vj exists, and we assume for simplicity this element is unique (ties can

be broken in an arbitrary manner). Thus, f 7→ v[f, ε]j is a well-defined mapping for any fixed ε and j. As

before, v[f, ε]jt denotes the t-th mapping of v[f, ε]j . For any t ∈ [n], we have

f(zt(ε)) = f(zt(ε))− v[f, ε]Nt (ε) +

N∑
j=1

(v[f, ε]jt (ε)− v[f, ε]j−1
t (ε))

where v[f, ε]0t (ε) = 0. Hence,

Eε

[
sup
f∈F

n∑
t=1

εtf(zt(ε))

]
= Eε

[
sup
f∈F

n∑
t=1

εt

(
f(zt(ε))− v[f, ε]Nt (ε) +

N∑
j=1

(v[f, ε]jt(ε)− v[f, ε]j−1
t (ε))

)]

= Eε

[
sup
f∈F

n∑
t=1

εt
(
f(zt(ε))− v[f, ε]Nt (ε)

)
+

n∑
t=1

εt

(
N∑
j=1

(v[f, ε]jt(ε)− v[f, ε]j−1
t (ε))

)]

≤ Eε

[
sup
f∈F

n∑
t=1

εt
(
f(zt(ε))− v[f, ε]Nt (ε)

)]
+ Eε

[
sup
f∈F

n∑
t=1

εt

(
N∑
j=1

(v[f, ε]jt(ε)− v[f, ε]j−1
t (ε))

)]
(4.8.2)

85

The first term above can be bounded via the Cauchy-Schwarz inequality as

Eε

[
sup
f∈F

n∑
t=1

εt
(
f(zt(ε))− v[f, ε]Nt (ε)

)]
≤ n Eε

[
sup
f∈F

n∑
t=1

εt√
n

(
f(zt(ε))− v[f, ε]Nt (ε)

)
√
n

]
≤ n βN .

The second term in Eq. (4.8.2) is bounded by considering successive refinements of the cover. The argument,

however, is more delicate than in the classical case, as the trees v[f, ε]j , v[f, ε]j−1 depend on the particular

path. Consider all possible pairs of vs ∈ Vj and vr ∈ Vj−1, for 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|, where we

assumed an arbitrary enumeration of elements. For each pair (vs,vr), define a real-valued tree w(s,r) by

w
(s,r)
t (ε) =

vst (ε)− vrt (ε) if there exists f ∈ F s.t. vs = v[f, ε]j ,vr = v[f, ε]j−1

0 otherwise.

for all t ∈ [n] and ε ∈ {±1}n. It is crucial that w(s,r) can be non-zero only on those paths ε for which vs

and vr are indeed the members of the covers (at successive resolutions) close to f(z(ε)) (in the `2 sense) for

some f ∈ F . It is easy to see that w(s,r) is well-defined. Let the set of trees Wj be defined as

Wj =
{
w(s,r) : 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|

}
Now, the second term in Eq. (4.8.2) can be written as

Eε

sup
f∈F

n∑
t=1

εt

N∑
j=1

(v[f, ε]jt (ε)− v[f, ε]j−1
t (ε))

 ≤ N∑
j=1

Eε

[
sup
f∈F

n∑
t=1

εt(v[f, ε]jt (ε)− v[f, ε]j−1
t (ε))

]

≤
N∑
j=1

Eε

[
max
w∈Wj

n∑
t=1

εtwt(ε)

]

The last inequality holds because for any j ∈ [N], ε ∈ {±1}n and f ∈ F there is some w(s,r) ∈ Wj with

v[f, ε]j = vs, v[f, ε]j−1 = vr and

vst (ε)− vrt (ε) = w
(s,r)
t (ε) ∀t ≤ n.

Clearly, |Wj | ≤ |Vj | · |Vj−1|. To invoke Lemma 34, it remains to bound the magnitude of all w(s,r) ∈ Wj

along all paths. For this purpose, fix w(s,r) and a path ε. If there exists f ∈ F for which vs = v[f, ε]j and

vr = v[f, ε]j−1, then w
(s,r)
t (ε) = v[f, ε]jt − v[f, ε]j−1

t for any t ∈ [n]. By triangle inequality√√√√ n∑
t=1

w
(s,r)
t (ε)2 ≤

√√√√ n∑
t=1

(v[f, ε]jt (ε)− f(zt(ε)))2+

√√√√ n∑
t=1

(v[f, ε]j−1
t (ε)− f(zt(ε)))2 ≤

√
n(βj+βj−1) = 3

√
nβj .

86

If there exists no such f ∈ F for the given ε and (s, r), then w
(s,r)
t (ε) is zero for all t ≥ to, for some

1 ≤ to < n, and thus √√√√ n∑
t=1

w
(s,r)
t (ε)2 ≤

√√√√ n∑
t=1

w
(s,r)
t (ε′)2

for any other path ε′ which agrees with ε up to to. Hence, the bound√√√√ n∑
t=1

w
(s,r)
t (ε)2 ≤ 3

√
nβj

holds for all ε ∈ {±1}n and all w(s,r) ∈Wj .

Now, back to Eq. (4.8.2), we put everything together and apply Lemma 34:

Eε

[
sup
f∈F

n∑
t=1

εtf(zt(ε))

]
≤ n βN +

√
n

N∑
j=1

3βj

√
2 log(|Vj | |Vj−1|)

≤ n βN +
√
n

N∑
j=1

6βj

√
log(|Vj |)

≤ n βN + 12
√
n

N∑
j=1

(βj − βj+1)
√

logN2(βj ,F , z)

≤ n βN + 12

∫ β0

βN+1

√
n log N2(δ,F , z) dδ

where the last but one step is because 2(βj − βj+1) = βj . Now for any α > 0, pick N = sup{j : βj > 2α}.
In this case we see that by our choice of N , βN+1 ≤ 2α and so βN = 2βN+1 ≤ 4α. Also note that since

βN > 2α, βN+1 = βN
2 > α. Hence dividing throughout by n we conclude that

Rseq
n (F) ≤ inf

α

{
4α+ 12

∫ 1

α

√
log N2(δ,F , n)

n
dδ

}

Proof of Theorem 38. Let (x′1, . . . , x
′
n) be a sequence tangent to (x1, . . . , xn). Recall the notation Et−1 [f(x′t)] =

87

E {f(x′t)|x1, . . . , xt−1}. By Chebychev’s inequality, for any f ∈ F ,

PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f(x′t)− Et−1 [f(x′t)])

∣∣∣∣∣ > α/2
∣∣∣ x1, . . . , xn

]
≤

E
[
(
∑n
t=1 (f(x′t)− Et−1 [f(x′t)]))

2
∣∣∣x1, . . . , xn

]
n2α2/4

=

∑n
t=1 E

[
(f(x′t)− Et−1 [f(x′t)])

2 ∣∣x1, . . . , xn

]
n2α2/4

≤ 4n

n2α2/4
=

16

nα2
.

The second step is due to the fact that the cross terms are zero:

E
{

(f(x′t)− Et−1 [f(x′t)]) (f(x′s)− Es−1 [f(x′s)])
∣∣x1, . . . , xn

}
= 0 .

Hence

inf
f∈F

PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f(x′t)− Et−1[f(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ x1, . . . , xn

]
≥ 1− 16

nα2

Whenever α2 ≥ 32
n we can conclude that

inf
f∈F

PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f(x′t)− Et−1[f(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ x1, . . . , xn

]
≥ 1

2

Now given a fixed x1, ..., xn let f∗ be the function that maximizes 1
n |
∑n
t=1 (f(xt)− Et−1[f(x′t)])|. Note

that f∗ is a deterministic choice given x1, ..., xn. Hence

1

2
≤ inf
f∈F

PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f(x′t)− Et−1[f(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ x1, . . . , xn

]

≤ PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f∗(x′t)− Et−1[f∗(x′t)])

∣∣∣∣∣ ≤ α/2∣∣∣ x1, . . . , xn

]

LetA =
{

(x1, . . . , xn)
∣∣ 1
n supf∈F |

∑n
t=1 f(xt)− Et−1 [f(x′t)] | > α

}
. Since the above inequality holds for

any x1, . . . , xn we can assert that

1

2
≤ PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f∗(x′t)− Et−1[f∗(x′t)])

∣∣∣∣∣ ≤ α/2∣∣∣(x1, . . . , xn) ∈ A

]

88

Hence we conclude that

1

2
PD

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
t=1

(f(xt)− Et−1[f(x′t)])

∣∣∣∣∣ > α

]

≤ PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f∗(x′t)− Et−1[f∗(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ (x1, . . . , xn) ∈ A

]

× PD

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

(f(xt)− Et−1[f(x′t)])

∣∣∣∣∣ > α

]

≤ PD

[
1

n

∣∣∣∣∣
n∑
t=1

(f∗(xt)− f∗(x′t))

∣∣∣∣∣ > α/2

]

≤ PD

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

(f(xt)− f(x′t))

∣∣∣∣∣ > α/2

]

Now we apply Lemma 25 with φ(u) = 1{u>α/2} and ∆f (xt, x
′
t) = f(xt)− f(x′t),

E
[
1{supf∈F |

∑n
t=1 f(xt)−f(x′t)|≥α/2}

]
≤ sup
x1,x′1

{
Eε1

[
. . . sup

xn,x′n

{
Eεn

[
1{supf∈F |

∑n
t=1 εt(f(xt)−f(x′t))|≥α/2}

]}
. . .

]}
(4.8.3)

The next few steps are similar to the proof of Theorem 24. Since

sup
f∈F

∣∣∣∣∣
n∑
t=1

εt (f(xt)− f(x′t))

∣∣∣∣∣ ≤ sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(xt)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(x′t)

∣∣∣∣∣
it is true that

1{supf∈F |
∑n
t=1 εt(f(xt)−f(x′t))|≥α/2} ≤ 1{supf∈F |

∑n
t=1 εtf(xt)|≥α/4} + 1{supf∈F |

∑n
t=1 εtf(x′t)|≥α/4}

The right-hand side of Eq. Eq. (4.8.3) then splits into two equal parts:

sup
x1

{
Eε1

[
. . . sup

xn

{
Eεn

[
1{supf∈F |

∑n
t=1 εtf(xt)|≥α/4}

]}
. . .

]}
+ sup

x′1

{
Eε1

[
. . . sup

x′n

{
Eεn

[
1{supf∈F |

∑n
t=1 εtf(x′t)|≥α/4}

]}
. . .

]}

= 2 sup
x1

{
Eε1

[
. . . sup

xn

{
Eεn

[
1{supf∈F |

∑n
t=1 εtf(xt)|≥α/4}

]}
. . .

]}

89

Moving to the tree representation,

PD

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

(f(xt)− f(x′t))

∣∣∣∣∣ > α/2

]
≤ 2 sup

z
Eε
[
1{ 1

n supf∈F |
∑n
t=1 εtf(zt(ε))|>α/4}

]
= 2 sup

z
Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > α/4

]

We can now conclude that

PD

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

(f(xt)− Et−1[f(xt)])

∣∣∣∣∣ > α

]
≤ 4 sup

z
Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > α/4

]

Fix an Z-valued tree z of depth n. By assumption fatseq
α (F) < ∞ for any α > 0. Let V be a minimum

`1-cover of F over z at scale α/8. Corollary 32 ensures that

|V | = N1(α/8,F , z) ≤
(

16en

α

)fatseq
α
8

and for any f ∈ F and ε ∈ {±1}n, there exists v[f, ε] ∈ V such that

1

n

n∑
t=1

|f(zt(ε))− v[f, ε]t(ε)| ≤ α/8

on the given path ε. Hence

Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > α/4

]

= Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εt (f(zt(ε))− v[f, ε]t(ε) + v[f, ε]t(ε))

∣∣∣∣∣ > α/4

]

≤ Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εt (f(zt(ε))− v[f, ε]t(ε))

∣∣∣∣∣+
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtv[f, ε]t(ε)

∣∣∣∣∣ > α/4

]

≤ Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtv[f, ε]t(ε)

∣∣∣∣∣ > α/8

]

For fixed ε = (ε1, . . . , εn),

1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtv[f, ε]t(ε)

∣∣∣∣∣ > α/8 =⇒ 1

n
max
v∈V

∣∣∣∣∣
n∑
t=1

εtvt(ε)

∣∣∣∣∣ > α/8

90

and, therefore, for any z,

Pε

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

εtf(zt(ε))

∣∣∣∣∣ > α/4

]
≤ Pε

[
1

n
max
v∈V

∣∣∣∣∣
n∑
t=1

εtvt(ε)

∣∣∣∣∣ > α/8

]

≤
∑
v∈V

Pε

[
1

n

∣∣∣∣∣
n∑
t=1

εtvt(ε)

∣∣∣∣∣ > α/8

]
≤ 2|V |e−nα

2/128 ≤ 2

(
16en

α

)fatseq
α/8

e−nα
2/128

Hence we conclude that for any D

PD

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
t=1

(f(xt)− Et−1[f(xt)])

∣∣∣∣∣ > α

]
≤ 8

(
16en

α

)fatseq
α/8

e−nα
2/128

Now applying Borel-Cantelli lemma proves the required result as

∞∑
n=1

8

(
16en

α

)fatseq
α/8

e−nα
2/128 <∞ .

Proof of Proposition 42. Using Theorem 35 we get the bound Rseq
n (FS) ≤ Dseq

n (FS). Further the fact that

absolute loss is 1-Lipschitz implies that an ε cover of class H is also an ε cover for loss class FS and so

Dseq
n (FS) ≤ Dseq

n (H). This gives the first upper bound of value in terms of Dseq
n (H). The second inequality

in the upper bound is a direct consequence of using Corollary 32 in Dseq
n (H). Now before we prove the final

inequality in the upper bound we first prove the lower bound because we shall use ideas from the lower bound

to get the final inequality in the upper bound.

For the lower bound, we use a construction similar to [35]. We construct a particular distribution which

induces a lower bound on regret for any algorithm. For any α ≥ 0 by definition of fat-shattering dimension,

there exists a tree z of depth d = fatseq
α (H) that can be α-shattered byH. For simplicity, we assume n = kd

where k is some non-negative integer, and the case n ≤ d is discussed at the end of the proof. Now, define

the jth block of time Tj = {(j − 1)k + 1, . . . , jk}.

Now the strategy of Nature (Adversary) is to first pick ε̃ ∈ {±1}n independently and uniformly at random.

Further let ε ∈ {±1}d be defined as εj = sign
(∑

t∈Tj ε̃t

)
for 1 ≤ j ≤ d, the block-wise modal sign of

ε̃. Now note that by definition of α-shattering, there exists a witness tree s such that for any ε ∈ {±1}d

there exists hε ∈ H with εj(hε(zj(ε)) − sj(ε)) ≥ α/2 for all 1 ≤ j ≤ d. Now let the random sequence

(x1, y1), . . . , (xn, yn) be defined by xt = zj(ε) for all t ∈ Tj and j ∈ {1, . . . , d} and yt = ε̃t. In the

remainder of the proof we show that any algorithm suffers large expected regret.

Now consider any player strategy (possibly randomized) making prediction ŷt ∈ [−1, 1] at round t. Note that

if we consider block j, yt = ε̃t is ±1 uniformly at random. This means that irrespective of what ŷt the player

91

plays, the expectation over ε̃t of the loss the player suffers at round t is

Eε̃t |ŷt − yt| = 1

Hence on block j, the expected loss accumulated by any player is k and so for any player strategy (possibly

randomized),

E

[
n∑
t=1

|ŷt − yt|

]
=

d∑
j=1

k = dk = n (4.8.4)

On the other hand since xt = zj(ε), we know that there always exists a function for any ε ∈ {±1}d, say hε

such that εj(hε(zj(ε))− sj(ε)) ≥ α/2. Hence

E

[
inf
h∈H

n∑
t=1

|h(xt)− yt|

]
≤

d∑
j=1

E

∑
t∈Tj

|hε(xt)− yt|


=

d∑
j=1

E

∑
t∈Tj

|hε(zj(ε))− yt|


≤

d∑
j=1

E

 max
cj∈[sj(ε)+εj

α
2 ,εj]

∑
t∈Tj

|cj − yt|


where the last step is because for all of block j, hε(zj(ε)) does not depend on t and lies in the interval1

[sj(ε) + εj
α
2 , εj] (i.e. the majority side) and so by replacing it by the maximal cj in the same interval for

that block we only make the quantity bigger. Now for a block j, define the number of labels that match

the sign of εj (the majority) as Mj =
∑
t∈Tj 1{yt=εj}. Since yt = ε̃t ∈ {±1}, observe that the function

g(cj) =
∑
t∈Tj |cj − yt| is linear on the interval [−1, 1] with its minimum at the majority sign εj . Hence, the

maximum over [sj(ε) + εj
α
2 , εj] must occur at cj = sj(ε) + εj

α
2 . Substituting,

max
cj∈[sj(ε)+εj

α
2 ,εj]

∑
t∈Tj

|cj − yt| = Mj

∣∣∣sj(ε) + εj
α

2
− εj

∣∣∣+ (k −Mj)
∣∣∣sj(ε) + εj

α

2
+ εj

∣∣∣
= Mj

∣∣∣εjsj(ε) +
α

2
− 1
∣∣∣+ (k −Mj)

∣∣∣εjsj(ε) +
α

2
+ 1
∣∣∣

= Mj

(
1− εjsj(ε)−

α

2

)
+ (k −Mj)

(
1 + εjsj(ε) +

α

2

)
= k + (k − 2Mj)

(
εjsj(ε) +

α

2

)
1We use the convention that [a, b] stands for [b, a] whenever a > b.

92

Hence,

E

[
inf
h∈H

n∑
t=1

|h(xt)− yt|

]
≤ dk +

d∑
j=1

E
[
εjsj(ε)(k − 2Mj) +

α

2
(k − 2Mj)

]

= dk +

d∑
j=1

E [εjsj(ε)(k − 2Mj)] +
α

2

d∑
j=1

E [k − 2Mj]

Further note that k − 2Mj = −|
∑
t∈Tj ε̃t| and so εj(k − 2Mj) = −

∑
t∈Tj ε̃t and so the expectation

E [εjsj(ε)(k − 2Mj)] = E
[
Eε̃k(j−1)+1:jk

[εjsj(ε)(k − 2Mj)]
]

= 0

because sj(ε) is independent of ε̃t for t ∈ Tj . Hence we see that

E

[
inf
h∈H

n∑
t=1

|h(xt)− yt|

]
≤ dk +

α

2

d∑
j=1

E [k − 2Mj] (4.8.5)

Combining Equations Eq. (4.8.4) and Eq. (4.8.5) we can conclude that for any player strategy,

E

[
n∑
t=1

|ŷt − yt|

]
− E

[
inf
h∈H

n∑
t=1

|h(xt)− yt|

]
≥ α

2

d∑
j=1

E [2Mj − k]

=
α

2
E

 d∑
j=1

∣∣∣∣∣∣
∑
t∈Tj

ε̃t

∣∣∣∣∣∣
 =

α

2

d∑
j=1

E

∣∣∣∣∣∣
∑
t∈Tj

ε̃t

∣∣∣∣∣∣ ≥ αd

2

√
k

2
= α

√
nd

8
= α

√
n fatseq

α

8
(4.8.6)

by Khinchine’s inequality (e.g. [52, Lemma A.9]), yielding the theorem statement for n ≥ fatseq
α . For the

case of n < fatseq
α , the proof is the same with k = 1 and the depth of the shattered tree being n, yielding a

lower bound of αn/
√

8. Dividing throughout by n completes the lower bound.

Now we move to the final inequality in the upper bound, but before we proceed notice that since yt are

Rademacher random variables. Hence from Equation 4.8.6 we see that

α

√
fatseq

α

8 n
≤ E

[
1

n

n∑
t=1

|ŷt − yt|

]
− E

[
inf
h∈H

1

n

n∑
t=1

|h(xt)− yt|

]

= E

[
sup
h∈H

1

n

n∑
t=1

(1− |h(xt)− yt|)

]

= E

[
sup
h∈H

1

n

n∑
t=1

ε̃th(xt)

]

= E

[
sup
h∈H

1

n

n∑
t=1

ε̃th(z′t(ε̃))

]

93

Where z′t(ε̃) = zd tk e(ε) where each εj = sign
(∑

t∈Tj ε̃t

)
(ie. xt’s can be seen as nodes of a tree formed by

taking the z tree which is of depth d and making it into a depth d tree by expanding each node of the tree into

a subtree of depth k). Hence we conclude that :

α

√
fatseq

α

8 n
≤ E

[
1

n

n∑
t=1

|ŷt − yt|

]
− E

[
inf
h∈H

1

n

n∑
t=1

|h(xt)− yt|

]

= E

[
sup
h∈H

1

n

n∑
t=1

ε̃th(z′t(ε̃))

]

≤ sup
z

Eε

[
sup
h∈H

1

n

n∑
t=1

εth(zt(ε))

]
= Rseq

n (H)

Thus effectively we have shown that supα α

√
min{fatseq

α ,n}
8 n ≤ Rseq

n (H). Using this we see that if α̂ is the

solution to fatseq
α̂ = n then we have that α̂ ≤ Rseq

n (H) and for any β > α̂,
√

fatseq
β

n ≤ 2
√

2 Rseq
n (H)
β . Hence

using this we conclude that,

inf
α

{
4α+

12√
n

∫ 1

α

√
fatseq

β (H) log

(
2en

β

)
dβ

}
≤ 4α̂+ 12

∫ 1

α̂

2
√

2 Rseq
n (H)

√
log
(

2en
β

)
β

dβ

≤ 4Rseq
n (H) + 36

√
2 Rseq

n (H)
√

log(n)

∫ 1

α̂

1

β
dβ

≤ 4Rseq
n (H) + 36

√
2 Rseq

n (H) log
3
2 (n)

≤ 58 Rseq
n (H) log

3
2 (n)

This concludes the upper bound. To show that Rseq
n (H) ≤ VSn (H), consider the adversary strategy where

adversary picks three x of depth n. Now at round 1 the adversary presents as instance x1 = x1 and y1 = ε1

where ε1 is a Rademacher random variable. Now at round 2 the adversary presents instance x2 = x2(ε1) and

y2 = ε2 where again ε2 is a Rademacher random variable. In a similar fashion at round t adversary presents

instance xt = xt(ε1:t−1) and yt = εt. Therefore we see that

VS
n(H) ≥ Eε

[
1

n

n∑
t=1

|ŷt − εt|

]
− Eε

[
inf
h∈H

1

n

n∑
t=1

|h(xt(ε))− εt|

]

= 1− Eε

[
inf
h∈H

1

n

n∑
t=1

|h(xt(ε))− εt|

]

= Eε

[
inf
h∈H

1

n

n∑
t=1

(1− |h(xt(ε))− εt|)

]

= Eε

[
inf
h∈H

1

n

n∑
t=1

εth(xt(ε))

]

94

Since choice of tree x is arbitrary we conclude that VS
n(H) ≥ Rseq

n (H)

Proof of Lemma 45. First, we claim that for any x ∈ X , fatseq
α (Vt(r, x)) = fatseq

α (Vt) for at most two r, r′ ∈
Bα.2 Further if there are two such r, r′ ∈ Bα then r, r′ are consecutive elements of Bα (i.e. |r − r′| = α).

Suppose, for the sake of contradiction, that fatseq
α (Vt(r, x)) = fatseq

α (Vt(r
′, x)) = fatseq

α (Vt) for distinct

r, r′ ∈ Bα that are not consecutive (i.e. |r−r′| ≥ 2α). Then let s = (r+r′)/2 and without loss of generality

suppose r > r′. By definition for any h ∈ Vt(r, x),

h(x) ≥ r − α/2 = (r′ + r)/2 + (r − r′)/2− α/2 ≥ s+ α/2

Also for any h′ ∈ Vt(r′, x) we also have,

h′(x) ≤ r′ + α/2 = (r′ + r)/2 + (r′ − r)/2 + α/2 ≤ s− α/2

Let v and v′ be trees of depth fatseq
α (Vt) α-shattered by Vt(r, x) and Vt(r′, x), respectively. To get a con-

tradiction, form a new tree v′′ of depth fatseq
α (Vt) + 1 by joining trees v and v′ with the constant function

v′′1 = x as the root and v and v′ as the lest and right subtrees respectively. It is straightforward that this tree

is shattered by Vt(r, x) ∪ Vt(r′, x), a contradiction.

Notice that the times t ∈ [n] for which |ht(xt)− yt| > α are exactly those times when we update current set

Vt+1. We shall show that whenever an update is made, fatseq
α (Vt+1) < fatseq

α (Vt) and hence claim that the

total number of times |ht(xt)− yt| > α is bounded by fatseq
α (F).

At any round we have three possibilities. First is when fatseq
α (Vt(r, xt)) < fatseq

α (Vt) for all r ∈ Bα. In this

case, clearly, an update results in fatseq
α (Vt+1) = fatseq

α (Vt(bytcα, xt)) < fatseq
α (Vt).

The second case is when fatseq
α (Vt(r, xt)) = fatseq

α (Vt) for exactly one r ∈ Bα. In this case the algorithm

chooses ht(xt) = r. If the update is made, |ht(xt) − yt| > α and thus bytcα 6= ht(xt). We can conclude

that

fatseq
α (Vt+1) = fatseq

α (Vt(bytcα, xt)) < fatseq
α (Vt(ht(xt), xt)) = fatseq

α (Vt)

The final case is when fatseq
α (Vt(r, xt)) = fatseq

α (Vt(r
′, xt)) = fatseq

α (Vt) and |r − r′| = α. In this case, the

algorithm chooses ht(xt) = r+r′

2 . Whenever yt falls in either of these two consecutive intervals given by r

or r′, we have |ht(xt) − yt| ≤ α, and hence no update is made. Thus, if an update is made, bytcα 6= r and

bytcα 6= r′. However, for any element or Bα other than r, r′, the fat shattering dimension is less than that of

Vt. That is

fatseq
α (Vt+1) = fatseq

α (Vt(bytcα, xt)) < fatseq
α (Vt(r, xt)) = fatseq

α (Vt(r
′, xt)) = fatseq

α (Vt).

2The argument should be compared to the combinatorial argument in Theorem 31.

95

We conclude that whenever we update, fatseq
α (Vt+1) < fatseq

α (Vt), and so we can conclude that algorithm’s

prediction is more than α away from yt on at most fatseq
α (F) number of rounds.

Proof of Corollary 48. For the choice of weights pi = 6
π2 i
−2 we see from Proposition 53 that for any i,

E [Rn] ≤ αi +

√√√√ fatseq
αi log

(
2n
αi

)
n

+
1√
n

(3 + 2 log(i))

Now for any α > 0 let iα be such that α ≤ 2−iα and for any i < iα, α > 2−iα . Using the above bound on

expected regret we have that

E [Rn] ≤ αiα +

√√√√ fatseq
αiα

log
(

2n
αiα

)
n

+
1√
n

(3 + 2 log(iα))

However for our choice of iα we see that iα ≤ log(1/α) and further αiα ≤ α. Hence we conclude that

E [Rn] ≤ α+

√
fatseq

α log
(

2n
α

)
n

+
1√
n

(
3 + 2 log log

(
1

α

))
Since choice of α was arbitrary we take infimum and get the result.

Proof of Proposition 49. Fix a γ > 0 and use loss

`(ŷ, y) =


1 ŷy ≤ 0

1− ŷy/γ 0 < ŷy < γ

0 ŷy ≥ γ

First note that since the loss is 1/γ-Lipschitz, we can use Theorem 24 and the Rademacher contraction

Lemma 27 to show that for each γ > 0 there exists a randomized strategy Aγ such that

E

[
n∑
t=1

Eht∼Aγ
t (z1:t−1) [`(ht(xt), yt)]

]
≤ inf

h∈H

n∑
t=1

`(h(xt), yt) +
2

γ
Rseq
n (H)

Now note that the loss is lower bounded by the Zero-one loss 1{ŷy<0} and is upper bounded by the margin

Zero-one loss 1{ŷy<γ}. Hence we see that for this strategy,

E

[
n∑
t=1

Eht∼Aγ
t (z1:t−1)

[
1{ht(xt)yt<0}

]]
≤ inf

h∈H

n∑
t=1

1{h(xt)yt<γ} +
2

γ
Rseq
n (H) (4.8.7)

Hence for each fixed γ for randomized strategy given by Aγ we have the above bound. Now we discretize

over γ’s as γi = 1/2i and using the output of the randomized strategies Aγ1 ,Aγ2 , . . . that attain the regret

96

bounds given in Eq. (4.8.7) as experts and running experts algorithm given in Algorithm 3 with initial weight

for expert i as pi = 6
π2i2 then using Proposition 53 we get that for this randomized strategy A, such that for

any i

E

[
n∑
t=1

Eht∼A(z1:t−1)

[
1{ht(xt)yt<0}

]]
≤ inf

h∈H

n∑
t=1

1{h(xt)yt<γi} +
2

γi
Rseq
n (H) +

√
n

(
1 + 2 log

(
iπ√

6

))

Now for any γ > 0 let iγ be such that γ ≤ 2−iγ and for any i < iγ , γ > 2−iγ . Then using the above bound

we see that

E

[
n∑
t=1

Eht∼A(z1:t−1)

[
1{ht(xt)yt<0}

]]
≤ inf

h∈H

n∑
t=1

1{h(xt)yt<2γ} +
2

γ
Rseq
n (H) +

√
n

(
1 + 2 log

(
iπ√

6

))

However note that iγ ≤ log(1/γ) and so we can conclude that

E

[
n∑
t=1

Eht∼A(z1:t−1)

[
1{ht(xt)yt<0}

]]
≤ inf

h∈H

n∑
t=1

1{h(xt)yt<2γ}+
2

γ
Rseq
n (H)+

√
n

(
1 + 2 log

(
π log(1/γ)√

6

))

Dividing throughout by n concludes the proof.

Proof of Proposition 50. We shall prove that for any i ∈ [k],

Rseq
n (Fi) ≤ 2LBiR

seq
n (Fi−1)

97

To see this note that

Rseq
n (Fi) =

1

n
sup
z

Eε

 sup
wi:‖wi‖1≤Bi
∀jfj∈Fi−1

n∑
t=1

εt

∑
j

wijσ (fj(zt(ε)))




≤ 1

n
sup
z

Eε

 sup
wi:‖wi‖1≤Bi
∀jfj∈Fi−1

‖wi‖1 max
j

∣∣∣∣∣
n∑
t=1

εtσ (fj(zt(ε)))

∣∣∣∣∣
 (Hölder’s inequality)

≤ 1

n
sup
z

Eε

[
Bi sup

f∈Fi−1

∣∣∣∣∣
n∑
t=1

εtσ (f(zt(ε)))

∣∣∣∣∣
]

=
1

n
sup
z

Eε

[
Bi sup

f∈Fi−1

max

{
n∑
t=1

εtσ (f(zt(ε))) ,−
n∑
t=1

εtσ (f(zt(ε)))

}]

=
1

n
sup
z

Eε

[
Bi max

{
sup

f∈Fi−1

n∑
t=1

εtσ (f(zt(ε))) , sup
f∈Fi−1

n∑
t=1

−εtσ (f(zt(ε)))

}]

≤ 1

n
sup
z

Eε

[
Bi sup

f∈Fi−1

n∑
t=1

εtσ (f(zt(ε)))

]
+ sup

z
Eε

[
Bi sup

f∈Fi−1

n∑
t=1

−εtσ (f(zt(ε)))

]
(σ(0) = 0 and 0 ∈ Fi)

=
2Bi
n

sup
z

Eε

[
sup

f∈Fi−1

n∑
t=1

εtσ (f(zt(ε)))

]
(Proposition 29)

≤ 2BiL

n
sup
z

Eε

[
sup

f∈Fi−1

n∑
t=1

εtf(zt(ε))

]
(Lemma 27)

= 2BiLR
seq
n (Fi−1) (4.8.8)

To finish the proof we note that

Rseq
n (F1) = sup

z
Eε

[
sup

w∈Rd:‖w‖1≤B1

1

n

n∑
t=1

εtw
>zt(ε)

]

≤ sup
z

Eε

[
sup

w∈Rd:‖w‖1≤B1

‖w‖1

∥∥∥∥∥ 1

n

n∑
t=1

εtzt(ε)

∥∥∥∥∥
∞

]

≤ B1 sup
z

Eε

[
max
i∈[d]

{
1

n

n∑
t=1

εtzt(ε)[i]

}]

Note that the instances x ∈ Z are vectors in Rd and so for a given instance tree z, for any i ∈ [d], z[i] given

by only taking the ith co-ordinate is a valid real valued tree. Hence using Lemma 34 we conclude that

Rseq
n (F1) ≤ B1 sup

z
Eε

[
max
i∈[d]

{
1

n

n∑
t=1

εtzt(ε)[i]

}]

≤ B1

√
2X2
∞ log d

n

98

Using the above and Equation 4.8.8 we conclude the proof.

Proof of Proposition 51. For a tree of depth d, the indicator function of a leaf is a conjunction of no more

than d decision functions. More specifically, if the decision tree consists of decision nodes chosen from a

class C of binary-valued functions, the indicator function of leaf l (which takes value 1 at a point x if x reaches

l, and 0 otherwise) is a conjunction of dl functions from C, where dl is the depth of leaf l. We can represent

the function computed by the tree as the sign of

g(x) =
∑
l

wlσl

dl∧
i=1

cl,i(x)

where the sum is over all leaves l, wl > 0,
∑
l wl = 1, σl ∈ {±1} is the label of leaf l, cl,i ∈ C, and the

conjunction is understood to map to {0, 1}. Now note that if we fix some L > 0 then we see that the loss

φL(α) =


1 if α ≤ 0

1− Lα if 0 < α ≤ 1/L

0 otherwise

is L-Lipschitz and so by Theorem 24 and Lemma 27 we have that for every L > 0, there exists a randomized

strategy AL for the player, such that for any sequence z1 = (x1, y1), . . . , zn = (xn, yn),

E

[
n∑
t=1

Eτt∼AL(z1:t−1) [φL(ytτt(xt)]

]
≤ inf
τ∈T

n∑
t=1

φL(ytτ(xt)) + LRseq
n (T)

Now note that φL upper bounds the step function and so

E

[
n∑
t=1

Eτt∼AL(z1:t−1)

[
1{τt(xt)6=yt}

]]
≤ inf
τ∈T

n∑
t=1

φL(ytτ(xt)) + LRseq
n (T)

Now say τ∗ ∈ T is the minimizer of
∑n
t=1 1{τ(xt) 6=yt} then note that

n∑
t=1

φL(ytτ
∗(xt)) =

n∑
t=1

1{τ(xt) 6=yt} +
∑
l

C̃n(l)φL(wl)

≤
n∑
t=1

1{τ∗(xt) 6=yt} +
∑
l

C̃n(l) max(0, 1− Lwl)

≤
n∑
t=1

1{τ∗(xt) 6=yt} +
∑
l

max
(

0, (1− Lwl)C̃n(l)
)

= inf
τ∈T

n∑
t=1

1{τ(xt) 6=yt} +
∑
l

max
(

0, (1− Lwl)C̃n(l)
)

99

Hence we see that

E

[
n∑
t=1

Eτt∼AL(z1:t−1)

[
1{τt(xt)6=yt}

]]
≤ inf
τ∈T

n∑
t=1

1{τ(xt)6=yt} +
∑
l

max
(

0, (1− Lwl)C̃n(l)
)

Now if we discretize over L as Li = i for all i ∈ N and run experts algorithm 3 with output of randomized

strategies, AL1 ,AL2
, . . . as our experts and weight of expert i with pi = 6

π2 i
−2 so that

∑
i pi = 1 then we

get that for this randomized strategy A, we have from Proposition 53 that for all L ∈ N,

E

[
n∑
t=1

Eτt∼A(z1:t−1)

[
1{τt(xt) 6=yt}

]]

≤ inf
τ∈T

n∑
t=1

1{τ(xt)6=yt} +
∑
l

max
(

0, (1− Lwl)C̃n(l)
)

+ LRseq
n (T) +

√
n+ 2

√
n log(Lπ/

√
6)

Now we pick L = |{l : C̃n(l) > 2Rseq
n (T)}| =: Nleaf and also pick wl = 0 if C̃n(l) ≤ 2Rseq

n (T) and

wl = 1/L otherwise. Hence we see that

E

[
n∑
t=1

Eτt∼A(z1:t−1)

[
1{τt(xt)6=yt}

]]
≤ inf
τ∈T

n∑
t=1

1{τ(xt) 6=yt} +
∑
l

C̃n(l)1{C̃n(l)≤2Rseq
n (T)}

+ 2Rseq
n (T)

∑
l

1{C̃n(l)>2Rseq
n (T)} +

√
n+ 2

√
n log(Nleafπ/

√
6)

= inf
τ∈T

n∑
t=1

1{τ(xt) 6=yt} +
∑
l

min(C̃n(l), 2Rseq
n (T)) +

√
n
(

1 + 2 log(Nleafπ/
√

6)
)

Now finally we can apply Corollary 28 to bound Rseq
n (T) ≤ dO(log3/2 n) Rseq

n (H) and thus conclude the

proof by plugging this into the above.

4.8.2 Exponentially Weighted Average (EWA) Algorithm on Countable Experts

We consider here a version of the exponentially weighted experts algorithm for countable (possibly infinite)
number of experts and provide a bound on the expected regret of the randomized algorithm. The proof of the
result closely follows the finite case (e.g. [52, Theorem 2.2]).

Say we are provided with countable experts E1, E2, . . . where each expert can herself be thought of as a
randomized/deterministic player strategy which, given history, produces an element of F at round t. Here we
also assume that F ⊂ [0, 1]Z contains only non-negative functions (corresponds to loss class). Denote by f it
the function output by expert i at round t given the history. The EWA algorithm we consider needs access to
the countable set of experts and also needs an initial weighting on each expert p1, p2, . . . such that

∑
i pi = 1.

100

Algorithm 3 EWA (E1, E2, . . ., p1, p2, . . .)
Initialize each w1

i ← pi
for t = 1 to n do

Pick randomly an expert i with probability wti
Play ft = f ti
Receive zt
Update for each i, wt+1

i =
wtie
−ηfti (zt)∑

i w
t
ie
−ηft

i
(zt)

end for

Proposition 53. For the exponentially weighted average forecaster (Algorithm 3) with η = n−1/2 yields

E

[
n∑
t=1

ft(zt)

]
≤

n∑
t=1

f ti (zt) +

√
n

8
+
√
n log (1/pi)

for any i ∈ N.

Proof. Define Wt =
∑
i pie

−η
∑t
j=1 f

j
i (zt). Then note that

log

(
Wt

Wt−1

)
= log

(∑
i pie

−η
∑t
j=1 f

j
i (zt)

Wt−1

)
= log

(∑
i

wt−1
i e−ηf

t
i (zt)

)

Now using Hoeffding’s inequality (see [52, Lemma 2.2]) we have that

log

(
Wt

Wt−1

)
≤ −η

∑
i

wt−1
i f ti (zt) +

η2

8
= −ηE [ft(zt)] +

η2

8

Summing over t we get

log(Wn)− log(W0) =

n∑
t=1

log

(
Wt

Wt−1

)
≤ −ηE

[
n∑
t=1

ft(zt)

]
+
nη2

8
(4.8.9)

Note that W0 =
∑
i pi = 1 and so log(W0) = 0. Also note that for any i ∈ N,

log(Wn) = log

(∑
i

pie
−η

∑n
t=1 f

t
i (zt)

)
≥ log

(
p
−η

∑n
t=1 f

t
i (zt)

i

)
= log(pi)− η

n∑
t=1

f ti (zt)

Hence using this with Equation 4.8.9 we see that

log(pi)− η
n∑
t=1

f ti (zt) ≤ −ηE

[
n∑
t=1

ft(zt)

]
+
nη2

8

101

Rearranging we get

E

[
n∑
t=1

ft(zt)

]
≤

n∑
t=1

f ti (zt) +
ηn

8
+

1

η
log

(
1

pi

)

Using η = 1√
n

we get the desired bound.

Proof of Proposition 52. First, by the classical result of Kolmogorov and Tihomirov [58], the class G of all

bounded Lipschitz functions has small metric entropy: log N̂∞(α,G) = Θ(1/α). For the particular class of

non-decreasing 1-Lipschitz functions, it is trivial to verify that the entropy is in fact bounded by 2/α.

Next, consider the class F = {〈w, x〉 | ‖w‖2 ≤ 1} over the Euclidean ball. By Proposition ??, Rseq
n (F) ≤√

2
n . Using the lower bound of Proposition 42, fatseq

α ≤ 64/α2 whenever α > 8/
√
n. This implies that

Nseq
∞ (α,F , n) ≤ (2en/α)64/α2

whenever α > 8/
√
n. Note that this bound does not depend on the ambient

dimension of Z .

Next, we show that a composition of G with any small class F ⊂ [−1, 1]Z also has a small cover. To this

end, suppose Nseq
∞ (α,F , n) is the covering number for F . Fix a particular tree z and let V = {v1, . . . ,vN}

be an `∞ cover of F on z at scale α. Analogously, let W = {g1, . . . , gM} be an `∞ cover of G with M =

N̂∞(α,G). Consider the class G ◦ F = {g ◦ f : g ∈ G, f ∈ F}. The claim is that {g(v) : v ∈ V, g ∈ W}
provides an `∞ cover for G ◦ F on z. Fix any f ∈ F , g ∈ G and ε ∈ {±1}n. Let v ∈ V be such that

maxt∈[n] |f(zt(ε)) − vt(ε)| ≤ α, and let g′ ∈ W be such that ‖g − g′‖∞ ≤ α. Then, using the fact that

functions in G are 1-Lipschitz, for any t ∈ [n],

|g(f(zt(ε)))− g′(vt(ε))| ≤ |g(f(zt(ε)))− g′(f(zt(ε))|+ |g′(f(zt(ε))− g′(vt(ε))| ≤ 2α .

Hence, Nseq
∞ (2α,G ◦ F , n) ≤ N̂∞(α,G)×Nseq

∞ (α,F , n).

Finally, we put all the pieces together. By Lemma 27, the Sequential Rademacher complexity ofH is bounded

by 4 times the Sequential Rademacher complexity of the class

G ◦ F = {u(〈w, x〉) | u : [−1, 1] 7→ [−1, 1] is 1-Lipschitz , ‖w‖2 ≤ 1}

since the squared loss is 4-Lipschitz on the space of possible values. The latter complexity is then bounded

by

Dseq
n (G ◦ F) ≤ 32√

n
+ 12

∫ 1

8/
√
n

√
log Nseq(δ,G ◦ F , n)

n
dδ ≤ 32√

n
+ 12

∫ 1

8/
√
n

√
2

nδ
+

64

nδ2
log(2en)dδ .

We conclude that the value of the game Vn(H,Z × Y) = O(
√

log3 n
n).

102

4.9 Discussion

While in this chapter we introduced tools for analyzing rates for online learning problems analogous to
the various complexity measures for statistical learning framework, as we saw in the previous chapter, for
statistical learning framework these tools fail to characterize learnability in general. Similar situation is true
for the online setting too. While these tools characterize learnability of online supervised learning problems
and can also be used to obtain rates for online convex learning problems indirectly, in general they could fail
to characterize learnability general of online learning problems.

In the previous chapter we then turned to the notion of online stability to characterize learnability and even
provided a generic learning algorithm. Is there some notion of stability that can be used to characterize
learnability in the online learning framework? Can we provide a generic algorithm for general learning
problems in the online framework?

Another interesting avenue to explore is the question of fast rates for online learning problems. In the statisti-
cal learning framework the notion of Localized Rademacher complexity introduced in [59] can often be used
to obtain fast rates. Just like we provided an analog to Rademacher complexity for online learning, can we
provide an analog of localized complexity measures, specifically a local sequential Rademacher complexity
that can then be used to obtain fast rates for online learnign problems?

103

Part II

Convex Problems : Oracle Efficient
Learning/Optimization

104

Chapter 5

Convex Learning and Optimization
Problem Setup

In the first part of this dissertation we mainly focused on the question of learnability (and learning rates) in
both statistical and online settings, that is whether the problems were at all learnable using some algorithm.
We did not take into consideration tractability of the learning rules we considered and whether the problem
is learnable using some efficient learning algorithm. The generic learning rules/algorithms presented in the
first part are not at all tractable. In this part of the dissertation, we try to address the issue of tractability
of learning algorithms in both statistical and online learning settings. To do this, we restrict ourselves to so
called convex learning or optimization problems. In this chapter we introduce the convex learning problems
we will encounter in the second part of this dissertation and associated notations.

5.1 Convex Problems

Let us now give the basic setup for the convex learning and optimization problems we consider in the second
part of this dissertation. Of course when we say convex problem, we mean that the set of target hypothesisH
is a convex set and for each given instance z ∈ Z , the loss function `(h, z) is convex in h. To describe more
formal, we consider an arbitrary real vector space B and denote its dual by B?. Now the target hypothesis
class H ⊂ B we shall consider throughout will be a convex and centrally symmetric subset of B. Also
consider the set X ⊂ B? to be a bounded, convex and centrally symmetric subset of the dual B?. The role
of set X will become clear in the following paragraph. It will be convenient for us, to relate the notion of a
convex centrally symmetric sets to their corresponding (semi)norms. To do this, recall the definition of the
Minkowski functional of a set K of a real vector space B. It is defined as

‖v‖K := inf {α > 0 : v ∈ αK}

105

Now it can be seen that if K is convex and centrally symmetric (i.e. K = −K), then ‖·‖K is a semi-norm.
Further, for instance in Rd, if the set K is bounded then ‖·‖K is in fact a norm. Our assumption on the
sets H and X ensure that ‖·‖H and ‖·‖X (the Minkowski functionals of the sets H and X) are semi-norms.
For simplicity we shall further assume that ‖·‖H and ‖·‖X are in fact norms. Even though we do this for
simplicity, we remark that all our results go through for semi-norms too. We use X ? andH? to represent the
duals of X andH respectively, i.e. the unit balls of the dual norms ‖·‖∗X and ‖·‖∗H.

As mentioned we consider convex learning and optimization problem where target set H is the unit ball of
norm ‖·‖H and for each instance z ∈ Z the loss `(·, z) is convex. Now the convex problems we consider are
of three flavors. The first case we consider is the one where, for each instance z ∈ Z , the sub-gradients of
the convex function `(·, z) belong to the set X . Notice that when X = H? this case exactly corresponds to
convex 1-lipschitz problems. Most prior work on online learning, statistical learning and convex optimization
problems considers this case whenH is the unit ball of some Banach space, and X is the unit ball of the dual
space. However, we analyze the general problem where X ∈ B? is not necessarily the dual ball of H . The
second flavor of problems we consider are the ones where for each z ∈ Z , the function `(·, z) is in fact
uniformly convex w.r.t. norm ‖·‖X? . The final flavor of problems we consider are problems where for each
z ∈ Z , the function `(·, z) are non-negative, convex and smooth w.r.t. norm ‖·‖X . The next section formally
defines the key set of convex function classes we consider for the convex learning and optimization problems
throughout the second part.

5.2 Various Convex Learning/Optimization Problems

Below we provide examples of various convex learning/optimization problems we consider in this work.

Example 6 (Lipschitz Convex functions). The set Z = ZLip(X) correspond to the set of all convex loss

functions such that for any z ∈ Z and h ∈ H, ∇h`(h, z) ∈ X where X is some set in the dual vector space.

In short

ZLip(X) = {z : `(·, z) is convex and ∀h ∈ H,∇`(h, z) ∈ X}

Example 7 (Linear functions). The set Z = Zlin consists of linear functions on H̄ from the set X .

Zlin(X) = {z : `(·, z) = 〈x, ·〉 where x ∈ X}

Example 8 (Supervised Learning with Linear predictors). The set Z = Zsup(X) consists of functions of

form

Zsup(X) = {z : `(h, z) = | 〈h,x〉 − y| where x ∈ X , y ∈ [−b, b]}

In the first part we introduced generic supervised learning problem with absolute loss and arbitrary function
class for prediction that mapped input x to reals. At first glance the above class might seem specific given that
the predictor is always linear. However at second glance, if we consider supervised learning with absolute
loss and we require loss function for every instance to be convex in h, then necessarily the predictor has to

106

be linear. To see this note that we need |h(x) − y| to be convex in h, when both y = 1 and y = −1 which
basically means predictor has to be both convex and concave in h and so is linear. The same argument can
be extended to other common margin losses like squared loss, logistic loss etc. Given a convex loss function
φ one can also more generally define a class Zφ = {z : `(h, z) = φ(〈x,h〉 , y) : x ∈ X , y ∈ [−b, b], } for
any 1-Lipschitz loss function φ : R × R 7→ R, and this class would also be a subset of ZLip. In fact,
this setting includes supervised learning fairly generally, including problems such as multitask learning and
matrix completion, where in all cases X specifies the data domain1.

Example 9 (Non-Negative Smooth Convex Loss). The set Z corresponds to non-negative convex functions

that are smooth w.r.t. to the norm ‖·‖X? , that is

Zsmt(H)(X) =
{
z : `(·, z) ≥ 0 is convex and ∀h,h′ ∈ H̄, ‖∇`(h, z)−∇`(h′, z)‖X ≤ H ‖h− h′‖X?

}
A subset of the above instance class are cases of supervised learning problems Zφ where φ is non-negative
and smooth function on the reals like logistic loss, smoothed hinge loss and squared loss. In the chapters to
come we show how for non-negative smooth convex instances one can get faster learning rates in both online
and statistical convex learning frameworks when optimal loss itself is small.

Example 10 (Regularized Convex Loss). The set Z consists of functions of form

Zreg(X) = {z : `(·, z) = φ(·, z) +R(h) where φ(·, z) is convex, ∀h ∈ H,∇φ(h, z) ∈ X and R is convex}

The class Zreg(X) captures regularized convex objective classes where R : H̄ 7→ R is a convex regularizer
used to enforce structure or prior into the learning problem. Commonly regularizer chosen are strongly
convex or more generally uniformly convex. The following instance class captures more specifically these
classes.

Example 11 (Uniformly Convex Loss). The set Z corresponds to uniformly convex functions,

Zucvx(σ,q)(X) = {z : `(·, z) = φ(·, z) +R(·) is (σ, q)-uniformly convex w.r.t. ‖·‖X? ,∀z ∈ Z ∇φ(·, z) ∈ X}

In the above example, we assume that ` is uniformly convex but however we assumes that ` can be decom-
posed as `(·, z) = φ(·, z)+R(·) and only assumes that∇φ(·, z) ∈ X . The reason we did not directly assume
in the above that ∇` is itself in X is so that we can capture many regularized learning problems where the
regularizer R is not Lipschitz and so ` is not Lipschitz but however the loss function of interest φ in these
examples are Lipschitz.

Another class of important loss functions are non-negative smooth convex loss functions. Linear predictors
with logistic loss ,squared loss are common examples of such problems. The following example captures
such classes.

1Note that any convex supervised learning problem can necessarily be viewed as linear classification with some convex constraintH
on the predictors.

107

Example 12 (Bounded Convex functions). The set Z = Zbnd corresponds ot the set of all convex loss

functions that are that are bounded by b onH, that is

Zbnd = {z : `(·, z) is convex and bounded by b onH}

Remark 54. It must be noted that for convex optimization problem, both in the online and statistical setting,

we can use Jensen’s inequality to show that for every randomized algorithm there exists a deterministic

algorithm (that play the expected action of the randomized algorithm) that achieves learning rates that are

at most as bad as that of the randomized algorithm. Hence for the convex optimization problem it suffices to

only consider deterministic learning algorithms.

Owing to the above remark, we see that since we only need to consider deterministic learning algorithms,
both in statistical and online convex learning settings, any learning algorithm A is specified by a mapping
A :

⋃
n∈NZn−1 7→ H̄. Also note that while we assumed that the setH was convex and centrally symmetric

and for ease even assumed thatH is the unit ball of norm ‖·‖H, no such assumptions are made on hypothesis
set H̄ other than that it containsH and so it could even be all of B.

5.3 Discussion

Notice that the sets H and X that we consider are arbitrary convex centrally symmetric sets and need not
be related to each other a priori. While the special case of when H = X ? is what is usually encountered
in majority of the theoretical analysis existing literature, in many applications H and X are not dual to
each other. Here we provide a generic theoretical analysis of the non-dual case. Note that when H = X ?,
ZLip(X) corresponds to usual convex Lipschitz problem, Zsmt(X) corresponds to usual smooth convex
class and finally Zucvx(σ,2)(X) corresponds to σ-strongly convex functions. Overall, the convex learning
and optimization problems that we introduced in this chapter and will study in the remaining chapters cover
majority of the problems considered in previous works. Perhaps the one case not covered in this thesis is the
case of exp-concave loss functions for which in finite (low) dimensional cases, one can get faster learning
rates in both online and statistical learning cases.

108

Chapter 6

Mirror Descent Methods

Perhaps one of the most popular convex optimization algorithm most readers would be familiar with is the
gradient descent algorithm. The gradient descent algorithm proceeds by starting with an initial point and
iteratively updating it by taking steps in the direction of the negative gradient of the function to optimize
at the current point. The gradient descent method is a natural algorithm for problems in Euclidean space.
The mirror descent algorithm [1] is a natural generalization of gradient descent method for general convex
learning problems. Section 6.1 describes the basic update step of the mirror descent algorithm. Section
?? provides bounds on regret of mirror descent method for generic online convex learning problems, online
smooth convex learning problems and online uniformly convex learning problems. The section 6.3 which fol-
lows shows how mirror descent algorithm can be used for statistical convex learning problem and associated
learning guarantee. Section 6.4 shows how mirror descent can also be used for offline convex optimization
problems. Following that Section 6.5 provides proofs of all the results of this chapter and finally we conclude
this chapter with some discussion in Section 6.6.

6.1 The Mirror Descent Update

Given a strictly convex function Ψ : B 7→ R, the Mirror Descent algorithm, AMD is given by the update

ht+1 = argmin
h∈H̄

∆Ψ (h|ht) + η 〈∇`(ht, zt),h− ht〉 (6.1.1)

or equivalently h′t+1 = ∇Ψ∗ (∇Ψ(ht)− η∇`(ht, zt)) , ht+1 = argmin
h∈H̄

∆Ψ

(
h
∣∣h′t+1

)
(6.1.2)

where ∆Ψ (h|h′) := Ψ(h) − Ψ(h′) − 〈∇Ψ(h′),h− h′〉 is the Bregman divergence and Ψ∗ is the convex
conjugate of Ψ. As an example notice that when Ψ(h) = 1

2 ‖h‖
2
2 then we get back the online gradient

descent algorithm. It is worth noting that the perceptron algorithm can be viewed as a conservative variant
of online gradient descent with hinge loss function. Also when H is the d dimensional simplex and Ψ(h) =

109

∑d
i=1 hi log(1/hi), then we get the multiplicative weights update algorithm. In general the function Ψ used

in mirror descent is often referred to as the proxy-function.

The mirror descent algorithm is an O(1), memory single pass, first order method that only needs some
sub-gradient for each update. Often times in practice, each mirror descent update step has time complexity
same as that of calculating a single gradient and hence overall runtime is linear in number of rounds (for
online learning case) or number of samples (statistical learning case).This makes the mirror descent algorithm
attractive from a computational viewpoint.

Before we proceed we would like to point out that in the setting we consider, the hypothesis set from which
learner is allowed to pick, H̄ ⊂ B, need not be the same as the target hypothesis set H and only needs to be
a superset. Of course when H̄ = H then the update above corresponds to the usual mirror descent update.
However when H̄ is all of B then notice that the projection step is mute and essentially the update becomes,

ht+1 = ∇Ψ∗ (∇Ψ(ht)− η∇`(ht, zt)) .

This is especially attractive because in many machine learning applications while we would like to do as well
as the best hypothesis from some target class, we don’t really care if the hypothesis learner picks itself is
selected from this target hypothesis set as long as it gives good results. Hence if we set up the problem such
that H̄ = B then we avoid extra computational time on projection step which could at times be expensive.

6.2 Online Mirror Descent

In this section we describe the online mirror descent algorithm AMD :
⋃
n∈NZn−1 7→ H̄ which simply

uses the mirror descent update given in the previous section and returns the ht’s in each round. That is,
AMD({}) = h1 and further for any t ∈ N and any z1, . . . , zt−1 ∈ Z ,

AMD(z1, . . . , zt−1) = ht .

A key tool in the analysis mirror descent is the notion of strong convexity or more generally uniform convexity
of the function Ψ. Recall the definition of uniform convexity :

Definition 31. A function Ψ : B → R is said to be q-uniformly convex w.r.t. ‖ · ‖ if for any h,h′ ∈ B:

∀α∈[0,1] Ψ (αh + (1− α)h′) ≤ αΨ(h) + (1− α)Ψ(h′)− α(1−α)
q ‖h− h′‖q

110

We are interested in bounding the regret of the of the mirror descent algorithm given by,

Rn(AMD, z1, . . . , zn) :=
1

n

n∑
t=1

`(AMD(z1:t−1), zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt)

=
1

n

n∑
t=1

`(ht, zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt) .

Now assuming we can find an appropriate q-uniformly convex function on B, below we provide bounds on
regret of mirror descent method for generic online convex learning problems, non-negative smooth convex
learning problems and uniformly convex learning problems.

Convex Losses with Sub-gradients in X : We first start with the case when the convex costs at each round
are such that their sub-gradients lie in the set X . Note that instance sets ZLip(X), Zsupp(X) and Zlin(X) are
examples of instance classes that fall in this set.

Lemma 55. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . For the Mirror

Descent algorithm with this Ψ, using h1 = argmin
h∈H

Ψ(h) and η =
(

suph∈H Ψ(h)

nB

)1/p

we can guarantee that

for any z1, . . . , zn s.t. 1
n

∑n
t=1 ‖∇`(·, zt)‖

p
X ≤ 1 (where p = q

q−1),

R(AMD, z1, . . . , zn) ≤ 2

(
suph∈HΨ(h)

n

) 1
q

.

Note that in our case we have that for each z ∈ z, ∇`(·, z) ∈ X , i.e. ‖∇`(·, z)‖X ≤ 1, and so certainly
1
n

∑n
t=1 ‖∇`(·, zt‖

p
X ≤ 1.

Non-Negative Smooth Convex Losses : Next we deal with the case when the convex costs in each round
need not be such that their sub gradients are from set X but rather are such that the costs are non-negative
and H-smooth w.r.t. to the norm ‖·‖X . That is :

∀z ∈ Z,∀h,h′ ∈ H̄, ‖∇`(h, z)−∇`(h′, z)‖X ≤ H ‖h− h′‖X? .

For non-negative smooth losses, one has a property called self-bounding property that for any h and any z,

‖∇`(h, z)‖X ≤
√

4H`(h, z)

In [60] we had made the observation that any non-negative smooth convex loss satisfies this above self bound-
ing property. Shalev-Shwartz [61] showed that the self bounding property can be used this to provide opti-
mistic rates on regret of mirror gradient descent for the dual case and using strongly convex function. By
optimistic rates we refer to rates that improve when average loss of best hypothesis is small. The follow-
ing lemma provides regret bounds for mirror descent algorithm with optimistic rates using similar lines of

111

reasoning as in[60, 61].

Lemma 56. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . For any L∗ ≥ 0,

using the Mirror Descent algorithm with function Ψ for making updates, using h1 = argmin
h∈H

Ψ(h) and

η =


(
p suph∈H Ψ(h)

n

)1/p
1√

4HL∗
if L∗ ≥ 16H

p2/p

(
suph∈H Ψ(h)

n

)2/q

(
p
2

) p
2 1

4H

(
suph∈H Ψ(h)

n

) 2−p
p

otherwise

we can guarantee that for any sequence z1, . . . , zn ∈ Z and any h? ∈ H such that 1
n

∑n
t=1 `(h

?, zt) ≤ L∗,

R(AMD, z1, . . . , zn) ≤
√

64HL∗
(

suph∈HΨ(h)

n

)1/q

+ 40H

(
suph∈HΨ(h)

n

)2/q

.

Uniformly Convex Losses : We now consider the case when loss functions are uniformly convex, specifi-
cally (σ, q′)-uniformly convex. Up to now in this chapter we considered H̄ to be any superset ofH including
H̄ = H. For the case of uniformly convex loss instance classZucvx(σ,q)(X) alone we will assume that H̄ = B
so that we don’t need a projection step and h′t = ht in the mirror descent update. Under this setting we have
the following upper bound for regret of mirror descent algorithm.

Lemma 57. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . Let ψ : B 7→ R be

non-negative and q′ uniformly convex w.r.t. norm ‖·‖X∗ . For each t ∈ [n], define

Ψ̃t(·) =
1

η
Ψ(·) +R(·) + σ t ψ(·)

Then for the choice of

η =


(

suph∈H Ψ(h)

n

)1/p

if n ≥
(

(2− p′)σp′−1 suph∈HΨ1/q(h)
) 1

2−p′−1/p

∞ otherwise

we can guarantee that for any sequence z1, . . . , zn ∈ Zucvx(σ,q′), if q′ > 2 :

R(AMD, z1, . . . , zn) ≤ min

{
2 (suph∈HΨ(h?))

1/q

n1/q
,

2

(2− p′)σp′−1np′−1

}
+

suph∈HR(h)

n
.

where p′ = q′

q′−1 and for q′ = 2 : R(AMD, z1, . . . , zn) ≤ 2 logn
σn +

suph∈H R(h)

n .

Choice of Ψ : Construction I The Mirror Descent bound suggests that as long as we can find an appropriate
function Ψ that is uniformly convex w.r.t. ‖·‖∗X we can get a diminishing regret guarantee using Mirror

112

Descent. This suggests constructing the following function:

Ψ̃q := argmin
ψ:ψ is q-uniformly convex

w.r.t. ‖·‖X∗ onH and ψ≥0

sup
h∈H

Ψ(h) . (6.2.1)

If no q-uniformly convex function exists then Ψ̃q = ∞ is assumed by default. The above function is in a
sense the best choice for the Mirror Descent bound in Eq. (55). The question then is: when can we find such
appropriate functions and what is the best rate we can guarantee using Mirror Descent?

6.3 Stochastic Mirror Descent

In the previous section we saw that mirror descent can be used successfully for online convex learning. In
general, especially for convex problems, any online method can be converted into an algorithm for statistical
learning with same learning rate guarantee and this is often referred to as online to batch conversion. Refer
to [62] for more details about online to batch conversion. Hence one can also use the mirror descent method
for statistical convex learning problems. This algorithm is often referred to as stochastic mirror descent
algorithm. The stochastic mirror descent algorithm is given as follows :

AMD({}) = h1, ∀t ∈ [n], AMD(z1, . . . , zt) =
1

t

t∑
i=1

hi .

Proposition 58. For any hypothesis set H̄ ⊂ B, target hypothesis classH ⊂ B and convex learning problem

specified by instance space Z and any fixed distribution D on instance space Z :

ES∼Dn
[
LD
(
AMD(z1:n)

)
− inf

h∈H
LD(h)

]
≤ ES∼Dn [Rn(AMD, z1, . . . , zn)]

Proof. Note that

ES∼Dn [Rn(AMD, z1, . . . , zn)] = ES∼Dn
[

1

n

n∑
t=1

`(AMD(z1:t−1), zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt)

]

=
1

n

n∑
t=1

ES∼Dn [`(AMD(z1:t−1), zt)]− inf
h∈H

LD(h)

=
1

n

n∑
t=1

ES∼Dn [Ezt∼D [`(AMD(z1:t−1), zt)]]− inf
h∈H

LD(h)

=
1

n

n∑
t=1

ES∼Dn [LD(AMD(z1:t−1))]− inf
h∈H

LD(h)

= ES∼Dn
[

1

n

n∑
t=1

LD(AMD(z1:t−1))− inf
h∈H

LD(h)

]

113

≥ ES∼Dn
[
LD

(
1

n

n∑
t=1

AMD(z1:t−1)

)
− inf

h∈H
LD(h)

]

= ES∼Dn
[
LD
(
AMD(z1:n)

)
− inf

h∈H
LD(h)

]
where the inequality step above is due to Jensen’s inequality. Thus we get the statement of the proposition.

Owing to the above proposition we see that one can get the same learning guarantees for statistical convex
learning problems as for the online counterpart. Specifically we get the following lemmas for statistical
convex learning problems.

Lemma 59. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . For the Mirror

Descent algorithm with this Ψ, using h1 = argmin
h∈H

Ψ(h) and η =
(

suph∈H Ψ(h)

nB

)1/p

we can guarantee that

for any distribution D over Z s.t. Ez∼D [‖∇`(·, z)‖pX] ≤ 1 we have that :

R(AMD, z1, . . . , zn) ≤ 2

(
suph∈HΨ(h)

n

) 1
q

. (wherep = q
q−1)

Proof. The statement follows by using Proposition 58 along with line of proof in Lemma 55.

Similar bound can be given for stochastic convex learning of non-negative smooth convex losses as follows :

Lemma 60. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . For any L∗ ≥ 0,

using the stochastic Mirror Descent algorithm with function Ψ for making updates, using h1 = argmin
h∈H

Ψ(h)

and

η =


(
p suph∈H Ψ(h)

n

)1/p
1√

4HL∗
if L∗ ≥ 16H

p2/p

(
suph∈H Ψ(h)

n

)2/q

(
p
2

) p
2 1

4H

(
suph∈H Ψ(h)

n

) 2−p
p

otherwise

we can guarantee that for any distribution D over Z such that infh∈H L(h) ≤ L∗,

L(AMD)− inf
h∈H

L(h) ≤
√

64HL∗
(

suph∈HΨ(h)

n

)1/q

+ 40H

(
suph∈HΨ(h)

n

)2/q

.

Proof. The statement follows by using Proposition 58 along with line of proof in Lemma 56.

Finally bounds for stochastic learning of uniformly convex losses can also be given.

114

Lemma 61. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . Let ψ : B 7→ R be

non-negative and q′ uniformly convex w.r.t. norm ‖·‖X∗ . For each t ∈ [n], define

Ψ̃t(·) =
1

η
Ψ(·) +R(·) + σ t ψ(·)

Then for the choice of

η =


(

suph∈H Ψ(h)

n

)1/p

if n ≥
(

(2− p′)σp′−1 suph∈HΨ1/q(h)
) 1

2−p′−1/p

∞ otherwise

we can guarantee that for any distribution D over instance space Zucvx(σ,q′)(X), if q′ > 2 :

L(AMD)− inf
h∈H

L(h) ≤ min

{
2 (suph∈HΨ(h?))

1/q

n1/q
,

2

(2− p′)σp′−1np′−1

}
+

suph∈HR(h)

n
.

where p′ = q′

q′−1 and for q′ = 2 : L(AMD)− infh∈H L(h) ≤ 2 logn
σn +

suph∈H R(h)

n .

Proof. The statement follows by using Proposition 58 along with line of proof in Lemma 57.

6.4 Mirror Descent for Offline Optimization

Notice that one can think of offline convex optimization as a special case of stochastic convex optimization
where the set of distributions we consider are point distributions on a single instance of the instance space
Z . Using this observation we see that AMD can directly be used for offline convex optimization problems
with same guarantee on sub-optimality. In this thesis, for the problem of offline convex optimization we only
consider the instance class ZLip(X). The following corollary is a direct consequence of Lemma 59.

Corollary 62. Let Ψ : B 7→ R be non-negative and q-uniformly convex w.r.t. norm ‖·‖X∗ . For the Stochas-

tic Mirror Descent algorithm with this Ψ, using h1 = argmin
h∈H

Ψ(h) and η =
(

suph∈H Ψ(h)

nB

)1/p

we can

guarantee that for any instance z ∈ ZLip, we have that :

`(AMD(∇`(h1, z), . . . ,∇`(hn, z)), z)− inf
h∈H

`(h, z) ≤ 2

(
suph∈HΨ(h)

n

) 1
q

. (wherep = q
q−1)

115

6.5 Detailed Proofs

Proof of Lemma 55 (generalized MD guarantee). Note that for any h? ∈ H,

η

(
n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt)

)
≤

n∑
t=1

〈η∇`(ht, zt),ht − h?〉

=

n∑
t=1

(〈
η∇`(ht, zt),ht − h′t+1

〉
+
〈
∇`(ht, zt),h′t+1 − h?

〉)
=

n∑
t=1

(〈
η∇`(ht, zt),ht − h′t+1

〉
+
〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)
≤

n∑
t=1

(
‖η∇`(ht, zt)‖X

∥∥ht − h′t+1

∥∥
X? +

〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)
≤

n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? +

〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)

Using simple manipulation we can show that

〈∇Ψ(ht)−∇Ψ(ht+1),ht+1 − h?〉 = ∆Ψ (h?|ht)−∆Ψ (h?|ht+1)−∆Ψ (ht+1|ht)

where given any h,h′ ∈ B,

∆Ψ (h|h′) := Ψ(h)−Ψ(h′)− 〈∇Ψ(h′),h− h′〉

is the Bregman divergence between h and h′ w.r.t. function Ψ. Hence,

η

(
n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt)

)

≤
n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? +

〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)

=

n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? + ∆Ψ (h?|ht)−∆Ψ

(
h?
∣∣h′t+1

)
−∆Ψ

(
h′t+1

∣∣ht))

≤
n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? + ∆Ψ (h?|ht)−∆Ψ (h?|ht+1)−∆Ψ

(
h′t+1

∣∣ht))

=

n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? −∆Ψ

(
h′t+1

∣∣ht))+ ∆Ψ (h?|h1)−∆Ψ (h?|hn+1)

≤
n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? −∆Ψ

(
h′t+1

∣∣ht))+ Ψ(h?)

116

Now since Ψ is q-uniformly convex w.r.t. ‖·‖X? , for any h,h′ ∈ B?, ∆Ψ (h′|h) ≥ 1
q ‖h− h′‖qX? . Hence

we conclude that

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤
ηp−1

p

n∑
t=1

‖∇`(ht, zt)‖pX +
Ψ(h?)

η

≤ ηp−1Bn

p
+

suph∈HΨ(h)

η

≤ ηp−1Bn

p
+

suph∈HΨ(h)

η

Plugging in the value of η =
(

suph∈H Ψ(h)

nB

)1/p

we get :

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤ 2

(
sup
h∈H

Ψ(h)

)1/q

(Bn)1/p

dividing throughout by n conclude the proof.

Proof of Lemma 56. Note that for any h? ∈ H,

η

(
n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt)

)
≤

n∑
t=1

〈η∇`(ht, zt),ht − h?〉

=

n∑
t=1

(〈
η∇`(ht, zt),ht − h′t+1

〉
+
〈
η∇`(ht, zt),h′t+1 − h?

〉)
=

n∑
t=1

(〈
η∇`(ht, zt),ht − h′t+1

〉
+
〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)
≤

n∑
t=1

(
‖η∇`(ht, zt)‖X

∥∥ht − h′t+1

∥∥
X? +

〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)
≤

n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? +

〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)

Using simple manipulation we can show that

〈∇Ψ(ht)−∇Ψ(ht+1),ht+1 − h?〉 = ∆Ψ (h?|ht)−∆Ψ (h?|ht+1)−∆Ψ (ht+1|ht)

where given any h,h′ ∈ B,

∆Ψ (h|h′) := Ψ(h)−Ψ(h′)− 〈∇Ψ(h′),h− h′〉

117

is the Bregman divergence between h and h′ w.r.t. function Ψ. Hence,

η

(
n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt)

)

≤
n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? +

〈
∇Ψ(ht)−∇Ψ(h′t+1),h′t+1 − h?

〉)

=

n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? + ∆Ψ (h?|ht)−∆Ψ

(
h?
∣∣h′t+1

)
−∆Ψ

(
h′t+1

∣∣ht))

≤
n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? + ∆Ψ (h?|ht)−∆Ψ (h?|ht+1)−∆Ψ

(
h′t+1

∣∣ht))

=

n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? −∆Ψ

(
h′t+1

∣∣ht))+ ∆Ψ (h?|h1)−∆Ψ (h?|hn+1)

≤
n∑
t=1

(
ηp

p
‖∇`(ht, zt)‖pX +

1

q

∥∥ht − h′t+1

∥∥q
X? −∆Ψ

(
h′t+1

∣∣ht))+ Ψ(h?)

Now since Ψ is q-uniformly convex w.r.t. ‖·‖X? , for any h,h′ ∈ B?, ∆Ψ (h′|h) ≥ 1
q ‖h− h′‖qX? . Hence

we conclude that

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤
ηp−1

p

n∑
t=1

‖∇`(ht, zt)‖pX +
Ψ(h?)

η

Now by smoothness of objective, using the Lemma ?? we have that each ‖∇`(ht, zt)‖X ≤
√

4H`(ht, zt).

Using this in the above we get that,

1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt) ≤
ηp−1

p

1

n

n∑
t=1

(4H`(ht, zt))
p
2 +

1

n

Ψ(h?)

η

≤ (4H)
p
2 ηp−1

p

(
1

n

n∑
t=1

`(ht, zt)

) p
2

+
1

n

Ψ(h?)

η

≤ (4H)
p
2 ηp−1

p

(
1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt)

) p
2

+
(4H)

p
2 ηp−1

p

(
1

n

n∑
t=1

`(h?, zt)

) p
2

+
1

n

Ψ(h?)

η

We now use the fact that if for any x,B ≥ 0 if x ≤ Bxα + A for some α ∈ (1
2 , 1] then as long as

B < A1−α, x ≤ A
1−BAα−1 . Using this with x = 1

n

∑n
t=1 `(ht, zt)−

1
n

∑n
t=1 `(h

?, zt), B = (4H)
p
2 ηp−1

p and

A = 1
n

Ψ(h?)
η + (4H)

p
2 ηp−1

p

(
1
n

∑n
t=1 `(h

?, zt)
)p/2

we conclude that for any η such that,

(4H)
p
2 ηp−1

p
≤ 1

2

 1

n

Ψ(h?)

η
+

(4H)
p
2 ηp−1

p

(
1

n

n∑
t=1

`(h?, zt)

)p/21− p2

, (6.5.1)

118

we will have that :

1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt) ≤
1
n

Ψ(h?)
η + (4H)

p
2 ηp−1

p

(
1
n

∑n
t=1 `(h

?, zt)
)p/2

1− (4H)
p
2 ηp−1

p

(
1
n

Ψ(h?)
η + (4H)

p
2 ηp−1

p

(
1
n

∑n
t=1 `(h

?, zt)
)p/2) p

2−1

(6.5.2)

≤ 2

 1

n

Ψ(h?)

η
+

(4H)
p
2 ηp−1

p

(
1

n

n∑
t=1

`(h?, zt)

)p/2 (6.5.3)

To this end we now choose the step size as

η =


(
pΨ(h?)
n

)1/p
1√

4H
n

∑n
t=1 `(h

?,zt)
if 1
n

∑n
t=1 `(h

?, zt) ≥ 16H
p2/p

(
Ψ(h?)
n

)2/q

(
p
2

) p
2 1

4H

(
Ψ(h?)
n

) 2−p
p

otherwise

It is easy to verify that the choice of η above satisfies condition in Equation 6.5.1. To see this note that if

we plug in η =
(
pΨ(h?)
n

)1/p
1√

4H
n

∑n
t=1 `(h

?,zt)
into condition in Equation 6.5.1 and rearrange we get that

1
n

∑n
t=1 `(h

?, zt) ≥ 16H
p2/p

(
Ψ(h?)
n

)2/q

. Thus whenever 1
n

∑n
t=1 `(h

?, zt) ≥ 16H
p2/p

(
Ψ(h?)
n

)2/q

, the choice of

η satisfies the condition. On the other hand, the choice η =
(
p
2

) p
2 1

4H

(
Ψ(h?)
n

) 2−p
p

was in the first place

derived by making
(4H)

p
2 ηp−1

p
≤ 1

2

(
1

n

Ψ(h?)

η

)
which is got by zeroing out the second term in the condition. Hence we conclude that this choice of η always

satisfies the condition in Equation 6.5.1. Now we plug in this choice of η into the bound in Equation 6.5.2.

Note that whenever η =
(
p Ψ(h?)

n

)1/p
1√

4H
n

∑n
t=1 `(h

?,zt)
, then simply plugging in this choice of η into the

bound in Equation 6.5.2, we get

1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt) ≤

√
64 H Ψ1/q(h?)

√
1
n

∑n
t=1 `(h

?, zt)

p1/pn1/q

≤

√√√√64H

n

n∑
t=1

`(h?, zt)

(
Ψ(h?)

n

)1/q

(6.5.4)

On the other hand when

η =
(p

2

) p
2 1

4H

(
Ψ(h?)

n

) 2−p
p

119

plugging into bound in Equation 6.5.2 we get,

1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt) ≤ 2

 4H(
p
2

) p
2

(
Ψ(h?)

n

)2/q

+
(4H)

2−p
2

(
p
2

) p(p−1)
2

(
Ψ(h?)
n

) (2−p)(p−1)
p

p

(
1

n

n∑
t=1

`(h?, zt)

)p/2

However note that we pick η =
(
p
2

) p
2 1

4H

(
Ψ(h?)
n

) 2−p
p

only when 1
n

∑n
t=1 `(h

?, zt) <
16H
p2/p

(
Ψ(h?)
n

)2/q

and

so plugging this inequality we get,

1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt) ≤ 2

 4H(
p
2

) p
2

(
Ψ(h?)

n

)2/q

+
2p−24H(
p
2

) 4−p(p−1)
2

(
Ψ(h?)

n

)2/q


≤ 40H

(
Ψ(h?)

n

)2/q

(6.5.5)

Combining the above and bound in Equation 6.5.4 we conclude that for this choice of η,

1

n

n∑
t=1

`(ht, zt)−
1

n

n∑
t=1

`(h?, zt) ≤ max


√√√√64H

n

n∑
t=1

`(h?, zt)

(
Ψ(h?)

n

)1/q

, 40H

(
Ψ(h?)

n

)2/q


≤

√√√√64H

n

n∑
t=1

`(h?, zt)

(
Ψ(h?)

n

)1/q

+ 40H

(
Ψ(h?)

n

)2/q

Proof of Lemma 57. Note that for any h? ∈ H,

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤
n∑
t=1

〈∇`(ht, zt),ht − h?〉 − σ

q′
‖ht − h?‖q

′

X?

=

n∑
t=1

〈
∇`(ht, zt),ht − h′t+1

〉
+
〈
∇`(ht, zt),h′t+1 − h?

〉
− σ

q′
‖ht − h?‖q

′

X?

=

n∑
t=1

〈
∇`(ht, zt),ht − h′t+1

〉
+
〈
∇Ψ̃t(ht)−∇Ψ̃t(h

′
t+1),h′t+1 − h?

〉
− σ

q′
‖ht − h?‖q

′

X?

Using simple manipulation we can show that〈
∇Ψ̃t(ht)−∇Ψ̃t(ht+1),ht+1 − h?

〉
= ∆Ψ̃t

(h?|ht)−∆Ψ̃t
(h?|ht+1)−∆Ψ̃t

(ht+1|ht)

120

Hence,

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤
n∑
t=1

〈
∇`(ht, zt),ht − h′t+1

〉
+
〈
∇Ψ̃t(ht)−∇Ψ̃t(h

′
t+1),h′t+1 − h?

〉
− σ

q′
‖ht − h?‖q

′

X?

≤
n∑
t=1

〈
∇`(ht, zt),ht − h′t+1

〉
+ ∆Ψ̃t

(h?|ht)−∆Ψ̃t

(
h?
∣∣h′t+1

)
−∆Ψ̃t

(
h′t+1

∣∣ht)− σ

q′
‖ht − h?‖q

′

X?

≤
n∑
t=1

〈
∇`(ht, zt),ht − h′t+1

〉
+ ∆Ψ̃t

(h?|ht)−∆Ψ̃t
(h?|ht+1)−∆Ψ̃t

(
h′t+1

∣∣ht)− σ

q′
‖ht − h?‖q

′

X?

≤
n∑
t=1

(〈
∇`(ht, zt),ht − h′t+1

〉
−∆Ψ̃t

(
h′t+1

∣∣ht))+ ∆Ψ̃1
(h?|h1)− σ

q′
‖h1 − h?‖q

′

X?

+

n∑
t=2

(
∆Ψ̃t

(h?|ht)−∆Ψ̃t−1
(h?|ht)−

σ

q′
‖ht − h?‖q

′

X?

)

≤
n∑
t=1

(〈
∇`(ht, zt),ht − h′t+1

〉
−∆Ψ̃t

(
h′t+1

∣∣ht))+ ∆Ψ̃1
(h?|h1)− σ∆ψ (h?|h1)

+

n∑
t=2

(
∆Ψ̃t

(h?|ht)−∆Ψ̃t−1
(h?|ht)− σ∆ψ (h?|ht)

)
=

n∑
t=1

(〈
∇`(ht, zt),ht − h′t+1

〉
−∆Ψ̃t

(
h′t+1

∣∣ht))+
1

η
∆Ψ (h?|h1) + ∆R (h?|h1)

=

n∑
t=1

(
〈∇`(ht, zt),ht − ht+1〉 −∆Ψ̃t

(ht+1|ht)
)

+
1

η
∆Ψ (h?|h1) + ∆R (h?|h1)

=

n∑
t=1

(
〈∇φ(ht, zt),ht − ht+1〉 −∆ Ψ

η +σtψ (ht+1|ht) +R(ht)−R(ht+1)
)

+
1

η
∆Ψ (h?|h1)

+ ∆R (h?|h1)

≤
n∑
t=1

(〈
∇φ(ht, zt),ht − h′t+1

〉
− 1

η q

∥∥h? − h′t+1

∥∥q
X? −

σ t

q′
∥∥h? − h′t+1

∥∥q′
X?

)
+

Ψ(h?)

η

+R(h?)−R(hn+1)

≤
n∑
t=1

inf
ut+vt=∇φ(ht,zt)

{
ηp−1

p
‖ut‖pX +

1

p′ σp′−1 tp′−1
‖vt‖p

′

X

}
+

Ψ(h?)

η
+R(h?)

Where in the steps above we used the fact that for any functions F and G, ∆G+F (·|·) = ∆G (·|·) + ∆F (·|·)
and that fact that for any function F that is q-uniformly convex w.r.t. ‖·‖X? , for any h,h′ ∈ B?, ∆F (h′|h) ≥
1
q ‖h− h′‖qX? . The final step is due to Fenchel Young inequality. Now we upper bound the summation term

by replacing each infimum over decompositions of∇`(ht, zt) into any arbitrary vectors ut and vt to vectors

of specific form, ut = (1− α)∇φ(ht, zt) and vt = α∇φ(ht, zt) for some α ∈ [0, 1]. Hence we get for any

121

α ∈ [0, 1],

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤
n∑
t=1

(
ηp−1(1− α)p

p
‖∇φ(ht, zt)‖pX +

αp
′

p′ σp′−1 tp′−1
‖∇φ(ht, zt)‖p

′

X

)

+
Ψ(h?)

η
+R(h?)

≤ ηp−1(1− α)pn

p
+

αp
′

p′ σp′−1

n∑
t=1

1

tp′−1
+

Ψ(h?)

η
+R(h?)

≤ ηp−1(1− α)pn

p
+

αp
′

p′ σp′−1

n2−p′

2− p′
+

Ψ(h?)

η
+R(h?)

≤ ηp−1(1− α)pn+
αp
′

σp′−1

n2−p′

2− p′
+

Ψ(h?)

η
+R(h?)

≤ ηp−1(1− α)pn+
αp
′

σp′−1

n2−p′

2− p′
+

suph∈HΨ(h)

η
+ sup

h∈H
R(h)

Using α = 1 whenever n ≥
(

(2− p′)σp′−1Ψ1/q(h?)
) 1

2−p′−1/p and α = 0 otherwise and picking

η =


(

suph∈H Ψ(h)

n

)1/p

if n ≥
(

(2− p′)σp′−1 suph∈HΨ1/q(h)
) 1

2−p′−1/p

∞ otherwise

we get that

n∑
t=1

`(ht, zt)−
n∑
t=1

`(h?, zt) ≤ min

{
2 sup
h∈H

Ψ1/q(h)n1/p + sup
h∈H

R(h),
2

(2− p′)σp′−1
n2−p′ + sup

h∈H
R(h)

}

Dividing throughout by n concludes the proof.

6.6 Discussion

The mirror descent algorithm with uniformly convex Ψ functions were introduced by Nemirovski and Yudin
in [1] for offline convex optimization. Specific upper bounds for offline convex optimization of ZLip dual
case when H is the unit `p ball and X is the dual of H are provided in [1]. For online convex optimization
problem, online gradient descent (Euclidean case) was proposed by Zinkevich in[30]. Faster rates when the
losses are strongly convex in the Euclidean case for online gradient descent was proposed in [63]. Mirror
descent for general strongly convex objectives with log n/n rates was proposed and analyzed in [64]. While
in all the above the set X in the corresponding problems are same as dual of set H and H = H̄, in this
chapter we consider the generic case and provide bounds for the non-dual case for online and statistical
convex learning and for offline convex optimization. One fact to pay attention to is that the upper bounds
are provided assuming one can find appropriate function Ψ that is q-uniformly convex w.r.t. norm ‖·‖X? .

122

Ofcourse the immediate question that arises is “When can one find such functions Ψ and are the bounds got
using such Ψ optimal?”. The next three chapters deals with this question for online and statistical convex
learning problems and for offline convex optimization problems.

123

Chapter 7

Optimality of Mirror Descent for Online
Convex Learning Problem

In this chapter we will show that the mirror descent method is universal and near optimal for online convex
learning problems. Very roughly, the main result we show in this chapter can be stated as :

For any online convex learning problem, if some online learning algorithm can guarantee a regret
bound of Raten, then mirror descent algorithm can guarantee regret bounded as Õ(Raten). Of course
in the remainder of the chapter we will exactly quality this result and show optimality of mirror descent for
online learning when losses are s.t. gradients are in set X , for non-negative smooth convex losses and for
uniformly convex losses.

Before we proceed we start by noticing that owing to Remark 54, it suffices to only consider Deterministic
learning algorithms. As a result, the online convex learning problem can be viewed as a multi-round game
where on round t, the learner first picks a vector ht ∈ H̄. Next, the adversary picks instance zt ∈ Z
where Z is a class of instances specifying some set of convex functions. At the end of the round, the learner
pays instantaneous cost `(ht, zt). Recall that a deterministic online learning algorithm A for the problem is
specified by the mapping A :

⋃
n∈NZn−1 7→ H̄. We shall represent the regret of an algorithm A for a given

sequence of instances z1, . . . , zn by the shorthand :

Rn(A, z1, . . . , zn) :=
1

n

n∑
t=1

`(A(z1:t−1), zt)− inf
h∈H

1

n

n∑
t=1

`(h, zt) .

The goal of the learner as before, is to minimize the regret at the end of n rounds.

In Chapter 4 since we considered randomized online learning algorithms we had to be careful in defining
the value of the game in Equation 4.2.1. Since for convex learning problems it suffices to only consider
deterministic learning algorithms, it is easier to write down the value of the game for these problems. The
value of the online convex learning problem can we written as the best possible guarantee on regret against

124

any sequence of instances that any algorithm can enjoy. Formally the value can be written as :

Vn(H,Z) = inf
A

sup
z1:n∈Z

Rn(A, z1, . . . , zn) (7.0.1)

In the Section 7.1 we will see that for online convex learning problems introduced in previous chapter, a
problem is online learnable if and only if it is learnable using a gradient-based online learning algorithm. We
will also see that value of the linear game acts as key in characterizing optimal learning rates of various other
convex learning problems and hence will focus on that. In Chapter 6 we describe the online mirror descent
algorithm and provide guarantees for various problems. However these guarantees relied on our ability to
be able to pick appropriate uniformly convex function to use with the mirror descent algorithm. In section
7.2 we show how the concept of martingale type (a generalization of it as per our need) captures closely
the value of linear game and hence can be used to closely characterize rates for the various convex learning
problems. In Section 7.3 we extend Pisier’s result [65] to show that martingale type of the problem can
be used to ensure existence of an appropriate uniformly convex function. Subsequently in Section 7.4 we
put it all together and establish that for the convex problems we consider, there exists appropriate uniformly
convex funciton so that mirror descent with this function and right step size is always near optimal (upto to
log factors). Thus we establish universality and nearo optimality of mirror descent. This is also shown for
non-negative smooth convex losses and certain uniformly convex losses. In Section 7.5 we provide several
examples of commonly encountered convex learning problems and establish rates for these problems using
mirror descent. Section 7.6 provides detailed proofs for results in this chapter and finally we conclude with
some discussion in Section 7.7.

7.1 Value of the Linear Game

The value of online learning learning problem plays an important role in characterizing optimal rates of
various online convex learning problems. In this section we show how the value of the linear online learning
game is related to value of other online convex learning games and also introduce some necessary definitions
to build towards showing the main result of this chapter. The following lemma shows how one can use online
algorithms for linear problems for other online convex learning problems (problems where sub-gradients are
in X).

Lemma 63. Let A be any online learning algorithm for linear learning problems specified by instance

set Zlin. Using this, for any convex learning problem specified by instance set Z such that for any h ∈
H, ∇h`(h, z) ∈ X , one can construct a new gradient-based learning algorithm AO

1st

such that for any

z1, . . . , zn ∈ Z ,

Rn(AO
1st

, z1, . . . , zn) ≤ sup
z∗1 ,...,z

∗
n∈Zlin

Rn(A, z∗1 , . . . , z
∗
n)

A direct consequence of the above lemma is the following corollary that shows that value of the linear game
upper bounds value of other online convex learning problems and is in fact equal to the value of the supervised

125

learning game and online convex Lipschitz learning game.

Corollary 64. For any convex learning problem specified by instance set Z which is s.t. ∀h ∈ H, z ∈ Z :

∇h`(h, z) ∈ X , we have that,

Vn(H,Z) ≤ Vn(H,Zlin(X))

Furthermore Vn(H,ZLip(X)) = Vn(H,Zsup(X)) = Vn(H,Zlin(X))

The equality in the above corollary can also be extended to most other commonly occurring convex loss
function classes like say the hinge loss class and logistic learning loss class with some extra constant factors.
As we see from the above result, the value of the online learning problem for linear instance class Zlin(X) is
critical in upper and lower bounds on rates of various other convex learning problems. In fact as we will sees
later the value of the linear game also plays an important role in characterizing rates of smooth and uniformly
convex online learning problems. Owing to this, for any p ∈ [1, 2] we define constant :

Vp := inf
{
V
∣∣∣ ∀n ∈ N,Vn(H,Zlin(X)) ≤ V n−(1− 1

p)
}

(7.1.1)

Notice that Vp characterizes optimal rate for online linear learning problems (and hence supervised and
Lipschitz classes too) up to polynomial.

The main aim of this chapter is to show near optimality of mirror descent algorithm. To this end, similar to
Vp for each p ∈ [1, 2] we can define:

MDp := inf

{
D : ∃Ψ, η s.t. ∀n ∈ N, sup

z1:n∈Z
Rn(AMD, z1:n) ≤ Dn−(1− 1

p)

}
(7.1.2)

where the Mirror Descent algorithm in the above definition is run with the corresponding Ψ and η. The con-
stant MDp is a characterization of the best guarantee the Mirror Descent algorithm can provide by choosing
the best Ψ and η.

A simple consequence of the definitions of Vp and MDp is the following proposition.

Proposition 65. For any p ∈ [1, 2]:

Vp ≤ MDp

7.2 Value and Martingale Type

In [7], it was shown that the concept of the Martingale type (also sometimes called the Haar type) of a Banach
space and optimal rates for online convex optimization problem, where X andH are duals of each other, are
closely related. In this section we extend the classic notion of Martingale type of a Banach space (see for
instance [65]) to one that accounts for the pair (H?,X). Before we proceed with the definitions we would
like to introduce a few necessary notations. First, throughout we shall use ε ∈ {±1}N to represent infinite
sequence of signs drawn uniformly at random (i.e. each εi has equal probability of being +1 or −1). Also

126

throughout (xn)n∈N represents an B? valued tree of infinite depth, that is a sequence of mappings where each
xn : {±1}n−1 7→ B?. We are now ready to give the extended definition of Martingale type (or M-type) of a
pair (H?,X).

Definition 32. A pair (H?,X) of subsets of a vector space B? is said to be of M-type p if there exists a

constant C ≥ 1 such that for all B?-valued tree x of infinite depth and any x0 ∈ B? :

sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ Cp

‖x0‖pX +
∑
n≥1

E [‖xn(ε)‖pX]

 (7.2.1)

The concept is called Martingale type because (εnxn(ε))n∈N is a martingale difference sequence and it can
be shown that rate of convergence of martingales in Banach spaces is governed by the rate of convergence of
martingales of the form Zn = x0 +

∑n
i=1 εixi(ε) (which are incidentally called Walsh-Paley martingales).

We point the reader to [65, 66] for more details. Further, for any p ∈ [1, 2] we also define,

Cp := inf

C
∣∣∣∣∣∣ ∀x0 ∈ B?, ∀x, sup

n
E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ Cp

‖x0‖pX +
∑
n≥1

E ‖xn(ε)‖pX


Cp is useful in determining if the pair (H?,X) has Martingale type p.

By the results in Chapter ?? (using it specifically for linear class) we have the following theorem:

Theorem 66. For anyH ∈ B and any X ∈ B? and any n ≥ 1,

sup
x

E

[∥∥∥∥∥ 1

n

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ Vn(H,X) ≤ 2 sup

x
E

[∥∥∥∥∥ 1

n

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]

where the supremum above is over B?-valued tree x of infinite depth.

Our main interest here will is in establishing that low regret implies Martingale type. To do so, we start
with the above theorem to relate value of the online convex optimization game to rate of convergence of
martingales in the Banach space. We then extend the result of Pisier in [65] to the “non-matching” setting
combining it with the above theorem to finally get :

Lemma 67. If for some r ∈ (1, 2] there exists a constant D > 0 such that for any n,

Vn(H,X) ≤ Dn−(1− 1
r)

then for all s < r, we can conclude that any x0 ∈ B? and any B?-valued tree x of infinite depth will satisfy :

sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
s

H?

]
≤
(

1104 D

(r − s)2

)s‖x0‖sX +
∑
i≥1

E [‖xi(ε)‖sX]


That is, the pair (H,X) is of martingale type s.

127

The following corollary is an easy consequence of the above lemma.

Corollary 68. For any p ∈ [1, 2] and any p′ < p : Cp′ ≤ 1104 Vp
(p−p′)2

7.3 Martingale Type and Uniform Convexity

The classical notion of Martingale type plays a central role in the study of geometry of Banach spaces. In
[65], it was shown that a Banach space has Martingale type p (the classical notion) if and only if uniformly
convex functions with certain properties exist on that space (w.r.t. the norm of that Banach space). In this
section, we extend this result and show how the Martingale type of a pair (H?,X) are related to existence of
certain uniformly convex functions. Specifically, the following theorem shows that the notion of Martingale
type of pair (H?,X) is equivalent to the existence of a non-negative function that is uniformly convex w.r.t.
the norm ‖·‖X? .

Lemma 69. If, for some p ∈ (1, 2], there exists a constant C > 0, such that for all B?-valued tree x of

infinite depth and any x0 ∈ B?:

sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ Cp

‖x0‖pX +
∑
n≥1

E [‖xn(ε)‖pX]


(i.e. (H?,X) has Martingale type p), then there exists a convex function Ψ : B 7→ R+ with Ψ(0) = 0, that is

q-uniformly convex w.r.t. norm ‖·‖X? s.t. ∀h ∈ B, 1
q ‖h‖

q
X? ≤ Ψ(h) ≤ Cq

q ‖h‖
q
H.

Define,

Dp := inf

{(
sup
h∈H

Ψ(h)

) p−1
p

∣∣∣∣∣ Ψ : H 7→ R+ is p
p−1 -uniformly convex w.r.t. ‖·‖X∗ ,Ψ(0) = 0

}

The following corollary follows directly from the above lemma.

Corollary 70. For any p ∈ [1, 2], Dp ≤ Cp.

The proof of Lemma 69 goes further and gives a specific uniformly convex function Ψ satisfying the desired
requirement (i.e. establishing Dp ≤ Cp) under the assumptions of the previous lemma:

Ψ∗q(x) := sup

 1

Cp
sup
n

E

[∥∥∥∥∥x +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
−
∑
i≥1

E
[
‖xi(ε)‖pX

] , Ψq := (Ψ∗q)
∗ . (7.3.1)

where the supremum above is over B?-valued tree x of infinite depth and p = q
q−1 .

128

7.4 Main Result : Optimality of Online Mirror Descent

In previous chapter we argued that if we can find an appropriate uniformly convex function to use with the
mirror descent algorithm, one can guarantee diminishing regret. However the pending question there was
when one can find such a function and what is the rate one can gaurantee. In Section ?? we introduced the
extended notion of Martingale type of a pair (H?,X) and how it related to the value of the game. In Section
??, we saw how the concept of M-type related to existence of certain uniformly convex functions. We can
now combine these results to show that the mirror descent algorithm is a universal online learning algorithm
for convex learning problems. Specifically we show that whenever a problem is online learnable, the mirror
descent algorithm can guarantee near optimal rates:

Theorem 71. If for some constant V > 0 and some q ∈ [2,∞), Vn(H,X) ≤ V n−
1
q for all n, then for

any n > eq−1, there exists regularizer function Ψ and step-size η, such that the regret of the mirror descent

algorithm using Ψ against any z1, . . . , zn ∈ ZLip chosen by the adversary is bounded as:

Rn(AMD, z1, . . . , zn) ≤ 6002V log2(n) n−
1
q (7.4.1)

Proof. Combining Mirror descent guarantee in Lemma 55, Lemma 69 and the lower bound in Lemma 67

with s = q
q−1 −

1
log(n) we get the above statement.

The above Theorem tells us that, with appropriate Ψ and learning rate η, mirror descent will obtain regret at
most a factor of 6002 log2(n) from the best possible worst-case upper bound. We would like to point out that
the constant V in the value of the game appears linearly and there is no other problem or space related hidden
constants in the bound.

The following figure summarizes the relationship between the various constants. The arrow mark from Cp′

to Cp indicates that for any n, all the quantities are within log2 n factor of each other.

p′ < p, Cp′ ≤ Vp ≤ MDp ≤ Dp ≤ Cp

Lemma 67
(extending Pisier’s result [65])

Definition of Vp
(Generalized MD guarantee)

Lemma 55 Construction of Ψ, Lemma 77
(extending Pisier’s result [65])

Figure 7.1: Relationship between the various constants

We now provide some general guidelines that will help us in picking out appropriate function Ψ for mirror
descent. First we note that though the function Ψq in the construction Eq. (7.3.1) need not be such that
(qΨq(h))1/q is a norm, with a simple modification as noted in [66] we can make it a norm. This basically
tells us that the pair (H,X) is online learnable, if and only if we can sandwich a q-uniformly convex norm in-
between X ? and a scaled version of H (for some q <∞). Also note that by definition of uniform convexity,
if any function Ψ is q-uniformly convex w.r.t. some norm ‖·‖ and we have that ‖·‖ ≥ c ‖·‖X , then Ψ(·)

cq is
q-uniformly convex w.r.t. norm ‖·‖X . These two observations together suggest that given pair (H,X) what

129

we need to do is find a norm ‖·‖ in between ‖·‖?X and C ‖·‖H (C <∞, smaller the C better the bound) such
that ‖·‖q is q-uniformly convex w.r.t ‖·‖.

7.4.1 Smooth Loss Case

Lemma 72. Given any L∗ ∈ (0, 3
4] and any n ∈ N, for any online convex learning algorithm A, there exists

instances z1, . . . , zn ∈ Zsmt(1) such that, infh∈H
1
n

∑n
t=1 `(h, zt) ≤ L∗ and

Rn(A, z1:n) ≥ 1

n
sup
x

Eε

∥∥∥∥∥∥
nL∗∑
t=1

εtxt(ε)

∥∥∥∥∥∥
H?

 ≥ L∗

2
VnL∗(H,Zlin(X))

The following theorem shows the almost optimality of mirror descent for non-negative smooth convex objec-
tives. The upper bound on the regret of the mirror descent algorithm also shows how having small L∗ helps
reduce regret.

Theorem 73. If for some V > 0 and q ∈ [2,∞) we have that

Vn(H,Zsmt(1)) ≤
V

n1/q

then for any L∗ > 0 and n > eq−1 there exists regularizer function Ψ and step-size η such that regret of the

mirror descent algorithm with these Ψ and η against any z1, . . . , zn ∈ Zsmt(H) s.t. infh∈H
1
n

∑n
t=1 `(h, zt) ≤

L∗ is bounded as :

Rn(AMD, z1, . . . , zn) ≤ 48016V
√
HL∗ log2 n

n
1
q

+
(37960V)2H log4 n

n
2
q

Proof. Using Lemma 72 with L∗ = 3
4 with the premise of the theorem we have that for any n,

V3n/4(H,Zlin(X)) ≤ 8V

3n1/q
≤ 8V

3(3n/4)1/q

and so we can conclude that for any m, Vm(H,Zlin(X)) ≤ 8V
3m1/q . Combining Mirror descent guarantee for

smooth loss in Lemma 56, Lemma 69 and the lower bound in Lemma 67 with s = q
q−1 −

1
log(n) we get the

above statement.

The above theorem shows that the mirror descent can achieve a near optimal rate in terms of dependence on
n. However a closer look at the above Theorem and Lemma also reveals that we can in fact also capture
a tighter dependence on L∗. In fact when q = 2, (that is when we get 1/

√
n rates), we can show that the

dependence on L∗ of mirror descent is tight.

To see this assume that algorithm A is a minimax optimal algorithm and is such that for any L∗ ∈ (0, 3/4]

and n the regret of the algorithm against any z1, . . . , zn ∈ Zsmt(1) s.t. infh∈H
1
n

∑n
t=1 `(h, zt) ≤ L∗ is

130

bounded as :

R(A, z1, . . . , zn) ≤ V L∗
a

n1/q
+

V

n1/b

where V, a, b > 0 and q ∈ [2,∞) with b < q.

Using the guarantee of the algorithm and Lemma 72 we see that

VnL∗(H,Zlin(X)) ≤ 2V L∗
a−1

n1/q
+

2V

L∗n1/b

Hence using notation m = nL∗ we conclude that for any m,

Vm(H,Zlin(X)) ≤ 2V L∗
a−1+ 1

q

m1/q
+

2V

L∗
1− 1

bm1/b
(7.4.2)

From the above inequality we can conclude that a ≥ 1 − 1
q = 1

p . This is because if a < 1
p , then since

the above inequality holds for all L∗, by picking L∗ to minimize the above inequality we can conclude that
Vm(H,Zlin(X)) = o

(
1

m1/q

)
. Hence Theorem 73 we can conclude that regret of the mirror descent algorithm

for any z1, . . . , zn ∈ Zsmt(1)(X) is bounded by o
(

1
m1/q

)
which is a contradiction since A is minimax optimal

but can only guarantee bound of order 1/n1/q . Hence we can conclude that a ≤ 1/p.

Now note that by the guarantee of algorithm A we can conclude that

Vn(H,Zsmt(1)(X)) ≤ 2V

n1/q

and so by Theorem 73 we can conclude that there exists regularizer function Ψ and step-size η such that regret
of the mirror descent algorithm with these Ψ and η against any z1, . . . , zn ∈ Zsmt(H) s.t. infh∈H

1
n

∑n
t=1 `(h, zt) ≤

L∗ is bounded as :

Rn(AMD, z1, . . . , zn) ≤ 96032V
√
HL∗ log2 n

n
1
q

+
(75920V)2H log4 n

n
2
q

Thus we can conclude that while the best guarantee of any algorithm A is,

R(A, z1, . . . , zn) ≤ V L∗
1/p

n1/q
+

V

n1/b
,

the regret of mirror descent can be bounded as

Rn(AMD, z1, . . . , zn) ≤ 96032V
√
HL∗ log2 n

n
1
q

+
(75920V)2H log4 n

n
2
q

Notice that when q = 2, for any L∗ > V
n1/q , guarantee of mirror descent is not only optimal in terms of n but

also in terms of L∗.

131

7.4.2 Uniformly Convex Loss Case

Lemma 74. For any σ > 0 and q′ ∈ (2,∞) we have that,

Vn(H,Zucvx(σ,q′)(X)) ≥ 1

2σp′−1Dp′

p′

(
sup
u

Eε

[∥∥∥∥∥ 1

n

n∑
t=1

εtut(ε)

∥∥∥∥∥
H?

])p′
≥ 1

2σp′−1Dp′

p′

(Vn(H,Zlin(X)))
p′

where the supremum is over all X -valued trees u of depth n.

For simplicity we are going to assume now that σ = 1. The following theorem shows that for certain q′,
mirror descent achieves optimal rate.

Theorem 75. Given a q′, if there exists V > 0 and a > 0 such that :

Vn(H,Zucvx(1,q′)) ≤
V

na

then for any n > eq−1 there exists regularizer function Ψ and step-size η such that regret of the mirror descent

algorithm with these Ψ and η against any z1, . . . , zn ∈ Zucvx(1,q′) or the case when q′ > 2 is bounded as :

Rn(AMD, z1, . . . , zn) ≤ min

{
12008(2V)

1
p′Dp′ log2 n

n
a
p′

,
2

(2− p′)np′−1

}
+

suph∈HR(h)

n
.

and for q′ = 2 is bounded as : Rn(AMD, z1, . . . , zn) ≤ 2 logn
n +

suph∈H R(h)

n .

Notice that when q′ =∞, Dp′ = D1 = 1 and so by above theorem,

Rn(AMD, z1, . . . , zn) ≤ 24016V log2 n

na
+

suph∈HR(h)

n
.

Hence for this case mirror descent is near optimal.

Next notice that by lower bound in lemma 74 and assumption of above theorem, we have

Vn(H,Zlin(X)) ≤ (2V)
1
p′Dp′

n
a
p′

Now define p? = sup{p : Vp < ∞}. By above inequality and definition of p? we see that if for any p′,
a
p′ >

1
q? , then it should be true that (2V)

1
p′Dp′ =∞. In other words, it has to be true that for any p′, a ≤ p′

q? .
Hence we can conclude that as p′ → p?, any algorithm will have a regret of order at least 1

n
p?

q?
= 1

np?−1 .

However mirror descent guarantee in Theorem 75 shows that mirror descent algorithm achieves regret at most

Rn(AMD, z1, . . . , zn) ≤ 2

(2− p?)np?−1
+

suph∈HR(h)

n

132

when p? < 2 and

Rn(AMD, z1, . . . , zn) ≤ 2 log n

n
+

suph∈HR(h)

n

when p? = 2. Hence we can conclude that for the case when p′ → p? again mirror descent is optimal. (The
reason we are taking limit of p′ → p? is because one may not even be able to find q? uniformly convex
functions on the given space that is bounded). This specifically shows that mirror descent is near optimal for
strongly convex objectives.

7.5 Examples

We demonstrate our results on several online learning problems, specified byH and X .

7.5.1 Example : `p non-dual pairs

It is usual in the literature to consider the case whenH is the unit ball of the `p norm in some finite dimension
d while X is taken to be the unit ball of the dual norm `q where p, q are Hölder conjugate exponents. Using
the machinery developed in this chapter, it becomes effortless to consider the non-dual case when H is
the unit ball Bp1 of some `p1 norm while X is the unit ball Bp2 for arbitrary p1, p2 in [1,∞]. We shall
use q1 and q2 to represent Holder conjugates of p1 and p2. Before we proceed we first note that for any
r ∈ (1, 2], ψr(h) := 1

2(r−1)‖h‖
2
r is 2-uniformly w.r.t. norm ‖·‖r (see for instance [61]). On the other hand

by Clarkson’s inequality, we have that for r ∈ (2,∞), ψr(h) := 2r

r ‖h‖
r
r is r-uniformly convex w.r.t. ‖·‖r.

Putting it together we see that for any r ∈ (1,∞), the function ψr defined above, is Q-uniformly convex w.r.t
‖·‖r for Q = max{r, 2}. The basic technique idea is to be to select ψr based on the guidelines in the end
of the previous section. Finally we show that using ψ̃r := dQmax{ 1

q2
− 1
r ,0}ψr in Mirror descent Lemma 55

yields the bound that for any z1, . . . , zn ∈ ZLip:

Rn(AMD, z1, . . . , zn) ≤
2 max{2, 1√

2(r−1)
}dmax{ 1

q2
− 1
r ,0}+max{ 1

r−
1
p1
,0}

n1/max{r,2}

The following table summarizes the scenarios where a value of r = 2, i.e. a rate of D2/
√
n, is possible, and

lists the corresponding values of D2 (up to numeric constant of at most 16):

p1 Range p2 Range D2 Treating as dual in ‖ · ‖p1

1 ≤ p1 ≤ 2 p2 < 2 1 1/
√
p1 − 1

1 ≤ p1 ≤ 2 2 ≤ p2 ≤ p1
p1−1

√
p2 − 1 1/

√
p1 − 1

1 ≤ p1 ≤ 2 p1
p1−1

< p2 d
p2−1
p2
− 1
p1 /
√
p1 − 1 d

p2−1
p2
− 1
p1 /
√
p1 − 1

p1 > 2 p2 < 2 d
1
2
− 1
p1 d

1
2
− 1
p1

p1 > 2 p2 ≥ 2 d
p2−1
p2
− 1
p1 d

p2−1
p2
− 1
p1

1 ≤ p1 ≤ 2 p2 =∞
√

log(d)
√

log(d)

Note that the first two rows are dimension free, and so apply also in infinite-dimensional settings, whereas in

133

the other scenarios, D2 is finite only when the dimension is finite. An interesting phenomena occurs when d
is∞, p1 > 2 and q2 ≥ p1. In this case D2 =∞ and so one cant expect a rate of O(1√

n
). However we have

Dp2
< 16 and so can still get a rate of n−

1
q2 .

Ball et al [67] tightly calculate the constants of strong convexity of squared `p norms, establishing the tight-
ness ofD2 when p1 = p2. By extending their constructions it is also possible to show tightness (up to a factor
of 16) for all other values in the table. Also, Agarwal et al [68] recently showed lower bounds on the sample
complexity of stochastic optimization when p1 = ∞ and p2 is arbitrary—their lower bounds match the last
two rows in the table.

7.5.2 Example : Non-dual Schatten norm pairs in finite dimensions

Exactly the same analysis as above can be carried out for Schatten p-norms, i.e. when H = BS(p1), X =

BS(p2) are the unit balls of Schatten p-norm (the p-norm of the singular values) for matrix of dimensions
d1×d2. We get the same results as in the table above (as upper bounds onD2), with d = min{d1, d2}. These
results again follow using similar arguments as `p case and tight constants for strong convexity parameters of
the Schatten norm from [67].

7.5.3 Example : Non-dual group norm pairs in finite dimensions

In applications such as multitask learning, groups norms such as ‖h‖q,1 are often used on matrices h ∈ Rk×d

where (q, 1) norm means taking the `1-norm of the `q-norms of the columns of h. Popular choices include
q = 2,∞. Here, it may be quite unnatural to use the dual norm (p,∞) to define the space X where the data
lives. For instance, we might want to consider H = B(q,1) and X = B(∞,∞) = B∞. In such a case we can
calculate that D2(H,X) = Θ(k1− 1

q

√
log(d)) using Ψ(h) = 1

q+r−2 ‖h‖
2
q,r where r = log d

log d−1 .

7.5.4 Example : Max Norm

Max-norm has been proposed as a convex matrix regularizer for application such as matrix completion [69].
In the online version of the matrix completion problem at each time step one element of the matrix is revealed,
corresponding to X being the set of all matrices with a single element being 1 and the rest 0. Since we need
X to be convex we can take the absolute convex hull of this set and use X to be the unit element-wise `1
ball. Its dual is ‖W‖X? = maxi,j |Wi,j |. On the other hand given a matrix W , its max-norm is given by
‖W‖max = minU,V :W=UV > (maxi ‖Ui‖2)

(
maxj ‖Vj‖2

)
. The set H is the unit ball under the max norm.

As noted in [70] the max-norm ball is equivalent, up to a factor two, to the convex hull of all rank one sign
matrices. Let us now make a more general observation.

Proposition 76. LetH = abscvx({h1, . . . ,hK}). The Minkowski norm for thisH is given by

‖h‖H := inf
α1,...,αK :h=

∑K
i=1 αihi

K∑
i=1

|αi|

134

In this case, for any q ∈ (1, 2], if we define the norm :

‖h‖H,q = inf
α1,...,αK :h=

∑K
i=1 αihi

(
K∑
i=1

|αi|q
)1/q

(7.5.1)

then the function Ψ(h) = 1
2(q−1) ‖h‖

2
H,q is 2-uniformly convex w.r.t. ‖·‖H,q . Further if we use q = logK

logK−1 ,

then suph∈H
√

Ψ(h) = O(
√

logK).

Proof of the above proposition is similar to proof of strong convexity of `q norms. For the max norm case as
noted before the norm is equivalent to the norm got by the taking the absolute convex hull of the set of all
rank one sign matrices. Cardinality of this set is of course 2N+M . Hence using the above proposition and
noting that X ? is the unit ball of | · |∞ we see that Ψ is obviously 2-uniformly convex w.r.t. ‖·‖X? and so we

get a regret bound O
(√

M+N
n

)
. This matches the stochastic (PAC) learning guarantee [70], and is the first

guarantee we are aware of for the max norm matrix completion problem in the online setting.

7.5.5 Example : Interpolation Norms

Another interesting setting is when the set H is got by interpolating between unit balls of two other norms
‖·‖H1

and ‖·‖H2
. Specifically one can considerH to be the unit ball of two such interpolated norms, the first

type of interpolation norm is given by,

‖h‖H = ‖h‖H1
+ ‖h‖H2

(7.5.2)

The second type of interpolation norm one can consider is given by

‖h‖H = inf
h1+h2=h

(
‖h1‖H1

+ ‖h2‖H2

)
(7.5.3)

In learning problems such interpolation norms are often used to induce certain structures or properties into
the regularization. For instance one might want sparsity along with grouping effect in the linear predictors
for which elastic-net type regularization introduced by Zou and Hastie [71] (this is captured by interpolation
of the first type between `1 and `2 norms). Another example is in matrix completion problems when we
would like the predictor matrix to be decomposable into sum of sparse and low rank matrices as done by
Chanrdasekaran et. al [72] (here one can use the interpolation norm of second type to interpolate between
trace norm and element wise `1 norm). Another example where interpolation norms of type two are useful
are in multi-task learning problems (with linear predictors) as done by Jalali et. al [73]. The basic idea is
that the matrix of linear predictors can is decomposed into sum of two matrices one with for instance low
entry-wise `1 norm and other with low B(2,∞) group norm (group sparsity).

While in these applications the set H used is obtained through interpolation norms, it is typically not natural
for the set X to be the dual ball of H but rather something more suited to the problem at hand. For instance,
for the elastic net regularization case, the set X usually considered are either the vectors with bounded `∞

135

norm or bounded `2. Similarly for the [73] case X could be either matrices with bounded entries or some
other natural assumption that suits the problem.

It can be shown that in general for any interpolation norm of first type specified in Equation 7.5.2,

D2(H,X) ≤ 2 min{D2(H1,X), D2(H2,X)} (7.5.4)

Similarly for the interpolation norm of type two one can in general show that,

D2(H,X) ≤ 1

2
max{D2(H1,X), D2(H2,X)} (7.5.5)

Using the above bounds one can get regret bounds for mirror descent algorithm with appropriate Ψ and step
size η for specific examples like the ones mentioned.

The bounds given in Equations Eq. (7.5.4) and Eq. (7.5.5) are only upper bounds and it would be interesting
to analyze these cases in more detail and also to analyze interpolation between several norms instead of just
two.

7.6 Detailed Proofs

Proof of Lemma 63. Let A :
⋃
n∈N Xn 7→ H be any proper learning algorithm for the linear learning prob-

lem specified by instance set Zlin(X). One can use this learning algorithm to construct a new gradient-based

learning algorithm AO
1st

:
⋃
n∈N Xn 7→ H as follows, for any t ∈ N and any x1, . . . ,xt ∈ X ,

AO
1st

(z1, . . . , zt) = A(∇`(h1, z1), . . . ,∇`(ht, zt)) .

That is, at the end of each round the learning algorithm for linear problem is fed with a sub-gradient of the

loss at the hypothesis ht played on that round t and thus ht+1 is selected using this algorithm. Note that for

136

any h? ∈ H, by convexity of the loss function,

1

n

n∑
t=1

`
(
AO

1st

(∇`(h1, z1), . . . ,∇`(ht−1, zt−1)) , zt

)
− 1

n

n∑
t=1

` (h?, zt)

≤ 1

n

n∑
t=1

〈
∇`
(
AO

1st

(∇`(h1, z1), . . . ,∇`(ht−1, zt−1)) , zt

)
,AO

1st

(∇`(h1, z1), . . . ,∇`(ht−1, zt−1))− h?
〉

=
1

n

n∑
t=1

〈
x∗t ,A

(
x∗1, . . . ,x

∗
t−1

)
− h?

〉
≤ 1

n

n∑
t=1

〈
x∗t ,A

(
x∗1, . . . ,x

∗
t−1

)〉
− inf

h∈H

1

n

n∑
t=1

〈x∗t ,h〉

≤ sup
x1,...,xn∈X

{
1

n

n∑
t=1

〈xt,A (x1, . . . ,xt−1)〉 − inf
h∈H

1

n

n∑
t=1

〈xt,h〉

}

where in the above we used the notation x∗t = ∇`(ht, zt) Thus we can conclude that the new first-order

oracle-based learning algorithm enjoys the same regret guarantee as the algorithm A enjoys on linear learning

problems. From this we conclude the lemma statement.

Proof of Corollary 64. First by Lemma 63 we have that for any algorithm A for linear learning problem,

there exists an oracle based learning algorithm AO
1st

such that

sup
z1,...,zn∈Z

Rn(AO
1st

, z1:n) ≤ sup
z∗1 ,...,zn∈Zlin

Rn(A, z∗1:n)

and so

Vn(H,Z) ≤ Vn(H,Zlin(X))

As for the set of equalities for specific classes, Zsup, ZLip and Zlin, note that since each of these classes are

such that sub-gradients of losses belong to X , we have that

Vn(H,Zsup(X)) ≤ Vn(H,ZLip(X)) ≤ Vn(H,Zlin(X))

On the other hand, Zlin(X) ⊂ ZLip(X) and so Vn(H,ZLip(X)) ≥ Vn(H,Zlin(X)) and hence we can

conclude that

Vn(H,ZLip(X)) = Vn(H,Zlin(X)) .

Similarly for the supervised learning problem specified by instance set Zsup, note that if adversary always

137

pick targets yt = −b = − suph∈H,x∈X 〈h,x〉 then for any x1, . . . ,xn ∈ X ,

1

n

n∑
t=1

|〈xt,ht〉 − yt| − inf
h∈H

1

n

n∑
t=1

|〈xt,h〉 − yt| =
1

n

n∑
t=1

〈xt,ht〉+ b− inf
h∈H

1

n

(
n∑
t=1

〈xt,h〉+ b

)

=
1

n

n∑
t=1

〈xt,ht〉 − inf
h∈H

1

n

n∑
t=1

〈xt,h〉

Thus we can conclude that Vn(H,Zsup(X)) ≥ Vn(H,Zlin(X)) and so, Vn(H,Zsup(X)) = Vn(H,Zlin(X)).

Thus we conclude the corollary.

Lemma 77. Let 1 < p ≤ 2 and C > 0 be fixed constants, the following statements are equivalent :

1. For all B?-valued tree x of infinite depth and any x0 ∈ B?:

sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ Cp

‖x0‖pX +
∑
n≥1

E [‖xn(ε)‖pX]


2. There exist a non-negative convex function Ψ on B with Ψ(0) = 0, that is q-uniformly convex w.r.t.

norm ‖·‖X? and for any h ∈ B, 1
q ‖h‖

q
X? ≤ Ψ(h) ≤ Cq

q ‖h‖
q
H.

Proof. For any x ∈ B? define Ψ∗ : B? 7→ R as

Ψ∗(x) := sup


 1

Cp
sup
n

E

[∥∥∥∥∥x +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
−
∑
i≥1

E [‖xi(ε)‖pX]


where the supremum is over B?-valued tree x of infinite depth such that, sup

n
E
[
‖x +

∑n
i=1 xi‖

p

H?
]
< ∞.

Since supremum of convex functions is a convex function, it is easily verified that Ψ∗(·) is convex. Note that

by the definition of M-type in Equation 7.2.1, we have that for any x0 ∈ B?, Ψ∗(x0) ≤ ‖x0‖pX . On the other

hand, note that by considering the sequence of constant mappings, xi = 0 for all i ≥ 1, we get that for any

x0 ∈ B?,

Ψ∗(x0) = sup


 1

Cp
sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
−
∑
i≥1

E [‖xi(ε)‖pX]

 ≥ 1

Cp
‖x0‖pH?

Thus we can conclude that for any x ∈ B?, 1
Cp ‖x‖

p
H? ≤ Ψ∗(x) ≤ ‖x‖pX .

For any x0,y0 ∈ B?, by definition of Ψ∗(x0) and Ψ∗(y0), for any γ > 0, there exist B?-valued trees x and

138

y of infinite depth s.t. :

Ψ∗(x0) ≤

 1

Cp
sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
−
∑
i≥1

E [‖xi(ε)‖pX]

+ γ

and

Ψ∗(y
(j)
0) ≤

 1

Cp
sup
n

E

[∥∥∥∥∥y0 +

n∑
i=1

εiyi(ε)

∥∥∥∥∥
p

H?

]
−
∑
i≥1

E [‖yi(ε)‖pX]

+ γ

In fact in the above two inequalities if the supremum over n were achieved at some finite n0, by replacing

the original sequence by one which is identical up to n0 and for any i > n0 using xi(ε) = 0 (and similarly

yi(ε) = 0), we can in fact conclude that using these x’s and y’s instead,

Ψ∗(x0) ≤

 1

Cp
E

∥∥∥∥∥∥x0 +
∑
i≥1

εixi(ε)

∥∥∥∥∥∥
p

H?

−∑
i≥1

E [‖xi(ε)‖pX]

+ γ (7.6.1)

and

Ψ∗(y
(j)
0) ≤

 1

Cp
E

∥∥∥∥∥∥y0 +
∑
i≥1

εiyi(ε)

∥∥∥∥∥∥
p

H?

−∑
i≥1

E [‖yi(ε)‖pX]

+ γ (7.6.2)

Now consider a sequence formed by taking z0 = x0+y0

2 and further let

z1 =

(
1 + ε0

2

)
x0 − y0

2
+

(
1− ε0

2

)
y0 − x0

2
= ε0(x0 − y0)

and for any i ≥ 2, define

zi =

(
1 + ε0

2

)
εi−1xi−1(ε) +

(
1− ε0

2

)
εi−1yi−1(ε)

where ε0 ∈ {±1} is drawn uniformly at random. That is essentially at time i = 1 we flip a coin and decide

139

to go with tree x with probability 1/2 and y with probability 1/2. Clearly using the tree z, we have that,

Ψ∗
(
x0 + y0

2

)
= sup

z


 1

Cp
sup
n

E

[∥∥∥∥∥x0 + y0

2
+

n∑
i=1

zi(ε0, ε)

∥∥∥∥∥
p

H?

]
−
∑
i≥1

E [‖zi(ε0, ε)‖pX]

1/p

p

≥ 1

Cp
E

∥∥∥∥∥∥z0 +
∑
i≥1

zi(ε0, ε)

∥∥∥∥∥∥
p

H?

−∑
i≥1

E [‖zi(ε0, ε)‖pX]

=
1

Cp

E
[∥∥∥x0 +

∑
i≥1 εixi(ε)

∥∥∥p
H?

]
+ E

[∥∥∥y0 +
∑
i≥1 εiyi(ε)

∥∥∥p
H?

]
2

−
∑
i≥1

E [‖zi(ε0, ε)‖pX]

=
1

Cp

E
[∥∥∥x0 +

∑
i≥1 εixi(ε)

∥∥∥p
H?

]
+ E

[∥∥∥y0 +
∑
i≥1 εiyi(ε)

∥∥∥p
H?

]
2

−
∑
i≥1

E [‖zi(ε0, ε)‖pX]

=
1

Cp

E
[∥∥∥x0 +

∑
i≥1 εixi(ε)

∥∥∥p
H?

]
+ E

[∥∥∥y0 +
∑
i≥1 εiyi(ε)

∥∥∥p
H?

]
2

−
∥∥∥∥x0 − y0

2

∥∥∥∥p
X
−
∑
i≥2

E [‖zi(ε0, ε)‖pX]

=
1

Cp

E
[∥∥∥x0 +

∑
i≥1 εixi(ε)

∥∥∥p
H?

]
+ E

[∥∥∥y0 +
∑
i≥1 εiyi(ε)

∥∥∥p
H?

]
2

−
∥∥∥∥x0 − y0

2

∥∥∥∥p
X

−
∑
i≥1

E [‖xi(ε)‖pX] + E [‖yi(ε)‖pX]

2

=

1
CpE

∥∥∥x0 +
∑
i≥1 εixi(ε)

∥∥∥p
H?
−
∑
i≥1 E‖xi(ε)‖

p
X + 1

CpE
∥∥∥y0 +

∑
i≥1 εiyi(ε)

∥∥∥p
H?
−
∑
i≥1 E‖yi(ε)‖

p
X

2

−
∥∥∥∥x0 − y0

2

∥∥∥∥p
X

≥ Ψ∗(x0) + Ψ∗(y0)

2
−
∥∥∥∥x0 − y0

2

∥∥∥∥p
X
− γ

where the last step is obtained by using Equations 7.6.1 and 7.6.2. Since γ was arbitrary taking limit we

conclude that for any x0 and y0,

Ψ∗(x0) + Ψ∗(y0)

2
≤ Ψ∗

(
x0 + y0

2

)
+

∥∥∥∥x0 − y0

2

∥∥∥∥p
X

Hence we have shown the existence of a convex function Ψ∗ that is p-uniformly smooth w.r.t. norm ‖·‖X
such that 1

Cp ‖·‖
p
H? ≤ Ψ∗(·) ≤ ‖·‖pX . Using convex duality we can conclude that the convex conjugate Ψ

of function Ψ∗, is q-uniformly convex w.r.t. norm ‖ · ‖X? and is such that ‖·‖qX ≤ Ψ(·) ≤ Cq ‖·‖qH. That 2

implies 1 can be easily verified using the smoothness property of Ψ∗.

The following sequence of four lemma’s give us the essentials towards proving Lemma 67. They use similar

140

techniques as in [65].

Lemma 78. Let 1 < r ≤ 2. If there exists a constant D > 0 such that any x0 ∈ B? and any B?-valued tree

x of infinite depth satisfies :

∀n ∈ N, E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ D(n+ 1)1/r sup

0≤i≤n
sup
ε
‖xi(ε)‖X

then for all p < r and αp = 20D
r−p we can conclude that any x0 ∈ B? and any B?-valued tree x of infinite

depth will satisfy :

sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ αp sup

ε

∑
i≥0

‖xi(ε)‖pX

1/p

Proof. To begin with note that in the definition of type, if the supremum over n were achieved at some finite

n0, then by replacing the original sequence by one which is identical up to n0 and then on for any i > n0

using xi(ε) = 0 would only tighten the inequality. Hence it suffices to only consider such sequences. Further

to prove the statement we only need to consider finite such sequences (ie. sequences such that there exists

some n so that for any i > n, xi = 0) and show that the inequality holds for every such n (every such

sequence).

Restricting ourselves to such finite sequences, we now use the shorthand,

S = supε (
∑n
i=0 ‖xi(ε)‖

p
X)

1/p. Now define

Ik(ε) =
{
i ≥ 0

∣∣ S
2(k+1)/p < ‖xi(ε)‖X ≤ S

2k/p

}
,

T
(k)
0 (ε) = inf{i ∈ Ik(ε)} and

∀m ∈ N, T (k)
m (ε) = inf{i > T

(k)
m−1(ε), i ∈ Ik(ε)}

Note that for any ε ∈ {±1}N,

Sp ≥
∑

i∈Ik(ε)

‖xi(ε)‖pX >
Sp |Ik(ε)|

2(k+1)

and so we get that supε |Ik(ε)| < 2k+1. From this we conclude that

141

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤
∑
k≥0

E

∥∥∥∥∥∥
∑

i∈Ik(ε)

εixi(ε)

∥∥∥∥∥∥
H?


=
∑
k≥0

E

∥∥∥∥∥∥
∑
i≥0

ε
T

(k)
i (ε)

x
T

(k)
i (ε)

∥∥∥∥∥∥
H?


≤
∑
k≥0

(
D sup

ε
{|Ik(ε)|1/r} sup

ε
{ sup
i∈Ik(ε)

‖xi(ε)‖X }

)

≤
∑
k≥0

(
D 2(k+1)/r sup

ε
sup

i∈Ik(ε)

‖xi(ε)‖X ,∞

)

≤
∑
k≥0

(
D 2(k+1)/r 2−k/pS

)
= D 21/r

∑
k≥0

2k(1
r−

1
p) S

≤ 2D

1− 2(1
r−

1
p)
S

≤ 2D

1− 2−(r−p)/4S

≤ 12D

r − p
S

= αp sup
ε

(
n∑
i=0

‖xi(ε)‖pX

)1/p

Lemma 79. Let 1 < r ≤ 2. If there exists a constant D > 0 such that any x0 ∈ B? and any B?-valued tree

x of infinite depth satisfies :

∀n ∈ N, E

[∥∥∥∥∥x0 +
n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ D(n+ 1)1/r sup

0≤i≤n
sup
ε
‖xi(ε)‖X

then for any p < r, any x0 ∈ B? and any B?-valued tree x of infinite depth :

P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> c

)
≤ 2

(αp
c

)p/(p+1)

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

1/(p+1)

Proof. For any x0 ∈ B? and B?-valued tree x of infinite depth define

Vn(ε) =

n∑
i=0

‖xi(ε)‖pX

142

For appropriate choice of a > 0 to be fixed later, define stopping time

τ(ε) = inf {n ≥ 0|Vn+1 > ap}

Now for any c > 0 we have,

P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?
> c

)
≤ P(τ(ε) <∞) + P

(
τ(ε) =∞, sup

n

∥∥∥∥∥
n∑
i=0

εixi(ε)

∥∥∥∥∥
H?
> c

)

≤ P(τ(ε) <∞) + P

τ(ε) > 0, sup
n

∥∥∥∥∥∥x0 +

n∧τ(ε)∑
i=1

εixi(ε)

∥∥∥∥∥∥
H?

> c

 (7.6.3)

As for the first term in the above equation note that

P(τ(ε) <∞) = P(sup
n
Vn > ap) ≤

‖x0‖pX +
∑
i≥1 E [‖xi(ε)‖pX]

ap
(7.6.4)

To consider the second term of Equation 7.6.3 we note that
(
1{τ(ε)>0}(x0 +

∑n∧τ(ε)
i=1 εixi(ε))

)
n≥0

is a valid

martingale (stopped process) and hence,
(∥∥∥1{τ(ε)>0}(x0 +

∑n∧τ(ε)
i=1 εixi(ε))

∥∥∥
H?

)
n≥0

is a sub-matingale.

Hence by Doob’s inequality we conclude that,

P

T > 0, sup
n

∥∥∥∥∥∥x0 +

n∧τ(ε)∑
i=1

εixi(ε)

∥∥∥∥∥∥
H?

> c

 ≤ 1

c
sup
n

E

∥∥∥∥∥∥1{τ(ε)>0}

x0 +

n∧τ(ε)∑
i=1

εixi(ε)

∥∥∥∥∥∥
H?


Applying conclusion of the previous lemma we get that

P

T > 0, sup
n

∥∥∥∥∥∥x0 +

n∧τ(ε)∑
i=1

εixi(ε)

∥∥∥∥∥∥
H?

> c

 ≤ αp
c

sup
ε

1{τ(ε)>0}

‖x0‖pX +

τ(ε)∑
i=1

‖xi(ε)‖pX

1/p

≤ αp
c

(ap)1/p =
αp a

c

Plugging the above and Equation 7.6.4 into Equation 7.6.3 we conclude that:

P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> c

)
≤
‖x0‖pX +

∑
i≥1 E [‖xi(ε)‖pX]

ap
+
αp a

c

Using a =
(
c
αp

(
‖x0‖pX +

∑
i≥1 E [‖xi(ε)‖pX]

))1/(p+1)

we conclude that

P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> c

)
≤ 2

(αp
c

)p/(p+1)

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

1/(p+1)

This conclude the proof.

143

Lemma 80. Let 1 < r ≤ 2. If there exists a constant D > 0 such that any x0 ∈ B? and any B?-valued tree

x of infinite depth satisfies :

∀n ∈ N, E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ D(n+ 1)1/r sup

0≤i≤n
sup
ε
‖xi(ε)‖X

then for any p < r, any x0 ∈ B? and B?-valued tree x of infinite depth will satisfy :

sup
λ>0

λp P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> λ

)

≤ max

4
p+1
p αp

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

 1
p

, 22p+3 log(2) αpp

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]




Proof. We shall use Proposition 8.53 of Pisier’s notes which is restated below to prove this lemma. To this

end consider any x0 ∈ B? and any B?-valued tree x of infinite depth. Given an ε ∈ {±1}N, for any j ∈ [M]

and i ∈ N let ε(j)i = ε(i−1)M+j . Let z0 = x0 M
−1/p and define the sequence (zi)i≥1 as follows, for any

k ∈ N given by k = j + (i− 1)M where j ∈ [M] and i ∈ N,

zk(ε) = xi(ε
(j)) M−1/p

Clearly,

‖z0‖pX +
∑
k≥1

E [‖zk(ε)‖pX] = ‖x0‖pX +
1

M

M∑
j=1

∑
k≥1

E
[∥∥∥xk(ε(j))

∥∥∥p
X

]
= ‖x0‖pX +

∑
i≥1

E [‖xi(ε)‖pX]

By previous lemma we get that for any c > 0,

P

(
sup
n

∥∥∥∥∥z0 +

n∑
i=1

εizi(ε)

∥∥∥∥∥
H?

> c

)
≤ 2

(αp
c

)p/(p+1)

‖z0‖pX +
∑
i≥1

E [‖zi(ε)‖pX]

1/(p+1)

= 2
(αp
c

)p/(p+1)

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

1/(p+1)

Note that

sup
n

∥∥∥∥∥z0 +

n∑
i=1

εizi(ε)

∥∥∥∥∥
H?

= M−1/p sup
j∈[M]

sup
n

∥∥∥∥∥x0 +

n∑
i=1

ε
(j)
i xi(ε

(j))

∥∥∥∥∥
H?

144

Hence we conclude that

P

(
sup
j∈[M]

M−1/p sup
n

∥∥∥∥∥x0 +

n∑
i=1

ε
(j)
i xi(ε

(j))

∥∥∥∥∥
H?

> c

)
≤ 2

(αp
c

) p
(p+1)

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

 1
(p+1)

For any j ∈ [M], defining Z(j) = supn

∥∥∥x0 +
∑n
i=1 ε

(j)
i xi(ε

(j))
∥∥∥
H?

and using Proposition 82 we conclude

that for any c > 0,

sup
λ>0

λp P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> λ

)

≤ max

c, 2cp log

 1

1− 2
(αp
c

) p
(p+1)

(
‖x0‖pX +

∑
i≥1 E [‖xi(ε)‖pX]

) 1
(p+1)




Picking

c = 4
p+1
p αp

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

1/p

we conclude that

sup
λ>0

λp P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> λ

)

≤ max

4
p+1
p αp

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]

 1
p

, 22p+3 log(2) αpp

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]




Lemma 81. Let 1 < r ≤ 2. If there exists a constant D > 0 such that any x0 ∈ B? and any B?-valued tree

x of infinite depth satisfies :

∀n ∈ N, E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ D(n+ 1)1/r sup

0≤i≤n
sup
ε
‖xi(ε)‖X

then for all p < r, we can conclude that any x0 ∈ B? and any B?-valued tree x of infinite depth will satisfy :

sup
n

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤
(

1104 D

(r − p)2

)p‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]


That is the pair (H,X) is of martingale type p.

Proof. Given any p < r pick r > p′ > p, due to the homogeneity of the statement we need to prove, w.l.o.g.

145

we can assume that

‖x0‖p
′

X +
∑
i≥1

E
[
‖xi(ε)‖p

′

X

]
= 1

Hence by previous lemma, we can conclude that

sup
λ>0

λp
′
P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> λ

)
≤ p′22p′+3 log(2) αp

′

p′ ≤ (32 αp′)
p′ (7.6.5)

Hence,

E

[
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ inf
a>0

{
ap
′
+ p

∫ ∞
a

λp−1P

(
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

> λ

)
dλ

}

≤ inf
a>0

{
ap + p(32 αp′)

p′
∫ ∞
a

λp−1−p′dλ

}
≤ inf
a>0

{
ap + p(32 αp′)

p′

[
λp−p

′

p− p′

]∞
a

}

≤ inf
a>0

{
ap + (46 αp′)

p′ a
p−p′

p′ − p

}

= 2
(46 αp′)

p

(p′ − p)p/p′
≤ 2

(46 αp)
p

(p′ − p)p/p′

Since ‖x0‖p
′

X +
∑
i≥1 E

[
‖xi(ε)‖p

′

X

]
= 1 and p′ > p, we can conclude that ‖x0‖pX +

∑
i≥1 E [‖xi(ε)‖pX] ≥ 1

and so

E

[
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ 2

(46 αp)
p

(p′ − p)p/p′

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]


≤ 2

(46 αp)
p

(p′ − p)

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]


Since p′ can be chosen arbitrarily close to r, taking the limit we can conclude that

E

[
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ 2

(46 αp)
p

(r − p)

‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]



146

Recalling that αp = 12D
r−p we conclude that

E

[
sup
n

∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤
(

1104 D

(r − p)(p+1)/p

)p‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]


≤
(

1104 D

(r − p)2

)p‖x0‖pX +
∑
i≥1

E [‖xi(ε)‖pX]


This concludes the proof.

We restate below a proposition from Pisier’s note (in [66])

Proposition 82 (Proposition 8.53 of [66]). Consider a random variable Z ≥ 0 and a sequence Z(1), Z(2), . . .

drawn iid from some distribution. For some 0 < p <∞, 0 < δ < 1 and R > 0,

sup
M≥1

P
(

sup
m≤M

M−1/pZ(m) > R

)
≤ δ =⇒ sup

λ>0
λp P (Z > λ) ≤ max

{
R, 2Rp log

(
1

1− δ

)}

Proof of Lemma 67. By Theorem 66 and our assumption that Vn(H,X) ≤ Dn−(1−1/r), we have that for

any B?-valued tree x of infinite depth and any n ≥ 1,

E

[
1

n

∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ Dn−(1− 1

r)

Hence we can conclude for any B?-valued tree x of infinite depth and any n ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ Dn 1

r sup
1≤i≤n

sup
ε
‖xi(ε)‖X

Hence for any x0 ∈ B?, we have that

E

[∥∥∥∥∥x0 +

n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ E

[∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
+ ‖x0‖H?

≤ E

[∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
+D ‖x0‖X

≤ Dn 1
r sup

1≤i≤n
sup
ε
‖xi(ε)‖X +D ‖x0‖X

≤ 2D(n+ 1)
1
r sup

0≤i≤n
sup
ε
‖xi(ε)‖X

Now applying Lemma 81 with s = p completes the proof.

147

Proof of Lemma 72. We now show that the bound got by the Mirror Descent algorithm is tight. First assume

without loss of generality that supx∈X ,h∈H 〈h,x〉 = 1. Consider the 1-smooth convex loss function.

φ(z, y) =

{
|z − y| − 1

4 if |z − y| > 1
2

(z − y)2 otherwise

This is basically a smoothed version of the absolute loss. Consider the smooth convex objective

`(h, (x, y)) = φ(〈h,x〉 , y)

given by instances x ∈ X and y ∈ [−1, 1]. Now before we proceed we recall from [5] that the value of the

online learning game is equal to :

Vn(H,X)

= sup
p1

E
(x1,y1)∼p1

. . . sup
pn

E
(xn,yn)∼pn

[
1

n

n∑
t=1

inf
ht∈H̄

E
(xt,yt)∼pt

[φ(〈ht,xt〉 , yt)]− inf
h∈H

1

n

n∑
t=1

φ(〈h,xt〉 , yt)

]

≥ E
(x1,y1)∼p∗1

. . . E
(xn,yn)∼p∗n

[
1

n

n∑
t=1

inf
ht∈H̄

E
(xt,yt)∼p∗t

[φ(〈ht,xt〉 , yt)]− inf
h∈H

1

n

n∑
t=1

φ(〈h,xt〉 , yt)

]
(7.6.6)

Where p∗1, . . . , p
∗
n is the distribution on X × [−1, 1] described as follows :

• For the first n−m rounds, p∗t deterministically sets xt = 0 and yt = 0.

• For the remaining m rounds, that is for t > n − m, we first consider a B?-valued tree u of infinite

depth. The distribution p∗t picks yt = εt−n+m where each εi ∼ Unif{±1} are Rademacher random

variables. xt is chosen by setting xt = ut−n−m(ε1, . . . , εt−n−m−1).

Now notice that on the first n−m round any algorithm suffers no regret. Using this particular distribution in

the lower bound in Equation 7.6.6 we get that :

Vn(H,X) ≥ 1

n
E(x1,y1)∼p∗1 . . .E(xn,yn)∼p∗n

[
n∑

t=n−m+1

inf
ht∈H

E(xt,yt)∼p∗t [φ(〈ht,xt〉 , yt)]− inf
h∈H

n∑
t=n−m+1

φ(〈h,xt〉 , yt)

]

Now we shall select the tree u such that for any n and any ε ∈ {±1}n−1, ‖un(ε)‖X ≤ 1
2 . Hence we see that

for any choice of h ∈ H, and any t > n−m, | 〈h,xt〉 | ≤ 1
2 . Hence we can conclude that for any t < n−m,

and any h ∈ H,

φ(〈h,xt〉 , yt) = | 〈h,xt〉 − yt| −
1

4
=

3

4
− yt 〈h,xt〉

Further notice that for any t > n−m, since yt ∼ Unif{±1} we have that,

E(xt,yt) [φ(〈h,xt〉 , yt)] =
3

4

148

Plugging this in the lower bound lower bound to the value, we get that

Vn(H,X) ≥ 1

n
E(x1,y1)∼p∗1 . . .E(xn,yn)∼p∗n

[
sup
h∈H

n∑
t=n−m+1

(
3

4
− φ(〈h,xt〉 , yt)

)]

=
1

n
E(x1,y1)∼p∗1 . . .E(xn,yn)∼p∗n

[
sup
h∈H

n∑
t=n−m+1

(
3

4
−
(

3

4
− yt 〈h,xt〉

))]

=
1

n
E(x1,y1)∼p∗1 . . .E(xn,yn)∼p∗n

[
sup
h∈H

n∑
t=n−m+1

(εt−n+m 〈h,xt〉)

]

=
1

n
Eε

[
sup
h∈H

〈
h,

m∑
i=1

εiui(ε)

〉]

=
1

n
Eε

[∥∥∥∥∥
m∑
i=1

εiui(ε)

∥∥∥∥∥
H

]

Specifically picking m = L∗n concludes the proof.

Proof of Lemma 74. Consider the functions of form `(h, zt) = 〈xt,h〉 + σψ(h). Recall from [5] that the

value of the online learning game is equal to :

V(H,Zucvx(σ,q′)(X)) = sup
p1

Ex1∼p1
. . . sup

pn

Exn∼pn

[
1

n

n∑
t=1

inf
ht∈H

Ext∼pt [`(ht, zt)]− inf
h∈H

1

n

n∑
t=1

ft(h)

]

≥ Ex1∼p∗1 . . .Exn∼p∗n

[
1

n

n∑
t=1

inf
ht∈H

Ext∼p∗t [`(ht, zt)]− inf
h∈H

1

n

n∑
t=1

`(h, zt)

]

= Ex1∼p∗1 . . .Exn∼p∗n

[
1

n

n∑
t=1

inf
ht∈H

Ext∼p∗t [〈ht,xt〉] + σψ(ht)− inf
h∈H

{
1

n

n∑
t=1

〈h,xt〉+ σψ(h)

}]

Where p∗1, . . . , p
∗
n is a distribution on X specified as follows : We consider a X -valued tree u of infinite depth

and the distribution p∗t picks xt = εtut(ε) where each εt ∼ Unif{±1} are Rademacher random variables.

149

Hence we conclude that

V(H,Zucvx(σ,q′)(X)) ≥ Eε

[
1

n

n∑
t=1

inf
ht∈H

Eεt [εt 〈ht, εtut(ε)〉] + σψ(ht)− inf
h∈H

{
1

n

n∑
t=1

〈h, εtut(ε)〉+ σψ(h)

}]

≥ Eε

[
sup
h∈H

{〈
h,− 1

n

n∑
t=1

εtut(ε)

〉
− σψ(h)

}]

≥ Eε

[
sup
h∈H

{〈
h,− 1

n

n∑
t=1

εtut(ε)

〉
−
Dq′

p′σ

q′
‖h‖q

′

H

}]

=
1

p′ σp′−1Dp′

p′

Eε

∥∥∥∥∥ 1

n

n∑
t=1

εtut(ε)

∥∥∥∥∥
p′

H?


≥ 1

p′ σp′−1Dp′

p′

(
Eε

[∥∥∥∥∥ 1

n

n∑
t=1

εtut(ε)

∥∥∥∥∥
H?

])p′

Since choice of X -valued the tree u is arbitrary we can take supremum over all such trees which concludes

the proof.

7.7 Discussion

We first note that using mirror descent with uniformly convex function (as opposed to strongly convex) is not
new and has been used in optimization setting in [1]. The key result of this chapter is to establish universality
and near optimality of mirror descent for online learning problems. As we showed it is even optimal for
smooth learning problems and some uniformly convex learning problems. While the classic definition of
martingale type and the associated results are for dual pairs, in this chapter we extended results by [65] to
handle non-dual scenario. Also the proofs have been slightly modified to obtain right dependence on the
constants since these constants could be dimension dependent and hence its important to keep track of them.

150

Chapter 8

Optimality of Mirror Descent for
Statistical Convex Learning Problems

In the previous chapter we considered convex learning problems in the online learning framework and showed
near optimality of mirror descent algorithm for learning rates for online convex learning problems. In this
chapter we consider these convex learning problems in statistical learning framework. We show that in fact
for most commonly occurring convex learning problems, stochastic mirror descent is in fact near optimal in
terms of both sample complexity and efficiency.

To mirror the notation and analysis in previous chapter, given any target hypothesisH and any instance class
Z let us define

V iid
n (H,Z) := inf

A
sup
D∈∆(Z)

ES∼Dn
[
LD(A(S))− inf

h∈H
LD(h)

]
.

However unlike the online learning setting for the infimum over the learning algorithm above we shall only
consider proper learning algorithms (and as mentioned earlier it suffices to only consider deterministic algo-
rithms), that is H̄ = H. Notice that V iid

n (H,Z) is essentially the same as term εcons(n) we introduced in
chapter 3. We introduce this notation to mirror the results in previous chapter and because in this chapter the
sets H and Z we are referring to is rather important and so we prefer to explicitly show this. Also as in the
previous chapter the linear learning problem is central to obtaining many of the lower bounds and throughout
this chapter we shall use the notation

Flin(H,X) = {x 7→ 〈h,x〉 : h ∈ H}

to represent the linear loss class Flin(H,X) ⊂ RX .

In Section 8.1 we provide lower bounds on learning rates for various convex learning problems (including
for smooth losses) using the statistical Rademacher complexity of the linear class Flin(H,X). While all
the lower bounds are provided based on statistical Rademacher complexity of the linear function class, in

151

Section 8.2, analogous to previous chapter we show that the concept of Rademacher type and the Rademacher
Complexity of the linear function class are closely related. In chapter 6 we described the stochastic mirror
descent algorithm and provided guarantees for it for various statistical convex learning problems. As we saw
in the previous chapter these rates are characterized by Martingale type. However the lower bounds in Section
8.2 are in terms of statistical Rademacher complexity or equivalently characterized by Rademacher type. In
general, it turns out that Rademacher type and Martingale types do not match and so in general the upper
bound on performance of stochastic mirror descent do not match lower bound. However in Section 8.3 we
show that for most reasonable cases, the concepts of Rademacher type and Martingale types do in fact match
and so we use this result to argue that stochastic mirror descent is near optimal even for statistical learning
problems. In the same section we also show that stochastic mirror descent algorithm is optimal also in terms
of number of gradient access and for certain supervised learning problems, optimal in terms of computational
complexity. In the succeeding section 8.4 we review the examples we saw in the previous chapter to see how
mirror descent is indeed optimal. Section 8.5 provides detailed proof of the results in this chapter and we
finally conclude the chapter with some discussions in Section 8.6.

8.1 Lower Bounds for Statistical Learning Rates

We would like to point out here that linear instance class Zlin is a subclass of the Lipschitz class ZLip.
Hence any lower bound on learning rates for linear class is also a lower bound for the convex Lipschitz class.
Similarly, if we consider the supervised learning class with label y always being b = − suph∈H,x∈X 〈h,x〉
then we see that `(h; (x, y)) = 〈h,x〉 − b. Hence we see that in excess risk for any distribution D on x’s
with y being deterministically set to b is same as excess risk of linear class with distribution D on x’s. Hence
we see that lower bound on linear class is also a lower bound on supervised learning class. The following
proposition formalizes this.

Proposition 83. For any hypothesis setH ⊂ B, any X ⊂ B? and ε > 0

V iid
n (H,ZLip(X)) ≥ V iid

n (H,Zlin(X)) and Vn(H,Zsup(X)) ≥ Vn(H,Zlin(X)) .

Owing to the fact that optimal learning rates for the linear class provide lower bounds for convex lipschitz
and supervised convex learning problems, we define for each p ∈ [1, 2] the constant V iid

p analogous to the
definition of Vp in the previous chapter.

V iid
p := inf

{
V
∣∣∣ ∀n ∈ N,V iid

n (H,Zlin(X)) ≤ V n−(1− 1
p)
}

(8.1.1)

In the previous chapter we saw that the value of the linear game was closely related to the sequential
Rademacher complexity of the linear class, Rseq

n (Flin(H,X)). We will see an analogous relationship in
the statistical setting with the worst case statistical Rademacher complexity. Recall that for the linear class

152

specified by setsH ⊂ B and X ⊂ B?, the worst case statistical Rademacher complexity is given by

Riid
n (Flin(H,X)) = sup

x1,...,xn∈X
Eε

[
sup
h∈H

1

n

n∑
i=1

εi 〈h,xi〉

]
= sup

x1,...,xn∈X
Eε

[∥∥∥∥∥ 1

n

n∑
i=1

εixi

∥∥∥∥∥
H?

]

where ε ∈ {±1}n are iid Rademacher random variables. In the following lemma we show that the learning
rate of the linear class can in turn be bounded by the worst case statistical Rademacher complexity of the
linear class.

Lemma 84. For anyH ⊂ B and X ⊂ B?,

V iid
n (H,Zlin(X)) ≥ Riid

2n(Flin(H,X))− 1

2
Riid
n (Flin(H,X))

where n = |S|.

While the above lemma along Proposition 83 lower bounds learning rates for convex lipschitz, supervised
and linear problems by Rademacher complexity of linear class, for linear and supervised learning problems
we can also show that Rademacher complexity of linear class can be used to upper bound the optimal learning
rates. The following proposition which is a direct consequence of results from [38] show that the learning
rates for linear and supervised convex learning problems are upper bounded by the statistical Rademacher
complexity.

Proposition 85. [38] For any set X ∈ B? if Z(X) is one of either Zlin(X) or Zsup(X), then for any n ∈ N,

sup
D∈∆(Z(X))

ES∼Dn
[
LD(AERM(S))− inf

h∈H
LD(h)

]
≤ 2Riid

n (Flin(X))

and hence : V iid
n (H,Z(X)) ≤ 2Riid

n (Flin(H,X)) .

Proof. The inequality of linear class is a direct consequence of symmetrization (see [38]). The inequality for

the supervised learning class Zsup(X) additionally uses the Lipschitz contraction property (Theorem 10 (4)

of [38]) since the absolute loss is 1-Lipschitz.

While the above proposition bounds the learning rates of linear and supervised convex learning classes using
Rademacher complexity of the linear class we don’t know if such a result is true for the convex Lipschitz
class (unlike the online case).

While Lemma 84 provides lower bound on learning rates of linear learning problems in terms of statistical
Rademacher complexity of linear class, the RHS there involves the difference of two Rademacher complexity
terms. The following theorem shows that learning rates for these convex learning problems provide direct up-
per bounds on statistical Rademacher complexity of the linear class that captures all polynomial dependences
right.

153

Theorem 86. Given any target hypothesis set H ⊂ B and instance space X ⊂ B?, let Z(X) be one of

ZLip(X), Zsup(X) or Zlin(X). If for some q ∈ [2,∞) and V > 0,

V iid
n (H,Z(X)) ≤ V

n1/q

then,

∀n ∈ N, Riid
2n(Flin(H,X)) ≤ 5V

(2n)
1
q

.

8.1.1 Lower Bounds for Smooth Losses

The following lemma lower bounds learning rate for non-negative smooth convex learning problems and also
captures dependence on expected loss of the optimal hypothesis in target class H. This result is an analog to
Lemma 72 of previous chapter.

Lemma 87. Given H ⊂ B, X ⊂ B? and L∗ ∈ (0, 3/4] for any learning algorithm A, there exists a

distribution D over instances in Zsmt(1)(X) s.t. infh∈H LD(h) ≤ L∗ and

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ L∗

4

(
Riid
nL∗(Flin(H,X))− 1

2
Riid
nL∗(Flin(H,X))

)

8.2 Optimal Rates and Rademacher Type

In this section we extend the classic notion of Rademacher type of a Banach space (see for instance [74]) to
one that accounts for the pair (H?,X). The results of this section are analogous to the results in Section 7.2.

Definition 33. A pair (H?,X) of subsets of a vector space B? is said to be of Rademacher type p if there

exists a constant C ≥ 1 such that for any n ∈ N and any x1,x2, . . . ,xn ∈ B? :

E

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

H?

]
≤ Cp

(
n∑
i=1

‖xi‖pX

)
(8.2.1)

It can be shown that rate of convergence of i.i.d. random variables in Banach spaces is governed by the above
notion of Rademacher type of the associated Banach space. We point the reader to [66] for more details.
Further, for any p ∈ [1, 2] we also define constant C iid

p , analogous to the definition of Cp in previous chapter.

C iid
p := inf

{
C

∣∣∣∣∣ ∀n ∈ N,∀x1, . . . ,xn ∈ B?, E

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

H?

]
≤ Cp

(
n∑
i=1

‖xn‖pX

)}

C iid
p is useful in determining if the pair (H?,X) has Rademacher type p.

The following lemma is an analog to Lemma 67 of previous section.

154

Lemma 88. If for some r ∈ (1, 2] there exists a constant D > 0 such that for any n,

Riid
n (Flin(H,X)) = sup

x1,...,xn∈X
E

[∥∥∥∥∥ 1

n

n∑
i=1

εixi

∥∥∥∥∥
H?

]
≤ Dn−(1− 1

r)

then for all p < r, we can conclude that for any x1, . . . ,xn ∈ B? :

E

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

H?

]
≤

(
12
√

2 D

(r − p)

)p(n∑
i=1

‖xi‖pX

)

That is, the pair (H?,X) is of Rademacher type p.

Corollary 89. Given any pair (H?,X) and any p and p′ < p, we have that

(p−p′)
60
√

2
C iid
p′ ≤ V iid

p ≤ 2C iid
p

Proof. Owing to Proposition 85 and definition of V iid
p using Jensen’s inequality, we get that V iid

p ≤ 2C iid
p .

The second inequality is a consequence of using the above Lemma 88 with Theorem 86 and the definitions

of C iid
p and V iid

p .

The following figure summarizes the relationship between V iid
p and C iid

p . The arrow mark from C iid
p′ to C iid

p

indicates that for any n, the quantities are within log n factor of each other.

p′ < p, C iid
p′ ≤ V iid

p ≤ C iid
p

Lemma 88
Proposition 85

Definition of V iid
p

Figure 8.1: Relationship between the various constants in statistical setting

8.3 Main Result : Optimality of Stochastic Mirror Descent

In Section 8.1 we provided lower bounds on learning rates of convex learning problems in the statistical
learning framework. In previous chapter we provided upper bounds on learning rate of stochastic mirror
descent algorithm for statistical convex learning problems. A natural question that arises is whether the
stochastic mirror descent algorithm is optimal in terms of learning rates or efficiency or both and whether
they match the lower bounds obtained.

It turns out that in general even for convex learning problems, this is not true. A problem could be statistically
learnable but not online learnable. However in this section we will see that for large class of convex learning
problems (in fact most of the commonly occurring ones) it is true that online methods are near optimal for
statistical convex learning problems in terms of both rates and efficiency. In the previous we saw that mirror
descent algorithm was near optimal and the key to showing this result is depicted in Figure 7.1. In this

155

chapter again in Section 8.2 we obtained an analogous result depicted in Figure 8.1. The attractive feature in
the online learning scenario was that optimal learning rates and hence concept of martingale type was closely
connected to existence of appropriate uniformly convex function which then we could use with mirror descent
to get near optimal guarantees. In the statistical case we only have the connection between optimal rates (or
at least lower bounds) and the concept of Rademacher type. By the definitions of Cp and C iid

p , it is easy to
see that C iid

p ≤ Cp and due to online to batch conversion we can also infer that V iid
p ≤ Vp. However assume

that we could get a reverse bound, this would then imply that online learning methods are optimal at least up
to logarithmic factors. Such optimality of learning rate is essentially captured in the following theorem.

Theorem 90. Let Z(X) stand for one of Zlin(X), Zsup(X) or ZLip(X). If there exists some constant G ≥ 1

such that for any 1 < p′ < r ≤ 2

Cp′ ≤ G C iid
r

and it is true that for some V > 0 and p ∈ (1,∞),

∀n ∈ N, V iid
n (H,Z(X)) ≤ V

n1/q

then there exists function Ψ and step size η using which the stochastic mirror descent algorithm enjoys the

learning guarantee

∀n ∈ N, sup
D∈∆(Z(X))

ES∼Dn
[
LD(AMD(S))− inf

h∈H
LD(h)

]
≤ 30010GV log3 n

n1/q

Proof. Using Theorem 86 we first get a bound on Riid
n (Flin). Next using Corollary 89 we see that for any

p′ < p, C iid
p′ ≤ 60

√
2V

p−p′ . Using the assumption that Cp ≤ G C iid
p we get bound on Cp′ and from here on using

exactly the same proof as that of theorem 71 we get the bound on the regret. To convert it to bound on excess

risk we can use Proposition 58.

Even for the smooth loss case one can show that if for any 1 < p′ < r ≤ 2 Cp′ ≤ G C iid
r then online mirror

descent is near optimal as the following theorem shows.

Theorem 91. If there exists some constant G ≥ 1 such that for any 1 < p′ < r ≤ 2

Cp′ ≤ G C iid
r

and it is true that for some V > 0 and p ∈ (1,∞),

∀n ∈ N, V iid
n (H,Zsmt(1)(X)) ≤ V

n1/q
,

then there exists function Ψ and step size η using which the mirror descent algorithm followed by online to

batch conversion technique, that is the algorithm AMD, enjoys the guarantee that for any L∗ ∈ (0, 3/4] and

156

any distribution D ∈ ∆(Zsmt(H)(X)) s.t. infh∈H LD(h) ≤ L∗,

ES∼Dn
[
LD(AMD(S))− inf

h∈H
LD(h)

]
≤ 240080 G V

√
HL∗ log3 n

n1/q
+

(189800 G V)2H log6 n

n2/q

Proof. Again the proof is similar to previous two proofs. The main difference is that at the very first step we

use Lemma 87 with L∗ = 3/4 to bound Riid
n (Flin). Also in the step before last (ie. just before the online to

batch conversion), instead of using Theorem 71 we instead use Theorem 73. Also after the online to batch

step note that

ES∼Dn
[

inf
h∈H

1

n

n∑
t=1

`(h, zt)

]
≤ inf

h∈H
LD(h) ≤ L∗

Also note that the discussion after Theorem 73 in the previous chapter for the online setting also applies here
and specifically when q = 2 we also get tightness w.r.t. dependence in L∗

Owing to the above two theorems the main condition we are now looking to satisfy is that there exists some
constant G ≥ 1 such that for any 1 < p′ < r ≤ 2

Cp′ ≤ G C iid
r

Remark 92. In some cases we might only be able to prove that there exists some constant G ≥ 1 such that

for any 1 < p′ < r ≤ 2

Cp′ ≤
G

r − p′
C iid
r

such an inequality is also fine and basically all the above three theorems still hold with the only modification

that the logarithmic factors in the theorems increase by one more power.

In the following subsections we will show that for a large class of spaces such G exists (or owing to above
remark with additional (r − p′)−1 factor). From this we can infer that mirror descent is near optimal for
convex learning optimization problems in these spaces.

8.3.1 Banach Lattices

In this subsection we show that if the Banach space specified by norm ‖·‖H? is a Banach lattice, then one can
relate martingale type and Rademacher type constants Cp and C iid

p to within constant factor of each other.

Definition 34 (Banach Lattice [75]). A partially ordered Banach space is called a Banach lattice provided :

1. For any x,x′, x̃ ∈ B?, x � x′ implies that x + x̃ � x′ + x̃

2. ax � 0 for every x � 0 and non-negative scalar a.

157

3. For all x,x′ ∈ B?, there exists a least upper bound (l.u.b.) represented by x ∨ x′.

4. For any x,x′ ∈ B? such that |x| � |x′|, we have that ‖x‖ ≤ ‖x′‖ (where the absolute value |x| is

defines as |x| = x ∨ (−x)).

Before we proceed we notice that all `p spaces with partial order given by, x � y if anf only if on each
co-ordinate i, xi ≤ yi is a Banach lattice. In fact all the examples we saw in previous chapters were Banach
lattices under appropriate partial order. In fact one could safely say that most Banach spaces one would
encounter in machine learning applications would be Banach lattices. Hence the results in this section are
very general from a practical view-point.

Now we introduce the notation that for any p ∈ [1,∞), we will use (
∑n
i=1 |xi|p)

1/p to represent the vector,

(
n∑
i=1

|xi|p
)1/p

:= l.u.b.

{
n∑
i=1

aixi

∣∣∣∣∣(a1, . . . , an) ∈ R,
n∑
i=1

|ai|q ≤ 1

}

where q = p
p−1 . Notice that if xi’s were reals this would we simply the `p norm. Here it is a vector

though. The main technology behind proving results about Banach lattices arises from the so called functional
calculus over banach lattices introduced by Krivine [76] (See [75]). The basic idea is a theorem (theorem
1.d.1 in [75]) which roughly states that if we prove any inequality involving continuous degree 1, homogenous
equations involving finite number of real valued variables, then the same inequality is true with of course
appropriate changes like ≤ replaced by � and absolute value replaced by the lattice version and so on.

At first glance the statements we would like to prove would involve expectation over Rademacher random
variables and trees (of depth n). However simple observation that expectation over Rademacher are finite
averages and that the tree of depth n (involving the n mappings) can be expanded to the 2n − 1 variables
involved we see automatically that this general technology can be used to prove results that involve trees and
expectations w.r.t. ε’s too. Detailed proof and associated definitions are provided in Section 8.5. We delineate
the main results below.

Before we proceed we first define below the notion of co-type of a Banach space (again extended to the
non-dual case, see ?? for details about classical definition).

Definition 35. A pair (H?,X) of subsets of a vector space B? is said to be of Rademacher co-type q if there

exists a constant C ≥ 1 such that for any x1,x2, . . . ,xn ∈ B? :(
n∑
i=1

‖xi‖qX

)
≤ CqE

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
q

H?

]
(8.3.1)

The following lemma shows that if H? formed a Banach lattice and were of some finite co-type r then for
any p, Cp can be bounded by a constant factor times C iid

p .

Lemma 93. If (B?, ‖·‖?H) is a Banach lattice and the pair (H?,H?) is of co-type r for some r ∈ [2,∞) with

158

some constant C̃r, then for any p ∈ (1, 2] we have that

Cp ≤
723r2C̃r√
p− 1

C iid
p

The above Lemma shows that as long as H? has a lattice structure and is of finite co-type, G is bounded by
723r2C̃r√

p−1
and so for any such case owing to the theorems in the beginning of this section we automatically can

conclude optimality of mirror descent.

Dual Learning Problem :

In Lemma 93 we needed thatH? had finite co-type. Though this is a fairly weak condition we still needed to
verify that this was satisfied before we used the result. However if we consider the dual learning problem, that
is the case when X is the dual ball of H then it turns out that this condition is automatically satisfied as long
as the problem is statistically learnable (if it is not we anyway are not in a position to give any meaningful
bounds). This is due to the celebrated result of Maurey and Pisier [77] which (in the dual case) assures that
any space with non-trivial type also has finite co-type. The following corollary which uses a result by Konig
and Tzafriri [?] shows the exact relationship between Cp and C iid

p for Banach lattices.

Corollary 94. For the dual learning problem with X = H?, if (B?, ‖·‖?H) is a Banach lattice, then for any

p ∈ (1, 2] we have that

Cp ≤
723

√
p− 1

(3C iid
p)2q+1

where q = p
p−1 .

Proof. Note that for the dual problem X = H? and by definition, (H?,H?) has Rademacher type p with

constant C iid
p . However by Theorem 3 of [?] we have that the pair (H,H) is of co-type 2 + (2C iid

p)q

with constant 2 (for co-type constant of 2 refer proof of the theorem). Hence using this in Lemma 93 with

r = 2 + (2C iid
p)q and C̃r = 2 and simplifying yields the required statement.

Thus for dual learning problems if the Banach space is a Banach Lattice then online methods (specifically
mirror descent) is always near optimal in terms of dependence on n for learning rate and in terms of depen-
dence on ε for oracle complexity. More specifically, for a dual learning problem on a Banach lattice, if for
instance optimal rate is V/

√
n then mirror descent will guarantee a rate of order V 5 log2(n)/

√
n.

8.3.2 Decoupling Inequalities

Another way to guarantee that Cp ≤ GC iid
p for some finiteG is by using the so called decoupling inequalities

(see [78, 79] for more details).

159

Definition 36. We say that a Banach space with norm ‖·‖?H satisfies p-decoupling inequality with constant

B > 0 if :

Eε

[∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
p

H?

]
≤ Bp Eε,ε′

[∥∥∥∥∥
n∑
i=1

εiε
′
ixi(ε)

∥∥∥∥∥
p

H?

]
(8.3.2)

where ε′1, . . . , ε
′
n are Rademacher random variables (drawn independent of ε1, . . . , εn).

We would like to point out that the above definition is not the same as the decoupling inequalities in [78, 79]
where the above needs to be true for all martingale difference sequences where as above we only consider
Walsh-Paley martingales. However since above condition is weaker, all positive results for the stronger
definition also hold for the above definition. In any case, the below lemma shows that if a Banach space
satisfies decoupling inequality, then there exists G <∞ through which we can upper bound Cp using C iid

p′ .

Lemma 95. If the Banach space equipped with norm ‖·‖H? satisfies 1-decoupling inequality with some

constant B > 0, then it is true that for all 1 < p′ < r ≤ 2,

Cp′ ≤
92B

(r − p′)
C iid
r

First we would like to point out that if a Banach space satisfies p-decoupling inequality for some p ∈ [1,∞)

with constant D, then it satisfies 1-decoupling inequality with constant KpD where Kp only depends on
p (see Theorem 4.1 of [79]). Hence we can talk of space satisfying decoupling inequality without refering
to exponent (of course the exponent plays a role in the constant) .Several spaces we commonly encounter
satisfy the decoupling inequality. It can be shown that called Unconditional Martingale difference (UMD)
Banach spaces always satisfy decoupling inequality. These spaces include all Lp, `p Schatten p norms for
p ∈ (1,∞). However while every UMD space satisfies decoupling for instance the `1 space while satisfying
the decoupling inequality is not UMD. Using some of the results in [79, 80, 81, 82, 83] we can conclude
that for many interesting spaces we commonly encounter, there in fact even exists a universal 1-decoupling
constant, call itBR. (This constantBR is the one referred to asDR in [79]). The following proposition proved
in [79] (see also [80]) is particularly useful especially to provide decoupling inequalities for group norms and
interpolation norms.

Proposition 96 (Corollaries 4.6 [79]). If Y is a Banach space that satisfies p-decoupling inequality with

constant B, then for any σ-finite measure space (S,Σ, µ) and any p ∈ [1,∞), the space X = Lp(S;Y)

satisfies p-decoupling inequality with same constant B.

From the above we immediately see that `p spaces satisfy p-decoupling inequality with universal constant
BR (the space Y in this case is the reals). We can also use the above result to estimate decoupling constants
for group norm by taking the the above Proposition space Y to be the `p space corresponding to the inner
index of the group norm (mixed norm). In Corollary 4.11 of [79] it has been shown that for p ≥ log2(d),
the p-decoupling constant of `d∞ spaces if bounded by 2BR. In [81] it has been shown that a large class of
Orlicz and Rearrangement invariant function spaces satisfy 1-decoupling inequality with universal constant

160

BR combining these result with the above proposition one can obtain decoupling inequalities for even more
examples.

Hence overall, the following figure captures the scenario for the statistical convex learning problems.

p′ < p, Cp′ ≤ Vp ≤ MDp ≤ Dp ≤ Cp

≥≤

C iid
p≤V iid

p≤p′ < p, C iid
p′

Figure 8.2: Relationship between the various constants in both online and statistical settings.
Red inequality is not always true but true for most commonly encountered problems.

8.3.3 Optimality of Mirror Descent in Terms of Efficiency

In this section we argue that mirror descent is not only optimal in terms of learning rate but also in terms of
efficiency. Specifically we are interested in achieving excess risk less than some target sub-optimality ε > 0,
that is, we are interested in coming up with learning algorithm A such that

sup
D∈∆(Z)

ES∼Dn
[
LD(A(S))− inf

h∈H
LD(h)

]
≤ ε .

Now there are two main question one can ask, the first is the minimum sample size required by any algorithm
to be able to ensure the above guarantee on sub-optimality. This question is essentially the question about
optimal learning rates and we already showed optimality of stochastic mirror descent. The second question
one can ask is the computational time required by any algorithm given any amount of requested samples
to ensure the above sub-optimality guarantee. Note that in general giving exact computational complexity
is cumbersome and even impossible at full generality. A good proxy for computational complexity is the
number of gradient calculations or calculation or some kind of other local information like hessians or higher
order derivative. Note that mirror descent is a sub-gradient based method which in each iteration only cal-
culates one gradient. Since we already established that mirror descent is optimal for many statistical convex
learning problem, we can easily conclude that mirror descent is also optimal in terms of number of gradient
calculations needed to achieve a target sub-optimality.

As mentioned, in general getting a handle on exact computational complexity is hard. However for a few
important class of supervised learning problems with absolute loss (can also be extended to hinge loss, logistic
loss etc.) one can show that mirror descent is optimal even in terms of exact computational complexity. To
see this consider a supervised learning problems where instances given are S = (x1, y1), . . . , (xn, yn). Let
d be the intrinsic dimensionality of the sample S (in vector space B). Then the total time required just to
read the sample is dn. However note that for many cases like when H/X are various unit balls of `p norms

161

or Lp norms or group norms then as we will see in the next section, mirror descent update step has tipple
complexity of order d and so since mirror descent is a single pass algorithm that goes over samples one by
one, its time complexity when run once over the sample is again of order nd. However we already argued that
the learning rate of mirror descent is near optimal and so sample size n required for getting sub-optimality
of at most ε is also near optimal. Hence we can conclude that mirror descent algorithm for these cases have
time complexity of same order as time complexity needed just to read the minimum required sample. Hence
mirror descent for these cases is near optimal even in terms of exact computational time.

8.4 Examples

First of all, we start by noticing that all the examples we considered in the previous chapter were Banach
Lattices with finite co-type and so for all these problems by Theorems 90, 104 and 91 stochastic mirror de-
scent technique is near optimal in terms of both rates and number of gradient access, for convex Lipschitz
problems, supervised learning problems and non-negative smooth problems. We will further see below that
for these examples we don’t just get near optimality but that in fact Cp and C iid

p are within fixed numeric con-
stant factor of each other. Hence we see that beyond the logarithmic factor there aren’t any space dependent
hidden factors even.

8.4.1 Example : `p non-dual pairs

In the previous chapter we gave characterization of constant D2 (corresponding to 1/
√
n rates in online

setting) for the `p pairs. Recall the setting, that is H is the unit ball of `dp1
ball and X is the dual ball of

`dp2
norm. It turns out that for `p norms, when p ∈ [1, 2] we have a universal constant for 1-decoupling by

Proposition 96. On the other hand, when p ∈ (2,∞), the type constant of `p spaces is of order
√
p and so we

can conclude that the table is essentially tight even for the statistical learning setting because martingale type
constant (Cp) and type constant (C iid

p) are within fixed numeric constant factor of each other.

8.4.2 Example : Non-dual Schatten norm pairs in finite dimensions

As we showed in the previous chapter, the constants Dp (Cp, Vp etc.) for Schatten norms were same as those
for `p norms in the online learning setting. However as we saw in the previous section, constants for `p norms
match in statistical and online frameworks. But since lower bounds for `p case can be converted to atleast
same lower bound on Schatten norm case (by diagonalizing). We can again conclude that rates of Mirror
descent in statistical case are near optimal and moreover that Cp and C iid

p are within fixed numeric constant
factor of each other.

162

8.4.3 Example : Non-dual group norm pairs in finite dimensions

For the group norm case using Decoupling inequalities for `p along with Proposition 95 we can show again
that Cp and C iid

p are within constant factor of each other which guarantees tightness of mirror descent for for
these problems in the statistical setting.

8.4.4 Computational Efficiency Issues

Up to now we used number of gradient calculations to argue that mirror descent is optimal in terms of
efficiency. Notice that we showed optimality using mirror descent algorithm which has a simple update step
that at every round uses only previous hypothesis and gradient of loss at the hypothesis. Hence the time
complexity of the update at each round is of the order of effective dimension (as an example in the `p case it
is linear in d). Thus once can translate in these cases oracle complexity to time complexity of the algorithm.
An for `p cases one can even show that time complexity is near optimal. However this is not always the
case, it might be that the complexity of update step of mirror descent (which depends on Ψ) is large that time
complexity blows up. This can be seen for instance in the max norm example. In the previous chapter when
we considered the max norm example, the function Ψ we considered in Equation 7.5.1 had a summation over
2M+N elements for matrix of size M ×N . This is of course prohibitive to use in practice. However notice
that while oracle complexity is still tight, for matrix completion problem in the statistical learning framework,
one can use a constrained minimization approach (minimize average loss subject to constraint on max norm
or equivalently max norm regularization) and using an SDP approach this can be done in time polynomial
in the matrix size. This shows a disparity between oracle complexity and actual time complexity. It is an
interesting open question whether there is a polynomial time algorithm for max norm based learning problem
in the online framework. In [84], in the transductive online setting for max norm it is shown that once can
again use the SDP to obtain a poly-time algorithm. An even stronger flavor of questioning is whether one can
provide a mirror descent (or variant) algorithm for learning with max-norm that works in time polynomial in
matrix size.

8.5 Detailed Proofs

Proof of Lemma 84. First we pick elements x1, . . . ,x2n ∈ X and then draw Rademacher random variables

ε ∈ {±1}2n uniformly at random. We shall now use this to construct a distribution Dε over instances which

is the one we shall use for the lower bound. Specifically, given a draw ε ∈ {±1}2n consider the distribution

Dε to be the uniform distribution over the set {ε1x1, . . . , ε2nx2n}. Now consider a S of size n drawn iid

from the distribution Dε. Now note that for any learning algorithm A,

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2n

EεES∼Dnε

[
LDε(A(S))− inf

h∈H
LDε(h)

]

163

Since Dε is the uniform distribution over set {ε1x1, . . . , ε2nx2n} one can rewrite sampling S from the distri-

bution as follows : First we sample n numbers, t1, . . . , tn uniformly at random from the set [2n]. Next, the

sample S is given by S = εt1xt1 , . . . , εtnxtn . Hence we can rewrite the above inequality as

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2n

EεEt1,...,tn∼unif([2n])

[
LDε(A(S))− inf

h∈H
LDε(h)

]
Now let the set J ⊂ [2n] be the set

J = {i ∈ [2n] : i ∈ {t1, . . . , tn}}

that is the set of indices i such that xi appeared at least once in the sample S provided to the learner. Also

let Jc ∈ [2n] stand for the complement of the set J . For linear class, for the distribution Dε note that for any

h ∈ H,

LDε(h) =
1

2n

2n∑
i=1

〈h, εixi〉

Hence we see that,

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2n∈X
EεEt1,...,tn∼unif([2n])

[
LDε(A(S))− inf

h∈H
LDε(h)

]

= sup
x1,...,x2n∈X

EεEt1,...,tn∼unif([2n])

[
sup
h∈H

1

2n

2n∑
i=1

〈h,−εixi〉 −
1

2n

2n∑
i=1

〈A(S),−εixi〉

]

=
1

2n
sup

x1,...,x2n∈X
EεEt1,...,tn∼unif([2n])

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?
−
∑
i∈J
〈A(S),−εixi〉 −

∑
i∈Jc
〈A(S),−εixi〉

]

=
1

2n
sup

x1,...,x2n∈X
E

t1,...,tn∼unif([2n])

[
Eε

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− Eε

[∑
i∈J
〈A(S),−εixi〉

]
− Eε

[∑
i∈Jc
〈A(S),−εixi〉

]]

Now we notice that given t1, . . . , tn ∈ [2n], the sets J and Jc are fixed and S only consists of εixi s.t. i ∈ J .

Thus, S is only a function of εi where i ∈ J . Hence,

Eε

[〈
A(S),−

∑
i∈Jc

εixi

〉]
= EεJ

[
EεJc

[〈
A(S),−

∑
i∈Jc

εixi

〉]]
= EεJ

[〈
A(S),−EεJc

[∑
i∈Jc

εixi

]〉]
= 0

164

where we use the shorthand εJ to refer to Rademacher random variables εi where i ∈ J and εJc refers to the

remaining εi’s not in J . Hence we see that

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ 1

2n
sup

x1,...,x2n∈X
E

t1,...,tn∼unif([2n])

[
Eε

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− Eε

[∑
i∈J
〈A(S),−εixi〉

]]

≥ 1

2n
sup

x1,...,xn∈X
E

t1,...,tn∼unif([2n])

[
Eε

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− Eε

[∥∥∥∥∥∑
i∈J

εixi

∥∥∥∥∥
H?

]]

= sup
x1,...,x2n∈X

{
Eε

[∥∥∥∥∥ 1

2n

2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− 1

2n
E

t1,...,tn∼unif([2n])
Eε

[∥∥∥∥∥∑
i∈J

εixi

∥∥∥∥∥
H?

]}

≥ sup
x1,...,x2n∈X

Eε

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− 1

2n
E

t1,...,tn∼unif([2n])
sup

x1,...,x|J|∈X
Eε

∥∥∥∥∥∥
|J|∑
i=1

εixi

∥∥∥∥∥∥
H?


Note that since sample size |S| = n, we have that |J | ≤ n. Therefore,

sup
x1,...,x|J|∈X

Eε

[∥∥∥∥∥∑
i∈J

εixi

∥∥∥∥∥
H?

]
≤ sup

x1,...,xn∈X
Eε

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
H?

]

(the above is obvious because worst case we can always put x|J|+1, . . . ,xn = 0 so the two are equal). Thus

we conclude that :

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2n∈X
Eε

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− 1

2n
E

t1,...,tn∼unif([2n])
sup

x1,...,x|J|∈X
Eε

∥∥∥∥∥∥
|J|∑
i=1

εixi

∥∥∥∥∥∥
H?


≥ sup

x1,...,x2n∈X
Eε

[∥∥∥∥∥
2n∑
i=1

εixi

∥∥∥∥∥
H?

]
− 1

2n
sup

x1,...,xn∈X
Eε

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
H?

]

= Riid
2n(Flin(H,X))− 1

2
Riid
n (Flin(H,X))

This conclude the lemma.

Proof of Theorem 86. Applying the upper bound guaranteed by the assumption of the theorem and using the

lower bound from lemma 84 we get that for any n ∈ N:

Riid
2n(Flin(H,X)) ≤ 1

2
Riid
n (Flin(H,X)) +

V

n1/q

Expanding the recursive inequality on the right above we get that

Riid
2n(Flin(H,X)) ≤ V

n1/q

(
1 +

1

21/p
+

1

22/p
+ . . .

)
≤ 21/p

21/p − 1

V

n1/q

165

Thus we conclude the first inequality in the theorem statement. As for the upper bound on the fat shattering

dimension, we have that whenever β ≤ Riid
n (Flin(H,X)),

fatiid
β (Flin(H,X)) ≤

n
(
Riid
n (Flin(H,X))

)2
β2

≤ n

Hence we conclude that for all n such thatRiid
n (Flin(H,X)) ≥ β, fatiid

β (Flin(H,X)) ≤ n. In other words,

fatiid
β (Flin(H,X)) ≤ inf{n : Riid

n (Flin(H,X)) ≥ β} inf{2n : Riid
2n(Flin(H,X)) ≥ β}

However since we already proved that for all n ∈ N,Riid
2n(Flin(H,X)) ≤ 5V

n1/q we can conclude that for any

β > 0,

fatiid
β (Flin(H,X)) ≤

(
5V

β

)q
.

This concludes the theorem.

Proof of Lemma 87. Consider instance space Z = X × [−1, 1] and the non-negative function φ : R ×
[−1, 1] 7→ R+ that is 1-smooth (in its first argument) given by :

φ(z, y) =

{
(z − y)2 if |z − y| ≤ 1

2

|z − y| − 1
4 otherwise

Now the loss function we consider is given by `(h, (x, y)) = φ(〈h,x〉 , y). Since φ is 1-smooth in its first

argument, we see that

‖∇`(h, (x, y))−∇`(h′, (x, y))‖X = |∂φ(〈h,x〉 , y)− ∂φ(〈h′,x〉 , y)| ‖x‖X ≤ | 〈h− h′,x〉 | ‖x‖X
≤ ‖h− h′‖X? ‖x‖

2
X ≤ ‖h− h′‖X?

Thus we conclude that the loss is 1-smooth and so belongs to class Zsmooth. The distribution we pick

for showing the lower bound is a slight modification of the one used in Lemma 84. We start by picking

elements x1, . . . ,x2nL∗ ∈ X and then draw Rademacher random variables ε ∈ {±1}2nL∗ uniformly at

random. We shall now use this to construct a distribution D′ε over instances which is the one we shall use

for the lower bound. Specifically, given a draw ε ∈ {±1}2nL∗ consider the distribution Dε on X to be the

uniform distribution over the set {ε1x1, . . . , ε2nL∗x2nL∗}. Now the distribution D′ε is the distribution on

Z = X × [−1, 1] to be the one that picks (0, 0) with probability 1 − L∗ and with probability L∗, draws

input instance x ∈ X i.i.d. from distribution Dε and deterministically picks label y = −1 (or whatever

suph∈H,x∈X 〈h,x〉 is with appropriate scaling changes but for simplicity let us assume its bounded by 1) .

166

Note that for any h ∈ H,

LD′ε(h) = L∗EDε
[
| 〈h,x〉 − y| − 1

4

]
=

1

2n

2nL∗∑
i=1

(
〈h, εixi〉 − 1− 1

4

)
.

Hence we see that for any ε ∈ {±1}2n,

LD′ε(A(S))− inf
h∈H

LD′ε(h) =
1

2n

2nL∗∑
i=1

〈A(S), εixi〉 − inf
h∈H

1

2n

2nL∗∑
i=1

〈h, εixi〉

Now consider sample S of size n drawn iid from the distribution D′ε. Note that for any learning algorithm A,

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2nL∗
EεES∼D′εn

[
LD′ε(A(S))− inf

h∈H
LD′ε(h)

]

= sup
x1,...,x2nL∗

EεES∼D′ε

[
1

2n

2nL∗∑
i=1

〈A(S), εixi〉 − inf
h∈H

1

2n

2nL∗∑
i=1

〈h, εixi〉

]

= sup
x1,...,x2nL∗

EεES∼D′ε

[
1

2n

2nL∗∑
i=1

〈A(S), εixi〉+

∥∥∥∥∥ 1

2n

2nL∗∑
i=1

εixi

∥∥∥∥∥
H?

]

Proceeding in similar fashion as in the proof of Lemma 84, we see that one can rewrite sampling S from

the distribution as follows : First we sample m from binomial distribution Binomial(L∗, n) (represents the

samples for which y 6= 0). Next, numbers t1, . . . , tm is drawn uniformly at random from the set [2nL∗].

Hence we get the inequality :

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2nL∗
Eε E
m∼Binomial(n,L∗)

Et1,...,tm∼Unif([2nL∗])

[
1

2n

2nL∗∑
i=1

〈A(S), εixi〉+

∥∥∥∥∥ 1

2n

2nL∗∑
i=1

εixi

∥∥∥∥∥
H?

]

= sup
x1,...,x2nL∗

E
m∼Binomial(n,L∗)

Et1,...,tm∼Unif([2nL∗])

[
Eε

[〈
A(S),

1

2n

2nL∗∑
i=1

εixi

〉]
+ Eε

[∥∥∥∥∥ 1

2n

2nL∗∑
i=1

εixi

∥∥∥∥∥
H?

]]

Now let the set J ⊂ [2nL∗] be the set J = {i ∈ [2nL∗] : i ∈ {t1, . . . , tm}} that is the set of indices i such

that (xi,−1) appeared at least once in the sample S provided to the learner. Also let Jc ∈ [2nL∗] stand for

the complement of the set J . Following the same line of proof as in Lemma 84 noting that S only depends

on the ε’s that occur in the sample S, we can see that

Eε

[〈
A(S),

1

2n

2nL∗∑
i=1

εixi

〉]
≥ −Eε

[∥∥∥∥∥ 1

2n

∑
i∈J

εixi

∥∥∥∥∥
H?

]

167

and so we conclude that :

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ sup

x1,...,x2nL∗
E

m∼Binomial(n,L∗)
Et1,...,tm∼Unif([2nL∗])

[
Eε

[∥∥∥∥∥ 1

2n

2nL∗∑
i=1

εixi

∥∥∥∥∥
H?

]
− Eε

[∥∥∥∥∥ 1

2n

∑
i∈J

εixi

∥∥∥∥∥
H?

]]

≥ sup
x1,...,x2nL∗

Em∼Binomial(n,L∗)

Eε [
∥∥∥∥∥ 1

2n

2nL∗∑
i=1

εixi

∥∥∥∥∥
H?

]
− sup

x1,...,xm∈X
Eε

∥∥∥∥∥∥ 1

2n

min{m,2L∗n}∑
i=1

εixi

∥∥∥∥∥∥
H?


However note that with probability 1/2, m ≤ nL∗ and so we have that

sup
D

ES
[
LD(A(S))− inf

h∈H
LD(h)

]
≥ 1

2
sup

x1,...,x2nL∗
Eε

[∥∥∥∥∥ 1

2n

2nL∗∑
i=1

εixi

∥∥∥∥∥
H?

]
− sup

x1,...,xnL∗∈X
Eε

[∥∥∥∥∥ 1

2n

L∗n∑
i=1

εixi

∥∥∥∥∥
H?

]

=
L∗

2

(
Riid

2L∗n(Flin(H,X))− 1

2
Riid
L∗n(Flin(H,X))

)
This conclude the lemma.

Proof of Lemma 88. First, since both sides below are homogenous, the premise of the lemma can be rewritten

as, for all n ∈ N and all x1, . . . ,xn ∈ B?,

Eε

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
H?

]
≤ D n

1
r max
i∈[n]
‖xi‖X (8.5.1)

Let S = (
∑n
i=1 ‖xi‖

p
X)

1/p, define

Ik :=
{
i ≥ 1

∣∣ S
2(k+1)/p < ‖xi‖X ≤ S

2k/p

}
,

T
(k)
0 := inf{i ∈ Ik} and

∀m ∈ N, T (k)
m := inf{i > T

(k)
m−1, i ∈ Ik}

Note that, Sp ≥
∑
i∈Ik ‖xi‖

p
X > Sp |Ik|

2(k+1) and so we get that |Ik| < 2k+1. From this, using the premise in

168

Equation 8.5.1 we conclude that

Eε

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
H?

]
≤
∑
k≥0

Eε

∥∥∥∥∥∑
i∈Ik

εixi

∥∥∥∥∥
H?

 =
∑
k≥0

Eε

∥∥∥∥∥∥
∑
i≥0

ε
T

(k)
i

x
T

(k)
i

∥∥∥∥∥∥
H?


≤
∑
k≥0

(
D {|Ik|1/r}{sup

i∈Ik
‖xi‖X }

)

≤
∑
k≥0

(
D 2(k+1)/r sup

i∈Ik
‖xi‖X ,∞

)
≤
∑
k≥0

(
D 2(k+1)/r 2−k/pS

)
= D 21/r

∑
k≥0

2k(1
r−

1
p) S ≤ 2D

1− 2(1
r−

1
p)
S ≤ 12D

r − p
S

=
12D

r − p

(
n∑
i=0

‖xi‖pX

)1/p

We conclude the proof by using Kahane Inequality (see [85]) which asserts that for any p ∈ [1, 2],

(
Eε

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

H?

])1/p

≤
√

2 Eε

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
H?

]

Proof of Proposition 58. Since we are dealing with convex loss, using Jensen’s inequality we have that

LD

(
1

n

n∑
t=1

A(z1:t)

)
≤ 1

n

n∑
t=1

LD (A(z1:t)) .

169

Hence we see that

ES∼Dn
[(

1

n

n∑
t=1

A(z1:t−1)

)
− inf

h∈H
LD(h)

]
≤ 1

n

n∑
t=1

ES [LD(A(z1:t−1))]− inf
h∈H

1

n

n∑
t=1

LD(h)

=
1

n

n∑
t=1

ES∼Dn [`(A(z1:t−1), zt)]− inf
h∈H

1

n

n∑
t=1

ES∼Dn [`(h, zt)]

= ES∼Dn
[

1

n

n∑
t=1

`(A(z1:t−1), zt)

]
− inf

h∈H
ES

[
1

n

n∑
t=1

`(h, zt)

]

≤ ES∼Dn
[

1

n

n∑
t=1

`(A(z1:t−1), zt)

]
− ES

[
inf
h∈H

1

n

n∑
t=1

`(h, zt)

]
= ES∼Dn [Rn(A, z1, . . . , zn)]

≤ sup
z1,...,zn∈Z

Rn(A, z1, . . . , zn)

where the second step is because A(z1, . . . , zt−1) only depends on z1, . . . , zt−1 and so ES [`(A(z1, . . . , zt−1), zt)] =

ES [LD(A(z1, . . . , zt−1))]. The second part of the proposition is from the fact that the above holds for any

online learning algorithm.

Proposition 97. If (H?,X) has type p with some constant C iid
p then for q = p

p−1 , the pair (H,X ?) has

co-type q with constant 1
Ciid
p

Proof. Given h1, . . . ,hn ∈ B? for any ε > 0 we can pick x1, . . . ,xn such that

n∑
t=1

〈ht,xt〉 ≥ (1− ε)

(
n∑
t=1

‖ht‖qX?

)1/q (n∑
t=1

‖xt‖pX

)1/p

(8.5.2)

On the other hand we have that,

n∑
t=1

〈hi,xi〉 = Eε

[〈
n∑
t=1

εtht,

n∑
t=1

εtxt

〉]

≤

(
Eε

[∥∥∥∥∥
n∑
t=1

εtht

∥∥∥∥∥
q

H

])1/q (
Eε

[∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
p

H?

])1/p

≤ C iid
p

(
Eε

[∥∥∥∥∥
n∑
t=1

εtht

∥∥∥∥∥
q

H

])1/q (n∑
t=1

‖xt‖pX

)1/p

where the last step is by the type inequality for (H,X). Combining the above and Equation 8.5.2 and taking

limit of ε→ 0 proves the statement.

Definition 37. For p ∈ [1, 2] the pair (H?,X) is said to be p-convex with constantKp if for any x1, . . . ,xN ∈

170

X , ∥∥∥∥∥∥
(

N∑
t=1

|xt|p
)1/p

∥∥∥∥∥∥
H?

≤ Kp

(
N∑
t=1

‖xt‖pX

)1/p

Definition 38. For q ∈ [2,∞) the pair (H,X ?) is said to be q-concave with constant Kq if for any K ≤
Kq(H,X ?) and any x1, . . . ,xN ∈ X ,∥∥∥∥∥∥

(
N∑
t=1

|xt|q
)1/q

∥∥∥∥∥∥
H?

≥ 1

K̃q

(
N∑
t=1

‖xt‖qX

)1/q

Lemma 98. If the pair (H?,X) is of type p with constant C iid
p then, for any x1, . . . ,xn ∈ X ,

√
2C iid

p

(
n∑
t=1

‖xt‖pX?

)1/p

≥

∥∥∥∥∥∥
(

n∑
t=1

|xt|p
) 1
p

∥∥∥∥∥∥
H?

That is it is p-convex with constant
√

2C iid
p .

Proof. By type p with constant C iid
p ,

C iid
p

(
n∑
t=1

‖xt‖pX?

)1/p

≥

(
Eε

[∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
p

H?

]) 1
p

≥ Eε

[∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
H?

]
≥

∥∥∥∥∥Eε
∣∣∣∣∣
n∑
t=1

εtxt

∣∣∣∣∣
∥∥∥∥∥
H?

≥ 1√
2

∥∥∥∥∥∥
(

n∑
t=1

|xt|p
) 1
p

∥∥∥∥∥∥
H?

where the last inequality is got by using scalar version of Kintchine’s inequality with functional calculus for

Banach lattice (specifically Theorem 1.d.1 of [75] by noting that expectation w.r.t. ε can be written as finite

average). This concludes the proof.

Proposition 99. If (H?,X) is p-convex with some constant Kp then for q = p
p−1 , the pair (H,X ?) is

q-concave with constant Kp. That is for any h1, . . . ,hn ∈ H∥∥∥∥∥∥
(

n∑
t=1

|ht|q
)1/q

∥∥∥∥∥∥
H

≥ 1

Kp

(
n∑
t=1

‖ht‖qX?

)1/q

Proof. Given h1, . . . ,hn ∈ B? for any ε > 0 we can pick x1, . . . ,xn such that

n∑
t=1

〈ht,xt〉 ≥ (1− ε)

(
n∑
t=1

‖ht‖qX?

)1/q (n∑
t=1

‖xt‖pX

)1/p

(8.5.3)

171

On the other hand, using 1.d.2 (iii) [75] we can conclude that

n∑
t=1

〈ht,xt〉 ≤

〈(
n∑
t=1

|ht|q
)1/q

,

(
n∑
t=1

|xt|p
)1/p〉

≤

∥∥∥∥∥∥
(

n∑
t=1

|ht|q
)1/q

∥∥∥∥∥∥
H

∥∥∥∥∥∥
(

n∑
t=1

|xt|p
)1/p

∥∥∥∥∥∥
H?

≤ Kp

∥∥∥∥∥∥
(

n∑
t=1

|ht|q
)1/q

∥∥∥∥∥∥
H

(
n∑
t=1

‖xt‖pX

)1/p

where the last step is by the p-convex inequality of (H?,X). Combining the above and Equation ?? and

taking limit of ε→ 0 proves the statement.

Proposition 100. For any n ∈ N, any sequence real valued tree a of depth n and for any 1 ≤ p ≤ 2 ≤ r <

∞,

183
√

2 r3p
3
2

√
p− 1 (r − 1)

(
Eε

[∣∣∣∣∣
n∑
t=1

εtat(ε)

∣∣∣∣∣
p])1/p

≥

(
Eε

[∣∣∣∣∣
n∑
t=1

εtat(ε)

∣∣∣∣∣
r])1/r

Proof.

(
Eε

[
n∑
t=1

|at(ε)|p
]) 1

p

≥

Eε

(n∑
t=1

|at(ε)|2
) p

2

 1
p

∀p ≤ 2, ‖·‖pp ≥ ‖·‖
p
2

≥
√
p− 1

18 p
3
2

(
Eε,ε′

[∣∣∣∣∣
n∑
t=1

ε′tεtat(ε)

∣∣∣∣∣
p])1/p

Burkholder’s Inequality [86]

≥
√
p− 1

18
√

2(r − 1)p
3
2

(
Eε,ε′

[∣∣∣∣∣
n∑
t=1

ε′tεtat(ε)

∣∣∣∣∣
r])1/r

≥
√
p− 1 (r − 1)

183
√

2 r3p
3
2

(
Eε

[∣∣∣∣∣
n∑
t=1

εtat(ε)

∣∣∣∣∣
r])1/r

This concludes the proof.

Proof of Lemma 93. Consider any X valued tree x of infinite depth. We start by noting that type p with

172

constant C iid
p implies p-convexity with constant

√
2C iid

p and so

183
√

8p
3
2 r3C iid

p C̃r√
p− 1(r − 1)

(
Eε

[
n∑
t=1

‖xt(ε)‖pX

]) 1
p

=
183
√

8p
3
2 r3C iid

p C̃r√
p− 1(r − 1)

 1

2n

∑
ε∈{±1}n

n∑
t=1

‖xt(ε)‖pX

 1
p

≥ 183
√

4p
3
2 r3C̃r√

p− 1(r − 1)

∥∥∥∥∥∥∥
 1

2n

∑
ε∈{±1}n

n∑
t=1

|xt(ε)|p
 1

p

∥∥∥∥∥∥∥
H?

=
183
√

4p
3
2 r3C̃r√

p− 1(r − 1)

∥∥∥∥∥∥
(
Eε

[
n∑
t=1

|xt(ε)|p
]) 1

p

∥∥∥∥∥∥
H?

(8.5.4)

Now note that for the real-valued case by Proposition 100 we have that, for any real valued tree a of depth n

and for any 1 ≤ p ≤ 2 ≤ r <∞,

183
√

2 r3p
3
2

√
p− 1 (r − 1)

(
Eε

[∣∣∣∣∣
n∑
t=1

εtat(ε)

∣∣∣∣∣
p])1/p

≥

(
Eε

[∣∣∣∣∣
n∑
t=1

εtat(ε)

∣∣∣∣∣
r])1/r

Since both sides the expressions are degree one homogenous, applying Theorem 1.d.1 [75] (by expanding

out the tree of depth n to its 2n − 1 elements and noting that expectation w.r.t. n Rademacher variables is in

fact a finite average of 2n signs) we conclude that

183
√

2r3p
3
2

√
p− 1(r − 1)

(
Eε

[
n∑
t=1

|xt(ε)|p
]) 1

p

�

(
Eε

[∣∣∣∣∣
n∑
t=1

εtxt(ε)

∣∣∣∣∣
r])1/r

Plugging this back in Equation 8.5.4 and noting that co-type r with constant C̃r of the pair (H?,H?) implies

its r-concavity with constant
√

2C̃r, we conclude that :

183
√

8p
3
2 r3C iid

p C̃r√
p− 1(r − 1)

(
Eε

[
n∑
t=1

‖xt(ε)‖pX

]) 1
p

≥
√

2 C̃r

∥∥∥∥∥∥
(
Eε

[∣∣∣∣∣
n∑
t=1

εtxt(ε)

∣∣∣∣∣
r]) 1

r

∥∥∥∥∥∥
H?

≥

(
Eε

[∥∥∥∥∥
n∑
t=1

εtxt(ε)

∥∥∥∥∥
r

H?

]) 1
r

≥

(
Eε

[∥∥∥∥∥
n∑
t=1

εtxt(ε)

∥∥∥∥∥
p

H?

])1/p

Noting that r3/(r − 1) ≤ 2r2 and that p3/2 ≤
√

8 and by definition of Cp we conclude the proof.

173

Proof of Lemma 95. Consider any X valued infinite depth tree x. We have,

Eε

[∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
H?

]
≤ DEε,ε′

[∥∥∥∥∥
n∑
i=1

εiε
′
ixi(ε)

∥∥∥∥∥
H?

]

= DEε

[
Eε′
[∥∥∥∥∥

n∑
i=1

εiε
′
ixi(ε)

∥∥∥∥∥
H?

]]

≤ DC iid
r Eε

(n∑
i=1

‖εixi(ε)‖rX

)1/r


≤ DC iid
r sup

ε∈{±1}n

(
n∑
i=1

‖xi(ε)‖rX

)1/r

Now this is effectively what we had in the proof of Lemma 67 and exactly as we did there applying Lemma’s

79, 80 and 81 and repeating the steps in proof of Lemma 67 we can conclude that

Eε

∥∥∥∥∥
n∑
i=1

εixi(ε)

∥∥∥∥∥
p′

H?

 ≤ 92DC iid
r

(r − p′)

n∑
i=1

Eε
[
‖xi(ε)‖p

′

X

]

This concludes the proof.

8.6 Discussion

The highlight of this chapter was that we showed that for most commonly occurring learning problems con-
stant Cp can be almost bounded by C iid

p which we could the use to conclude that mirror descent was near
optimal in terms of both learning rate and oracle complexity for statistical convex problems too. In fact for
the common examples we saw that the constant factor relating Cp and C iid

p can be a fixed universal constant.
We also saw that while many a times oracle complexity could be directly associated with time complexity of
the algorithms this is not always true and for the very practical problem of matrix completion with max norm
this issue arose leading to the open question of whether we can efficiently solve in the online setting, matrix
completion with max-norm with optimal rates.

We also saw strong connection between oracle complexity of offline optimization of convex lipschitz class
and statistical complexity of linear class and using this we also informally argued that for large dimensional
problems in “reasonable space”, mirror descent algorithm is near optimal even for offline optimization. Over-
all the aim of this section is to show that mirror descent is near optimal ubiquitously for most practical convex
statistical learning problems and for high dimensional offline optimization problems not just in the online
learning setting as was shown in the previous chapter.

174

Chapter 9

Optimality of Mirror Descent for Offline
Convex Optimization

In this chapter we consider the problem of offline convex optimization. To address the issue of efficiency
of optimization methods for the convex optimization problems, we use the notion of oracle complexity in-
troduced by Nemirovski and Yudin in [1]. We show interesting connections between convex optimization
and statistical convex learning. Furthermore for several commonly encountered high dimensional convex
optimization problems we also show that mirror descent algorithm is near optimal, in terms of oracle com-
plexity, even for offline convex optimization. Based on the results we also show that for several statistical
convex learning problems, mirror descent is optimal even when one has access to more powerful oracles that
can account for parallel computational methods for optimization. In fact we show that for these problems,
parallelization does not help (in improving efficiency of the learning procedure) and simply using single pass
mirror descent algorithm is optimal both in terms of rates and efficiency.

Section 9.1 introduces the oracle based offline optimization model of Nemirovski and Yudin [1]. Section 9.2
provides lower bound on oracle complexity of offline convex optimization problems in terms of fat shatter-
ing dimension of associated linear class and shows connections between convex optimization and statistical
learning and specifically also shows that whenever a the convex optimization problem over function class
associated with ZLip(X) is efficiently optimizable, then the supervised learning problem is also efficiently
learnable. Section 9.3 shows that for several high dimensional problems, mirror descent is also optimal for
offline convex optimization. Section 9.4 deals with statistical learning with distributed oracles and shows that
for several cases, mirror descent is near optimal even when compared to learning algorithms that have access
to distributed oracles and thus show that in these cases parallelization does not help. Section 9.5 provides the
detailed proofs of this chapter and we conclude with some discussions in Section 9.6.

175

9.1 Oracle-based Offline Convex Optimization

A typical convex optimization algorithm initially picks some point in the feasible setH and iteratively updates
these points based on some local information about the function it calculates around this point. Examples
of these type of procedures are gradient descent methods that uses first order gradient information, newton’s
method that uses second over hessian information, interior point methods and so on. In fact most procedures
one can think of for optimization are based on iteratively updating based on some local information about
the function at the point. In general computing the exact computational complexity of these methods is
cumbersome and may not even be possible in full generality. To capture efficiency of optimization procedures
in a general way, we consider the oracle based optimization problem and associated oracle complexity of the
problem. To this end we first formally define an Oracle. Such models have been introduced and analyzed
in [1]. In general, given an instance set Z indexing convex functions on hypothesis set H̄, we use the term
oracle to refer to any mapping O : H̄ × Z 7→ I from hypothesis instance pairs to an answer I ∈ I, where
set I is some arbitrary information set I. However at this generality note that the information set I could be
all of Z and Oracle O could be the identity mapping. This would defeat the purpose of introducing oracle
models and associated oracle complexity. To address this issue we use the notion of local oracle defined by
Nemirovski and Yudin [1] and whenever we use the term oracle we mean local oracle. Before we formally
define a (local) oracle we first define the neighborhood set of a point h ∈ H̄. Given δ > 0 and a point h ∈ H,
the δ-neighborhood of the point h is the set

Bδ(h) =
{
h′ ∈ H̄ : ‖h− h′‖H ≤ δ

}
.

Definition 39. A (local) oracle O : H̄ × Z 7→ I is a mapping, which, given any point h ∈ H̄ and instances

z, z′ ∈ Z such that

lim
δ→0

sup
h′,h′′∈Bδ(h)

|`(h′, z)− `(h′′, z′)| = 0 ,

outputs answers that satisfy the equality O(z,h) = O(z′,h).

The definition basically says if two instances z, z′ ∈ Z correspond to convex losses `(·, z) and `(·, z′)
respectively that are indistinguishable about some neighborhood of a point h ∈ H̄, then querying an oracle
about the two instances at this point h leads to the same answer. For a query with instance h ∈ H̄ at instance
z ∈ Z , the oracle only provides local information about the function `(·, z) at the point of query h. To make
the concept clearer we provide the following examples of (local) oracles commonly used in practice.

Example 13 (Zero’th-order Oracle). This is perhaps the simplest oracle that simply evaluates the given

function at the query point and returns the value. That is O(h, z) = `(h, z). Clearly I ⊆ R.

The zero’th order oracle captures bandit learning problems.

Example 14 (First-order Oracle). This is an Oracle that provides the sub-gradient of the function at query

point. That is O(h, z) = ∇h`(h, z). Clearly I ⊂ B∗ the dual space of B (the banach space containing H̄).

176

Example 15 (Second-order Oracle). Consider the example where H̄ ⊆ Rd and each z ∈ Z corresponds

to twice differentiable convex loss. In this case a second-order oracle is one that returns the hessian of the

function at the query point. That is O(h, z) = ∇2
h`(h, z).

As mentioned earlier since we are restricting ourselves to convex problems, we only need to consider deter-
ministic algorithms. We now generically define Oracle Based Learning/Optimization Algorithm for a given
oracle O.

Definition 40. For a given OracleO, an “Oracle Based Optimization/Learning Algorithm”, AO :
⋃
n∈N In →

H̄ is a mapping from a sequences of oracle answers in I to an element of hypothesis set H̄.

We now describe the oracle-based offline convex optimization protocol. Given z ∈ Z corresponding to
convex function `(·, z) (unknown to the learner) the optimization procedure is as follows :

Oracle-based Offline Optimization Protocol :

for t = 1 to m
Pick hypothesis ht ∈ H̄ for query
Oracle provides answer It = O(ht, z)

end for

The goal is to solve the optimization problem

argmin
h∈H̄

`(h, z)

and at the end of m steps the sub-optimality of the Learner is given by

`(hm, z)− inf
h∈H̄

`(h, z) .

Given an Oracle-based learning/optimization algorithm, AO we shall use the short-hand, I1 = O (h1, z) and
further iteratively, use the notation It = O(ht, z) where of course each hypothesis ht = AO(I1, . . . , It−1)

is picked using the Oracle-based learning/optimization algorithm. We now define what it means to be offline
optimizable using an oracle O.

Definition 41. For a given class of convex functions corresponding to instance set Z and a given Oracle O,

the offline oracle complexity of a given ”Oracle based optimization/learning algorithm”, AO, is defined as

moff(ε,AO,Z) = inf

{
m ∈ N

∣∣∣∣ sup
z∈Z

{
`(AO(I1, . . . , Im), z)− inf

h∈H
`(h, z)

}
≤ ε
}

Further, for the given oracle O, the O-offline oracle complexity of the given offline optimization problem is

defined as moff(ε,Z,O) = infAO moff(ε,AO,Z).

Roughly speaking, given ε > 0, the oracle complexity of an algorithm is the minimum number of oracle
answers needed by the algorithm to guarantee sub-optimality smaller than ε against any instance z ∈ Z .

177

Further, the above definition basically implies that for any ε, there exists an Oracle Based Optimization
Algorithm, AO that provides an ε sub-optimality for any z ∈ Z within m(ε,Z,O) steps. While the above
definition of oracle complexity tells us what is the best (oracle) efficiency achievable for a problem for a given
problem using oracle O, one might still wonder if using some other oracle one can improve efficiency. To
address this issue we now define oracle complexity of a problem (independent of any particular oracle).

Definition 42. For a given class of convex functions corresponding to instance set Z , the offline oracle

complexity of the given offline optimization problem is defined as

moff(ε,Z) = inf
O
moff(ε,Z,O) .

Further we say that a given problem is oracle-based offline optimizable if there exists some Oracle O such

that ∀ε > 0, moff(ε,Z,O) <∞.

9.2 Lower Bounding Oracle Complexity: Connections to Statistical

Convex Learning

In this section we establish some connections between offline optimization of convex Lipschitz instance class
ZLip(X) and fat-shattering dimension and Rademacher complexities of the linear function class. We also
establish interesting connection between convex optimization and statistical convex learning.

The following lemma which lower bounds oracle complexity by fat-shattering dimension of the correspond-
ing linear function class is based on the proof technique for lower bounds on oracle complexity for offline
optimization of convex Lipschitz function classes in [1].

Lemma 101. For anyH ⊂ B and X ⊂ B? that are convex and centrally symmetric,,

moff(β,ZLip(X)) ≥ fatiid
2β(Flin(H,X)) .

Based on the above lemma and relationship between fat-shattering dimension and statistical Rademacher
complexity, we prove the following theorem which bounds Rademacher complexity of the linear function
class in terms using any polynomial upper bound on oracle complexity of offline optimization of the convex
Lipschitz function class.

Theorem 102. If there exists some V > 0 and q ∈ (0,∞) such that for any β > 0,

moff(β,ZLip(X)) ≤
(
V

β

)q

178

then using the shorthand r = max{2, q}, we have that :

∀n ∈ N, Riid
n (Flin(H,X)) ≤ 9V log1+ 1

r (n)

n1/r
.

Notice that in the above theorem if q ≥ 2 then r = q and so like in Theorem ?? we get a tight relationship
between Rademacher complexity and oracle complexity of offline optimization. However this is not always
true. In d dimensional space where d is small, using the centroid methods once can guarantee oracle com-
plexity upper bound of d log(1/ε). However it turns out that at least for the dual learning problems (when
H = X ?) if the dimension is large enough, by the celebrated Dvoretzky-Roger’s theorem (see for instance
[87]), we can infer that for all β < ε, fatiid

β (Flin(H,X)) is larger than order 1/β2. Later on in Section 8.3
as a side interest we can use this to conclude that for dual learning problems in high dimensional problems
in appropriate spaces (most common ones), mirror descent is almost optimal even for offline optimization for
the convex Lipschitz class!

The above theorem establishes connections between offline convex optimization and statistical convex learn-
ing especially for supervised learning problems. The following corollary implies that for anyH and X , if we
can find an efficient optimization algorithm for optimizing functions in class ZLip(X), then we can find an
efficient algorithm for statistical learning of supervised convex learning problem.

Corollary 103. If there exists some V > 0 and q ∈ (0,∞) such that for any β > 0,

moff(β,ZLip(X)) ≤
(
V

β

)q
then using the shorthand r = max{2, q}, we have that there exists a learning algorithm AaERM (that solves

the empirical risk minimization problem approximately) which enjoys learning guarantee for the supervised

convex learning problem in the statistical framework:

sup
D∈∆(Zsup(X))

ES∼Dn
[
LD(AaERM(S))− inf

h∈H
LD(h)

]
≤ 18V log1+ 1

r (n)

n1/r
.

Furthermore, the number of oracle calls needed by this algorithm is bounded by n1+q/r

18q logq+
q
r (n)

, and so number

of oracle calls is at most order n2, the sample size.

Proof. We provide a proof sketch of this simple corollary. We start by noting that by Proposition 85, learning

rate for the empirical risk minimizer is bounded by Rademcher complexity of the associated linear class and

by previous theorem we see that upper bound on oracle complexity for optimization of ZLip(X) implies

upper bound on Rademacher complexity. Thus combining these results we conclude the statement of the

corollary.

First of all, while the above corollary we give for supervised convex learning problem with absolute loss, it
can also be extended to logistic loss, hinge losses and basically any convex Lipschitz loss.

179

9.3 Main Result : Optimality of Mirror Descent for Offline Convex

Optimization

The following theorem shows that for a large class of convex problems, mirror descent is near optimal even
for offline convex optimization in terms of oracle complexity.

Theorem 104. If there exists some constant G ≥ 1 such that for any 1 < p′ < r ≤ 2

Cp′ ≤ G C iid
r

and it is true that for some V > 0 and p ∈ (1,∞),

moff(ε,ZLip(X)) ≤
(
V

ε

)q
where q = p/(p− 1). Then there exists function Ψ and step size η using which the stochastic mirror descent

algorithm enjoys the guarantee

moff(ε,AMD,Z(X)) ≤

(
54018 G V log5

(
1
ε

)
ε

)r

Proof. First step we use Theorem 102 to bound Riid
n (Flin(X)). Next we use proceed as in the proof of 86.

Next using Corollary 89 we see that for any p′ < p, C iid
p′ ≤ 60

√
2V

p−p′ . Using the assumption that Cp ≤ G C iid
p

we get bound on Cp′ . However Cp is an upper bound on Dp and so using Corollary 62 we conclude the

proof.

The first thing we notice is that if q ≥ 2 then r = q. Hence in this case the guarantee on the oracle complexity
of offline optimization using mirror descent algorithm matches the upper bound on oracle complexity for the
problem. Hence we see that for such a case mirror descent algorithm is near optimal even for offline convex
optimization. In particular, if for a problem no algorithm can guarantee a better oracle complexity than order
1/ε2 then from the above theorem we can conclude that mirror descent is near optimal (up to polynomials).

Now let us consider the dual problem, that is the case when H = X ?. In this case, the celebrated Dvoretzky
Roger’s theorem (see [87] for geometric interpretation we use here) implies that for any Banach space of
dimension large enough (larger than 2n), there exists set of n points, x1, . . . ,xn ∈ X such that for all
ε1, . . . , εn ∈ {±1}n,

1√
n
≤

∥∥∥∥∥ 1

n

n∑
t=1

εtxt

∥∥∥∥∥ .
Hence we can conclude that for any β > 0, if dim(H)→∞, then

fatβ(Flin(H,H?)) ≥ 1

β2
.

180

Hence by Lemma 101 we can conclude that oracle complexity of offline optimization for the convex Lipschitz
class in the dual case when the dimensionality is large enough is lower bounded by 1/2β2. Hence we can
conclude that for large dimensional problems, mirror descent is near optimal even for offline optimization
problem. Also as per the discussion in sub-section ?? we can also conclude that for statistical learning
problem with any powerful oracle O, mirror descent is near optimal for convex Lipschitz problems in the
dual case when dimension is large enough.

The Dvoretzky Roger’s theorem tells us very generally that for any large dimensional dual problem, mirror
descent is always near optimal. However the dimension of the problem needs to be very large (of order expo-
nential in 1/ε or more) for this claim to be true. While at complete generality we can only ensure this much,
for many commonly encountered problems one cash provide lower bounds for fat-shattering dimension of
order 1/ε2 or worse even when dimensionality is only as large as some polynomial in 1/ε. More specifically,
for the case when the pair H/X are either `d2/`

d
2 or `d1/`

d
∞, fat-shattering dimension can be lower bound by

1/ε2 as long as dimension is larger than order 1/ε2. Hence we can conclude that for these cases, when we
are dealing with high dimensional convex optimization problems when dimension is as large as order 1/ε2

where ε is desired sub-optimality, then mirror descent is near optimal even for offline optimization problem.
This result can also be extended to `p/`q pair case when p ∈ [2,∞) and Schatten norm counterparts of all
the `p cases. We would also like to point out that such high dimensional (relative to desired sub-optimality)
problems are common in machine learning and high-dimensional statistics application for cases when dimen-
sion d is large than the sample size n. In all these cases mirror descent is also near optimal for offline convex
optimization.

9.4 Statistical Learning With Distributed Oracles

In the previous chapter, in section ?? we showed that for most reasonable statistical convex learning problems,
stochastic mirror descent is near optimal not only in terms of learning rate but also in terms of number of
gradient access (or even any other local oracle information) needed to guarantee excess risk smaller than
some target value. Of course in the result we counted accessing gradient at a point of one point sample
point as one oracle query. While we abstract off oracle as a black box, in reality the answer that the oracle
computes, example gradient, is generally needs to be calculated by the learning algorithm itself. With the
growth of cluster and grid computing and its influence in the design of machine learning and optimization
algorithms one may wonder if having access to several machines can help speed up learning. For instance one
could think of performing gradient descent or mirror descent on training sample but then calculate gradient
of empirical average loss in parallel so that computation of in fact several gradients is done more or less in the
time of computing one. In this section we try to formalize a more powerful oracle based statistical learning
model that can capture such distributed computing scenarios. We show that for most reasonable cases in high
dimension for statistical convex learning (of ZLip(X)) even having such more powerful oracles do not help
and the single pass gradient based mirror descent is near optimal in terms of efficiency even when compared
against learning algorithms that have access to these more powerful distributed oracles. In short we show that
parallelization does not help for the case when instance set is ZLip(X).

181

More formally, in the oracle-based statistical learning model we consider, learner has access to a local dis-
tributed oracle O : H ×

⋃
n∈NZn 7→ I that can provide answers when queried at a point about multiple

instances simultaneously. Of course here local means the oracle is local w.r.t. the sequence of instances
z1, . . . , zn it is queried on at any times. The corresponding learning protocol is given below.

Powerful Oracle-based Statistical Learning Protocol :
Sample S = (z1, . . . , zn) ∼ Dn

for t = 1 to m
Learner picks hypothesis ht ∈ H̄
Oracle provides answer It = O(ht, S)

end for

Now to study efficiency of statistical learning algorithms that have access to such distributed oracles, similar
to moff , the oracle complexity of offline optimization procedures, we introduce oracle complexity mstat of
oracle-based statistical learning algorithms that have access to distributed oracles.

Definition 43. For a given class of convex functions corresponding to instance set Z and a distributed Oracle

O, the distributed statistical oracle complexity of a given ”Oracle based optimization/learning algorithm”,

AO, is defined as

mstat(ε,A
O,Z) = inf

{
m ∈ N

∣∣∣∣∣ sup
D∈∆(Z)

{
LD(AO(I1, . . . , Im))− inf

h∈H
LD(h)

}
≤ ε

}

Further, for the given distributed oracle O, the O-distributed statistical oracle complexity of the given statis-

tical convex learning problem is defined as mstat(ε,Z,O) = infAO mstat(ε,A
O,Z).

Further we can define oracle complexity of a distributed oracle-based statistical convex learning problem
(independent of any particular oracle) as follows :

Definition 44. For a given class of convex functions corresponding to instance setZ , the distributed statistical

oracle complexity of the given distributed oracle-based statistical convex learning problem is defined as

mstat(ε,Z) = inf
O
mstat(ε,Z,O) .

Now to provide lower bounds on oracle complexity under this more powerful oracle based statistical learning
scenario, we start by noticing that lower bounds on oracle complexity of offline optimization problems also
provide lower bounds on oracle complexity for learning under the powerful oracle based statistical learning
protocol. The reasoning for this is simple : If distribution D deterministically picked a single function then
the problem is identical to offline optimization in the function class and querying oracle on a sequence or just
the one function is exactly the same. The following proposition captures exactly this.

182

Proposition 105. For anyH and convex learning instance space Z , we have that

mstat(ε,Z) ≥ moff(ε,Z)

In the previous section specifically Theorem 104 we showed that for several reasonable, high dimensional
offline convex optimization problem over instance space ZLip(X) mirror descent is in fact near optimal
even when we consider distributed oracle-based statistical convex learning algorithm. That is we have the
following corollary which is trivial given previous proposition and Theorem 104.

Corollary 106. If there exists some constant G ≥ 1 such that for any 1 < p′ < r ≤ 2

Cp′ ≤ G C iid
r

and it is true that for some V > 0 and p ∈ (1,∞),

mstat(ε,ZLip(X)) ≤
(
V

ε

)q
where q = p/(p− 1). Then there exists function Ψ and step size η using which the stochastic mirror descent

algorithm enjoys the guarantee

mstat(ε,AMD,Z(X)) ≤

(
54018 G V log5

(
1
ε

)
ε

)r

However note that mirror descent is a gradient-based single pass algorithm that at each iteration only queries
gradient at a single sample point. Hence we see that for these convex learning problems over instance space
ZLip(X), stochastic mirror descent is near optimal and that having access to any kind of distributed local
oracle does not help. That is in the worst case parallelization does not help.

9.5 Detailed Proofs

Proof of Lemma 101. The proof is essentially a vdery simple modification of the one provided by Nemirovski

and Yudin in Section 4.4.2 of [1]. We provide an abridged version here with the appropriate modifications

needed to deal with the non-dual case with a few minor alterations to relate to fat-shattering dimension. To

prove the lower bound, we first start by picking x1, . . . ,xm ∈ X add s1, . . . , sm ∈ R. Now the functions we

shall consider are of form

zε(h; (x1, s1), . . . , (xm, sm)) = max
i∈[m]

εi(〈h,−xi〉+ si)

183

where ε ∈ {±1}m. Notice that each zε ∈ ZLip(X). Note also that for any ε ∈ {±1}m,

− inf
h∈H

zε(h; (x1, s1), . . . , (xm, sm)) = − inf
h∈H

max
i∈[m]

εi(〈h,−xi〉+ si) = sup
h∈H

min
i∈[m]

εi(〈h,xi〉 − si) .

(9.5.1)

Remember that we want to show that for any AO there exists a function that requires at least m calls to some

Oracle O to ensure sub-optimality less than ε > 0. The first thing we notice is that the family of functions

we consider are piece wise linear and so any local oracle can give no more information that function value

and gradient at point of query. Now given an Optimization algorithm AO the exact function we shall use for

the lower bound will be constructed in m steps based on the algorithm and the choosen x1, . . . ,xm ∈ X add

s1, . . . , sm ∈ R. The procedure for constructing the function is given below :

Initialize I1 = [m]

for t = 1 to m

AO picks ht ∈ H for query

i(t) = argmax
i∈It

{|〈ht,−xi〉+ si|}

εt =

{
+1 if (

〈
ht,−xi(t)

〉
+ si(t)) ≥ 0

−1 otherwise
It+1 = It \ {i(t)}
zt(h) = maxj∈[t]

{
εj(
〈
h,−xi(j)

〉
+ si(j))

}
Return answer to query as It = O(ht, z

t).

end for

The first thing we notice about zm is that it is of the form :

zm(·) = zε(·; (xi(1), si(1)), . . . , (xi(m), si(m))) (9.5.2)

where ε1, . . . , εm are given by the procedure above. Next, zm is such that, for any i ∈ [m] and any local

oracle O,

O(hi, z
m) = O(hi, z

i)

hence the h1, . . . ,hm returned by the algorithm when it is presented with function fm is the same as the

corresponding ones in the above procedure. Finally, by the way the functions are constructed (specifically

the way εt is picked),

zm(hm) ≥ 0

184

Hence we conclude that

zm(hm)− inf
h∈H

zm(h) ≥ − inf
h∈H

zm(h)

= − inf
h∈H

zε(h; (xi(1), si(1)), . . . , (xi(m), si(m))) (by Eq. 9.5.2)

= sup
h∈H

min
i∈[m]

εi(〈h,xi〉 − si) (by Eq. 9.5.1)

≥ inf
ε∈{±1}m

sup
h∈H

min
i∈[m]

εi(〈h,xi〉 − si) .

Furthermore note that the choice of x1, . . . ,xm ∈ X and s1, . . . , sm are arbitrary. Hence we can conclude

that for any β > 0, if for any m there exists x1, . . . ,xm ∈ X and s1, . . . , sm ∈ R such that

inf
ε∈{±1}m

sup
h∈H

min
i∈[m]

εi(〈h,xi〉 − si) > β ,

then no oracle based algorithm can achieve sub-optimality smaller than β in m or less steps. However note

that this is exactly the definition of fat-shattering dimension at scale 2β (Definition 13) for the linear class

given by

F = {x 7→ 〈h,x〉 : h ∈ H} .

Hence we conclude the lemma statement.

Proof of Theorem 102. The first inequality is a direct consequence of Lemma 101. For the upper bound on

the Rademacher complexity note that, for any n ∈ N, by the refined Dudley integral bound we have that :

Riid
n (Flin(H,X)) ≤ inf

α>0

4α+ 10

∫ 1

α

√
fatiid

β (Flin(H,X)) log(n)

n
dβ


We now divide the analysis into two cases, first where q ∈ [2,∞) and next where q ∈ (0, 2). We start for the

case when q ∈ [2,∞) and see that using the assumption of this theorem and Lemma 101 we see that for any

185

q ∈ [2,∞):

Riid
n (Flin(H,X)) ≤ inf

α>0

{
4α+

√
V q log(n)

n
10

∫ 1

α

1

β
q
2

dβ

}

≤ inf
α>0

{
4α+

√
V q log(n)

n
10

∫ 1

α

(
q
2 − 1

)
log(1/β) + 1

β
q
2

dβ

}

≤ inf
α>0

{
4α+ 10

√
V q log(n)

n

[
log(β)

β
q
2−1

]1

α

}

≤ inf
α>0

{
4α+ 10

√
V q log(n)

n

log(1/α)

α
q
2−1

}

≤ 9V log1+ 1
q (n)

n1/q

where in the last step above we used the value α = V log1/q(n)
n1/q .

Now we turn our attention to case when q ∈ (0, 2). As for this case we simply note that
(
V
ε

)q ≤ (Vε)2 and

so using the case when q = 2 we conclude that

Riid
n (Flin(H,X)) ≤ 9V log3/2(n)

n1/2

This concludes the proof.

9.6 Discussion

The key result of this chapter is that for most reasonable cases, if the dimension of the vector space B is large
enough, then stochastic mirror descent algorithm is near optimal even for offline convex optimization for
instance space ZLip(X). We further show that for statistical convex learning problems over instance space
ZLip(X) even when we consider learning algorithm that use distributed oracles, (ie. uses distributed compu-
tation of local oracle information like gradients etc.) mirror descent is still near optimal and parallelization
does not help.

186

Chapter 10

Conclusion and Future Work

In this section we delineate some important questions that are related to the work in this dissertation. We also
discuss some further directions of research. Finally we summarize and give some concluding remarks.

10.1 Open Problems

10.1.1 Online Optimization and Stability

Another direction yet to be explored is the question of online learnability in the general learning setting. In
the statistical paradigm we used the tool of stability and properties of asymptotic empirical minimizer of
learning rule to determine learnability for the general setting. We would like to explore the problem of online
learnability in the general setting on similar lines.

Question 1. Are there properties analogous to stability and AERM property in the online paradigm that

guarantee online learnability in the general setting for learning ?

Question 2. Can we provide a generic strategy for Learner in the online learning framework that guarantees

diminishing regret whenever the problem is learnable ?

10.1.2 Upper Bounding Oracle Complexity in Terms of Fat-Shattering Dimension

In the second part of the dissertation especially in Chapter ?? we showed that the oracle complexity of offline
convex optimization problem, moff(ε,ZLip(X)) is lower bounded by the fat shattering dimension of the
associated linear class Flin(H,X). Using this we showed that at least for supervised learning problems, if
one can efficiently optimize convex function corresponding to the classZLip(X) then one can also statistically
learn and efficiently. In the same chapter we also showed that for most reasonable cases, if dimension is large
enough, then mirror descent is near optimal even for offline optimization. Using the results in the thesis one

187

can also conclude that for these large dimensional cases, moff(ε,ZLip(X)) can also be upper bounded by
Õ(fatε). Can this result be generalized and can we show the upper bound on oracle complexity in terms of
fat shattering dimension always hold? We pose the question.

Question 3. Is it always true that

moff(ε,ZLip(X)) ≤ fatcε(Flin(H,X))

where c is some universal constants? If it is true, then can one give an optimization algorithm that has oracle

complexity bounded by fat-shattering dimension?

10.2 Further Directions

The thesis mainly covers the story of learning from the perspective of optimization and answers questions
about learnability. However there were a few results that emerged out of results and techniques provided in
this thesis and we delineate a few below.

We mainly considered two extreme scenarios while considering statistical and online learning framework.
In statistical framework, instances were sampled iid and in the online learning framework instances picked
adversarially. It is interesting to consider the intermediate scenarios where learner is not faced with a com-
pletely worst case adversary but is also not faced with iid sampling of instances. Maybe adversary might have
some constraints on instances that can be chosen or choses instances in a stochastic way that is more complex
than iid sampling. Such a scenario is analyzed in [88] based on techniques in Chapter 4. Another orthogonal
way in which the results in the chapter were extended was to games beyond online learning to include games
like Blackwell’s approachability, calibration etc. in [89, 90].

Results in chapters ?? and ?? influenced and shaped the work in paper [91] where we showed how one can
make appropriate changes to stochastic mirror descent and accelerated methods to include mini-batching
(breaking sample into blocks and instead of updating in each step with single gradient update with average of
the block of gradients). We showed that this helped in guaranteeing better time complexity with paralleliza-
tion of these methods.

10.3 Summary

An important question in the field of theoretical machine learning is that of learnability and learning rates.
We have explored this question for various learning problems in both statistical and online learning frame-
works. In the statistical learning framework we provide the first general characterization of learnability in
the general setting using the notion of stability of learning algorithms. We also provided a generic algorithm
for learning in the statistical learning framework. As for the problem of learnability in the online framework
while we don’t yet have a complete picture we introduced various complexity measures analogous to the

188

ones in statistical learning framework. We also provide characterization of online learnability for real valued
supervised learning problem.

An integral part of machine learning is optimization. While the question of learnability and learning rates are
central to machine learning theory, from a practical point of view one would like to consider problems that are
efficiently learnable. To address this issue in a general way, we considered convex learning and optimization
problems in both statistical and online learning framework. We used the notion of oracle complexity to
address issue of efficiency. For the online learning problems, we showed mirror descent is universal and
near optimal. That is whenever a convex problem is online learnable, it is learnable with near optimal rates
using mirror descent. Since mirror descent is a first order method (sub-gradient based) we could infer that
for online learning scenario mirror descent is near optimal in terms of both rates and oracle complexity. We
also explored connections between learning in the various frameworks and oracle based optimization. For
the statistical convex learning problem, unlike online setting, in general it is not true that mirror descent is
universal. However we saw that for problems we would encounter in practical applications though, this was in
fact the case. Mirror descent would indeed be near optimal. We also saw that for certain offline optimization
problems in high enough dimensions, mirror descent can again shown to be near optimal.

We expect the work to provide a better understanding of learning algorithms especially from the perspective
of optimization. While it is common that for machine learning practitioners optimization is often an after
thought and is in a sense mainly a computational issue, through this work we would like to stress that learning
can be seen as optimization and should in fact be seen as so. On the other hand, we also show some strong
connections between optimization and showed how tools from learning theory can be used to prove results
on optimization. Hence we would also like to stress overall the strong and inevitable connections between
the two.

In this work we also used several concepts from the theory of Banach space geometry. It would certainly be
interesting to see if more connections can be made and techniques from Banach space geometry be used to
prove more results about learning and optimization.

189

Bibliography

[1] A. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization. Nauka Pub-
lishers, Moscow, 1978.

[2] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In Con-

ference on Learning Theory, 2009.

[3] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability and stability in the general
learning setting. In Proceedings of the 22nd Annual Conference on Computational Learning Theory,
2009. .

[4] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability and
uniform convergence. J. Mach. Learn. Res., 11:2635–2670, December 2010. ISSN 1532-4435. .

[5] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Random averages, combinatorial parameters,
and learnability. Neural Information Processing Systems (NIPS), 2010. .

[6] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror descent.
Arxiv., 2011. .

[7] K. Sridharan and A. Tewari. Convex games in Banach spaces. In Proceedings of the 23nd Annual

Conference on Learning Theory, 2010.

[8] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[9] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the Association for Computing Machinery, 36(4):929–965,
October 1989.

[10] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform conver-
gence, and learnability. Journal of the ACM, 44(4):615–631, 1997.

[11] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. In Proceedings of

the Fifth Annual ACM Workshop on Computational Learning Theory, pages 341–352, July 1992. To
appear, Machine Learning.

190

[12] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Information and Computation, 100(1):78–150, 1992.

[13] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its applications, XVI(2):264–280, 1971.

[14] Martin Anthony and Peter Bartlet. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

[15] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[16] David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[17] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes.
Journal of Functional Analysis, 1(3):290–330, 1967.

[18] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Uni-

versity Bulletin, 13:49–52, 1902.

[19] A. N. Tikhonov. On the stability of inverse problems. Dolk. Akad. Nauk SSSR, 39(5):195–198, 1943.

[20] D. L. Phillips. A technique for the numerical solution of certain integral equations of the first kind.
Journal of the ACM, 9(1):84–97, 1962.

[21] W. Rogers and T. Wagner. A finite sample distribution-free performance bound for local discrimination
rules. Annals of Statistics, 6(3):506–514, 1978.

[22] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.

[23] Leo Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department,
University of California at Berkeley, 1996.

[24] M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation. Neural Computation, 11(6):1427–1453, 1999.

[25] Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499–526,
2002. ISSN 1532-4435.

[26] S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and generalization error. In Proceed-

ings of the 18th Conference in Uncertainty in Artificial Intelligence, pages 275–282, 2002.

[27] S. Rakhlin, S. Mukherjee, and T. Poggio. Stability results in learning theory. Analysis and Applications,
3(4):397–419, 2005.

[28] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning theory: stability is sufficient for gen-
eralization and necessary and sufficient for consistency of empirical risk minimization. Advances in

Computational Mathematics, 25(1-3):161–193, 2006.

191

[29] K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rates for regularized objectives. In Advances in

Neural Information Processing Systems 22, 2008.

[30] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML,
pages 928–936, 2003.

[31] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability and stability in the general
learning setting. In Proceedings of the 22nd Annual Conference on Computational Learning Theory,
2009. .

[32] D.A. McAllester and R.E. Schapire. On the convergence rate of good-turing estimators. In Proceedings

of the Thirteenth Annual Conference on Computational Learning Theory, 2000.

[33] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability and the
erm principle. COLT, 2011.

[34] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 04 1988.

[35] S. Ben-David, D. Pal, and S. Shalev-Shwartz. Agnostic online learning. In Proceedings of the 22th

Annual Conference on Learning Theory, 2009.

[36] J. Abernethy, A. Agarwal, P. Bartlett, and A. Rakhlin. A stochastic view of optimal regret through
minimax duality. In Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

[37] V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk of function learning.
High Dimensional Probability II, 47:443–459, 2000.

[38] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: risk bounds and structural
results. J. Mach. Learn. Res., 3:463–482, 2003. ISSN 1532-4435.

[39] S. Mendelson. A few notes on statistical learning theory. In S. Mendelson and A. J. Smola, editors, Ad-

vanced Lectures in Machine Learning, LNCS 2600, Machine Learning Summer School 2002, Canberra,

Australia, February 11-22, pages 1–40. Springer, 2003.

[40] R. M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, 1999.

[41] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer-Verlag, New York, 1991.

[42] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

[43] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform conver-
gence, and learnability. Journal of the ACM, 44:615–631, 1997.

[44] P. L. Bartlett, P. M. Long, and R. C. Williamson. Fat-shattering and the learnability of real-valued
functions. Journal of Computer and System Sciences, 52(3):434–452, 1996. (special issue on COLT‘94).

192

[45] N. Sauer. On the density of families of sets. J. Combinatorial Theory, 13:145–147, 1972.

[46] S. Shelah. A combinatorial problem: Stability and order for models and theories in infinitary languages.
Pac. J. Math, 4:247–261, 1972.

[47] N. Alon and J. Spencer. The Probabilistic Method. John Wiley & Sons, 2nd edition, 2000.

[48] S. Mendelson and R. Vershynin. Entropy and the combinatorial dimension. Inventiones mathematicae,
152:37–55, 2003.

[49] E. Giné and J. Zinn. Some limit theorems for empirical processes. Annals of Probability, 12(4):929–
989, 1984.

[50] S.A. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000.

[51] P. Massart. Some applications of concentration inequalities to statistics. Annales de la Faculté des

Sciences de Toulouse, IX(2):245–303, 2000.

[52] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

[53] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for the
effectiveness of voting methods. The Annals of Statistics, pages 322–330, 1997.

[54] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error
of combined classifiers. Annals of Statistics, 30(1):1–50, 2002.

[55] S. M. Kakade and A. Kalai. From batch to transductive online learning. In NIPS, 2005.

[56] N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. Annals of Statistics, pages
1865–1895, 1999.

[57] A. Tauman Kalai and R. Sastry. The isotron algorithm: High-dimensional isotonic regression. In
Proceedings of the 22th Annual Conference on Learning Theory, 2009.

[58] A.N. Kolmogorov and V.M. Tikhomirov. ε-entropy and ε-capacity of sets in function spaces. Uspekhi

Matematicheskikh Nauk, 14(2):3–86, 1959.

[59] P.L. Bartlett, O. Bousquet, and S. Mendelson. Local rademacher complexities. Annals of Statistics, 33
(4):1497–1537, 2005.

[60] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low-noise and fast rates. NIPS,
2010.

[61] S.Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, Hebrew Uni-
versity of Jerusalem, 2007.

[62] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algo-
rithms. IEEE Trans. on Information Theory, 50(9):2050–2057, September 2004.

193

[63] E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online convex opti-
mization. In Proceedings of the Nineteenth Annual Conference on Computational Learning Theory,
2006.

[64] S. Shalev-Shwartz and Y. Singer. Logarithmic regret algorithms for strictly convex repeated games.
Technical report, The Hebrew University, 2007. Available at http://www.cs.huji.ac.il/∼shais.

[65] G. Pisier. Martingales with values in uniformly convex spaces. Israel Journal of Mathematics, 20(3–4):
326–350, 1975.

[66] G. Pisier. Martingales in banach spaces (in connection with type and cotype). Winter School/IHP

Graduate Course, 2011.

[67] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness inequalities
for trace norms. Invent. Math., 115:463–482, 1994.

[68] Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright. Information-theoretic
lower bounds on the oracle complexity of convex optimization.

[69] Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakola. Maximum-margin matrix factorization. In
Advances in Neural Information Processing Systems 17, pages 1329–1336. MIT Press, 2005.

[70] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Proceedings of the 18th Annual

Conference on Learning Theory, pages 545–560. Springer-Verlag, 2005.

[71] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the

Royal Statistical Society, Series B, 67:301–320, 2005.

[72] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky. Sparse and low-rank matrix decompositions.
In IFAC Symposium on System Identification, 2009.

[73] Ali Jalali, Pradeep Ravikumar, Sujay Sanghavi, and Chao Ruan. A Dirty Model for Multi-task Learning.
In NIPS, December 2010.

[74] Bernard Maurey. Type, cotype and k-convexity. In HANDBOOK OF THE GEOMETRY OF BANACH

SPACES. VOLUME 2, pages 1299–1332. North-Holland, 2003.

[75] Joram Lindenstrauss and Lior Tzafriri. Classical Banach Spaces I and II. Classics in Mathematics.
Springer, Berlin, Heidelberg, New York, 1996. ISBN 3-540-60628-9.

[76] J.L. Krivine. Theoremes de factorisation dans les espaces reticules. Seminaire MAurey-Schwartz 1973-

74: Exp. Nos. 22 and 23, Ecole Polytech, Paris, 1974.

[77] Bernard Maurey and Gilles Pisier. Series de variables aleatoires vectorielles independantes et proprietes
geometriques des espaces de banach. Studia Math., 58:45–90, 1976.

[78] D. J. H. Garling. Random martingale transform inequalities. Probability in Banach spaces 6 (Sandbjerg,

1986), (20):pp. 101–119, 1986.

194

[79] Sonja Cox and Mark Veraar. Vector-valued decoupling and the burkholder-davis gundy inequality.
Technical Report arXiv:1107.2218, Jul 2011.

[80] Sonja Cox and Mark Veraar. Some remarks on tangent martingale difference sequences in l1-spaces.
Technical Report 12, 2007.

[81] Pawe? Hitczenko and Stephen J. Montgomery-Smith. On a domination of sums of random variables by
sums of conditionally independent ones. Mathematical Proceedings of the Cambridge Philosophical

Society, (119):pp. 91–101, 1996.

[82] Pawel Hitczenko. On a domination of sums of random variables by sums of conditionally independent
ones. The Annals of Probability, 22(1):pp. 453–468, 1994. ISSN 00911798.

[83] Pawel Hitczenko. Comparison of moments for tangent sequences of random variables. Probability

Theory and Related Fields, 78:223–230, 1988. ISSN 0178-8051.

[84] Nicol Cesa-Bianchi and Ohad Shamir. Efficient online learning via randomized rounding. Neural

Information Processing System, 2011.

[85] J.-P. Kahane. Some random series of functions. 2nd edition, 1985.

[86] D. L. Burkholder. Martingale transforms. The Annals of Mathematical Statistics, 37(6):pp. 1494–1504,
1966. ISSN 00034851. URL .

[87] William B. Johnson and Joram Lindenstrauss. Chapter 1 basic concepts in the geometry of banach
spaces. volume 1 of Handbook of the Geometry of Banach Spaces, pages 1 – 84. Elsevier Science B.V.,
2001. doi: 10.1016/S1874-5849(01)80003-6.

[88] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic and constrained
adversaries. NIPS, 2011.

[89] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Beyond regret. COLT,
2011.

[90] Dean Foster, Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Complexity-based approach to
calibration with checking rules. COLT, 2011.

[91] Andrew Cotter, Nathan Srebro, Ohad Shamir, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. NIPS, 2011.

[92] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. JMLR, 3:463–482, 2002.

[93] P. Massart. Some applications of concentration inequalities to statistics. Annales de la Faculté des

Sciences de Toulouse, IX(2):245–303, 2000.

195

[94] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform con-
vergence, and learnability. FOCS, 0:292–301, 1993. doi: http://doi.ieeecomputersociety.org/10.1109/
SFCS.1993.366858.

[95] Shahar Mendelson. Rademacher averages and phase transitions in glivenko-cantelli classes. IEEE

Trans. On Information Theory, 48(1):251–263, 2002.

196

Appendix A

Relating Various Complexity Measures :
Statistical Learning

A.1 The Refined Dudley Integral: Bounding Rademacher Complexity

with L2 Covering Numbers

We shall find it simpler here to use the empirical Rademacher complexity for a given sample x1, . . . , xn [92]:

R̂n(H) = Eσ∼Unif({±1}n)

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

h(xi)σi

∣∣∣∣∣
]

(A.1.1)

and theL2 covering number at scale ε > 0 specific to a sample x1, . . . , xn, denoted byN2 (ε,F , (x1, . . . , xn))

as the size of a minimal cover Cε such that

∀f ∈ F ,∃fε ∈ Cε s.t.

√√√√ 1

n

n∑
i=1

(f(zi)− fε(zi))2 ≤ ε .

We will also denote Ê[f2] = 1
n

∑n
i=1 f

2(xi).

We state our bound in terms of the empirical Rademacher complexity and covering numbers. Taking a supre-
mum over samples of size n, we get the same relationship between the worst-case Rademacher complexity
and covering numbers, as is used in Section ??.

Lemma 107. For any function class F containing functions f : X 7→ R, we have that

R̂n(F) ≤ inf
α≥0

4α+ 10

∫ supf∈F

√
Ê[f2]

α

√
logN (ε,F , (x1, . . . , xn))

n
dε

 .

197

Proof. Let β0 = supf∈F

√
Ê[f2] and for any j ∈ Z+ let βj = 2−j supf∈F

√
Ê[f2]. The basic trick here is

the idea of chaining. For each j let Ti be a (proper) L2-cover at scale βj of F for the given sample. For each

f ∈ F and j, pick an f̂i ∈ Ti such that f̂i is an βi approximation of f . Now for any N , we express f by

chaining as

f = f − f̂N +

N∑
i=1

(
f̂i − f̂i−1

)
where f̂0 = 0. Hence for any N we have that

R̂n(F) =
1

n
Eσ

sup
f∈F

n∑
i=1

σi

f(xi)− f̂N (xi) +

N∑
j=1

(
f̂j(xi)− f̂j−1(xi)

)
≤ 1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f(xi)− f̂N (xi)

)]
+

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]

≤ 1

n

√√√√ n∑
i=1

σ2
i sup
f∈F

√√√√ n∑
i=1

(f(xi)− f̂N (xi)2 +

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]

≤ βN +

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]
(A.1.2)

where the step before last is due to Cauchy-Shwarz inequality and σ = [σ1, ..., σn]
>. Now note that

1

n

n∑
i=1

(f̂j(xi)− f̂j−1(xi))
2 =

1

n

n∑
i=1

(
(f̂j(xi))− f(xi)) + (f(xi)− f̂j−1(xi))

)2

≤ 2

n

n∑
i=1

(
f̂j(xi))− f(xi)

)2

+
2

n

n∑
i=1

(
f(xi)− f̂j−1(xi)

)2

≤ 2β2
j + 2β2

j−1 = 6β2
j .

Now Massart’s finite class lemma [93] states that if for any function class G, supg∈G

√
1
n

∑n
i=1 g(xi)2 ≤ R,

then R̂n(G) ≤
√

2R2 log(|G|)
n . Applying this to function classes {f − f ′ : f ∈ Tj , f ′ ∈ Tj−1} (for each j)

198

we get from Eq. (A.1.2) that for any N ,

R̂n(F) ≤ βN +

N∑
j=1

βj

√
12 log(|Tj | |Tj−1|)

n

≤ βN +

N∑
j=1

βj

√
24 log |Tj |

n

≤ βN + 10

N∑
j=1

(βj − βj+1)

√
log |Tj |

n

≤ βN + 10

N∑
j=1

(βj − βj+1)

√
log N (βj ,F , (x1, . . . , xn))

n

≤ βN + 10

∫ β0

βN+1

√
log N (ε,F , (x1, . . . , xn))

n
dε

where the third step is because 2(βj − βj+1) = βj and we bounded
√

24 by 5. Now for any α > 0, pick

N = sup{j : βj > 2α}. In this case we see that by our choice of N , βN+1 ≤ 2α and so βN = 2βN+1 ≤ 4ε.

Also note that since βN > 2α, βN+1 = βN
2 > α. Hence we conclude that

R̂n(F) ≤ 4α+ 10

∫ supf∈F

√
Ê[f2]

α

√
log N (ε,F , (x1, . . . , xn))

n
dε .

Since the choice of α was arbitrary we take an infimum over α.

A.2 Bounding L∞ covering number by Fat-shattering Dimension

The following proposition and lemma are standard in statistical learning theory and their proof can be found
for instance in [94]. We provide the statement and the proof of the Lemma for completeness and so that we
can state it in the exact form it is used in, in this work.

Proposition 108. LetH ⊆ {0, . . . , k}X be a class of functions with fat2 = d. Then, we have,

N∞(1/2,H, n) ≤
d∑
i=0

(
n

i

)
ki

and specifically for n ≥ d this gives,

N∞(1/2,H, n) ≤
(
ekn

d

)d
.

199

Lemma 109. For any function classH bounded by B and any α > 0 such that fatα < n, we have,

N∞(α,H, n) ≤
(

2eBn

α fatα(H)

)fatα(H)

.

Proof. For any α > 0, define an α-discretization of the [−B,B] interval as Bα = {−B + α/2,−B +

3α/2, . . . ,−B + (2k + 1)α/2, . . .} for 0 ≤ k and (2k + 1)α ≤ 4B. Also for any a ∈ [−B,B], define

bacα = argmin
r∈Bα

|r − a| with ties being broken by choosing the smaller discretization point. For a function

h : X 7→ [−B,B] let the function bhcα be defined pointwise as bh(x)cα, and let bHcα = {bhcα : h ∈
H}. First, we prove that N∞(α,H, {xi}ni=1) ≤ N∞(α/2, bHcα, {xi}ni=1). Indeed, suppose the set V is a

minimal α/2-cover of bHcα on {xi}ni=1. That is,

∀hα ∈ bHcα, ∃v ∈ V s.t. |vi − hα(xi)| ≤ α/2 .

Pick any h ∈ H and let hα = bhcα. Then ‖h− hα‖∞ ≤ α/2 and for any i ∈ [n]

|h(xi)− vi| ≤ |h(xi)− hα(xi)|+ |hα(xi)− vi| ≤ α,

and so V also provides an L∞ cover at scale α.

We conclude that N∞(α,H, {xi}ni=1) ≤ N∞(α/2, bHcα, {xi}ni=1) = N∞(1/2,G, {xi}ni=1) where G =
1
αbHcα. The functions of G take on a discrete set of at most b2B/αc + 1 values. Obviously, by adding

a constant to all the functions in G, we can make the set of values to be {0, . . . , b2B/αc}. We now apply

Proposition 108 with an upper bound
∑d
i=0

(
n
i

)
ki ≤

(
ekn
d

)d
which holds for any n > d. This yields

N∞(1/2,G, {xi}ni=1) ≤
(

2eBn
αfat2(G)

)fat2(G)

.

It remains to prove fat2(G) ≤ fatα(H), or, equivalently (by scaling) fat2α(bHcα) ≤ fatα(H). To this end,

suppose there exists a set {xni=1} of size d = fat2α(bHcα) such that there is an witness s1, . . . , sn with

∀ε ∈ {±1}d, ∃hα ∈ bHcα s.t. ∀i ∈ [d], εi(hα(xi)− si) ≥ α .

Using the fact that for any h ∈ H and hα = bhcα we have ‖h− hα‖∞ ≤ α/2, it follows that

∀ε ∈ {±1}d, ∃h ∈ H s.t. ∀i ∈ [d], εi(h(xi)− si) ≥ α/2 .

That is, s1, . . . , sn is a witness to α-shattering byH. Thus for any {xi}ni=1, as long as n > fatα

N∞(α,H, {xi}ni=1}) ≤ N∞(α/2, bHcα, {xi}ni=1) ≤
(

2eBn

αfat2α(bHcα)

)fat2α(bHcα)

≤
(

2eBn

αfatα

)fatα(H)

.

200

A.3 Relating Fat-shattering Dimension and Rademacher complexity

The following lemma upper bounds the fat-shattering dimension at scale ε ≥ Rn(H) in terms of the
Rademacher complexity of the function class. The proof closely follows the arguments of Mendelson [95,
discussion after Definition 4.2].

Lemma 110. For any hypothesis classH, any sample size n and any ε > Rn(H) we have that

fatε(H) ≤ 4 nRn(H)2

ε2
.

In particular, ifRn(H) =
√
R/n (the typical case), then fatε(H) ≤ R/ε2.

Proof. Consider any ε ≥ Rn(H). Let x∗1, . . . , x
∗
fatε

be the set of fatε shattered points. This means that there

exists s1, . . . , sfatε such that for any J ⊂ [fatε] there exists hJ ∈ H such that ∀i ∈ J, hJ(xi) ≥ si + ε and

∀i 6∈ J, hJ(xi) ≤ si − ε. Now consider a sample x1, . . . , xn′ of size n′ = d n
fatε
efatε, obtained by taking

each x∗i and repeating it d n
fatε
e times, i.e. xi = x∗b i

fatε
c. Now, following Mendelson’s arguments:

Rn′(H) ≥ Eσ∼Unif{±1}n′

 1

n′
sup
h∈H

∣∣∣∣∣∣
n′∑
i=1

σih(xi)

∣∣∣∣∣∣


≥ 1

2
Eσ∼Unif{±1}n′

 1

n′
sup

h,h′∈H

∣∣∣∣∣∣
n′∑
i=1

σi(h(xi)− h′(xi))

∣∣∣∣∣∣
 (triangle inequality)

=
1

2
Eσ∼Unif{±1}n′

 1

n′
sup

h,h′∈H

∣∣∣∣∣∣
fatε∑
i=1

dn/fatεe∑
j=1

σ(i−1)fatε+j

 (h(x∗i)− h′(x∗i))

∣∣∣∣∣∣


≥ 1

2
Eσ∼Unif{±1}n′

 1

n′

∣∣∣∣∣∣
fatε∑
i=1

dn/fatεe∑
j=1

σ(i−1)fatε+j

 (hR(x∗i)− hR(x∗i))

∣∣∣∣∣∣


201

where for each σ1, . . . , σn′ ,R ⊆ [fatε] is given byR =
{
i ∈ [fatε]

∣∣∣sign
(∑dn/fatεe

j=1 σ(i−1)dn/fatεe+j

)
≥ 0
}

,

hR is the function inH that ε-shatters the set R and hR be the function that shatters the complement of set R.

≥ 1

2
Eσ∼Unif{±1}n′

 1

n′

fatε∑
i=1

∣∣∣∣∣∣
dn/fatεe∑
j=1

σ(i−1)fatε+j

∣∣∣∣∣∣ 2ε


≥ ε

n′

fatε∑
i=1

Eσ∼Unif{±1}n′

∣∣∣∣∣∣
dn/fatεe∑
j=1

σ(i−1)fatε+j

∣∣∣∣∣∣


≥ ε fatε
n′

√
dn/fatεe

2
(Khintchine’s inequality)

=

√
ε2 fatε
2 n′

.

We can now conclude that:

fatε ≤
2n′R2

n′(H)

ε2
≤ 4nR2

n(H)

ε2

where last inequality is because Rademacher complexity decreases with increase in number of samples and

n ≤ n′ ≤ 2n (because ε ≥ Rn(H) which implies that fatε < n).

202

Index
`p norm, 122, 160

AERM, 13
always AERM, 13

Banach Lattice, 157

consistency
strict, 23

cotype, 158
covering number

sequential, 58
statistical, 16

cut norm, 124

decision trees, 68
decoupling, 159
Dudley integrated complexity

sequential, 61

excess risk, 11

fat-shattering
sequential, 57
statistical, 16

generalization, 12
group norm, 123, 161

Hilbert space, 17

interpolation norm, 124
isotron, 70

learnability
online, 52

oracle-based, 109
statistical, 11

oracle-based, 108

learning protocol
online learning, 50
oracle-based

offline, 106
online, 109
statistical, 107

learning rule, 51
online, 51

randomized, 51
statistical, 11

proper, 11
randomized, 31

Littlestone dimension, 57, 67

margin, 67
martingale type, 116
max norm, 124
Minkowski functional, 103
mirror descent, 113

proxy function, 114
mixed norm, 123, 161

neural networks, 67

online transductive learning, 69
oracle, 105
oracle based learning algorithm, 106
oracle complexity

offline, 106
online, 109
statistical, 108

oracle-based offline optimizable, 107

p-convex, 170
packing number

sequential
strong, 58
weak, 58

path, 5

q-concave, 171

Rademacher complexity
sequential, 53
statistical, 15

regret, 50

sample complexity, 11
distribution specific, 12

Schatten norm, 123, 161
shattering

sequential, 57
stability, 17, 24–29

(leave one out) LOO, 27
all-i, 27
on average, 27
uniform, 26

(replace one) RO
average, 25
strongly uniform, 33
uniform, 24

Stochastic Approximation (SA), 108
stochastic optimization, 10
subtree, 5

tangent sequence, 55
tree, 5
type, 152

uniform convergence
statistical, 13
universal, 62

uniform convexity, 113

value of the online learning game, 51–
53, 111

VC dimension, 59

Walsh-Paley martingales, 116

203

	Dedication
	Acknowledgements
	Abstract
	Introduction
	Learning and Optimization
	Overview of the Thesis
	Part I : Statistical and Online Learning : Learnability and Rates
	Part II : Convex Problems : Oracle Efficient Learning/Optimization

	Main Contributions
	Bibliographic Notes

	I Statistical and Online Learning : Learnability and Rates
	Preliminary Setup and Notations
	General Learning Problem Setup
	More Definitions and Notations

	Statistical Learning/Optimization
	The Statistical Learning Problem and Learnability
	Background
	Learnability and Uniform Convergence
	Various Complexity Measures and Uniform Convergence
	Learnability and Stability

	Failure of Uniform Convergence and ERM/SAA Approaches
	Learning without Uniform Convergence : Stochastic Convex Optimization
	Learnability via Stability : Role of Regularization
	Contradiction to Vapnik?

	Stability of Learning Rules
	Comparison with Existing Literature and Other Notions of Stability

	Characterizing Learnability : Main Results
	Randomization, Convexification, and a Generic Learning Rule
	Stronger Results with Randomized Learning Rules
	A Generic Learning Rule

	Detailed Results and Proofs
	Detailed Proof of Main Result (Section 3.5)
	Other Proofs

	Discussion

	Online Learning/Optimization
	The Online Learning Problem
	Online Learnability and the Value of the Game
	Sequential Rademacher Complexity
	Structural Results

	Sequential Covering Number and Combinatorial Parameters
	A Combinatorial Upper Bound
	Finite Class Lemma and the Chaining Method

	Martingale Uniform Convergence
	Charecterizing Learnability of Supervised Learning Problem
	Generic Algorithm for Supervised Learning Problem

	Examples
	Example: Margin Based Regret
	Example : Neural Networks
	Example: Decision Trees
	Example: Online Transductive Learning
	Example: Isotron

	Detailed Proofs and More Results
	Proofs
	Exponentially Weighted Average (EWA) Algorithm on Countable Experts

	Discussion

	II Convex Problems : Oracle Efficient Learning/Optimization
	Convex Learning and Optimization Problem Setup
	Convex Problems
	Various Convex Learning/Optimization Problems
	Discussion

	Mirror Descent Methods
	The Mirror Descent Update
	Online Mirror Descent
	Stochastic Mirror Descent
	Mirror Descent for Offline Optimization
	Detailed Proofs
	Discussion

	Optimality of Mirror Descent for Online Convex Learning Problem
	Value of the Linear Game
	Value and Martingale Type
	Martingale Type and Uniform Convexity
	Main Result : Optimality of Online Mirror Descent
	Smooth Loss Case
	Uniformly Convex Loss Case

	Examples
	Example : p non-dual pairs
	Example : Non-dual Schatten norm pairs in finite dimensions
	Example : Non-dual group norm pairs in finite dimensions
	Example : Max Norm
	Example : Interpolation Norms

	Detailed Proofs
	Discussion

	Optimality of Mirror Descent for Statistical Convex Learning Problems
	Lower Bounds for Statistical Learning Rates
	Lower Bounds for Smooth Losses

	Optimal Rates and Rademacher Type
	Main Result : Optimality of Stochastic Mirror Descent
	Banach Lattices
	Decoupling Inequalities
	Optimality of Mirror Descent in Terms of Efficiency

	Examples
	Example : p non-dual pairs
	Example : Non-dual Schatten norm pairs in finite dimensions
	Example : Non-dual group norm pairs in finite dimensions
	Computational Efficiency Issues

	Detailed Proofs
	Discussion

	Optimality of Mirror Descent for Offline Convex Optimization
	Oracle-based Offline Convex Optimization
	Lower Bounding Oracle Complexity: Connections to Statistical Convex Learning
	Main Result : Optimality of Mirror Descent for Offline Convex Optimization
	Statistical Learning With Distributed Oracles
	Detailed Proofs
	Discussion

	Conclusion and Future Work
	Open Problems
	Online Optimization and Stability
	Upper Bounding Oracle Complexity in Terms of Fat-Shattering Dimension

	Further Directions
	Summary

	Bibliography
	Relating Various Complexity Measures : Statistical Learning
	The Refined Dudley Integral: Bounding Rademacher Complexity with L2 Covering Numbers
	Bounding L covering number by Fat-shattering Dimension
	Relating Fat-shattering Dimension and Rademacher complexity

