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Abstract

In the multi-view learning paradigm, the input
variable is partitioned into two different views X1

and X2 and there is a target variable Y of inter-
est. The underlying assumption is that either view
alone is sufficient to predict the target Y accu-
rately. This provides a natural semi-supervised
learning setting in which unlabeled data can be
used to eliminate hypothesis from either view,
whose predictions tend to disagree with predic-
tions based on the other view.

This work explicitly formalizes an information
theoretic, multi-view assumption and studies the
multi-view paradigm in the PAC style semi-
supervised framework of Balcan and Blum [2006].
Underlying the PAC style framework is that an in-
compatibility function is assumed to be known —
roughly speaking, this incompatibility function is
a means to score how good a function is based
on the unlabeled data alone. Here, we show how
to derive incompatibility functions for certain loss
functions of interest, so that minimizing this in-
compatibility over unlabeled data helps reduce ex-
pected loss on future test cases. In particular, we
show how the class of empirically successful co-
regularization algorithms fall into our framework
and provide performance bounds (using the results
in Rosenberg and Bartlett [2007], Farquhar et al.
[2005]).

We also provide a normative justification for
canonical correlation analysis (CCA) as a dimen-
sionality reduction technique. In particular, we
show (for strictly convex loss functions of the form
`(w·x, y)) that we can first use CCA as dimension-
ality reduction technique and (if the multi-view
assumption is satisfied) this projection does not
throw away much predictive information about the
target Y — the benefit being that subsequent learn-
ing with a labeled set need only work in this lower
dimensional space.

1 Introduction

The “multi-view” approach to learning has been receiving in-
creasing attention as a paradigm for semi-supervised learn-
ing. The implicit assumption is that either view alone has
sufficient information about the target Y . The basic intu-
ition as to why this assumption is helpful is that the complex-
ity of the learning problem could be reduced by eliminating
hypothesis from each view that tend not to agree with each
other, which, crucially, can be done using unlabeled data.

There are many natural applications for which this as-
sumption is applicable. For example, consider a setting
where it is easy to obtain pictures of objects from different
camera angles and say our supervised task is one of object
recognition. Intuitively, we can think of unlabeled data as
providing examples of viewpoint invariance. One can even
consider multi-modal views, e.g. identity recognition where
the task might be to identify a person with one view being a
video stream and the other an audio stream — each of these
views would be sufficient to determine the identity. In NLP,
an example would be a paired document corpus, consisting
of a document and its translation into another language, and
the supervised task could be predicting some high level prop-
erty of the document. The motivating example in Blum and
Mitchell [1998] is a web-page classification task, where one
view was the text in the page and the other was the hyper-link
structure.

This work explicitly formalizes a general information
theoretic multi-view assumption. Based on this assumption,
we seek to understand the reduction in label complexity from
using unlabeled data. There are two natural classes of algo-
rithms in the literature which can be considered multi-view
algorithms. These classes are the co-regularization algo-
rithms and algorithms based on CCA. For the former, we
analyze the co-regularization algorithms of Sindhwani et al.
[2005], Brefeld et al. [2006] (and the related SVM-2K al-
gorithm of Farquhar et al. [2005]) in a generalization of the
PAC style semi-supervised framework of Balcan and Blum
[2006]. Technically, this PAC model is for the 0/1 loss, but
we generalize the framework to arbitrary loss functions. For
the latter class of algorithms, we generalize the CCA results
in Kakade and Foster [2007] to show how CCA can be used
for dimensionality reduction, when dealing with convex loss
functions (under linear prediction). In the Discussion, we
present a practical answer to the open problem presented in
Balcan and Blum [2007] (presented at COLT 2007) using



co-regularization algorithms, under the theory of surrogate
loss functions [Bartlett et al., 2006], and we also discuss the
connection to the Information Bottleneck method of Tishby
et al. [1999].

In the remainder of the Introduction, we present our set-
ting and main information theoretic assumption, and then
summarize our contributions and related work.

1.1 A Multi-View Assumption
In the (multi-view) semi-supervised setting, we assume that
we have n labeled examples S = {(xi1, xi2, yi)}ni=1 and m
unlabeled examples U = {(xi1, xi2)}n+m

i=n+1, where yi ∈ Y
and xiv ∈ Xv for v ∈ {1, 2}, which are both sampled in an
i.i.d. manner from some unknown underlying joint distribu-
tion (typically m >> n). In particular, the joint underly-
ing distribution is over X1 × X2 × Y . As usual, the goal is
to predict Y , as measured with respect to some known loss
function.

Information theory provides the natural language to state
an assumption for multi-view learning. In particular, the con-
ditional mutual information I(A : B|C) (between random
outcomes A and B conditioned on C) measures how much
information is shared between A and B conditioned on al-
ready knowing C, which can be viewed as how much know-
ing A reduces our uncertainty of B, conditioned on already
knowing C. We now state our first main assumption.

Assumption 1 (Multi-View Assumption) There exists an
εinfo > 0 such that

I(Y : X2|X1) ≤ εinfo

and
I(Y : X1|X2) ≤ εinfo

Let us try to get an intuitive feel for this assumption. The
assumption states that (on average) if we already knew X1

then there is little more information that we could gain about
Y from learning X2 (and vice-versa) — this small potential
gain is quantified by εinfo. Hence, we can think of this as-
sumption as stating that bothX1 andX2 are (approximately)
redundant with regards to their information about Y .

Let us examine how the compatibility assumption made
in the co-training case [Blum and Mitchell, 1998], where
Y ∈ {0, 1}, is related to this assumption. Here, it was as-
sumed that a perfect prediction of Y is possible using the
knowledge of either view alone. This implies the above con-
ditions are satisfied with εinfo = 0, since conditioned on
either view, the target Y is already known (so there is no
possible reduction in uncertainty with knowledge from the
remaining view).

However, note that under this assumption, neither view
need accurately predict the target, just that they both carry
(roughly) the same information about the target. Hence, the
assumption is well suited to situations with noise. In fact,
even if εinfo = 0, there need not exist perfect predictions of
the target — though for this case we would expect that the
optimal predictions should perfectly agree (as they carry the
same information about Y ), a point which we return to.

The work in Blum and Mitchell [1998] also introduced
a further conditional independence assumption, which states

that X1 and X2 are independent conditioned on the knowl-
edge of Y . The work of Dasgupta et al. [2001], Abney
[2004] shows how unreasonably strong this extra assump-
tion is, with regards to classification. In our work, we make
no further assumptions on the underlying data distribution.

1.2 Co-Regularization
There is a recent class of algorithms which control model
complexity in the two view setting by co-regularizing [Sind-
hwani et al., 2005, Brefeld et al., 2006]. A related algorithm
is the two view SVM-2K algorithm of Farquhar et al. [2005].
These class of algorithms all have demonstrated empirical
successes. The question we seek to understand is how unla-
beled data improves the performance of these algorithms.

These co-regularization algorithms add an additional
regularizer which penalizes using functions from either view
which tend to disagree. The (kernelized) algorithm of Sind-
hwani et al. [2005], Brefeld et al. [2006] is to find two pre-
dictors f1 and f2 (where f1 : X1 → Y and f2 : X2 → Y)
which minimize the following co-regularized loss:

1
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(ÊS [`(f1(x1), y)] + ÊS [`(f2(x2), y)])

λ‖f1‖2K + λ‖f2‖2K + λcoÊU (f1(x1)− f2(x2))2 (1)

where ‖ · ‖K is a pre-specified norm over functions; ÊS and
ÊU are empirical averages with respect to the labeled and
unlabeled sets S and U , respectively; and ` is some convex
loss (such as the hinge loss or squared loss). The last term is
the co-regularizer. Note that if λco = 0 then this problem just
reduces to solving two independent (regularized) problems.
The SVM-2K algorithm of Farquhar et al. [2005] is simi-
lar — it essentially imposes an agreement constraint into the
SVM objective function, based on the L1 norm (which al-
lows for an efficient implementation).

Rosenberg and Bartlett [2007] provide generalization
bounds for co-regularization (using a co-regularizer that is
the square loss) in terms of Rademacher complexities. Far-
quhar et al. [2005] also provide generalization bounds (again
using Rademacher complexities) for the SVM-2K algorithm.
These bounds characterize how much the complexity class
of the hypothesis space decreases with the co-regularization.
We can view these bounds as characterizing how much the
variance of the algorithm decreases. In particular, as λco in-
creases, this has the effect of decreasing the variance (as a
harder constraint is being imposed). While these are valid
generalization bounds (which compare the empirical expec-
tation of a predictor to the true expectation), they do not
address the bias issue of how performance could decrease
as λco is increased too much. In particular, as λco is in-
creased, the algorithm is not as free to use certain hypoth-
esis (which we can think of as the bias). Roughly speaking,
these previous multi-view results quantify how model com-
plexity is reduced, but they do not specify why this is reason-
able to do. Hence, to understand how unlabeled data could
improve performance, we must characterize how much the
co-regularization effects this bias-variance trade-off.

We address these issues under the recent PAC framework
for semi-supervised learning of Balcan and Blum [2006] —
though we generalize the setting for arbitrary loss functions
(Balcan and Blum [2006] only considered the 0/1 loss).



Their framework assumes an incompatibility function — a
function which scores how good hypothesis are just based
on the underlying data distribution. They provide a gen-
eral framework for characterizing how such an incompati-
bility function can reduce the need for labeled samples. In-
tuitively, one can view the co-regularizer as an incompatibil-
ity function, as it is scoring hypothesis based on unlabeled
data — if a pair of hypothesis disagree strongly under the
co-regularizer it is unlikely that they would be good predic-
tors.

One of our main contributions for analyzing these co-
regularization algorithms is that we show how the incompati-
bility function is really a derived property of the loss function
— the incompatibility function needs to satisfy a rather mild
inverse Lipschitz condition. Under relatively general condi-
tions, incompatibility functions can be derived for many loss
functions of interest — we provide examples for the (regu-
larized) hinge loss, the square loss, for the 0/1 loss, and for
strictly convex losses. Interestingly (and rather subtly), our
incompatibility function for the 0/1 loss makes use of Tsy-
bakov’s noise condition.

We then explicitly use the Rademacher bounds in Rosen-
berg and Bartlett [2007], Farquhar et al. [2005] to pro-
vide performance bounds under the multi-view assumption.
These bounds characterize the bias-variance trade-off. We
explicitly quantify how to set the co-regularization parame-
ter λco in terms of εinfo, showing that an appropriate setting
of λco is O(1/

√
εinfo). In particular, this shows it is appro-

priate for λco → ∞ as εinfo → 0, i.e. when the information
theoretic assumption is as sharp as possible, we are permitted
to co-regularize as hard as possible (without introducing any
bias). For this case, the co-regularization algorithms obtain
their maximal reduction in variance.

1.3 Dimensionality Reduction

While PCA is the time-honoured and simplest dimensional-
ity reduction technique, there are few normative reasons as
to why this technique is appropriate. The typical justifica-
tion is that the top k principal directions are those which best
reconstruct the data, in a mean squared sense. One common
criticism of this oft used justification is that a rescaling of the
data could change the outcome of PCA.

Canonical Correlation Analysis (CCA) [Hotelling,
1935] — like PCA but for the two view setting — also serves
as a rather general and widely used dimensionality reduction
technique. Roughly speaking, it uses the cross-correlation
matrix between the two views to find the canonical direc-
tions — those directions which are most correlated (in a nor-
malized sense) between the views. As a dimensionality re-
duction procedure, one can take the top k CCA directions
which, roughly speaking, preserves the most correlated co-
ordinates. However, unlike PCA, CCA is invariant to linear
transformations of the data. (Under the linear transforma-
tion x1 → Lx1 and x2 → L′x2, the result of CCA does not
change. This is because CCA works in terms of normalized
correlation coefficients.) We define CCA more precisely in
Section 3.

In certain special cases, there are normative justifica-
tions for CCA as a dimensionality reduction technique.
When x1 and x2 are jointly distributed as a Gaussian, the

Gaussian Information Bottleneck method [Chechik et al.,
2005] shows that CCA provides an appropriate compression
scheme (under the Information Bottleneck criterion [Tishby
et al., 1999]). In a semi-supervised multi-view setting,
Kakade and Foster [2007] show that CCA provides the nat-
ural dimensionality reduction technique by which one can
project x onto a lower dimensional space (using CCA) and
yet still retain predictive information about y. However, this
work was rather specific to the square loss and used a multi-
view assumption tailored to the square loss.

This work provides a normative justification of CCA in
a rather broad sense — we generalize the work of Kakade
and Foster [2007]. We consider a setting where have a con-
vex loss function of the form `(w · x, y), where either the
loss function is strictly convex (e.g. log loss, square loss) or
we use a strictly convex regularizer (e.g. hinge loss with L2

regularization). We show that, under the multi-view assump-
tion above, if we perform CCA and project the data onto
to the top k canonical directions (where k is determined by
the canonical eigenspectrum), then this projection loses little
predictive information about Y . Hence, our subsequent su-
pervised learning problem is simpler as we can work with a
lower dimensional space (with the knowledge that we have
not thrown away useful predictive information in working
with this lower dimensional space). We state this precisely
in Section 3.

2 Co-Regularization and Compatibility
We now consider the PAC style semi-supervised framework
introduced in Balcan and Blum [2006] and generalize the
framework to general loss functions. We work with a pre-
diction space Ŷ that need not be equal to Y . The goal is to
learn a pair of predictors (f1, f2), where f1 : X1 → Ŷ and
f2 : X2 → Ŷ , based on the labeled and unlabeled data such
that the expected loss of any one of these predictors is small.
We work with loss functions (bounded in [0, 1]) of the form
`(f ; (x1, x2, y)) (usually the loss functions are of the more
restricted form `(f(x), y) though in some cases, e.g. Ex-
ample 4, this more general form is appropriate). Denote by
L(f1) the expected loss of f1, i.e. L(f1) = E`(f1; (x1, y)),
and L(f2) is similarly defined. Let F1 and F2 denote the
hypothesis classes of interest, consisting of functions from
X1 (and, respectively, X2 ) to the prediction space Ŷ . Let a
Bayes optimal predictor with respect to lossL based on input
X1, X2 be denoted by y∗(X1, X2). So y∗ ∈ argminf L(f),
where the argmin is over all functions. Similarly, let y∗v for
v ∈ {1, 2} be Bayes optimal predictors with respect to loss
function L based on input Xv .

2.1 Compatible Function Classes
As discussed in the Introduction, to leverage our informa-
tion theoretic assumption, we would like to say that a near
optimal predictor using information from one view tends to
agree with a near optimal predictor from another view. If this
were the case, then the intuitive basis for an algorithm would
be to find predictors from either view which tend to agree.
However, quantifying this statement depends on the details
of the loss function and the prediction space, since we need
to specify a relationship between a measure of “closeness”



of the loss function and a measure of agreement between hy-
pothesis. We do this in the following assumption, which can
be considered an inverse Lipschitz condition, which bounds
how close two functions are in terms of how close their loss
is.

Assumption 2 (Inverse Lipschitz Condition) There exists
a symmetric function d : Ŷ × Ŷ → R+ and a monotoni-
cally increasing non-negative function Φ on the reals (with
Φ(0) = 0) such that for all f ,

E[d(f(x), y∗(x))] ≤ Φ(L(f)− L(y∗))

where the expectation is with respect to x = (x1, x2), and
y∗ is some Bayes optimal predictor with respect to loss L.
Furthermore, for v ∈ 1, 2 and all fv ,

E[d(fv(x), y∗v(x))] ≤ Φ(L(fv)− L(y∗v))

where y∗v is a Bayes optimal predictor using only knowledge
of xv .

While we this assumption seems natural enough, we
should note that there some subtleties. For example, if we are
dealing with binary prediction and the 0/1 loss function (the
binary classification loss), consider the case where the target
function is complete noise. Here, all predictors are Bayes
optimal and have the maximal error rate of 0.5. Hence, pre-
dictors can be far from agreeing yet they are all optimal. In
general, for the 0/1 loss, the higher the noise, the less near-
optimal predictors need to agree. In the next Subsection, we
consider this case in more detail (in Example 2), and we also
consider other commonly used loss functions.

While it is natural to assume that d satisfies the triangle
inequality, there are some natural choices of d which do not
satisfy this. In particular, in some cases we would like to
use d(y, y′) = (y − y′)2, which does not satisfy the triangle
inequality. Hence, we only assume a relaxed version of the
triangle inequality.

Assumption 3 (Relaxed Triangle Inequality) For the
function d, there exists a cd ≥ 1 such that

∀ŷ1, ŷ2, ŷ3 ∈ Ŷ, d(ŷ1, ŷ2) ≤ cd(d(ŷ1, ŷ3) + d(ŷ3, ŷ2))

We now introduce the incompatibility framework of Bal-
can and Blum [2006] for the multi-view setting. Here, we
have a function χ : Ŷ × Ŷ → R+, which we think of as
scoring how incompatible two functions are. In particular,
in this framework, they desire to use functions which are
highly compatible. To formalize this, define the compatible
function class with respect to incompatibility function χ and
some t ≥ 0 as those pairs of functions which are compatible
to the tune of t, more precisely:

Cχ(t) = {(f1, f2) : f1 ∈ F1, f2 ∈ F2 andE[χ(f1, f2)] ≤ t}
where we are slightly abusing notation by referring to
χ(f, f ′) as meaning χ(f(x1, x2), f ′(x1, x2)), which we do
throughout.

In order to characterize how good this compatibility class
is, in terms of our multi-view assumption, we need to also
define the Bayes regret:

εbayes = max{L(f∗1 )− L(y∗1), L(f∗2 )− L(y∗2)}

where f∗v ∈ Fv is the optimal predictor for view v within the
hypothesis class Fv .

Our first result shows that for a particular choice of t, the
incompatibility class contains a good pair of hypothesis.

Theorem 1 (Bias) If Assumptions 1, 2, and 3 are satisfied,
then given a loss function ` bounded by 1 and if we set the
incompatibility function to be d, i.e. χ = d, then for t =
2c2d(Φ(

√
εinfo) + Φ(εbayes)), we have:

inf
(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

≤ L(y∗) + εbayes +
√
εinfo

(The proof is provided in the Appendix).
Of course, for convex loss functions we have

L( f1+f22 ) ≤ L(f1)+L(f2)
2 .

The need for stating the bound in terms of the Bayes
regret εbayes is due to our information theoretic Assump-
tion 1 not explicitly referring to any hypothesis classes F1

and F2. The square root dependence on εinfo is a result of
using Pinsker’s equality in the proof, which relates the L1

distance to the KL-distance (see Cover and Thomas [1991]).
Note that in Balcan and Blum [2006] they did not ex-

plicitly characterize the quality of the incompatibility class
— they assumed that χ was known and that a setting of
t was known such that Cχ(t) contained a ’good’ predictor.
Here, we derive our incompatibility function and we specify
a value t. Intuitively, this lemma characterizes the bias —
the reduction in performance — by using Cχ(t) instead of
the full hypothesis classes F1 and F2, in terms of the error
εinfo.

We now provide examples of pairs χ and Φ for com-
monly used loss functions, showing that our multi-view
framework is quite general.

2.2 Examples of Loss/Incompatibility Pairs

Example 1 (Squared Loss) Let Y, Ŷ = R. Consider the
loss function `(ŷ, y) = (y − ŷ)2. Here, we can choose the
incompatibility function χ(ŷ1, ŷ2) = d(ŷ1, ŷ2) = (ŷ1 − ŷ2)2
and Φ(x) = x. To see that this satisfies all the requisite
assumptions, note that since (a− b)2 ≤ 2(a2 + b2), we have
that χ satisfies the relaxed triangle inequality with cd = 2.
Also, since that y∗v = E[Y |Xv] and y∗ = E[Y |X1, X2], we
have:

E(fv − y∗v)2 = E(fv − y)2 − E(y∗v − y)2 ,

E(f − y∗)2 = E(f − y)2 − E(y∗ − y)2

so our inverse Lipschitz condition is satisfied with equality.

Example 2 (Zero-one Loss) Here, we have Y, Ŷ =
{1,−1} with `(ŷ, y) = 11{y 6=by}. As discussed in the pre-
vious Subsection, there is no natural choice of d and Φ for
this loss function, without further restrictions on the noise.
Hence, let us assume that Tsybakov’s noise condition [Tsy-
bakov, 2004] holds for each view independently and for both
views together for some noise exponent α ∈ (0, 1], which we
define below. Now we can choose the incompatibility func-
tion χ(ŷ1, ŷ2) = 11{by1 6=by2} with Φ(x) = cxα where c > 0
(defined below). Here, χ is in fact a metric and hence satis-
fies the triangle inequality.



To see that the choice of Φ is appropriate, first note that
by definition of Tsybakov’s noise condition, for all f1 : X1 →
Ŷ , f2 : X2 → Ŷ and f : X1 × X2 → Ŷ there exists c > 0
such that for v ∈ {1, 2}

Pr(f(Xv)(ηv(Xv)−
1
2

) ≤ 0) ≤ c(L(fv)− L(y∗v))α

and

Pr(f(X1, X2)(η(X)− 1
2

) ≤ 0) ≤ c(L(f)− L(y∗))α

where ηv and η stand for P (Y = 1|Xv) and P (Y =
1|X1, X2) respectively. Now since sign(η(X) − 1

2 )
is the Bayes optimal predictor, 11{f(X)(η(X)− 1

2 )≤0} =
11{f(X) 6=y∗(X)} = χ(f, y∗) and thus, under Tsybakov’s noise
condition, Assumption 2 is satisfied.

Example 3 (Strictly Convex Losses) Consider a loss
function `(ŷ, y) where, for each y, `(·, y) is strictly convex
with respect to pseudo-metric d with modulus of convexity δ
(defined below). Let the prediction space Ŷ and output space
Y be bounded a subset of R. Here, χ(ŷ1, ŷ2) = δ(d(ŷ1, ŷ2))
satisfies Assumption 2 with Φ(x) = x

2 (provided the modulus
of convexity function δ(ε) ≤ εp for some p > 0). In this
case it is easy to check that cd = 1 if p < 1 and cd = 2p−1

otherwise.

To see this, we first define modulus of convexity of the
loss function ` with respect to pseudometric d (in its first
parameter). We say that for a given y, `(·, y) has modulus of
convexity δ if,

δy(ε) = inf{`(ŷ, y) + `(ŷ′, y)
2

− `( ŷ + ŷ′

2
, y) : d(ŷ, ŷ′) ≥ ε}

where the inf is over ŷ, ŷ′ ∈ Ŷ . We actually want to work
with a uniform bound on this function and so we define δ to
be any function satisfying,

δ(ε) ≤ inf
y∈Y

δy(ε)

Now note that

L(fv) + L(y∗v)
2

− L(
fv + y∗v

2
) ≥ Eδ(d(fv, y∗v))

and

L(f) + L(y∗)
2

− L(
f + y∗

2
) ≥ Eδ(d(f, y∗))

Since L( fv+y
∗
v

2 ) ≥ L(y∗v) and L( f+y∗

2 ) ≥ L(y∗) we have
that,

E[χ(fv, y∗v)] = Eδ(d(fv, y∗v)) ≤ L(fv)− L(y∗v)
2

and

E[χ(f, y∗)] = Eδ(d(f, y∗)) ≤ L(f)− L(y∗)
2

which shows our choice of χ and Φ is appropriate.

Remark 1 It is worth noting that whenever Assumption 2
is satisfied with χ(ŷ1, ŷ2) = g(d(ŷ1, ŷ2)) where d is some
pseudo-metric and g is an invertible convex function then As-
sumption 2 is also with χ′ = d as the incompatibility func-
tion and Φχ′ = g−1(Φ). This is a simple consequence of
Jensen’s inequality.

Example 4 (L2 Regularized Losses ) Say we have some
loss function ` that is convex and Ŷ = R. Now consider
the regularized loss functional for a certain RKHS function
class F ,

`λ(f ;x, y) := `(f(x), y) + λ‖f‖2K (2)

Taking χ(ŷ1, ŷ2) = (ŷ1− ŷ2)2 we can show that Assumption
2 is satisfied for the regularized loss with Φ(x) = (K+λ)2

2λ x,
where K := supx∈X

√
K(x, x) (note that here we overload

the notation K, but it is clear from context).
To see this, define for f, f ′ ∈ F the metric

dλ,x(f, f ′) = |f(x)− f ′(x)|+ λ‖f − f ′‖K

One can show thatE[`λ(f)] is strictly convex with respect to
dλ,x (Steinwart and Scovel [2006], Lemma 6.4) with modu-
lus of convexity δ(ε) = λε2

(K+λ)2 . From this we see that

E[`λ(f ;x, y)]− E[`λ(f∗;x, y)]
2

≥ E[
`λ(f ;x, y) + `λ(f∗;x, y)

2
− `λ(

f + f∗

2
;x, y)]

≥ Eδ(d′λ,x(f, f∗))

≥ Eδ(|f(x)− f∗(x)|+ λ‖f − f∗‖)
≥ Eδ(|f(x)− f∗(x)|)

≥ λ

(K + λ)2
E(f(x)− f∗(x))2

Thus we see that for the regularized loss functional `λ the
squared incompatibility satisfies Assumption 2, with our
choice of Φ(x) = (K+λ)2

2λ x.

2.3 Convergence Bounds
We now characterize the sample complexity of an algorithm
which uses a labeled and unlabeled data set, sampled from
the underlying distribution. Our framework again parallels
that of Balcan and Blum [2006] — broadened to include
more general loss functions.

The basic algorithm we consider is identical to that in
Balcan and Blum [2006]. Given an unlabeled data set U , we
define the empirical compatibility class as:

Ĉχ(t) = {(f1, f2) : f1 ∈ F1, f2 ∈ F2 and ÊU [χ(f1, f2)] ≤ t}

where the empirical expectation is:

ÊU [χ(f1, f2)] =
1
m

∑
(x1,x2)∈U

χ(f1(x1), f2(x2)) .

The algorithm simply minimizes the average loss of predic-
tions over labeled data subject to the constraint of choosing



hypothesis from Ĉχ(t). More precisely, for a given t, the
algorithm simply chooses the best pair in this class:

(f̂1, f̂2) = argmin
f1,f2∈cCχ(t)

ÊS [`(f1(x1), y) + `(f2(x2), y)] (3)

The co-regularization algorithm can viewed as a dual ver-
sion of this algorithm, which we consider in the following
Subsection.

As we are dealing with abstract hypothesis classes, as
in Balcan and Blum [2006], we make an assumption about
the learning complexity with respect to these abstract hy-
pothesis class — we give examples shortly. This assump-
tion is stated in terms of both S and U , which allows us to
use data-dependent sample complexity bounds (such as the
Rademacher bounds), which is important in the next Subsec-
tion (for the analysis of the co-regularization algorithms and
SVM-2K).

Assumption 4 (Sample Complexity) For the hypothesis
classes F1 and F2,

Unlabeled: With probability greater than 1−δ over the i.i.d.
sampling of unlabeled data set U we have that ∀(f1, f2) ∈
F1 ×F2

Ê[χ(f1, f2)] ≤ E[χ(f1, f2)] +Gχ(F1 ×F2, U, δ)

where Gχ is some notion of the generalization of the
function class.

Labelled Case: For any given unlabeled data set U , with
probability greater than 1− δ over i.i.d sampling of labeled
data set S we have that for all pairs (f1, f2) ∈ Ĉχ(t),

|L(f1) + L(f2)− (L̂(f1) + L̂(f2))| ≤ G`(Ĉχ(t), S, δ)

whereG` is some notion of the generalization of the function
class.

We now provide some standard sample complexity
bounds.

Remark 2 (Examples of Gχ and G`) Assumption 4 is sat-
isfied in the following standard examples.
Finite Hypothesis Class: If the hypothesis classes are finite,
then using Chernoff and union bounds we have

Gχ(H, U, δ) = O

√ log(|H|) + log( 1
δ )

m


and Gχ = G`.

Finite VC Class: If the hypotheses map to [0, 1] and the VC
dimension is finite, then

Gχ(H, U, δ) = O

√V Cdim(H) + log( 1
δ )

m


and Gχ = G`.

Rademacher Bounds : For bounded loss and incompatibil-
ity functions, Rademacher bounds give us:

Gχ(H, U, δ) = O

(
R̂m(H) + 3

√
ln(2/δ)

2m

)
andGχ = G`. Here, R̂n(H) = 1

nEσ supf∈H
∑n
i=1 σif(xi)

where σi are Rademacher variables.

We are now ready to state our main result on the com-
plexity of our multi-view algorithm.

Theorem 2 Assume that the function ` is bounded by 1, the
incompatibility function χ = d and that Assumptions 1, 2, 3
and 4 hold. Set

t = 2c2d(Φ(
√
εinfo) + Φ(εbayes)) +Gχ(F1 ×F2, U, δ)

and let the pair (f̂1, f̂2) be the output of the algorithm (as
defined by Equation 3) with this setting of t. Then with prob-
ability greater than 1 − δ over an i.i.d sample of both the
labeled dataset S and unlabeled dataset U , we have

L(f̂1) + L(f̂2)
2

≤ L(y∗)+G`(Ĉχ(t), S, δ/3)

+ εbayes +
√
εinfo

(The proof is provided in the Appendix).
This statement is analogous to the main complexity state-

ments in the semi-supervised PAC framework of Balcan and
Blum [2006]. In particular, the unlabeled complexity Gχ
only alters the setting of t, just as in Balcan and Blum [2006].
The labeled complexity term, G`, appears as a penalization
to the bound, again as in the semi-supervised PAC frame-
work.

The main difference is that we now specify the value of t
to be used and compare ourselves to the Bayes optimal. Note
that in Balcan and Blum [2006], there is no explicit charac-
terization as to how much bias is introduced by using Cχ(t)
as opposed to using the unconstrained hypothesis space. The
information theoretic assumption is what allows us to make
this explicit characterization. The term

√
εinfo is the bias

introduced by using the constrained hypothesis space rather
than the unconstrained hypothesis space. The benefit is that
we could substantially reduce the variance. In particular, this
variance reduction is reflected by that the labeled complex-
ity term,G`, only depends on the restricted hypothesis space,
Ĉχ(t), rather than the full hypothesis space — the former of
which could have significantly less complexity.

We now show specific algorithms and analyses fit into
this framework.

2.4 Algorithms
We now provide bounds for co-regularization algorithms and
the SVM-2K algorithm of Farquhar et al. [2005]. For v ∈
{1, 2} let Fv be some RKHS with respect to norm ‖ · ‖K .
Define `λ as in Example 4, i.e.

`λ(f ;x, y) := `(f(x), y) + λ‖f‖2K (4)

where `(f(x), y) is convex. Define

Lλ(f) := E`λ(f ; (x1, x2, y)) .



Also let
f∗ = argmin

f
E[Lλ(f)]

where the argmin is over all functions (so f∗ is the Bayes
optimal predictor). By the Representer Theorem, f∗ lives in
the RKHS. This implies that εbayes = 0.

Throughout this section we overload notation by using
K := supx∈X

√
K(x, x) (when it is clear from context).

Co-Regularization (with squared incompatibility)
The original co-regularization algorithm introduced in Sind-
hwani et al. [2005] and also the co-regularized least squares
regression Brefeld et al. [2006] both minimize the objec-
tive in Equation 1. Recall that for the regularized con-
vex loss functions in Example 4, we already showed that
χ(f1(x1), f2(x2)) = (f1(x1) − f2(x2)2 satisfies Assump-
tion 2. Therefore we see that Theorem 2 justifies these
co-regularization algorithms under the information theoretic
Assumption 1.

Rosenberg and Bartlett [2007] provide an estimate for the
Rademacher complexity of kernel class for co-regularization
in a transductive type setting (i.e. conditioned on the unla-
beled data). The bound given is exactly of the form needed
in Assumption 4. The subtlety in using these complexity
bounds is that the co-regularization algorithms are a dual
formulation of our Algorithm (see Equation 3), the latter of
which imposes a hard agreement constraint. Hence, to pro-
vide a bound we need find an appropriate setting of the pa-
rameter λco. The following theorem does this.

Corollary 3 Assume we are working in the transductive set-
ting (where U is known and the underlying data distribution
is uniform over U ). Let Clip be the Lipschitz constant for
the loss. Let Kv

S×S , Kv
S×U and Kv

U×U stand for the kernel
matrix between labeled examples, between labeled and un-
labeled examples, and unlabeled and unlabeled samples for
view v ∈ {1, 2} respectively.

Given λ > 0, if we set λco = λ
4(K+λ)2

√
εinfo

then for

the pair of functions (f̂1, f̂2) ∈ F1 × F2 returned by the co-
regularization algorithm (Equation 1), with probability at
least 1− δ over labeled samples,

Lλ(
bf1+ bf2

2 ) ≤ Lλ(f∗) +
1√
n

2 + 3

√
ln( 2

δ )
2


+ 2CLipR̂n(Ĉχ( 1

λco
)) +

√
εinfo

Where,

R̂n(Ĉχ( 1
λco

)) ≤ R

n

R2 =λ−1tr(K1
S×S) + λ−1tr(K2

S×S)

− λ

4(K + λ)2
√
εinfo

tr(JT (I + λM)−1J)

J = λ−1K1
U×S−λ−1K2

U×S , M = λ−1K1
U×U−λ−1K2

U×U

(The proof is provided in the Appendix).
An important difference between our bounds and that

in Rosenberg and Bartlett [2007] is that the above bound

compares to the Bayes optimal predictor f∗, while Rosen-
berg and Bartlett [2007] only compare to the best function
in Ĉχ(t) (without any normative justification for how to set
the parameter t). Our comparison to f∗ leads to the addi-
tional penalty of

√
εinfo (and we specify a value of λco in the

bound).
Note that the appropriate setting of λco is O(1/

√
εinfo).

In particular, this shows it is appropriate for λco → ∞ as
εinfo → 0, i.e. when the information theoretic assumption
is as sharp as possible, we are permitted to co-regularize
as hard as possible (without introducing any bias). For this
case, the co-regularization algorithms obtain their maximal
reduction in variance.

To convert the above corollary to an inductive bound
(where U is a random sample) we need to establish an un-
labeled complexity statement of the kind in Assumption 4.
Note that if the prediction space is bounded then it can be
shown using covering number arguments (Zhang [2002])

that Gχ(F1 × F2, U, δ) will be c
√

log(1/δ)
m where c is some

constant (which depends of λco and K). Hence by setting

t = 2c2d(Φ(εbayes) + Φ(
√
εinfo)) + c

√
log(1/δ)

m we can get
the inductive statement required.

Two View SVM
The SVM-2K approach proposed by Farquhar et al. [2005]
can be formulated as the following optimization problem:

argmin
(f1,f2)∈F1×F2

1
2

(ÊS [`(f1(x1), y)] + ÊS [`(f2(x2), y)])

+ λ‖f1‖2K + λ‖f2‖2K + λcoÊU [|f1(x1)− f2(x2)|] (5)

where ` is the hinge loss. Technically, the formulation in
Farquhar et al. [2005] uses slack variables (more in line with
the usual SVM formulation), but the above formulation is
identical. 1

SVM-2K can be viewed as using the incompatibility
function χ(ŷ1, ŷ2) = |ŷ1 − ŷ2|. Recall that for regular-
ized convex loss functions in Example 4, we already showed
that (f1(x1) − f2(x2))2 satisfies Assumption 2. Hence us-
ing Remark 1 we see that this incompatibility function for
SVM-2K also satisfies Assumption 3 and 2 with cd = 1 and

φ(x) =
√

(K+λ)2

2λ x. Hence, we get the following Corollary.

Corollary 4 Assume we are working in the transductive set-
ting (where U is known and the underlying data distribu-
tion is uniform over U ). Given λ > 0, if we set and λco =√

λ
2(K+λ)2

√
εinfo

then with probability at least 1− δ over la-

beled samples, for the pair of functions (f̂1, f̂2) ∈ F1 × F2

returned by SVM-2K algorithm (Equation 5),

Lλ(
bf1+ bf2

2 ) ≤ Lλ(f∗) + 2R̂n(Ĉχ( 1
λco

)) + 3

√
ln( 2

δ )
2n

+
√
εinfo

where R̂n(Ĉχ( 1
λco

)) is the data-dependent Rademacher
complexity.

1Technically, the SVM-2K algorithm has a parameter ε which
allows a little more disagreement, but the algorithm we specify is
equivalent to the SVM-2K algorithm with ε = 0.



In particular, Farquhar et al. [2005] show how to upper
bound R̂n(Ĉχ(t)) as a solution to a particular optimization
problem. The proof is essentially identical to the previous
Corollary, and is not provided.

Again, the main extension in our work is that we compare
the algorithm’s performance to the loss of the Bayes optimal
predictor f∗, while Farquhar et al. [2005] only compares to
the best function in Ĉχ(t). Our comparison to f∗ leads to the
additional penalty of

√
εinfo (and we specify a value of t in

the bound).
The appropriate setting of λco is O(1/

√
εinfo) which

again shows that smaller εinfo gets, the harder we can co-
regularize.

3 Dimensionality Reduction and CCA
Consider a setting where X = X1×X2 is a real vector space
(of finite or countably infinite dimension). Here, we work
with linear predictors of the form wTx and convex losses
of form `(wTx, y) that satisfy Assumptions 2 and 3 with
respect to the squared incompatibility function. For exam-
ple, most strictly convex loss functions can be used with the
squared incompatibility function, including the square loss,
log loss, exponential loss, and L2 regularized losses. Let
L(w) = E[`(wTx, y)]. For simplicity, we work in the trans-
ductive setting — in particular, we only assume knowledge
of the second order statistics of the underlying data distribu-
tion (i.e. we know the covariance matrix of X ).

Assume that the loss function is twice differentiable and
that the second derivative of the loss function is bounded
from above by some constant C, that is

∀z d
2`(z, y)
dz2

≤ C (6)

Note that this assumption is satisfied for common strictly
convex losses.

Define canonical correlation analysis (CCA) as follows:

Definition 5 The bases B1, B2 for X1 and X2 is the canon-
ical basis for the two views if for (x1, x2) in this basis the
following holds:

1. Orthogonality Conditions: For v ∈ {1, 2}

E[(xv)i(xv)j ] =
{

1 if i = j
0 otherwise

2. Correlation Conditions:

E[(x1)i(x2)j ] =
{
γi if i = j
0 otherwise

where γi is the ith correlation coefficient. We assume without
loss of generality that 1 ≥ γ1 ≥ γ2 ≥ ... ≥ 0.

Now we present the main algorithm, which uses CCA as
a dimensionality reduction technique. Consider some thresh-
old, 0 < γthresh < 1. Let ithresh be the smallest i such that

γi < γthresh

First, project xv to the subspace spanned by the first
1, ..., ithresh canonical coordinates. Denote this projection

by Πcca(xv). Let β(v)
proj be the optimal linear predictor for

view v using only the projected Πcca(xv) as input.
We now show that the loss of performance due to this

projection is small if εinfo is small.

Theorem 6 Assume that Equation 6 holds, that Assump-
tion 1 is satisfied, and that Assumptions 2 and 3 hold with
respect to the squared incompatibility function. Then

L(β(v)
proj)− L(y∗v) ≤

4C
(
Φ(
√
εinfo) + Φ(εbayes)

)
1− γthresh

+ εbayes

where C satisfies Equation 6.

(The proof is provided in the Appendix).
In particular, if the cutoff, γthresh, is 1

2 , then makes the
1

1−γthresh
factor in the bound into 2.

Let us consider the implications for learning with a ran-
dom labeled data set S using Πcca(xv). Here, the a learn-
ing algorithm only needs to work with the coordinates which
have sufficiently large γi. Hence, the supervised learning
problem is simpler as we can work with a lower dimensional
space. This Theorem is analogous to the dimensionality re-
duction statements in Kakade and Foster [2007] — though
there the statements were restricted to the square loss (and a
multi-view assumption based on the square loss).

4 Discussion

An Open Problem from Balcan and Blum [2007]
This problem (presented at COLT 2007) is where we have the
0/1 loss, and it is assumed that classifiers from either view
can perfectly predict the data (so the best classifiers agree
completely on the unlabeled data). Furthermore, they as-
sume that the classifiers are linearly separable. The question
posed is can an efficient algorithm be found? A more general
and practically relevant question is this case but with noise,
which of course makes the problem harder. Here, the optimal
predictors (from either view) may not agree perfectly on the
unlabeled data. However, under Example 2, we know that
choosing d to be the 0/1 loss is a suitable discrepancy func-
tion (with Φ being defined in terms of the Tsybakov noise
exponent).

In practice, even in the single view case, one is rarely able
to directly minimize the 0/1 loss. Instead, what one actually
does is minimize a surrogate loss function, such as the hinge
loss, logistic loss, or exponential loss. Furthermore, through
the work of Bartlett et al. [2006], we have an understanding
of how minimizing these surrogate losses relate to the 0/1
loss.

In our framework, we are able to choose a discrepancy
functions tailored to our loss (as long as the discrepancy sat-
isfies Assumption 2). Hence, if we are using a surrogate loss
(for the 0/1 loss) then we should choose a incompatibility
function that satisfies Assumption 2 with respect to this sur-
rogate loss. We view both the co-regulation algorithms and
the SVM-2K algorithm as the solution to this problem, under
the theory of surrogate losses (where both these algorithms
are using the surrogate hinge loss).



4.1 Relations to the Information Bottleneck
We end with a note on the connection to the Information Bot-
tleneck method. In this method, the goal is to compress X1

to Z such that Z has maximum information about X2 — in
particular, Z is a compression of X1 that retains all the in-
formation that X1 has about X2, that is,

Z = argmin
A

I(A : X1)

s.t. I(A : X2) = I(X1 : X2)
where the argmin is over compression functions A of X1.

In the multi-view setting, if we find such a Z (with re-
spect to to X1 and X2), it can be shown that

I(Z : Y ) ≥ I(X1 : Y )− εinfo

This shows that Z looses little predictive information about
Y . In this sense, the Information Bottleneck is not throwing
much relevant information with regards to Y and can be used
as a semi-supervised algorithm.

In fact, using Lemma 7, one can show that for any loss
bounded by 1, the Bayes optimal predictor which uses only
knowledge of Z has a regret of at most

√
εinfo with respect to

the Bayes optimal predictor y∗. An interesting direction to
pursue is to learn with Z as inputs to our learning algorithm
rather than Xv , since Z has lower entropy. Two issues to
consider are: 1) the mapping Z has an abstract range (so one
needs to take care in how to learn a function from Z → Y )
and 2) it is not clear how to implement the Information Bot-
tleneck without knowledge of the underlying distribution.
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A Proofs
First we state two Lemmas that will be used in proving the
theorem.

Lemma 7 For v ∈ {1, 2}, if the loss function ` is bounded
by 1 then we have that

|L(y∗)−L(y∗v)| ≤
√
εinfo and |L(y∗1)−L(y∗2)| ≤ 2

√
εinfo



Proof: Consider some function g : X → [0, 1] and some
two probability measures P and Q. We have that

|
∫
g(x)dQ−

∫
g(x)dP | = |

∫
(1− β)g(x)dQ|

≤
∫
|1− β|dQ

≤
√
DK(Q‖P ) (7)

where β = dP
dQ and the last step is because the L1 varia-

tional distance is bounded by square root of the KL diver-
gence (Pinsker’s Inequality). Now using this we get that for
a fixed x1, x2 we have that

|EY |X1=x1`(y
∗(x1, x2), y)− EY |X=(x1,x2)`(y

∗(x1, x2), y)|

≤
√
DK(PY |X=(x1,x2)‖PY |X1=x1)

Taking expectation with respect to X = (X1, X2) and using
Jensen’s inequality twice (once on the left for convex func-
tion |x| and once on the right for concave function

√
x) we

get that

|EXEY |X1=x1`(y
∗(x1, x2), y)− L(y∗)|

≤
√
EXDK(PY |X=(x1,x2)‖PY |X1=x1)

Now note that since

L(y∗1) ≤ EXEY |X1=x1`(y
∗(x1, x2), y)

and L(y∗1) ≥ L(y∗), we get

|L(y∗1)− L(y∗)|

≤
√
EXDK(PY |X=(x1,x2)‖PY |X1=x1)

Also,

EXDK(PY |X=(x1,x2)‖PY |X1=x1) = IY :X2|X1

and so we have that

|L(y∗1)− L(y∗)| ≤
√
εinfo

similarly we have

|L(y∗2)− L(y∗)| ≤
√
εinfo

Also the above two inequalities together imply that

|L(y∗1)− L(y∗2)| ≤ 2
√
εinfo

Lemma 8 For any f1, f2 assume

L(f1)− L(y∗1) ≤ ε′, L(f2)− L(y∗1) ≤ ε′

then given Assumptions 1, 2 and 3 and that the loss function
is bounded by B, we have that

E[χ(f1, f2)] ≤ 2c2d(Φ(ε′) + Φ(
√
εinfo))

Proof: First note that by Assumptions 2 and 3 we have that
for f1 and f2 there exists y∗1 and y∗2 such that

E[χ(f1, y∗1)] ≤ Φ(L(f1)− L(y∗1)) and

E[χ(f2, y∗2)] ≤ Φ(L(f2)− L(y∗2))

and since Φ is monotonically increasing we have that

E[χ(f1, y∗1)] ≤ Φ(ε′) and

E[χ(f2, y∗2)] ≤ Φ(ε′)

Again by Assumptions 2 and 3 we have that for some
specific y∗,

E[χ(y∗1 , y
∗)] ≤ Φ(L(y∗1)− L(y∗)) ≤ Φ(

√
εinfo)

and

E[χ(y∗2 , y
∗)] ≤ Φ(L(y∗2)− L(y∗)) ≤ Φ(

√
εinfo)

Since χ satisfies the relaxed triangle inequality Assumption
3, we get that

E[χ(y∗2 , y
∗
1)] ≤ cdΦ(

√
εinfo)

Again using relaxed triangle inequality Assumption 3, we
get the required result that

E[χ(f1, f2)] ≤ c2d(E[χ(f1, y∗1)] + E[χ(y∗1 , y
∗
2)] + E[χ(f2, y∗2)])

≤ 2c2d(Φ(ε′) + Φ(
√
εinfo))

Proof:[of Theorem 1]
Using Lemma 8 we see that

E[χ(f∗1 , f
∗
2 )] ≤ 2c2d(Φ(εbayes) + Φ(

√
εinfo))

Therefore setting t = 2c2d(Φ(εbayes) + Φ(
√
εinfo)) we find

that (f∗1 , f
∗
2 ) ∈ Cχ(t) and thus,

(f∗1 , f
∗
2 ) = argmin

(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

Now by definition of εbayes we have that

min
fv∈Fv

L(fv)− L(y∗v) ≤ εbayes

Therefore,

min
(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

≤ L(y∗1) + L(y∗2)
2

+ εbayes

(8)
Now by Lemma 7 we see that for each v ∈ {1, 2}, L(y∗v) −
L(y∗) ≤ √εinfo . Hence using this in Equation (8) we con-
clude that

min
(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

≤ L(y∗) + εbayes +
√
εinfo

Proof:[of Theorem 2] Let (f∗1 cCo, f∗2 cCo) ∈ Ĉχ(t) be the min-
imizer of L(f1) + L(f2) in the class Ĉχ(t). Using statement
Assumption 4 (labeled) we have that with probability at least
1− δ over the sample S,

L̂(f∗1 cCo) + L̂(f∗2 cCo)− L(f∗1 cCo)− L(f∗2 cCo)
≤ G`(Ĉχ(t), S, δ)



Also for any (f1, f2) ∈ Ĉχ(t) we have that with probability
at least 1− δ over the sample S,

L(f1) + L(f2)− L̂(f1)− L̂(f2) ≤ G`(Ĉχ(t), S, δ)

Hence combining the two, for the pair (f̂1, f̂2) ∈ Ĉχ(t) that
minimizes L̂(f1) + L̂(f1) we have that with probability at
least 1− 2δ over the sample S,

L(f̂1) + L(f̂2)− L(f∗1 bcot)− L(f∗2 bcot)
≤ 2G`(Ĉχ(t), S, δ)

Now Let t′ = 2c2d(Φ(
√
εinfo) + Φ(εbayes)) then we see that

if (f1, f2) ∈ Cχ(t′) then,

E[χ(f1, f2)] ≤ t′

However applying Assumption 4 (unlabeled) we find that
with probability greater than1− δ over the unlabeled dataset
U we have that

Êχ(f1, f2) ≤ E[χ(f1, f2)] +Gχ(F1 ×F2, U, δ)

Thus we can conclude that with probability greater than 1−
δ over the i.i.d. unlabeled sample we have that (f1, f2) ∈
Ĉχ(t). Now using the above we see that with probability
1− δ over unlabeled data

min
(f1,f2)∈cCχ(t)

L(f1) + L(f2) = min
(f1,f2)∈Cχ(t′)

L(f1) + L(f2)

Hence using the result of Theorem 1 we can conclude that
with probability 1− 3δ over both labeled and unlabeled data
we have that

L(f̂1) + L(f̂2) ≤ 2L(y∗) + 2G`(Ĉχ(t), S, δ)
+ 2εbayes + 2

√
εinfo

Proof:[Proof of Corollary 3] First note that we can write
f1 ∈ F1 as (f1, 0) ∈ F1 × F2 and similarly we can define
any f2 ∈ F2 as (0, f2) ∈ F1 × F2 so that we can consider
only the joint RKHS defined by sum of f1 and f2. From Ex-
ample 4 we first of all have that for the regularized loss As-
sumption 2 is satisfied by the squared incompatibility (i.e..
χ(ŷ1, ŷ2) = (ŷ1 − ŷ2)2) function with Φ(x) = (K+λ)2

2λ x.
Also note that in this case εbayes = 0 since f∗ is in the
RKHS (in fact for the regularized loss to even be applicable
the function needs to live in the RKHS). Hence if we restrict
ourselves to the class Cχ(t) where t = 8(λ+K)2

√
εinfo

λ then
using Theorem 2, we see that we can get a low regularized
regret with respect to f∗. Now without loss of generality as-
sume that for the given loss ` we have that `(0, y) = 1. Then
using this in Equation 1 we see that,

λco ÊU [f1(x1)− f2(x2)]2 ≤ 1

and so using λco = 1
t we see that for any function pairs

(f1, f2) returned by the algorithm ÊU [χ(f1, f2)] ≤ t.
However since we are in the transductive setting
ÊU [χ(f1, f2)] = E[χ(f1, f2)]. Now we use the result
from Rosenberg and Bartlett [2007] to establish a statement

of the form Assumption 4 (labeled).

To this end define,

H(t) = {(f1, f2) : λ‖f1‖2 + λ‖f2‖2

+ λcoÊU (f1(x1)− f2(x2))2 ≤ 1}

Notice that the solution of the co-regularization algorithm is
contained in this class. Further as in Rosenberg and Bartlett
[2007] define J (t) = {x → f1(x1)+f2(x2)

2 : (f1, f2) ∈ H}.
Now we can directly use Theorem 2 of their paper (assuming
` is bounded by 1) to get that with probability at least 1 − δ
over labeled samples, for all (f1, f2) ∈ Ĉχ(t)

L(f1)+L(f2) ≤ L̂(f1) + L̂(f2)

+ 2CLipR̂n(J (t)) +
1√
n

(2 + 3

√
ln(2/δ)

2
) (9)

Where by Theorem 3 of Rosenberg and Bartlett [2007] we
find that

R̂n(J (t)) ≤ R

n
where

R2 =λ−1tr(K1
S×S) + λ−1tr(K2

S×S)

− λ

(λ+K)2t
tr(JT (I + λM)−1J)

and

J = λ−1K1
U×S−λ−1K2

U×S M = λ−1K1
U×U−λ−1K2

U×U

Now this establishes the Assumption 4 , labeled statement
we were aiming for.

Now putting the regularization term on both sides of the
inequality in Equation 9 we get that

E[`λ(f1, x1,y) + `λ(f2, x2, y)] ≤
Ê[`λ(f1, x1, y) + `λ(f2, x2, y)]

+ 4CLipR̂n(J (t)) +
1√
n

(2 + 3

√
ln(2/δ)

2
)

Now this is essentially the labeled statement in Assumption
4 and since we are in the transductive case we do not need
the unlabeled part of the assumption. Hence using Theorem
2 we see that with probability at least 1 − δ over labeled
samples for the pair f̂1, f̂A2 returned by co-regularization al-
gorithm,

E
`(f̂1x1, y) + `(f̂2, x2, y)

2
] ≤ E[`λ(f∗, x1, x2, y)]

+ 2CLipR̂n(J (t)) +
1√
n

(2 + 3

√
ln(2/δ)

2
) +
√
εinfo

Now using Jensen’s Inequality we see that the regularized
loss of the average predictor is bounded by average of regu-
larized loss of the predictors and hence the result.

Proof:[of Theorem 6] Without loss of generality we assume
we are in the CCA basis. For each v ∈ {1, 2} let β(v) be the



minimizer with respect to β of E[`(βTxv, y)]. From the re-
sult of Lemma 8 using the the squared incompatibility func-
tion (cd = 2 in this case) we have that

8Φ(
√
εinfo) + 8Φ(εbayes) ≥ E[(xT1 β

(1) − xT2 β(2))2]

=
∑
i

[(β(1)
i )2 + (β(2)

i )2 − 2γiβ
(1)
i β

(2)
i ]

≥
∑
i

[(1− γi)(β(1)
i )2 + (1− γi)(β(2)

i )2]

(the last step is due to the identity 2ab ≤ a2 + b2). Hence we
conclude that∑

i

(1− γi)(β(v)
i )2 ≤ 8Φ(

√
εinfo) + 8Φ(εbayes) (10)

Let β(v)
P be the projection of β(v) on to the first ithresh co-

ordinates. Consider a twice differentiable loss function. By
Taylor’s theorem (second order) we have that there exists
some β̃ such that

`(xTv β
(v)
P , y) = `(xTv β

(v), y) + (β(v)
P − β

(v))T∇`(βv)

+
1
2

(β(v)
P − β

(v))T∇2`(β̃Txv, y)(β(v)
P − β

(v))

Taking expectation and noting that since β(v) is the mini-
mizer of the expected loss we find that

L(β(v)
P )− L(β(v)) =

1
2

(β(v) − β(v)
P )TE[∇2`(β̃Txv, y)](β(v) − β(v)

P )

Let β(v)
res = β(v) − β(v)

P . Note that since (β(v)
P )i = (β(v))i

for all i’s corresponding to correlation values greater than
the threshold we see that β(v)

res is zero in the first ithresh co-
ordinates and is equal to β(v) on the rest. Now note that for
a loss function that is twice differentiable and a function of
β̃Txv we have that by chain rule

∇2`(β.xv, y) =
d2`(β̃Txv, y)

d(β̃Txv)
2 xvx

T
v

Now using the assumption that the second derivative of the
loss function is bounded by some C we then see that

L(β(v)
P )− L(β(v)) ≤ C

2
(β(v)
res)

TE[xvxTv ](β(v)
res)

Note that since we are in the CCA basis we have that
E[(xv)i(xv)j ] = 0 when i 6= j and is 1 otherwise. Now
note that for all i > itresh we have that 1− γi > 1− γthresh

and so,

L(β(v)
P )− L(β(v)) ≤ C

2
‖β(v)

res‖2

=
C

2

∑
i>ithresh

(β(v)
i )2

≤ C

2

∑
i>ithresh

1− γi
1− γthresh

(β(v)
i )2

≤ C

2(1− γthresh)

∑
i>ithresh

(1− γi)(β(v)
i )2

≤ C

2(1− γthresh)

∑
i

(1− γi)(β(v)
i )2

Hence using Equation 10 we can conclude that

L(β(v)
P )− L(β(v)) ≤

4C
(
Φ(
√
εinfo) + Φ(εbayes)

)
(1− γthresh)

Now since L(β(v)
P ) ≥ L(β(v)

proj) we conclude that

L(β(v)
proj)− L(β(v)) ≤

4C
(
Φ(
√
εinfo) + Φ(εbayes)

)
(1− γthresh)

Finally since L(β(v))−L(y∗v) ≤ εbayes we have the required
result.


