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Abstract

Recently regret bounds for online convex opti-
mization have been derived under very general
conditions. These results can be used also in
the stochastic batch setting by applying online-to-
batch conversions. In this paper we study whether
stochastic guarantees can be obtained more di-
rectly, namely using uniform convergence guaran-
tees. We discover a surprising and complex situa-
tion: although the stochastic convex optimization
problem is learnable (e.g. using online-to-batch
conversions), no uniform convergence holds in the
general case, and empirical minimization might
fail. Rather then being a difference between on-
line methods and a global minimization approach,
we show that the key ingredient is strong convexity
and regularization. Using stability arguments, we
prove that strongly convex problems are learnable
using empirical minimization. We then understand
how weakly convex problems can be learned using
regularization, and discuss how online algorithms
can also be understood in terms of regularization.

1 Introduction
We consider the stochastic convex minimization problem

argmin F'(w) (D)
wew

where F(w) = Ez [f(w; Z)] is the expectation, with re-
spect to Z, of a random objective that is convex in w. The
optimization is based on an i.i.d. sample 21, ..., 2, drawn
from an unknown distribution. The goal is to choose w
based on the sample and full knowledge of f(-,-) and W
S0 as to minimize F'(w). Alternatively, we can also think
of an unknown distribution over convex functions, where we
are given a sample of functions {w +— f(w;z;)} and would
like to optimize the expected function. A special case is the
familiar prediction setting where z = (x,y) is an instance-
label pair and, e.g., f(w;x,y) = £((w, ¢(x)),y) for some
convex loss function ¢ and feature mapping ¢.

The situation in which the stochastic dependence on w
is linear, as in the preceding example, is fairly well under-
stood. When the domain }V and the mapping ¢ are bounded,
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one can uniformly (over all w € W) bound the deviation
between the expected objective F'(w) and the empirical av-
erage

F(w) =E[f(w;z)] =1 Z f(w;2). )

This uniform convergence of F'(w) to F/(w) justifies choos-
ing the empirical minimizer

W = argmin F'(w), 3)

and guarantees that the expected value of F(W) converges
to the optimal value F(w*) = infy, F(w). Furthermore, a
similar guarantee can also be obtained for any approximate
minimizer of the empirical objective.

Our goal here is to consider the stochastic convex opti-
mization problem more broadly, without assuming any met-
ric or other structure on the parameter z or mappings of it, or
any special structure of the objective function f(+; -). Viewed
as optimization based on a sample of functions, we do not
impose any constraints on the functions, or the relation-
ship between the functions, except that each function w +—
f(w; 2) seperately is convex and Lipschitz-continuous.

An online analogue of this setting has recently received
considerable attention. Online convex optimization concerns
a sequence of convex functions f(-;21),..., f(*; 2, ), which
can be chosen by an adversary, and a sequence of online pre-
dictors w;, where w; can depend only on z1,...,2;_1. On-
line guarantees provide an upper bound on the online regret,
L5 f(wi;2;) —ming, 2 37, f(w; 2;). Note the difference
versus the stochastic setting, where we seek a single predic-
tor w and would like to bound the population sub-optimality
F(w) — F(w*).

Zinkevich [Zin03] showed that requiring f(w;z) be
Lipschitz-continuous w.r.t. w is enough for obtaining an
online algorithm with online regret which diminishes as
O(1/y/n). If f(w,z) is not merely convex w.r.t. w, but
also strongly convex, the regret bound can be improved to
O(1/n) [HKKAO6].

These online results parallel known results in the
stochastic setting, when the stochastic dependence on w is
linear. However, they apply also in a much broader set-
ting, when the dependence on w is not linear. E.g. when
f(w;z) = ||lw —z||, for p # 2. The requirement that the

functions w — f(w;z) be Lipschitz-continuous is much



more general than a specific requirement on the structure of
the functions, and does not at all constrain the relationship
between the functions. That is, we can think of z as param-
eterizing all possible Lipschitz-continuous convex functions
w — f(w;z). We note that this is quite different from the
work of von Luxburg and Bousquet [vLB04] who studied
learning with functions that are Lipschitz with respect to z.

The results for the online setting prompt us to ask
whether similar results, requiring only Lipschitz continuity,
can also be obtained for stochastic convex optimization. The
answer we discover is surprisingly complex.

Our first surprising observation is that requiring Lips-
chitz continuity is not enough for ensuring uniform conver-
gence of F'(w) to F(w), nor for the empirical minimizer
W to converge to an optimal solution. We present convex,
bounded, Lipschitz-continuous examples where even as the
sample size increases, the expected value of the empirical
minimizer w is bounded away from the population optimum:
F(w)=1/2>0=F(w").

In essentially all previously studied settings we are aware
of where learning or stochastic optimization is possible, we
have at least some form of locally uniform convergence, and
an empirical minimization approach is appropriate. In fact,
for common models of supervised learning, it is known that
uniform convergence is equivalent to stochastic optimization
being possible [ABCHO97]. This might lead us to think that
Lipschitz-continuity is not enough to make stochastic convex
optimization possible, even though it is enough to ensure on-
line convex optimization is possible.

However, this gap between the online and stochastic set-
ting cannot be, since it is possible to convert the online meth-
ods of Zinkevich and of Hazan et al to batch algorithms,
with matching guarantees on the population sub-optimality
F(w) — F(w*). These guarantees hold for the specific out-
put w of the algorithm, which is not, in general, the empirical
minimizer. It seems, then, that we are in a strange situation
where stochastic optimization is possible, but only using a
specific (online) algorithm, rather than the more natural em-
pirical minimizer.

We show that the “magic” can be understood not as a
gap between online optimization and empirical minimiza-
tion, but rather in terms of regularization.

To do so, we first show that for a strongly convex stochas-
tic optimization problem, even though we might still have
no uniform convergence, the empirical minimizer is guar-
anteed to converge to the population optimum. This results
seems to defy Vapnik’s celebrated result on the equivalence
of uniform convergence and strict consistency of the empir-
ical minimizer [Vap95, Vap98]. We explain why there is no
contradiction here: Vapnik’s notion of “strict consistency” is
too strict and does not capture all situations in which learning
is non-trivial, yet still possible.

Convergence of the empirical minimizer to the pop-
ulation optimum for strongly convex objectives justifies
stochastic convex optimization of weakly convex Lipschitz-
continuous functions using regularized empirical minimiza-
tion. In fact, we discuss how Zinkevich’s algorithm can also
be understood in terms of minimizing an implicit regularized
problem.

2 Setup and Background

A stochastic convex optimization problem is specified by a
convex domain W, which in this paper we always take to
be a compact subset of a Hilbert space H, and a function
f W x Z — R which is convex w.r.t. its first argument.

o We say that the problem is learnable (or “solvable’)
iff there exists a rule for choosing w based on an
ii.d. sample 21, . .., z,, and complete knowledge of VW
and f(-; ), such that for any 6 > 0, any € > 0, and large
enough sample size n, for any distribution over z, with
probability at least 1 — § over a sample of size n, we
have F(w) < F(w*) + e. We say that such a rule is
uniformly consistent, or that it “solves” the stochastic
optimization problem.

e We say that the problem is bounded by B iff for all
w € W we have ||w|| < B.

e We say that the problem is L-Lipschitz if f(w; z) is L-
Lipschitz w.r.t. w. Thatis, for any z € Z and w1, wg €
W we have

|f(wi;2) = f(we;2)| < L [[wy — wal|.

e We say that the problem A-strongly convex if for any
z € Z,wi,ws € Wand « € 0,1] we have

flawi+(1—a)wo; 2) < af(wr; 2)+H(1—a) f(wa; 2)
A 2
—ga(l —a)[wy —waf” .

Note that this strengthens the convexity requirement,
which corresponds to setting A = 0.

2.1 Generalized Linear Stochastic Optimization

We say that a problem is a generalized linear problem if
f(w; 2) can be written as

f(w;2) = g((w, ¢(2)); 2) + 7(w) S
where g : R x Z — R is convex w.r.t. its first argument,
r: W — Risconvex, and ¢ : Z — H. A special case
is supervised learning of a linear predictor with a convex
loss function, where g(+; -) encodes the loss function. Learn-
ability results for linear predictors can in-fact be stated more
generally as guarantees on stochastic optimization of gener-
alized linear problems:

Theorem 1. Consider a generalized linear stochastic convex
optimization problem of the form (4), such that the domain
W is bounded by B, the image of ¢ is bounded by R and
g(w; z) is Ly-Lipschitz in u. Then for any distribution over z
and any § > 0, with probability at least 1 — § over a sample
of size n:

sup |F(w) — F(W>‘ < O(\/B2(RL9)210g(1/6))

wew n

That is, the empirical values F'(w) converge uniformly,
for all w € W, to their expectations F'(w). This ensures that
with probability at least 1 — 4, for all w € W:

F(w) — F(w*) < (F(w) — F(W))
+O<\/B2(RLQ)210g(1/5)> )

n



The empirical suboptimality term on the right-hand-side van-
ishes for the empirical minimizer W, establishing that empir-
ical minimization solves the stochastic optimization problem
with a rate of 1/n. Furthermore, (5) allows us to bound the
population suboptimality in terms of the empirical subopti-
mality and obtain meaningful guarantees even for approxi-
mate empirical minimizers.

The non-stochastic term r(w) does not play a role in the
above bound, as it can always be canceled out. However,
when this terms is strongly-convex (e.g. when it is a squared-
norm regularization term, r(w) = [w||®), a faster conver-
gence rate can be guaranteed:

Theorem 2. [SSS08] Consider a generalized linear stochas-
tic convex optimization problem of the form (4), such that
r(w) is A-strongly convex, the image of ¢ is bounded by R
and g(u; z) is Lg-Lipschitz in u. Then for any distribution
over z and any § > 0, with probability at least 1 — § over a
sample of size n, for allw € W:

F(w)—F(w*) < 2(F(w)—ﬁ(m)+o(mg)£g(1/‘”>

2.2 Online Convex Optimization

Zinkevich [Zin03] established that Lipschitz continuity and
convexity of the objective functions with respect to the opti-
mization argument are sufficient for online optimization':

Theorem 3. [Sha07, Corollary 1] Let f : W x Z — R be
such that W is bounded by B and f(w, z) is convex and L-
Lipschitz with respect to w. Then, there exists an online al-
gorithm such that for any sequence z1, . .., zy, the sequence
of online vectors w1, . .., W, satisfies:

LS s < L8 s vo(EE)

Subsequently, Hazan et al [HKKAO06] showed that a
faster rate can be obtained when the objective functions are
not only convex, but also strongly convex:

Theorem 4. [HKKAQ6, Theorem 1] Let f : W x Z — R
be such that function f(w,z) is A-strongly convex and L-
Lipschitz with respect to w. Then, there exists an online al-
gorithm such that for any sequence z1, . .., zy the sequence
of online vectors w1, . .., W, satisfies:

1 _ 1 . L? log(n)
I S R e .

Online-to-batch conversions

In this paper, we are not interested in the online setting,
but rather in the batch stochastic optimization setting, where
we would like to obtain a single predictor w with low ex-
pected value over future examples F(w) = E, [f(W;2)].

'We present here slightly more general Theorem statements
than those found in the original papers [Zin03, HKKAO06]. We do
not require differentiability, and instead of bounding the gradient
and the Hessian we bound the Lipschitz constant and the parameter
of strong convexity. The bound in Theorem 3 is also a bit tighter.

Using martingale inequalities, it is possible to convert an on-
line algorithm to a batch algorithm with a stochastic guaran-
tee. One simple way to do so is to run the online algorithm
on the stochastic sequence of functions f(-, 21),..., f(, zn)
and set the single predictor w to be the average of the on-
line choices w1, ..., w,. Assuming the conditions of Theo-
rem 3, it is possible to show (e.g. [CCGO04]) that with proba-
bility of at least 1 — § we have

F(W) - F(w") < o( W) )

It is also possible to derive a similar guarantee assuming the
conditions of Theorem 4 [KTO08]:

F(w) — F(w") < o(L2 ljgén/‘”). ®)

The conditions for Theorem 3 generalize those of The-
orem 1 when r(w) = 0: If f(w;z) = g({w,¢(z))) sat-
isfies the conditions of Theorem 1 then it also satisfies the
conditions of Theorem 3 with L = L, R and the bound on
the population sub-optimality of w given in (7) matches the
guarantee on w using Theorem 1. Similarly, the conditions
of Theorem 4 roughly generalize those of Theorem 2 with
L = RL4 + L, and the guarantees are similar (except for
a log-factor, and as long as L, = O(RLy)). It is important
to note, however, that the guarantees (7) and (8) do not sub-
sume Theorems 1 and 2, as the online-to-batch guarantees
apply only to a specific choice w which is defined in terms
of the behavior of a specific algorithm. They do not provide
guarantees on the empirical minimizer, and certainly not a
uniform guarantee in terms of the empirical sub-optimality.

3  Warm-Up: Finite Dimensional Case

We begin by noting that in the finite dimensional case, Lips-
chitz continuity is enough to gurantee uniform convergence,
hence also learnability via empirical minimization.

Theorem 5. Let W C RY be bounded by B and let f(w, z)
be L-Lipschitz w.r.t. w. Then with probability of at least 1 —¢
over a sample of size n, for all w € W:

L2B2dlog(n)log(4)
n

’F(w) - F(w)‘ <0 \/

Proof. We will show uniform convergence by bounding
the (.,-covering number of the class of functions F =
{z — f(w;z)lw € W}. To do so, we first note that as a
subset of an /5-sphere, we can bound the covering number
of W with respet to the Euclidean distance do(wq,wsy) =
[|lw1 — wa|| [VGO5]: (for d > 3)

N(e, W, dz) = O(d* (£)") )

We now turn to covering numbers of F with re-
spect to the ¢, distance doo(f(W1;:), f(we;:)) =
sup, |f(wy;2) — f(wa; 2)|. By Lipschitz continuity, for
any wi,wo € W we have sup, |f(wq;2) — f(wo;2)] <



L ||wy — wa||. An e-covering of W w.r.t. do therefore yields
an Le-covering of F w.r.t. d., distances, and so:

N(e, F,dos) < N(e/LW, dy) = (9(d2 (%)d) (10)

Noting the the empirical ¢; covering number is bounded by
the d, covering number, and using a uniform bound in terms
of empirical ¢; covering numbers we get [Pol84]:

Pr(vilelgv‘F(w —ﬁ'(w)’ > €)

2
< 8N (6, F, doo) exp(— 125 7)

LB\" 2
<o(a (€> exp(~357))-

Equating the right-hand-side to § and bounding € we get the
bound in the Theorem. O

We can therefore conclude that empirical minimization
is uniformly consistent with the same rate as in Theorem 5:

F(W) < F(w") + 0 \/ L

n

with probability at least 1 —§ over a sample of size n. This is
the standard approach for establishing learnability. We now
turn to ask whether such an approach can also be taken in the
infinite dimensional case, i.e. yielding a bound that does not
depend on the dimensionality.

4 Learnable, but not with Empirical
Minimizer
The results of the previous Sections suggest that perhaps
Lipschitz continuity is enough for obtaining guarantees on
stochastic convex optimization using a more direct approach,
even in infinite dimensions. In particular, that perhaps Lips-
chitz continuity is enough for ensuring uniform convergence,
which in turn would imply learnability using empirical mini-
mization, as in the infinite dimensional linear case, the finite
dimensional Lipschitz case, and in essentially all studied sce-
narios of stochastic optimization that we are aware of. En-
suring uniform convergence would further enables us to use
approximate empirical minimizers, and bound the stochastic
sub-optimality of any vector w in terms of its empirical sub-
optimality, rather than obtaining a guarantee on the stochas-
tic sub-optimality of only one specific procedural choice (ob-
tained from running the online learning algorithm).
Unfortunately, this is not the case. Despite the fact that a
bounded, Lipschitz-continuous, stochastic convex optimiza-
tion problem is learnable even in infinite dimensions, as dis-
cussed in Section 2.2, we show here that uniform conver-
gence does not hold and that it might not be learnable with
empirical minimization.

4.1 Empirical Minimizer far from Population Optimal

Consider a convex stochastic optimization problem given by:

fon (w5 = [Ja* (w —x)||

\/Z a?[i] x[i])> (12

where for now we will set the domain to the d-dimensional
unit sphere W = {weR?: ||w| <1} and take z =
(x,a) with a € [0, 1] and x € W, and where u * v denotes
an element-wise product. We will first consider a sequence
of problems, where d = 2" for any sample size n, and es-
tbalish that we cannot expect a convergence rate which is
independent of the dimensionality d. We then formalize this
example in infinite dimensions.

One can think of the problem (12) as that of finding the
“center” of an unknown distribution over x € R?, where we
also have stochastic per-coordinate “confidence” measures
ali]. We will actually focus on the case where some coordi-
nates are missing, i.e. occasionally a[i] = 0.

In any case the domain WV is bounded by one, and for
any z = (x,«) the function w — f;,(w; z) is convex and
1-Lipschitz. Thus, the conditions of Theorem 3 hold, and
the convex stochastic optimization problem is learnable by
running Zinkevich’s online algorithm and taking an average.

Consider the following distribution over Z = (X, «):
X = 0 with probability one, and « is uniform over {0, 1}<.
That is, «[é] are i.i.d. uniform Bernoulli. For a random
sample (x1,1),...,(Xn,a,) we have that with probabil-
ity greater than 1 — e~! > 0.63, there exists a coordinate
J € 1...2" such that all confidence vectors «; in the sample
are zero on the coordinate j, i.e. a;[j] = 0 foralli = 1..n.
Let e; € W be the standard basis vector corresponding to
this coordinate. Then

1 .
Fin (e;) = Z i = EZ i [j]| = 0

but

Fiy(e;) = Ex.o[lax (ej = 0)[]] = Ex,q [la[j]|] = 1/2.

We established that for any n, we can construct a con-
vex Lipschitz-continuous objective in high enough dimen-
sion such that with probability at least 0.63 over the sample,

Supy, |Flp(w) — Fm)(w)’ > 1/2. Furthermore, since f(-;-)

is non-negative, we have that e; is an empirical minimizer,
but its expected value F,,(e;) = 1/2 is far from the optimal
expected value miny, F,,,(w) = F,,(0) = 0.

4.2 In Infinite Dimensions: Population Minimizer Does
Not Converge to Population Optimum

To formalize the example in a sample-size independent way,
take YV to be the unit sphere of an infinite-dimensional
Hilbert space with orthonormal basis ej, es, ..., where for
v € W, we refer to its coordinates v[j] = (v, e;) w.r.t this
basis. The confidences « are now a mapping of each coordi-
nate to [0, 1]. That is, an infinite sequence of reals in [0, 1].
The element-wise product operation a * v is defined with re-
spect to this basis and the objective function f, of equation
(12) is well defined in this infinite-dimensional space.

We again take a distribution over Z = (X, «) where
X = 0 and « is an i.i.d. sequence of uniform Bernoulli
random variables. Now, for any finite sample there is al-
most surely a coordinate j with «;[j] = 0 for all 4, and so

we a.s. have an empirical minimizer F“z)(ej) = 0 with
Fi(ej) =1/2> 0 = Fy;, (0).



We see that although the stochastic convex optimization
problem (12) is learnable (using Zinkevich’s online algo-
rithm), the empirical values F}, (w) do not converge uni-
formly to their expectations, and empirical minimization is
not guaranteed to solve the problem!

4.3 Unique Empirical Minimizer Does Not Converge to
Population Optimum

It is also possible to construct a sharper counterexample, in
which the unique empirical minimizer W is far from having
optimal expected value. To do so, we augment f,;, by a small
term which ensures its empirical minimizer is unique, and far
from the origin. Consider:

Fon(ws (%, @) = fun(ws (x, @ +eZ2 2 (13)

where € = 0.01. The objective is still convex and (1 + €)-
Lipschitz. Furthermore, since the additional term is strictly
convex, we have that f,,; (w; 2) is strictly convex w.r.t. w and
so the empirical minimizer is unique.

Consider the same distribution over Z: X = 0 while
afi] are ii.d. uniform zero or one. The empirical mini-
mizer is the minimizer of £}, (w) subject to the constraints
|[w| < 1. Identifying the solution to this constrained op-
timization problem is tricky, but fortunately not necessary.
It is enough to show that the optimum of the unconstrained
optimization problem w. = arg min F},, (w) (without con-
straining w € W) has norm ||w}.|| > 1. Notice that in the
unconstrained problem, whenever «;[j] = 0 forall i = 1..n,
only the second term of f; depends on w[j] and we have
wi.[j] = 1. Since this happens a.s. for some coordinate
7, we can conclude that the solution to the constrained op-
timization problem lies on the boundary of W, i.e. has

W] = 1. But for such a solution we have F;(w) >
T o 194

Eq [v/3; ofIW2[l) 2 Ea [, afilw?[i]] = § [w]* = 5.

while F(w*) < F(0) = e.

In conclusion, no matter how big the sample size is, the
unique empirical minimizer w of the stochastic convex opti-
mization problem (13) is a.s. much worse than the population
optimum, F(W) > 1 > ¢ > F(w*), and certainly does not
converge to it.

S Empirical Minimization of a Strongly
Convex Objective

We saw that empirical minimization is not adequate for
stochastic convex optimization even if the objective is
Lipschitz-continuous. We will now show that, if the objec-
tive f(w; z) is strongly convex w.r.t. w, the empirical mini-
mizer does converge to the optimum. This is despite the fact
that even in the strongly convex case, we still might not have

uniform convergence of F'(w) to F(w).

5.1 Empirical Minimizer converges to Population
Optimum

Theorem 6. Consider a stochastic convex optimization
problem such that f(w;z) is A-strongly convex and L-
Lipschitz with respect to w € W. Let z1,...,2, be an

i.i.d. sample and let W be the empirical minimizer. Then,
with probability at least 1 — § over the sample we have
F(w) ~ Fw?) < 22
w) — F(w .
~ dAn
Proof. We use a stability argument to prove the Theorem.
Denote

(14)

FO(w) Z f(w,z) + f(w,z)
J#i
the empirical average with z; replaced by an independently
and identically drawn z, and consider its minimizer:

(@) — in @
W arg min (w).

We first use strong convexity and Lipschitz-continuity to es-
tablish that empirical minimization is stable in the following
sense:

vzl,...,Zn,Z;',ZEZ f(VAV,Z)—f(VAV(Z),Z)‘Sﬁn
(15)
with 3, = QAL (this is refered to as “CV (Replacement)
Stability” [RMPO5] and is similar to “uniform stability”
[BEO2]). We then show that (15) implies convergence of
F(w) to F(w*).
Claim 6.1. Under the COnditions of Theorem 6, the stability
bound (15) holds with 3,, = /\

.
Proof We first calculate:

F(w) — F(w)

_ f(w(i)azi> — f(W,2) n Ej;éi (f("AV(i)yzi) - f(VAV7Zz‘))
f(VAV(i)a zz) — f(w, Zi) f(vAV’ z;) - f(VAV(i)a Z;)

= -
n n

n ( FO (@) — p) (W))

[f(W W, 2i) = f(W,2)] L 2) - F, )]
n n

W) — W’

2L
<=

n

(16)

where the first inequality follows from the fact that w(?) is
the minimizer of F’(i)(w) and for the second inequality we
use Lipschitz continuity. But from strong convexity of F'(w)
and the fact that w minimizes F'(w) we also have that

~ . N . 2
Pw®) > F(w) + 2 H\fv“) - wH . (17)

Combining (17) with (16) we get || W) — W (An).

Finally from Lipschitz continuity, for any z € Z:
o o (i 4L?
FOw,2) = fW,2)) < 55

Claim 6.2. If the stability bound (15) holds, then for any
& > 0, with probability 1 — § over the sample,

Fw) - Fw) < 2 (8)

A similar claim that is not specific to W, but yields only

aq/Bn+ % rate appears in [RMPOS, Theorem 4.4].



Proof: Since the samples with z; and with 2/ are identi-
cally distributed, and z; is independent of z}, we have:

E[F(w)] = E[F(%)] = E | f(%; )]

where the expectation is over 21, . .
all 7, and so we can also write:

. Zn, #;. This holds for

Mﬂ@b%ﬁﬁh@%m] (19)

We also have:

. A 1 n . 1 n A
E[F(w)| =E l” > I z)‘| =~ Y E/(Wiz)
1=1 1=1 (20)
Combining (19) and (20) and using (15) yields?:

E [F(ﬁr) - F(W)} - izn:E [f(w@, z) — f(W; zi)} < Bn

We also have that E [F(w*)] = E [F(W*)] > E [ﬁ'(vv)}
where the equality is just equating an expectation to an ex-

pectation of an average, and the inequality follows from op-
timality of w. We can therefore conclude:

E[F(W) ~ F(w")] <E |F(W) - F(W)| < 8, @D
Using Markov’s inequality yields (18). O

We do not know if the dependence on § in the above
bound can be improved to log(1/4), matching the online-
to-batch guarantee (8). Bousquet and Elisseeff [BE02] do
provide arguments for a bound with a log(1/6) dependence,
but unfortunately, their approach can only yield a bound of
o) log(1/9)

- ) which is much worse than Theorem 6 and

equation 8 in terms of the dependence on n.

5.2 But Without Uniform Convergence!

‘We now turn to ask whether the convergence of the empirical
minimizer in this case is a result of uniform convergence.

Consider augmenting the objective function f,;,) of Sec-
tion 4 with a strongly convex term:

A2

for(Wix, ) = fin (Wi x, @) + 5 [[wil”. (22)

The modified objective f,(-;-) is A-strongly convex and

(1 4+ X)-Lipschitz over the domain W = {w: ||w| <1}
and thus satisfies the conditions of Theorem 6.

Consider the same distribution over Z = (X, «) used in
Section 4: X = 0 and « is an i.i.d. sequence of uniform
zero/one Bernoulli variables. Recall that almost surely we
have a coordinate j that is never “observed”, i.e. such that
V;a;[j] = 0. Consider a vector te; of magnitude 0 < ¢ <1

in the direction of this coordinate. We have that Fm)(tej) =
%/t2 but F, (te;) = 2t+ 312 Hence Fy, (te;) — L (te;) =
t/2.

2This is a modification of a derivation extracted from the proof
of Theorem 12 in [BE02]

In particular, we can set ¢ = 1 and establish
SUPw ey (Fon (W) — Fiop (W) > 3 regardless of the sample

size. We see then that the empirical averages Fm)(w) do not
converge uniformly to their expectations, even as the sample
size increases.

5.3 Not Even Local Uniform Convergence

For any € > 0, consider limiting our attention only to predic-
tors that are close to being population optimal:

We = {W eEW: E:z)(w) S EZZ)(W*) + E} .

Setting ¢ = € we have te; € W, (focusing for convenience
on A < 1) and so:

sup (F(W) — Fip(w)) > %52 (23)

weW,

regardless of the sample size. And so, even in an arbitrar-
ily small neighborhood of the optimum, the empirical values
ﬁ}zz)(w) do not converge uniformly to their expected values
even as n — oo. This is in sharp contrast to essentially all
other results on stochastic optimization and learning that we

are aware of.

5.4 Bounding Population Sub-Optimality in term of
Empirical Sub-Optimality

A practical question related to uniform convergence is
whether we can obtain a uniform bound on the population
sub-optimality in terms of the empirical sub-optimality, as
in Theorem 2. We first note that merely due to the fact that
the empirical objective Fis strongly convex, any approxi-
mate empirical minimizer must be close to w, and due to
the fact that the expected objective F'is Lipschitz-continuous
any vector close to w cannot have a much worse value than
w. We therefore have, under the conditions of Theorem 6,
that with probability at least 1 — 4, for all w € W:

Fw) — F(w) < 252 Ew) — Biw) + 5o

It is important to emphasize that this is an immediate con-
sequence of (14) and does not involve any further stochastic

properties of ' nor F'. Although this uniform inequality does
allow us to bound the population sub-optimality in terms
of the empirical sub-optimality, the empirical sub-optimality
must be quadratic in the desired population sub-optimality.
Compare this dependence with the more favorable linear de-
pendence of Theorem 2. Unfortunately, as we show next,
this is the best that can be ensured.

Consider the objective f,,, and the same distribution over
Z = (X, a) discussed above and recall that te; is a vector of
magnitude ¢ along a coordinate j s.t. V;a;[j] = 0. We have
that Fy, (tej) — Fip(W) = 212 and so setting t = +/2¢/X,
we get an e-empirical-suboptimal vector with population
sub-optimality Fi,, (te;) — Fix,(0) = 1t + 312 = \ /35 + e
This establishes that the dependence on \/§ in the first term
of (24) is tight, and the situation is qualitatively different than
the generalized linear case.

(24)



5.5 Contradiction to Vapnik?

At this point, a reader familiar with Vapnik’s work on nec-
essary and sufficient conditions for consistency of empirical
minimization (i.e. conditions for F(w) — F'(w*)) might be
confused.

In seeking such necessary and sufficient conditions
[Vap98, Chapter 3], Vapnik excludes certain consistent set-
tings where the consistency is so-called “trivial”’. The main
example of an excluded setting is one in which there is one
hypothesis w” that dominates all others, i.e. f(w%2) <
f(w;2) for all w € W and all z € Z [Vap98, Figure 3.2].
When this is the case, empirical minimization will be consis-
tent regardless of the behavior of F(w) for w # w0,

In order to exclude such “trivial” cases Vapnik defines
strict (aka “non-trivial”) consistency of empirical minimiza-
tion as (in our notation):

inf F(w) >
F(w)>c

inf F(w) > ¢ (25)

F(w)>c
for all c € R, where the convergence is in probability. This

condition indeed ensures that F'(w) = F(w*). Vapnik’s
Key Theorem on Learning Theory [Vap98, Theorem 3.1]
then states that strict consistency of empirical minimiza-
tion is equivalent to one-sided uniform convergence. “One-

sided” meaning requiring only sup(Fp,, (w) — Ep, (w)) = 0,
rather then sup |Fp,(w) — ﬁ;m(w)‘ % 0. Note that the

analysis above shows the lack of such one-sided uniform
convergence.
In the example presented above, even though Theorem

6 establishes F'(w) — F(w*), the consistency isn’t “strict”
by the definition above. To see this, for any ¢ > 0, consider
the vector te; (where V;a;[j] = 0) with ¢ = 2c. We have
F(te;) = 3t + 312 > cbut Fy(te;) = 32 = 222
Focusing on A\ = % we get:

inf F(w)<c<e (26)

F(w)>c

almost surely for any sample size n, violating the strict con-
sistency requirement (25). The fact that the right-hand-side
of (26) is strictly greater then F'(w*) = 0 is enough for ob-
taining (non strict) consistency of empirical minimization,
but this is not enough for satisfying strict consistency.

We emphasize that stochastic convex optimization is far
from “trivial” in that there is no dominating hypothesis that
will always be selected. Although for convenience of analy-
sis we took X = 0, one should think of situations in which
X is stochastic with an unknown distribution.

We see then that there is no mathematical contradiction
here to Vapnik’s Key Theorem. Rather, we see a demonstra-
tion that strict consistency is too strict a requirement, and
that interesting, non-trivial, learning problems might admit
non-strict consistency which is not equivalent to one-sided
uniform convergence. We see that uniform convergence is a
sufficient, but not at all necessary, condition for consistency
of empirical minimization in non-trivial settings.

6 Regularization

We now return to the case where f(w, z) is Lipschitz (and
convex) w.r.t. w but not strongly convex. As we saw, empiri-

cal minimization may fail in this case, despite the guaranteed
success of an online approach. Our goal in this section is to
underscore a more direct, non-procedural, optimization cri-
terion for stochastic optimization.

To do so, we define a regularized empirical minimization
problem

Wi = min (; Wi+ % ;f(w,zi)> . Q@

where A is a parameter that will be determined later. The
following theorem establishes that the minimizer of (27) is a
good solution to the stochastic convex optimization problem:

Theorem 7. Let f : VW x Z — R be such that W is bounded
by B and f(w, z) is convex and L-Lipschitz with respect to
w. Let z1,...,2zy be an i.id. sample and let W) be the

minimizer of (27) with A = 1/ f%;”. Then, with probability
at least 1 — 6 we have

F(Wwy) — F(w*) < \/8%2:2 .

Proof. Let r(w,z) = 3||w||? + f(w,z) and let R(w) =
E. [r(w, z)]. Note that w}, is the empirical minimizer for the
stochastic optimization problem defined by r(w;z). From
Theorem 6 we therefore have:

4172
Al 112 . R .
S IWaAll" + F(Wa) = R(w)y) < 1&fR(W) + o
AL? ) AL?
< * 72& * F * o
<R+ T = P 4 P o
Hence
412
F(Wy) < F(w*) + 2 [|[w*]]? + ——
(W3) < Flw') + 3w + 12

Bounding ||w*||> < B2 and substituting in the value of A
yields the desired bound. O

From the above theorem and the discussion in Section 4
we conclude that regularization is a necessary tool for con-
vex stochastic optimization. It is interesting to contrast this
with the online learning algorithm of Zinkevich [Zin03].
Seemingly, the online approach of Zinkevich does not rely
on regularization. However, a more careful look reveals an
underlying regularization also in the online technique. In-
deed, Shalev-Shwartz [Sha07] showed that Zinkevich’s on-
line learning algorithm can be viewed as approximate co-
ordinate ascent optimization of the dual of the regularized
problem (27). Furthermore, it is also possible to obtain the
same online regret bound using a Follow-The-Regularized-
Leader approach, which at each iteration ¢ directly solves the
regularized minimization problem (27) on 21, ...,2;—1. The
key, then, seems to be regularization, rather then a procedural
online versus global minimization approach.

6.1 Regularization vs Constraints

The role of regularization here is very different than in famil-
iar settings such as /5 regularization in SVMs and ¢; regular-
ization in LASSO. In those settings regularization serves to



uniform convergence

Figure 1: Lipschitz-continuous convex problems (triangle)
are all learnable, but not necessarily using empirical min-
imization. Lipschitz-continuous strongly convex problems
(dotted rectangle) are all learnable with empirical minimiza-
tion, but uniform convergence might not hold. For bounded
generalized linear problems (starred rectangle), uniform con-
vergence always holds. Our two separating examples are
also indicated.

constrain our domain to a low-complexity domain (e.g. low-
norm predictors), where we rely on uniform convergence. In
fact, almost all learning guarantees for such settings that we
are aware of can be expressed in terms of some sort of uni-
form convergence. And as we mentioned, learnability (under
the standard supervised learning model) is in fact equivalent
to a uniform convergence property.

In our case, constraining the norm of w does not
ensure uniform convergence. Consider the example f,
of Section 4. Even over a restricted domain W, =
{w : ||w]| < r}, for arbitrarily small » > 0, the empir-

ical averages F(w) do not uniformly converge to F'(w)
and Pr (lim SUD,, 00 SUPwew, F(w) — F(W)‘ > 0) =
1. Furthermore, consider replacing the regularization term

X ||w||* with a constraint on the norm of ||w/||, namely, solv-
ing the problem

W, = arg ”mHiI<1 F(w) (28)

As we show below, we cannot solve the stochastic opti-
mization problem by setting 7 in a distribution-independent
way (i.e. without knowing the solution...). To see this, note
that when X = 0 a.s. we must have r — 0 to ensure
F(Ww,) — F(w*). However, if X = e; a.s., we must
set 7 — 1. No constraint will work for all distributions over
Z = (X,a)! This sharply contrasts with traditional uses
of regularization, were learning guarantees are actually typi-
cally stated in terms of a constraint on the norm rather than in
terms of a parameter such as ), and adding a regularization
term of the form 3 ||[w||? is viewed as a proxy for bounding
the norm ||w||.

[ uniform convergence: sup |E'(w) — F(w)| — 0

1=K v
£ @5
o
[ learnable with w: F(w) — F(w”") }
=N 2
£ a5
& g3 )
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=37 -
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[ learnable: F(w) — F(w”) }

Figure 2: Relationship between different properties of
stochastic optimization problems.

7 Summary

Following the work of Zinkevich [Zin03], we expected to
be able to generalize well established results on stochas-
tic optimization of linear functions also to the more general
Lipschitz-convex case. We discovered a complex and unex-
pected situation, where strong convexity and regularization
play a key role and ultimately did reach an understanding of
stochastic convex optimization that does not rely on online
techniques (Figure 1).

For stochastic objectives that arise from supervised pre-
diction problems, it is well known that learnability, i.e. solv-
ability of the stochastic optimization problem, is equiva-
lent to uniform convergence, and so whenever the problem
is learnable, it is learnable using empirical minimization
[ABCH97]. Many might think that this principal, namely
that a problem is learnable iff it is learnbale using empirical
minimization, extends also the “General Setting of Learn-
ing” [Vap95] which includes also the stochastic convex opti-
mization problem studied here.

However, we demonstrated stochastic optimization prob-
lems in which these equivalences do not hold. There is no
contradiction, since stochastic optimization problems that
arise from supervised learning have a restricted structure,
and in particular the examples we study are not among such
problems. In fact, for a reasonable loss function, in order to
make f(w;x,y) = {(pred(w,x),y) convex for both posi-
tive and negative labels, we must essentially make the pre-
diction function pred(w, x) both convex and concave in w,
i.e. linear. And so the only stochastic (or online) convex op-
timization problems that correspond to supervised problems
are generalized linear problems.

To summarize, although there is no contradiction to the
work of Vapnik [Vap95] or of Alon et al [ABCH97], we see
that learning in the General Setting is more complex than we
perhaps appriciate. Empirical minimization might be con-
sistent without local uniform convergence, and more supris-
ingly, learning might be possile, but not by empirical mini-
mization (Figure 2).
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