
Feature-Based Techniques for Real-Time Morphable Model
Facial Image Analysis

S. Chaudhuria, R. K. Singh and E. Charbon.b

aIndian Institute of Technology, Kanpur 208016, India;
bÉcole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

ABSTRACT

We present an algorithm to quickly analyse and compress facial images using a 2-dimensional morphable model.
It runs in real-time on reasonable resources, and offers considerable opportunities for parallelization.

A morphable model associates a “shape vector” and a “texture vector” with each image of a sample set. The
model is used to analyze a novel image by estimating the model parameters via an optimization procedure. The
novel image is compressed by representing it by the set of best match parameters. For real-time performance, we
separate the novel image into shape and texture components by computing correspondences between the novel
image and a reference image, and match each component separately using eigenspace projection. This approach
can be easily parallelized.

We improve the speed of algorithm by exploiting the fact that facial correspondence fields are smooth. By
computing correspondences only at a number of “feature points” and using interpolation to approximate the
dense fields, we drastically reduce the dimensionality of the vectors in the eigenspace, resulting in much smaller
compression times. As an added benefit, this system reduces spurious correspondences, since weak features that
may confuse the correspondence algorithm are not tracked.

Keywords: Morphable model, facial/face image, compression, features, real-time

1. INTRODUCTION

Portable and embedded devices typically need to communicate at high speed through low bandwidth channels.
Frequently, images are transmitted or received by such devices, for example in a wireless security camera network
or in a video phone. It is essential to compress these images to the smallest size possible, so that they can be
transmitted quickly over slow connections. In such applications, lossless compression is not essential, since the
display systems are usually of limited quality and size. It is however important to preserve strong visual features
of the image, so that easy recognition is possible.

At the EPFL, Switzerland, the MegaWatch project aims to build a wristwatch-sized system with a range
of functionalities, including image acquisition and transmission over very low bandwidth channels. One of the
targetted applications of this feature is to capture and transmit images of faces – of the wearer and of other
people. The system has considerable multi-processing power, so advanced techniques may be used for image
compression and reconstruction. We present a real-time procedure designed to compress facial images on such a
platform.

The method outlined in this report is extremely fast, reasonably robust and highly parallelizable. It takes
advantage of the relative visual significances of image areas: strong features such as the mouth and the eyes are
better preserved than flat features such as the cheeks and forehead. It has been tested on a large number of facial
images and its various components are the subjects of much ongoing study, so we can expect to see considerable
refinements and improvements in the near future.

Further author information: (Send correspondence to R.K.S.)
S.C.: E-mail: sidc@iitk.ac.in

R.K.S., E.C.: E-mail: {randhirkumar.singh, edoardo.charbon}@epfl.ch

Figure 1. Matching by pixel-wise overlay. On the left is the original image, on the right the best match. Images courtesy
Vetter and Troje.8

2. BACKGROUND

Image compression may be divided into two categories: informed and uninformed. Uninformed compression
assumes no knowledge of the objects represented by the image. Most general image compression standards such
as GIF, PNG, JPEG and JPEG2000 fall in this category. The sequence of pixel intensities is compressed using
lossless (which allow exact reconstruction) or lossy (which allow only approximate reconstruction) methods. The
advantage of uninformed methods is that any image whatsoever may be compressed with adequate scope for
reconstruction – they are therefore suitable for general image processing applications.

Informed algorithms deal with specific classes of images, for example facial images. Much greater compression
is possible because the range of images is restricted. However, a setup to compress one class of images cannot be
used to compress other classes – a facial image compression system will handle faces but not furniture. In many
applications, such restriction is acceptable. For example, mugshots of criminals in police records are frontal or
profile views of faces, all shot from the same viewpoint under similar lighting conditions.

Much effort in developing informed compression algorithms stemmed from research in face identification
systems. The task was to identify a face from a photograph. It was assumed that another photograph of the
same person was already in a large database of facial images. The new image was approximated as closely as
possible by a linear combination of the images in the database. The person was identified by the database image
that had the largest coefficient in this combination. This method worked reasonably well for identification, but
the approximations were fuzzy and badly-defined because the faces were generally not of the same shape. Fig.
1 illustrates this.

To solve this problem, it was essential to somehow normalize the facial images so that they all had the same
shape and could be overlaid accurately. Morphable models were developed to provide such a representation of
image classes. In its conventional form, a morphable model associates a shape and a texture with each image
in a sample set. The shape component (a correspondence function) describes how the sample image deviates
from a reference image. The texture component encodes the colour/intensity information of the sample image,
normalized to the reference shape. Fig. 2 shows an instance of this representation.

A novel image is approximated as a warped combination of the components in the morphable model. More
precisely, for n sample images, if the shapes are represented by the set {Si, i = 1 . . . n} and the textures by the
set {Ti, i = 1 . . . n}, then the novel image Inovel is approximated as:

Inovel(x, y) ≈ Tmodel ◦ S−1
model(x, y)

where

Tmodel =
n∑

i=1

biTi

Figure 2. An image split into shape and texture components.

Smodel =
n∑

i=1

ciSi

Intuitively, the novel texture is approximated by a linear combination of the sample textures, and is then
warped to the approximate shape of the novel image by a linear combination of sample shapes. The scalars {bi}
and {ci} are called the best match coefficients.

We have assumed here that our shape components Si are defined in the direction of a “backward warp”.
That is, Si(x, y) is the location of the point in the ith sample image that corresponds to the point (x, y) in the
reference image. To obtain the novel image from the novel texture, we must apply a “forward warp”, so we use
the inverse of the model shape Smodel.

Assuming the approximation is good, drastic compression is achieved by representing the novel image only
by the best match coefficients. It is easy to see that if the model is known, these coefficients are sufficient to
reconstruct the closest match to the novel image. Also, the size of the compressed image depends only on the
number of components in the database of sample images. A database of 50 sample images yields 50 shape and 50
texture components: if each coefficient is stored as a 4-byte floating-point number, then the compressed image is
only (50+50)×4 = 400 bytes. (In our implementation, each shape component is represented as two independent
components (x and y), so the actual size is 600 bytes.)

Vetter, Jones, Poggio, Beymer and others have done a considerable amount of work in developing two and
three dimensional morphable models. Their work has mainly focussed on facial images. This is influenced by
the fact that the morphable model description lends itself very well to faces: a dense and smooth correspondence
field can be established between features on two different faces, something which is difficult to do with, say,
buildings, in which external features present in one are frequently not present in another. Of course, we assume
that the two faces have similar hair growth, accessories (such as spectacles), and no missing features (van Gogh,
minus one ear, might be difficult to represent with the model).

In the approach of Jones, Poggio, Vetter et al,5 the mismatch between the morphable model and novel image
is represented by a single sum-of-squared-errors function, which may be written as:

E(b, c) =
∑
x,y

(
Inovel(x, y)− Tmodel ◦ S−1

model(x, y)
)2

where b represents the vector of bi’s and c represents the vector of ci’s. A numerical minimization method such
as stochastic gradient descent is used to minimize the error and thus obtain the best match coefficients b and c.

3. A REAL-TIME APPROACH

Our objective was to design a real-time system that would match a morphable two-dimensional face model to a
novel image. We experimented with the stochastic gradient descent approach to minimize the matching error5

but ruled it out as it took too much time, partly because it is an iterative process that must loop many times
before it converges to a solution and partly because the evaluation of the error (and its derivatives) at each step
requires a large number of operations.

A faster solution was to first separate the novel image into shape and texture components as described by
Vetter and Troje8 – the construction of the model requires that sample images be split in this way, so code
could be reused. The components are then matched individually: the novel shape is approximated as a linear
combination of sample shapes and the novel texture as a linear combination of sample textures.

The advantage of matching components separately is that the error functions are much simpler. They do
not have the implicit warping induced by the Tmodel ◦ S−1

model term. For example, the texture error in the new
formulation is simply:

Etexture(b) =
∑
x,y

(
Tnovel(x, y)− Tmodel(x, y)

)2

where Tnovel is the novel texture and Tmodel is
∑n

i=1 biTi as before.

3.1. Shape and Texture Representation

Following the standard practice, we represent both shapes and textures as vectors indexed by image coordinates.
Each element of a vector corresponds to an image pixel. The texture vector stores intensity values, and the
shape vector stores the relative coordinates of corresponding points (i.e. we store the values of the shape and
texture functions at each image pixel). We note that each element of a shape vector has two components, in the
x and y directions. In our implementation, we simplify this further with two separate vectors, one storing the
correspondence values in the x direction and the other in the y direction. Our three error terms are, therefore:

Ex,shape(cx) =
∑
x,y

(
Sx,novel[x, y]−

n∑
i=1

cx,iSx,i[x, y]
)2

Ey,shape(cy) =
∑
x,y

(
Sy,novel[x, y]−

n∑
i=1

cy,iSy,i[x, y]
)2

Etexture(b) =
∑
x,y

(
Tnovel[x, y]−

n∑
i=1

biTi[x, y]
)2

where square brackets represent vector (or array) lookup instead of function evaluation. This representation
facilitates an uniform treatment of shape and texture. The cost of the extra coefficients (cx and cy instead of
just c) is outweighed by the ease of implementation. It is possible to work with single shape vectors in which
each element has an x and a y component, but the implementation is messier. We will assume separate x and y
vectors for shape in the rest of this paper: the interested reader may modify the algorithms to work with single
vectors.

3.2. Matching the Components

We observe that each of the errors above is a simple quadratic function of the appropriate coefficients. Uncon-
strained quadratic programming can be used to minimize each error. However, by preconditioning the sample
set during model construction we can have much faster matching. The trick is to transform the set of sample
vectors into an orthonormal basis. Adding up the projections of the novel vector onto the elements of the basis,
we obtain the best match to the novel vector, measured in terms of the sum of squared errors (which is nothing
but the squared L2 distance between the vectors). The following theorem shows this:

Theorem 3.1. Let V be an n-dimensional subspace of Rm, n < m. Let {Bi} be an orthonormal basis of V .
Given a vector X ∈ Rm, the element of V closest to X is

n∑
i=1

(X.Bi)Bi

where the “closest” element C is defined as that which minimizes the squared L2 distance ‖X−C‖2.
Each projection takes time linear in the size of the vectors. If each vector has m dimensions (which is, in our

case, the number of pixels in each image), then the matching is performed in O(mn) time.

3.3. Principal Component Analysis and Eigenvectors
In practice, the transformation to an orthonormal basis is not performed on the sample vectors themselves,
but on the deviations of the sample vectors from their mean. This complication is introduced by Principal
Component Analysis (PCA), which has the benefit of reducing the size of the sample space by discarding
“less significant” elements from the basis. PCA transforms a set of linearly independent vectors {Xi, i = 1 . . . n}
as follows: Let X be the mean of the Xi’s. Consider the set of vectors {X′

i | X′
i = Xi −X}. This set has rank

n − 1, since
∑n

i=1(Xi −X) = 0. PCA gives an orthonormal basis {Ei} of size n − 1 for the space spanned by
the set {X′

i}. The Ei’s are conventionally called eigenvectors. PCA additionally reduces the size of the basis by
discarding “less significant” eigenvectors, giving a final approximate basis of p ≤ n− 1 elements.

After constructing the basis, we match a novel vector Xnovel as follows:

1. Compute X′
novel = Xnovel −X

2. Project X′
novel onto each eigenvector Ei, obtaining scalars ei = Ei.Xnovel. Note that all eigenvectors are

of unit length, since the basis is orthonormal.

3. Approximate Xnovel as X +
∑p

i=1 eiEi.

Theorem 3.2. Approximation by projection onto the full set of n − 1 eigenvectors is equivalent to minimizing
the L2 distance between a novel vector Xnovel and the vector space V1 = {

∑n
i=1 biXi,

∑
bi = 1}.

In our experiments, we observed that except in cases where lighting conditions, shape or overall intensity
of the novel image deviated drastically from the images of the sample set, the constraint that the sum of the
coefficients must be 1 was not very restrictive and the best matches were virtually identical to those without the
constraint (Sect. 3.2). Further, by retaining only the first few principal components, we reduced the number
of projections required, thus speeding up the matching and generating excellent approximations to the matches
produced with the full eigenspace. Fig. 3 demonstrates this.

4. FEATURE-BASED OPTIMIZATIONS

The eigenvector-projection approach is fast, but has a significant associated challenge: the separation of the
novel image into shape and texture components must be done as accurately as possible. This calls for a robust
algorithm to set points in two facial images in correspondence.

The simplest approach is to compute the optical flow between the reference image and the novel image –
the flow field is taken as the correspondence field. This approach is conceptually flawed, because optical flow
algorithms are designed to track points on the same object across multiple frames, not locate corresponding
points in images of different objects. However, since two faces are superficially similar, this approach works
reasonably well in practice.

We experimented with the Bergen-Hingorani algorithm1 for dense optical flow. It gave acceptable results on
the whole, but spurious correspondences were frequently generated. Larger window sizes gave noticeably better
results.

More sophisticated algorithms designed specifically for computing facial correspondences exist, but they are
usually also more computation-intensive and not suitable for real-time processing.

To develop a suitable algorithm for our application which gave few spurious correspondences and ran in
real-time, we took note of the following facts:

• Certain points in facial images are easier to track than others. Finding correspondences for a point at the
corner of the mouth where contrast and texture are strong is, for instance, easier than for a point in the
middle of the cheek, where the surface is smooth and unbroken.

Figure 3. Matches to the novel image (a) obtained by retaining b) all 49, c) 30, d) 15 and e) 7 eigenvectors.

• Correspondence fields between two facial images are smooth. This is to be expected since human faces
have elastic, organic structure. This suggests that the field can be approximated fairly accurately by
interpolation from a set of “defining points”.

• Human vision is sensitive to strong features. When we observe a face, recognition is triggered more by the
intensity variation in sharply-defined regions such as the overall outline, the eyes, the nose and the mouth
than in undistinguished ones such as the cheek and forehead. Therefore, in compressing a facial image, it
is important to preserve the structure of strong features using accurate correspondences at these locations,
but other regions need not be rendered so exactly.

A suitable correspondence algorithm could therefore select a set of easily trackable feature points, compute
correspondences at these points only, and interpolate from the resulting values to obtain the correspondences
at every pixel in the source image. By not tracking weakly-defined points (which resemble their neighbours),
spurious correspondences may be reduced.

We implemented this method in the following manner:

Feature selection: We used a Harris-type corner detector4 to select well-defined feature points in the source
image. The Harris detector is sensitive to strong gradients in the image. We ensured that the points
corresponded to local maxima of the image gradient and were well-separated.3 Typically, about 300 feature
points were selected. We were pleased to observe that these points typically coincided with dominant facial
features.

Sparse correspondences: To calculate the correspondences at the feature points, we sampled a dense optical
flow field. This field was generated using the Bergen-Hingorani algorithm.1 Sparse sampling of a dense
flow field has the advantage that the smoothing influence of neighbouring pixels on the value at each pixel
is retained in the sparse set of flows. This helps prevent spurious correspondences.

Figure 4. Barycentric coordinates in an irregular convex polygon. Image courtesy Meyer et al.7

Interpolation: We triangulated the set of feature points using Delaunay triangulation. To compute the flow at a
pixel p, we determined which Delaunay facet f it lay in. The flow at p was computed by interpolation from
the vertices of f . We used generalized barycentric coordinates as interpolation coefficients: the coefficient
wj corresponding to the jth vertex was calculated as7:

wj =
cot(γj) + cot(δj)

‖p− qj‖2

where the vertex qj and the angles γj and δj are as in Fig. 4. In practice, the coefficients at each pixel
were computed during model construction and stored in a lookup table. The costs of triangulation, point
location and barycentric coordinate computation were therefore not incurred during matching.

We developed this approach from original ideas, but discovered later that Kardouchi et al6 had done similar
work. Fig. 5 illustrates the entire process.

4.1. Features for Speed

Although our feature-based approach was initially designed to generate good correspondences, we observed that
it could also be used to drastically speed up the matching process. The shape components were completely
defined by their values at the feature points. Hence, we could restrict the shape vectors to these values only,
reducing their dimensionality from m, the total number of pixels in each image, to mf , the number of feature
points. In our experiments with 256 × 256 images and 300 feature points, this implied a reduction from 65536
dimensions to 300.

Figure 5. The feature-based interpolation process. For clarity, background triangles are not shown in the Delaunay
triangulation. The interpolation map is colour-coded: each feature point is assigned an unique intensity and the intensity
at each pixel is obtained by interpolation from the appropriate feature points.

We compute the PCA space of the restricted shape vectors and match by projection onto this space. The
projection-based approach executes in time linear in the dimensionality of the vectors, so execution time is
reduced from O(mn) (see Section 3.2) to O(mfn). The full (dense) shape component is approximated after
matching, by interpolating from the best match restricted shape.

We would like to show that matching with restricted vectors first and interpolating afterwards is equivalent
to interpolating first and matching with full vectors afterwards. We must mention that in practice, very little
difference was observed between the two methods.

4.1.1. Investigating Equivalence

We are given a set X of n vectors {Xi, i = 1 . . . n} in Rm, n ≤ m. We are also given a set Y of “restricted
vectors” {Yi, i = 1 . . . n} in Rmf , mf < m. These sets have the following property: for any j ∈ {1, 2 . . .m}:

X1j =
∑mf

k=1 cjkY1k

X2j =
∑mf

k=1 cjkY2k

... =
...

Xnj =
∑mf

k=1 cjkYnk

where Xij denotes the jth element of Xi and Yij denotes the jth element of Yi. The cjk’s are a set of scalar
interpolation coefficients – there is one such set for each j. In simple terms, the set X may be obtained by
interpolation from the set Y .

We are now given a novel vector Xnovel ∈ Rm and the corresponding restricted vector Ynovel ∈ Rmf , related
by the same sets of interpolation coefficients as above: for any j ∈ {1, 2 . . .m}:

Xnovel,j =
mf∑
k=1

cjkYnovel,k

We obtain two approximations to Xnovel as follows:

1. Minimize the L2 distance from the space spanned by the elements of X to Xnovel, obtaining the closest
match X1

approx.

2. Minimize the L2 distance from the space spanned by the elements of Y to Ynovel, obtaining the closest
match Yapprox. Now interpolate from Yapprox using the coefficients {cjk} to obtain X2

approx.

We ask if and under what conditions X1
approx and X2

approx are equal.

Theorem 4.1. X1
approx and X2

approx are identically equal for all novel vectors if and only if for any orthonormal
basis A = {A1,A2 . . .Aα} for X and any orthonormal basis B = {B1,B2 . . .Bβ} for Y ,

AT AC = CBT B

where

A =


A1

A2

...
Aα

 , B =


B1

B2

...
Bβ

 , C = [cjk]m×mf

Proof. Consider any two orthonormal bases A for X and B for Y . By Thm. 3.1, a closest match to Xnovel

may be obtained as follows (as usual, Vab or Va,b denotes the bth element of vector Va):

X1
approx =

α∑
i=1

(Xnovel.Ai)Ai

⇒ X1
approx,j =

α∑
i=1

(Xnovel.Ai)Aij

=
α∑

i=1

m∑
l=1

Xnovel,lAilAij

=
α∑

i=1

m∑
l=1

mf∑
k=1

clkYnovel,kAilAij

=
mf∑
k=1

Ynovel,k

(m∑
l=1

α∑
i=1

AijAilclk

)
(1)

Also,

Yapprox =
β∑

i=1

(Ynovel.Bi)Bi

Interpolating to obtain X2
approx, we have

X2
approx,j =

mf∑
l=1

cjl

β∑
i=1

(Ynovel.Bi)Bil

=
mf∑
l=1

cjl

β∑
i=1

mf∑
k=1

Ynovel,kBikBil

=
mf∑
k=1

Ynovel,k

(β∑
i=1

mf∑
l=1

cjlBilBik

)
(2)

We observe that the right hand sides of Eqns. 1 and 2 are identically equal for all novel vectors and all
j ∈ {1, 2 . . .m} if and only if the corresponding bracketed expressions are equal. But the bracketed expression
in Eqn. 1 is (AT AC)jk and the bracketed expression in Eqn. 2 is (CBT B)jk. Therefore AT AC = CBT B is a
necessary and sufficient condition for equivalence.

4.1.2. Theoretical Speed Gain

We conclude this section with some explicit calculations for the speed gain from the feature-based approach,
compared to the case when full vectors are projected for all components. We assume that features are used to
restrict only the two shape components (x and y), not the texture component. We also assume that the platform
is serial-processing, not parallel-processing.

As mentioned previously, each shape component restricted to the feature points is projected onto the set of
eigenvectors in O(mfn) time, compared to O(mn) for projecting full vectors. If a sequence of one multiplication
and one addition (a unit operation in projection) takes time τ , then we obtain a net speed gain in matching by
a factor of g:

g =
3mnτ

mnτ + 2mfnτ
=

3m

m + 2mf
= 3− 6mf

m + 2mf

For practical purposes, mf � m, so g ≈ 3: we expect the feature-based approach to be three times faster
in projection. (Matching in PCA space requires us to add the mean, but this is linear in the dimensions of

the vectors and does not change g.) The results satisfy our expectations: as noted in Section 5, feature-based
projection takes ∼20ms while full-vector projection takes ∼60ms. We exclude the (more or less identical) times
taken to compute correspondences in the two approaches.

If the texture vectors could somehow be restricted as well, i.e. if we could predict an entire texture map from
values at feature points, then the speedup is g = m/mf , typically of the order of a few hundred.

5. IMPLEMENTATION AND RESULTS

We implemented our approach on a dual 2.7 GHz Pentium 4 system with 1GB RAM, running RedHat Linux 9
with the symmetric multi-processing (SMP) kernel 2.4.20-8smp. The coding language was C. OpenCV-0.9.5 was
used as the image-processing library. No explicit multi-processing or threading instructions were included in the
source code.

In our experiments, we obtained a minimum average matching time of 120ms. A slightly slower implementa-
tion which was easier to time took 140ms, of which 120ms was for computing sparse correspondences (pruning
a Bergen-Hingorani optical flow field) and 20ms for projecting feature-based restricted vectors. We quote the
times from the latter implementation since we are more confident that the timing was accurate.

We present the execution times for various approaches in tabular form (all measurements on the above
platform).

Method Approximate average
matching time (ms)

Iterative error-minimization 3× 104

(Conjugate Gradient Descent)
Full-image projection with 5× 103

Black2 correspondences
Full-image projection with 180
Bergen-Hingorani1 correspondences (Correspondence: 120

+ Projection: 60)
Feature-based projection with 140
pruned Bergen-Hingorani1 (Correspondence: 120
correspondences + Projection: 20)

Reconstruction typically took 40-80ms.

The reconstructed images in general closely resembled the original novel images. However, there were some
spurious deformations in the results that are a cause for concern. It seems a better feature-tracking / correspon-
dence / interpolation scheme is required. Incidentally, we note that interpolation with barycentric coordinates
only ensures C0 continuity, i.e. the interpolation surface is continuous but not necessarily smooth across edges of
the subdivision. Spline-based interpolation schemes give C1 (continuous first derivatives) and higher continuity,
and are more suitable.

We present a selection of matches obtained, both good and bad, in Fig. 6. 50 images were present in the
sample set. 40 principal components (out of a possible maximum of 49) were used for both shape and texture.
The novel images were rendered from textured 3D models at the Max Planck Institute, Germany.

REFERENCES
1. J. Bergen and R. Hingorani, “Hierarchical Motion-Based Frame Rate Conversion,” Technical Report, David

Sarnoff Research Center, Princeton, 1990.
2. M. J. Black, “Robust Incremental Optical Flow,” Ph.D. Thesis, Yale, 1992.
3. J.-Y. Bouget, “Pyramidal Implementation of the Lucas Kanade Feature Tracker: Description of the Algo-

rithm,”, Microprocessor Research Labs, Intel Corp., 2000.

Figure 6. A selection of novel images (first and third columns) and the corresponding feature-based matches (second
and fourth columns): some good, some not-so-good.

4. C. Harris and M. Stephens, “A combined corner and edge detector,” Proc. Alvey Vision Conf., pp.147-151,
1988.

5. M. J. Jones and T. Poggio, “Model-Based Matching by Linear Combinations of Prototypes,” unpublished
AI memo, MIT, 1996.

6. M. Kardouchi, J. Konrad and C. Vázquez, “Estimation of large-amplitude motion and disparity fields:
Application to intermediate view reconstruction,” Proc. Visual Communications and Image Processing,
IS&T/SPIE Symp. on Elec. Imaging, San Jose, 2000.

7. M. Meyer, Haeyoung L., A. Barr, M. Desbrun, “Generalized Barycentric Coordinates on Irregular Poly-
gons,”, Journal of Graphics Tools, 7(1):pp.13-22, 2002.

8. T. Vetter and N. F. Troje, “Separation of texture and shape in images of faces for image coding and
synthesis,” JOSA, A 14:9 pp.2152-2161, 1997.

