
Data-Driven Suggestions for Creativity Support in 3D Modeling

Siddhartha Chaudhuri Vladlen Koltun

Stanford University ∗

Figure 1: 3D models created using data-driven suggestions, starting from simple shapes for which suggestions were generated.

Abstract

We introduce data-driven suggestions for 3D modeling. Data-
driven suggestions support open-ended stages in the 3D modeling
process, when the appearance of the desired model is ill-defined and
the artist can benefit from customized examples that stimulate cre-
ativity. Our approach computes and presents components that can
be added to the artist’s current shape. We describe shape retrieval
and shape correspondence techniques that support the generation of
data-driven suggestions, and report preliminary experiments with a
tool for creative prototyping of 3D models.
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Graphics—Computational Geometry and Object Modeling;
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1 Introduction

The skilled production of a preconceived result is the hallmark of
craft. “The craftsman knows what he wants to make before he
makes it” [Collingwood 1938]. Computer graphics research has
made great strides in supporting the craft of 3D modeling. With
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appropriate tools, even novices can produce 3D models that match
a predefined appearance [Funkhouser et al. 2004].

Yet 3D modeling is also an art. Art is an open-ended creative pro-
cess, subject to unexpected changes of direction or goal [Colling-
wood 1938]. In this paper, we present a technique that supports cre-
ative discovery in 3D modeling. Our technique is complementary
to existing approaches to 3D modeling and falls within the domain
of creativity support [Shneiderman 2007].

Our approach to creativity support is motivated by cognitive theo-
ries of creativity. Creative cognition can be viewed as the interplay
between the generation of solution components and their integra-
tion [Finke et al. 1992]. A key role for creativity support tools is
to enable easy exploration of possible solution components [Shnei-
derman et al. 2006].

To support creative discovery in 3D modeling, we introduce data-
driven suggestions. Data-driven suggestions present the modeler
with possible additional components for the current shape. The
suggestions are shown, when requested, in order to stimulate the
creative process. The modeler is free to integrate any of the compo-
nents or disregard the suggestions. The suggestions are automati-
cally generated by comparing the current shape with a large library
of existing models. The suggestion generation process is entirely
unsupervised – the modeler need not specify the suggested compo-
nents in any way. This maximizes the potential for unexpected, yet
valuable suggestions.

To suggest components for a given shape, our method retrieves
models from the library that can be used as sources of suggestions.
Such models have similar gross structure to the query but may dif-
fer in local detail and contain novel components. The search results
are diversified to facilitate rapid exploration of alternatives.

For each retrieved library model, our technique identifies compo-
nents in the model that are not present in the user’s current shape.
This is accomplished by computing a correspondence score for
each sample point on the library model, indicating the likelihood
of it having a counterpart on the user’s shape. Segments of the



library model that have low average scores are presented as sug-
gestions. High-dimensional nearest-neighbor search techniques are
employed to make the computation of a large number of correspon-
dence scores tractable.

To evaluate the utility of data-driven suggestions for creativity sup-
port in 3D modeling, we have developed a tool for creative pro-
totyping during the formative stages of 3D design. In these early
stages, the final design is under-specified, and the artist can bene-
fit from rapid exploration of a variety of possible directions [Cross
2001]. Our tool suggests additional components for a rough initial
shape given by the user. The artist can interactively try on any com-
bination of suggestions, discard any of them, and request additional
ones. Preliminary experiments indicate that data-driven suggestions
fit into the workflows of 3D artists.

1.1 Data-Driven Creativity

Creativity is generally defined as the process of bringing something
novel and valuable into being [Sternberg 1999]. The novelty crite-
rion should not be misconstrued to require that all components of
a creative product are new. Modern accounts of creative cognition
stress the central role of combining pre-existing components [Finke
et al. 1992]. A significant stream of research suggests that creativity
is regulated by ordinary cognitive processes, and greater creativity
stems from greater access to solution components, acquired through
domain expertise [Boden 1990; Weisberg 2006].

This highlights a key opportunity for computational creativity sup-
port. Computational tools can make available a large variety of
appropriate solution components to the user, in effect externaliz-
ing domain expertise that the user may lack. Experiments suggest
that direct incorporation of examples into a creative product does
not necessarily decrease the creativity of the output, since people
combine existing components in novel ways and build upon them
[Marsh et al. 1996]. Even exceptionally creative products, such as
Coleridge’s poetry, have incorporated pre-existing material [Boden
1990], and creativity enhancement methodologies often entail enu-
meration of solution components [Nickerson 1999].

Shneiderman et al. [2006] identify the “freer exploration of alter-
natives” as a key characteristic of creativity support tools, and ad-
vocate for tools that prioritize “easy exploration, rapid experimen-
tation, and fortuitous combinations that lead to innovations.” Com-
putational creativity support research has thus sought techniques
for generating customized examples that allow the user to explore
the space of possibilities and alternative courses of action. This is
particularly important during the early, formative stages of design,
when mock-ups, prototypes, and other external representations play
a pivotal role [Cross 2001].

How can computational tools provide customized examples for a
user’s creative project? One possibility is to modify the user’s cur-
rent design according to pre-defined rules and present several such
alternative designs as suggestions [Terry and Mynatt 2002; Terry
et al. 2004]. However, suggestions generated in this way are neces-
sarily limited to components that are already part of the design.

An alternative approach, which we embrace in this work, is to pro-
vide data-driven suggestions [Hays and Efros 2007; Lalonde et al.
2007; Hartmann et al. 2010]. These are suggestions that are tailored
to the user’s current design, yet draw from a large set of pre-existing
creations. Data-driven suggestions are not the only way to explore
existing libraries of relevant solution components: standard search
interfaces and catalogues of existing content all provide access to
pre-existing examples that can facilitate the creative process. How-
ever, data-driven suggestive interfaces have the advantage of pro-
viding customized, in situ suggestions that are adapted to the user’s

current design and yet draw from the richness of existing collec-
tions of prior content [Lee et al. 2010].

1.2 Prior Work

Igarashi and Hughes [2001] describe a 3D modeling interface that
uses a set of rules to analyze the user’s actions and suggest subse-
quent operations. For example, a rectangle is suggested when the
user draws two orthogonal line segments emanating from a point.
Matejka et al. [2009] use data-driven techniques to recommend
under-utilized menu commands to AutoCAD users.

Modeling by example [Funkhouser et al. 2004] allows the user
to search a model library and assemble desired models from seg-
ments of retrieved shapes. Modeling by example requires the user
to search for the specific part they want to add. It is thus less appro-
priate for open-ended stages of the 3D modeling process, in which
the end-goal is ill-defined [Cross 2001].

The Shuffler system [Kraevoy et al. 2007] allows the user to load a
hand-selected set of compatible 3D models and quickly interchange
similar parts between the models. The system relies on a com-
patible segmentation of all models and cannot be used to suggest
novel, unexpected additions to the user’s current model. Pauly et al.
[2005] present a technique for completing missing regions of laser
range scans by searching a model library. Their work focuses on
automated completion of known models rather than creative mod-
eling. Gal et al. [2007] describe a data-driven interface for creating
3D collages that resemble an input shape.

The exploratory modeling system of Talton et al. [2009] applies a
data-driven approach to support the open-ended aspects of 3D mod-
eling. Unlike our work, it relies on the existence of a parametric
space from which models are drawn. Our work likewise addresses
the open-ended nature of early-stage creative 3D modeling, yet is
compatible with existing geometric modeling tools.

In summary, no prior work tackles data-driven suggestion of novel
components that augment a prototype 3D model. Our method infers
suggestions entirely from surrounding context without additional
user input, and can present multiple choices, at multiple attachment
points, at any single time. The advantage is not only autocomplete-
like functionality, but the potential for unexpected, yet suitable sug-
gestions.

2 Shape Retrieval

The first step in generating data-driven suggestions for a user’s
query model is to identify a diverse set of database models from
which suggestions can be drawn. For large databases, we must ef-
ficiently evaluate the similarity between query and target shapes.
Finding explicit correspondences between shapes is expensive.
Hence, prior research has employed statistical signatures that sum-
marize shapes and can be efficiently compared [Osada et al. 2002].

The generation of data-driven suggestions imposes two require-
ments on shape retrieval. First, since the query shape is unlikely
to exactly match any part of a database model, we must support
approximate shape retrieval. Second, since suggestions are derived
from components of database models that are not present in the
query shape, the search must be robust to clutter. We employ a
histogram-based signature that is robust to clutter and is easy to
generate and compare.

A multidimensional histogram can encode aspects of both a shape’s
global spatial structure and its local detail [Ling and Soatto 2007;
Ovsjanikov et al. 2009]. Our signature captures the distribution
of pairwise distances between every pair of descriptor categories.



Figure 2: Shape signatures. Distribution of SDF values over two
shapes (blue/green: high; red: low), and volume visualizations of
their corresponding D3 histograms. The vertical axis in the his-
tograms corresponds to distance between pairs of sample points.

Pairs of samples from the model’s surface are quantized to a three-
dimensional histogram with two axes corresponding to the descrip-
tor values of the two samples, and the third axis to the distance
between the sample points (Figure 2).

We use the shape diameter function (SDF) as our surface descriptor
[Shapira et al. 2008]. SDF captures the local thickness of the shape
at a sample point, as measured by a ray along the inward normal.
The values are normalized to [0, 1] by dividing by the shape’s diam-
eter. In our implementation, each histogram axis is quantized into
32 bins. To reduce quantization artifacts, binned values are treated
as low-variance Gaussians and allowed to “bleed” into neighboring
bins. The variance is chosen so that the Gaussian integrates to 0.5
within a single histogram bin when its mean coincides with the bin
center.

A useful property of this “descriptor-descriptor-distance” (D3) his-
togram is its local response to incremental addition or removal of
parts of the shape. Since the histogram aggregates

(
n
2

)
pairs of sam-

ples, modification of a single sample affects n−1 pairs, or O(n−1)
of the histogram. Thus, a change to a small part of the surface af-
fects only a proportional fraction of the histogram.

Support for partial similarity is completed by the use of the his-
togram intersection kernel (HIK) [Swain and Ballard 1991], defined
as the sum of the pairwise minima of corresponding histogram bins.
This kernel has been shown to outperform Lebesgue (Lp) norms in
visual classification tasks [Maji et al. 2008]. A notable advantage of
the HIK is that it is well suited to matching objects that are only par-
tially similar, since the intersection operation discards unmatched
clutter.

In the absence of a standardized scale for all objects, we normalize
shapes to the unit cube. Thus if the additional components present
in the second shape significantly alter the scale of the object, the
above analysis no longer holds. Pyramid matching, described be-
low, is employed in part to compensate for varying scale.

Pyramid matching. The similarity of two shapes can be evalu-
ated by examining corresponding histogram values. Such compar-
ison is sensitive to histogram resolution: histograms with too few
subdivisions are not discriminative enough, while excessive refine-
ment eliminates approximate matches. To overcome this problem,
we use the pyramid match kernel [Grauman and Darrell 2007].

A histogram pyramid consists of a hierarchy of lower-resolution
versions of a base histogram, with each successive level halving the
resolution of the previous one. Two pyramids are compared via the
sum of pairwise similarities of their corresponding levels, weighted
by an exponential attenuation for higher levels. The attenuation
reflects the fact that these represent approximate matches, with a
coarser discretization of values. Two vaguely similar shapes will
have a low but positive matching score from higher-level matches,
even if their base (high-resolution) histograms are dissimilar.

Diversification. A key requirement of shape search for creativity
support is the diversity of retrieved shapes. If presented sugges-
tions are extremely similar to each other, their utility is diminished
and the “wide walls” characteristic of effective creativity support is
violated [Resnick et al. 2005].

Given a set S of n search results ranked by similarity to the query
Q, we diversify this set using the Maximal Marginal Relevance
criterion [Carbonell and Goldstein 1998]. The algorithm reorders
the set S, yielding a diversified sequence D1, D2, . . . , Dn with in-
creased spacing between similar results. D1 is chosen to be the
element of S most similar to the query. Each subsequent Di is
chosen according to the formula

Di ≡ arg max
D∈S\Si−1

[
λ sim(D,Q)− (1− λ) max

Dj∈Si−1

sim(D,Dj)
]
,

where Si−1 ≡ {D1, D2, . . . , Di−1} and sim(·, ·) is the similar-
ity measure described above, combining the histogram intersection
kernel and the pyramid match kernel. λ ∈ [0, 1] is a diversity co-
efficient controlling the degree of reordering. λ = 1 preserves the
original ranking and λ = 0 yields maximum diversity at the cost of
relevance to the query. We used λ = 0.3 in our implementation.

3 Suggestion Generation

From a diverse set of database models retrieved for the query, our
method identifies novel parts that can be used to enhance the initial
shape. An interactive application should be able to generate suit-
able suggestions from a database model, or reject it as unsuitable
for suggestions, within a second or two. This requirement renders
approaches based on accurate alignment of models – which typi-
cally requires computationally expensive global optimization – un-
suitable.

We use a statistical approach that does not require pre-alignment.
The approach computes a correspondence score for each sample
point on the database model, indicating the likelihood of it having
a counterpart on the query. The correspondence score is produced
by comparing a local signature of the sample point to signatures
of sample points on the query shape. Correspondence scores are
averaged over segments in the database model, and segments with
scores lower than a threshold are presented as suggestions. Dupli-
cates of prior suggestions are detected and discarded by comparing
their shape signatures.

The presented approach is fast, robust to the complexity of the un-
derlying shape, and is highly parallelizable. Statistical aggregation
over segments stabilizes the approach against individual matching
errors. The quality of the local signatures at sample points is still
important. We believe, however, that these are easier to develop
than general alignment algorithms, and describe an appropriate sig-
nature in Section 3.2.

3.1 Preprocessing

To improve the coherence of suggested parts, each model in the
library is segmented into components during preprocessing. A
significant stream of recent work on shape segmentation employs
spectral analysis [Huang et al. 2009; Reuter 2010]. Despite its
formal elegance, this approach is brittle in the presence of non-
manifold topology. Our database contains models that are non-
manifold, featuring disconnected faces, seemingly arbitrary dis-
connected components, and concealed interior structures. This is
a common feature of large model databases and calls for segmenta-
tion techniques that are robust to such “polygon soups.”



Figure 3: Top-ranked suggestions. Query shapes (green) and the
four top-ranked suggestions (red) generated for each by our tech-
nique. The automatically retrieved database models that yielded
the suggestions are indicated in wireframe.

Our implementation combines two segmentation algorithms, one
based on the shape diameter function (SDF) [Shapira et al. 2008]
and the other based on approximate convex decomposition (ACD)
[Lien and Amato 2007]. Each has its advantages and disadvan-
tages. SDF isolates parts of a shape that have similar (or smoothly
varying) thickness, but is sensitive to internal structure in the shape,
such as the seats inside a car. ACD accommodates internal struc-
ture, but breaks curved components (such as the tentacles of an oc-
topus) into smaller parts. We found the combination of these ap-
proaches to be more robust than each in isolation.

We first partition the shape using the SDF distribution. For effi-
ciency, and to accommodate badly-tessellated models, we operate
on a set of surface points sampled uniformly by area rather than the
vertices of the mesh itself. A graph is constructed by joining two
sample points if they are each among the 40 nearest neighbors of the
other, measured using Euclidean distance between 4-dimensional
feature vectors of which the first 3 coordinates specify position in
3-space and the 4th is proportional to SDF value. A graph-cut algo-
rithm subdivides this graph into clusters. Adjacent clusters whose
union is approximately as convex as the original clusters are recom-
bined. Global reflective symmetry is respected during segmentation
[Podolak et al. 2006].

Figure 4: Suggestions (red) for an ambiguous shape (green).

The clustering is converted to a segmentation of the original mesh
by assigning to each mesh face the most frequent label of samples
in the neighborhood of its centroid. A regularization step smoothes
segment boundaries.

3.2 Correspondence Score Computation

Local signatures. In order to measure correspondence scores be-
tween sample points on a database model and sample points on the
query shape, we compute a local signature for each sample point.
Signatures for samples on database shapes are computed during
preprocessing. To facilitate accurate correspondence score com-
putation, the local signature must describe both the local neighbor-
hood of the sample point and its global context. To this end, for a
sample p on a shape P , we combine a 32 × 32 spin image SP (p)
[Johnson 1997] with a two-dimensional histogram DP (p) that bins
samples within a local neighborhood by their SDF value and their
distance from p.

Spin images have been shown to be effective in robustly capturing
the global context of surface points. However, this very robustness
makes them insensitive to local detail. On the other hand, the radial
distribution of neighbors with varying SDF value is an excellent
indicator of local shape, but does not scale well to larger contexts
in our experiments. We thus combine these components.

Note that both components of the signature are histograms. Given
a sample p on a shape P and a sample q on a shape Q, their level
of correspondence is defined as

cor(p, q) ≡ sim(SP (p), SQ(q)) · sim(DP (p), DQ(q)),

where sim(·, ·) is the histogram similarity measure described in
Section 2, combining the histogram intersection kernel and the
pyramid match kernel. The correspondence score of a point q on
the query shape Q, with respect to a database model P , is defined
as

corP (q) ≡ max
p∈Π(P )

cor(p, q),

where Π(P ) is the set of sample points on P .

Efficiency. The complexity of a naı̈ve computation of corP (q) for
all sample points q on the query shape grows quadratically, since the
correspondence measure cor(p, q) must be computed for all pairs
of samples p, q. To combat this prohibitive performance cost, we
use high-dimensional nearest-neighbor search techniques. This is
non-trivial, since the distance metric sim(·, ·) is a combination of
two histogram similarity measures (the histogram intersection ker-
nel and the pyramid match kernel), and operates on histogram vec-
tors with hundreds of dimensions.

A natural choice for approximate nearest-neighbor search in spaces
with hundreds of dimensions is locality sensitive hashing (LSH)
[Indyk and Motwani 1998]. Traditional locality sensitive hashes are
restricted to Lp metrics or inner products. By Mercer’s Theorem,
any continuous, symmetric, positive semi-definite kernel function
k(·, ·) can be expressed as an inner product in a different high-
dimensional space, to which traditional LSH can theoretically be



applied. However, this mapping is not necessarily of practical
value, since the target space can have arbitrarily high (or infinite)
dimension.

Our boosted similarity function clearly satisfies the Mercer con-
dition, since it is the product of known Mercer kernels [Odone
et al. 2005; Grauman and Darrell 2007]. To leverage this prop-
erty for efficient evaluation of the correspondence score for a sam-
ple point, we wish to construct a hash function that implicitly ex-
ploits the Mercer condition without requiring the actual embedding
into a higher-dimensional (or infinite-dimensional) space to be con-
structed. To this end, we employ kernelized locality-sensitive hash-
ing, which extends LSH to Mercer kernels [Kulis and Grauman
2009]. Since the correspondence score for each sample point can be
evaluated independently of the others, the computation is trivially
parallelizable.

4 Results

4.1 Suggestion Generation

We first present timings for various steps in the suggestion gener-
ation pipeline. Performance data was obtained on an 8-core 2.53
GHz workstation. For shape retrieval, it took 0.047 milliseconds to
compare two D3 signatures on a single core. Performance scales
linearly: total shape retrieval time is 0.056 seconds (excluding I/O)
with a library of 1193 models. Correspondence computation, with
precomputed signatures at 3,000 sample points per shape, took 0.3
seconds per pair of shapes, averaged over 1,409 such pairs. The
standard deviation was 0.23 seconds. We used three 30-bit hashta-
bles on a kernel matrix of 20 signatures to prune 87% of the search
space on average, with an approximate nearest neighbor found 84%
of the time with 6% error.

Over the same set of shapes, it took an average of 0.4 seconds to
process and reject a retrieved database model when it did not con-
tribute valid suggestions. (This includes the correspondence com-
putation time above.) It took 0.83 seconds to process a retrieved
model from which suggestions were accepted. The longer times are
due to slower correspondence computation for similar models, and
the pruning of similar suggestions. Extrapolating suggestions from
the set of surface samples to the underlying mesh (which frequently
had >50,000 faces) took an additional 1.62 seconds on average.

Figure 3 shows the highest-ranked suggestions produced for various
query shapes. Figure 4 shows suggestions produced for an ambigu-
ous shape that does not naturally lend itself to interpretation.

4.2 Prototyping Tool

To examine the use of data-driven suggestions by 3D artists, we
have created a prototyping tool using the techniques presented in
this paper. The tool, dubbed InspireMe, lets an artist request sug-
gestions for a rough initial shape. The artist can quickly place and
glue any of the suggestions to the query shape, and request new sug-
gestions for the composite shape. This allows the artist to visually
mock up a prototype and then export it to a high-end 3D modeling
package for refinement and texturing.

The InspireMe interface is shown in Figure 5. InspireMe dis-
plays suggestions from 12 automatically retrieved and diversified
library models, based on the finding that designers prefer to be
shown roughly 10 examples [Lee et al. 2010]. The suggestions are
highlighted to increase their visual saliency [Treisman and Gelade
1980]. The artist can add any of the suggested parts to the query
shape. The initial placement of the added suggestion on the query
shape is computed automatically, as described below. This initial

Figure 5: InspireMe interface, showing a query shape (green) and
suggestions for it (red). One suggestion has been selected and
added to the mockup (blue).

placement can be refined by translating, rotating, and scaling the
added suggestion in relation to the query shape. Any number of
suggestions can be added and removed, supporting rapid visual ex-
ploration of possible designs.

Suggestions that are not useful can be discarded with a mouse click,
and a new set of suggestions is automatically generated from a li-
brary model with a lower shape retrieval score. An entirely new
batch of suggestions can be requested for a newly assembled com-
posite shape. In this way, the user can mock up increasingly refined
prototypes.

Placement and gluing of suggestions. When the user chooses
to add a suggested part, InspireMe computes an initial attachment
point for it, which the user may subsequently fine-tune. The ap-
proximate attachment point is computed by approximately align-
ing the query shape with the model from which the suggestion was
drawn. Our implementation uses the 4-PCS algorithm with 1000
iterations [Aiger et al. 2008]. When both models are detected to
have planes of symmetry, we employ an optimized variation of the
algorithm that aligns the models based on the symmetry plane and
two widely separated points.

Once the part is in place, InspireMe enables simple gluing of prox-
imal surfaces. Each vertex on the suggested part that is within a
threshold distance of the query shape is displaced towards its near-
est neighbor on the latter. The displacement magnitude falls off
with distance, and the displacement field is regularized over local
neighborhoods by convolving with a Bartlett filter. A more ad-
vanced implementation could utilize high-quality gluing techniques
[Sharf et al. 2006].

4.3 Informal Studies

To evaluate the effectiveness of creativity support with data-driven
suggestions, we invited twelve 3D artists to test our prototype im-
plementation. Three of the users were university-level art instruc-
tors and professional artists, eight were art students, and one was
a computer science student and hobbyist 3D modeler. Ten of the
participants had to travel to the lab from a different municipality
and were compensated for their time. The users were given two
open-ended modeling tasks designed to mimic assignments tackled
by 3D artists. A few users who were only available for a short time
were assigned only one of the tasks. The two tasks were:



Figure 6: Models created by artists for the aircraft task (top) and the creature task (bottom). For each model, the figure shows the initial
query shape (top row), the mockup created with InspireMe (middle row), and the final textured model created from the mockup (bottom row).
All novel parts in the mockups are derived from data-driven suggestions. For each task, every model was created by a different artist.
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Figure 7: Activity time in modeling programs (blue) and InspireMe
(red) during the creation of the models in Figure 6.

Aircraft You are an artist designing futuristic military aircraft for
the upcoming sci-fi film Colony 2130. These will be used in
a large extraterrestrial battle scene. Several types of craft are
required, such as a large mothership, attack bombers, low-
altitude strafe fighters, search-and-rescue craft for evacuating
injured soldiers from alien jungles, etc. Conceptualize and
create a mockup design for one such aircraft.

Creature You are a creature designer for the upcoming sci-fi film
Avatar 2. This sequel will feature Pyrrha, the sister-planet of
Pandora from the original film. The dense jungles of Pyrrha
teem with fantastical creatures. Conceptualize and create a
mockup design for one such creature.

In both cases, the artists were allowed to freely interface between
InspireMe and modeling packages of their choice, such as Maya R©,
3ds Max R© and ZBrush R©. In the beginning of each session, we pro-
vided a brief overview of the InspireMe interface. We encouraged
users to spend no more than 10-20 minutes to construct a rough ini-
tial query shape. Models were transferred between InspireMe and
other applications using a shared folder. InspireMe simultaneously
ran queries on two databases, Digimation ModelBank (1,193 mod-
els) and Digimation Archive (11,461 models with >1,500 faces).

Models created by the artists during these sessions are shown in
Figure 6. Note the rudimentary starting shapes, and the fleshed-out
concepts in the final mockups. The mockups feature little sculpting
beyond basic assembly (and occasional duplication) of suggested
parts, which constitute by far the bulk of the transition from query
to concept.

Figure 7 visualizes the artists’ activity during the modeling ses-
sions. Activity time was determined from system logs. The artists
frequently worked with modeling programs and InspireMe in par-
allel, sometimes refining a composite model in Maya while In-
spireMe was searching for new suggestions. When it was clear from
the first page of suggestions that the tool was confused by a partic-
ularly ambiguous query model, the artists usually quickly refined it
to add more context (such as adding wings to a hull) and submit-
ted a new query. This accounts for the occasional rapid switches of
activity between the modeling software and InspireMe.

In one instance, an artist decided to experiment by seeking to en-
hance a finished, production-quality model that he had constructed
earlier. He was pleasantly surprised when InspireMe quickly made
a few suggestions that could enhance his model and still maintain a
coherent yet unusual shape. The initial and final models are illus-
trated in Figure 8.

User feedback. A number of art students noted that InspireMe
would be useful for early-stage 3D design, with one commenting

“I would definitely use a tool like this during an early conceptual
phase” and another saying InspireMe “would be great for white-
boxing.” The term “whiteboxing” refers to the practice, in the de-
sign of game art, to create rough concept models before fully refin-
ing them. A professional concept artist suggested that InspireMe
would be useful for a local company specializing in the creation of
concept art for film and games, further commenting that the tool fits
naturally into the production workflow of concept artists.

One suggestion for improvement was to add the ability to select
a suggestion and request “more like this,” or reject a suggestion
and request that similar ones be suppressed. Artists also suggested
automatically remeshing the suggested components to match the
tessellation characteristics of the query shape.

5 Conclusion

This work leverages statistical geometry processing techniques to
enable a data-driven approach to creativity support in 3D model-
ing. The suggestion generation method introduced in this paper is
compatible with traditional geometric modeling tools. Data-driven
suggestions could thus be integrated into such tools to assist artists
with conceptual 3D design. More broadly, the development of data-
driven techniques that support open-ended design tasks is a chal-
lenging research direction that can advance three-dimensional con-
tent creation.

The most significant limitation of the presented technique for sug-
gestion generation is its purely geometric nature, which does not
take into account the meaning and function of the suggested com-
ponents. Recent advances indicate the feasibility of semantically
labeling components in large collections of three-dimensional con-
tent [Kalogerakis et al. 2010]. Utilization of semantic information
can substantially increase the effectiveness of suggestion genera-
tion. More generally, reasoning about the semantics of shapes and
their components can advance the power of data-driven tools for
three-dimensional content creation.

Finally, the effectiveness of data-driven content creation tools is
closely related to the quality of the available data. Existing 3D
model libraries are still limited in their extent, fidelity, and avail-
ability. On the other hand, the Web has already been used for col-
laborative creation of extensive image libraries, with millions of
freely available, ranked, labeled, high-quality photographs [Flickr
2010]. Large-scale collaboration can similarly enable the construc-
tion of comprehensive and detailed databases of three-dimensional
content. Such databases can drive the development of new kinds of
tools for three-dimensional content creation.

Figure 8: Enhancing an existing model. A previously completed
model (left) and the enhanced model (right), which uses three sug-
gestions made by InspireMe (insect head, flat wings from racing
car, curved wings from spacecraft).
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