Feature-Based Techniques for Real-Time
Morphable Model Facial Image Analysis

Siddhartha Chaudhuri
Indian Institute of Technology, Kanpur, India

sidc@iitk.ac.in

Supervisors:

Edoardo Charbon
Randhir K. Singh

Ecole Polytechnique Fédérale de Lausanne, Switzerland

{edoardo.charbon, randhirkumar.singh}@epfl.ch

Abstract

We present an algorithm to quickly analyse and compress facial
images using a 2-dimensional morphable model. It runs in real-time
on reasonable resources, and offers considerable opportunities for par-
allelization.

A morphable model associates a “shape vector” and a “texture vec-
tor” with each image of a sample set. The model is used to analyze a
novel image by estimating the model parameters via an optimization
procedure. The novel image is compressed by representing it by the
set of best match parameters. For real-time performance, we sepa-
rate the novel image into shape and texture components by computing
correspondences between the novel image and a reference image, and
match each component separately using eigenspace projection. This
approach can be easily parallelized.

We improve the speed of algorithm by exploiting the fact that facial
correspondence fields are smooth. By computing correspondences only
at a number of “feature points” and using interpolation to approximate
the dense fields, we drastically reduce the dimensionality of the vectors
in the eigenspace, resulting in much smaller compression times. As
an added benefit, this system reduces spurious correspondences, since
weak features that may confuse the correspondence algorithm are not
tracked.

Contents

1

2

Introduction
Background

A Real-Time Approach

3.1 Shape and Texture Representation

3.2 Matching a Component: Unconstrained Quadratic Program-
MING . . . o o v v e e e e e e e

3.3 Faster Matching: Orthonormal Bases and Projection

3.4 Principal Component Analysis and Eigenvectors

Feature-Based Optimizations

4.1 Features for Speed
4.1.1 Investigating Equivalence
4.1.2 Theoretical Speed Gain

Implementation and Results

Future Work

13
15
16
16

17

18

1 Introduction

Portable and embedded devices typically need to communicate at high speed
through low bandwidth channels. Frequently, images are transmitted or
received by such devices, for example in a wireless security camera network
or in a video phone. It is essential to compress these images to the smallest
size possible, so that they can be transmitted quickly over slow connections.
In such applications, lossless compression is not essential, since the display
systems are usually of limited quality and size. It is however important
to preserve strong visual features of the image, so that easy recognition is
possible.

At the EPFL, Switzerland, the MegaWatch project aims to build a
wristwatch-sized system with a range of functionalities, including image
acquisition and transmission over very low bandwidth channels. One of
the targetted applications of this feature is to capture and transmit images
of faces — of the wearer and of other people. The system has considerable
multi-processing power, so advanced techniques may be used for image com-
pression and reconstruction. We present a real-time procedure designed to
compress facial images on such a platform.

The method outlined in this report is extremely fast, reasonably robust
and highly parallelizable. It takes advantage of the relative visual signifi-
cances of image areas: strong features such as the mouth and the eyes are
better preserved than flat features such as the cheeks and forehead. It has
been tested on a large number of facial images and its various components
are the subjects of much ongoing study, so we can expect to see considerable
refinements and improvements in the near future.

2 Background

Image compression may be divided into two categories: informed and un-
informed. Uninformed compression assumes no knowledge of the objects
represented by the image. Most general image compression standards such
as GIF, PNG, JPEG and JPEG2000 fall in this category. The sequence
of pixel intensities is compressed using lossless (which allow exact recon-
struction) or lossy (which allow only approximate reconstruction) methods.
The advantage of uninformed methods is that any image whatsoever may
be compressed with adequate scope for reconstruction — they are therefore
suitable for general image processing applications.

Informed algorithms deal with specific classes of images, for example
facial images. Much greater compression is possible because the range of
images is restricted. However, a setup to compress one class of images cannot
be used to compress other classes — a facial image compression system will
handle faces but not furniture. In many applications, such restriction is

Figure 1: Matching by pixel-wise overlay. On the left is the original image,
on the right the best match.

acceptable. For example, mugshots of criminals in police records are frontal
or profile views of faces, all shot from the same viewpoint under similar
lighting conditions.

Much effort in developing informed compression algorithms stemmed
from research in face identification systems. The task was to identify a face
from a photograph. It was assumed that another photograph of the same
person was already in a large database of facial images. The new image was
approximated as closely as possible by a linear combination of the images
in the database. The person was identified by the database image that had
the largest coefficient in this combination. This method worked reasonably
well for identification, but the approximations were fuzzy and badly-defined
because the faces were generally not of the same shape. Fig. 1 illustrates
this.

To solve this problem, it was essential to somehow normalize the facial
images so that they all had the same shape and could be overlaid accurately.
Morphable models were developed to provide such a representation of im-
age classes. In its conventional form, a morphable model associates a shape
and a texture with each image in a sample set. The shape component (a
correspondence function) describes how the sample image deviates from a
reference image. The texture component encodes the colour/intensity in-
formation of the sample image, normalized to the reference shape. Fig. 2
shows an instance of this representation.

A novel image is approximated as a warped combination of the compo-
nents in the morphable model. More precisely, for n sample images, if the
shapes are represented by the set {S;, ¢ = 1...n} and the textures by the
set {T;, i =1...n}, then the novel image I,,,¢; is approximated as:

Inovel ($, y) ~ Tmodel © S;ul)del ($, y)

Image Shape Texture

Figure 2: An image split into shape and texture components.

where

n
Tmodel = Z bz,-rz
i=1

n
Smodel = E ¢S
i=1

Intuitively, the novel texture is approximated by a linear combination of
the sample textures, and is then warped to the approximate shape of the
novel image by a linear combination of sample shapes. The scalars {b;} and
{c;} are called the best match coefficients.

We have assumed here that our shape components S; are defined in the
direction of a “backward warp”. That is, S;(z,y) is the location of the point
in the ith sample image that corresponds to the point (z,y) in the reference
image. To obtain the novel image from the novel texture, we must apply a
“forward warp”, so we use the inverse of the model shape S;,odei-

Assuming the approximation is good, drastic compression is achieved
by representing the novel image only by the best match coefficients. It is
easy to see that if the model is known, these coefficients are sufficient to
reconstruct the closest match to the novel image.

Vetter, Jones, Poggio, Beymer et al have done a considerable amount
of work in developing two and three dimensional morphable models. Their
work has mainly focussed on facial images. This is influenced by the fact
that the morphable model description lends itself very well to faces: a dense
and smooth correspondence field can be established between features on
two different faces, something which is difficult to do with, say, buildings, in
which external features present in one are frequently not present in another.
Of course, we assume that the two faces have similar hair growth, accessories
(such as spectacles), and no missing features (van Gogh, minus one ear,
might be difficult to represent with the model).

In the approach of Jones, Poggio, Vetter et al [5], the mismatch between
the morphable model and novel image is represented by a single sum-of-
squared-errors function, which may be written as:

2
E(b’ C) = Z (Inovel(x7 y) — Tmodel © S’;zidel(x’ y))
T,y

where b represents the set of b;’s and ¢ represents the set of ¢;’s. A numerical
minimization method such as stochastic gradient descent is used to minimize
the error and thus obtain the best match coefficients b and c.

3 A Real-Time Approach

Our objective was to design a real-time system that would match a mor-
phable two-dimensional face model to a novel image. We experimented with
the error minimization approach of [5] but ruled it out as it took too much
time, partly because it is an iterative process that must loop many times
before it converges to a solution and partly because the evaluation of the
error (and its derivatives) at each step requires a large number of operations.

A faster solution was to first separate the novel image into shape and
texture components [8] — the construction of the model requires that sample
images be split in this way, so code could be reused. The components are
then matched individually: the novel shape is approximated as a linear
combination of sample shapes and the novel texture as a linear combination
of sample textures.

The advantage of matching components separately is that the error func-
tions are much simpler. They do not have the implicit warping induced by
the T},0de1 © S—1 ; term. For example, the texture error in the new formu-

mode
lation is simply:

Ete:vture(b) = Z (Tnovel (ZL‘, Z/) - Tmodel(xa y))2

x7y

where T,oper 18 the novel texture and Thyoqe is Y ;- biT; as before.

3.1 Shape and Texture Representation

Following the standard practice, we represent both shapes and textures as
vectors indexed by image coordinates. Each element of a vector corresponds
to an image pixel. The texture vector stores intensity values, and the shape
vector stores the (absolute or relative) coordinates of corresponding points.
We note that each element of a shape vector has two components, in the x
and y directions. In our implementation, we simplify this further with two
separate vectors, one storing the correspondence values in the x direction
and the other in the y direction. Our three error terms are, therefore:

Ex,shape(cx) = Z (S:v,novel [CL‘, y] - Z Cx,iSa:,i [55, y})2

T,y =1

n

Ey,shape(cy) = Z (Sy,novel [1"’ y] - Z Cy,isy,i [l’, y]>2

Etexture(b) - Z (novel X y Z b T :L‘ y)
m7y

where square brackets represent vector (or array) lookup instead of function
evaluation. This representation facilitates an uniform treatment of shape
and texture. The cost of the extra coefficients (cx and cy instead of just
c) is outweighed by the ease of implementation. It is possible to work with
single shape vectors in which each element has an x and a y component,
but the implementation is messier. We will assume separate x and y vectors
for shape in the rest of this report: the interested reader may modify the
algorithms to work with single vectors.

3.2 Matching a Component: Unconstrained Quadratic Pro-
gramming

We observe that each of the errors above is a simple quadratic function of the
appropriate coeflicients. Unconstrained quadratic programming can be used
to minimize each error. Consider the texture error. It may be minimized
with respect to the vector b as follows:

1. Transform the error formula: (For clarity, the [x,y] suffixes are not
shown. Also, the vector {11, T5,...T,} is written as T.)

2
Etemture(b) - Zz,y Tnovel_b-T)

- Z%Z/ Tr%ovel 2Tnovelb T+ (b T)Q)

Z x,y Tnovel 2 Ea: Y Tnovelb T + Z ()2
Z x,y Tsovel 2 ng,y Tnovelb T + Zr,y b(TTT)bT
Z:c Y novel '(2 Zx7y TnovelT) + b(Z%y TTT)bT

The error is now in the standard form k + b.g + bHb? of a quadratic
programming objective function, with g = —2 Zx,y Thovel T and H =
>y TIT.

2. Compute the derivative of the error with respect to b:

d(k +b.g + bHb")
db B

7dEt§§W = =23 T T+ (2 T7T)bT

x?y

T 4 oHBLT

therefore

3. Set the derivative to zero. This defines an extremum of the error
function. Since our error is a non-negative quadratic function, this
extremum must be the minimum.

23" T T + (2 3 TTT> b7 =0

x?y x7y

(3 TTT) b =3 T T
z,y

z?y

or

Evaluating the matrices Zx,y TTT and Ex,y Thovet T is straightfor-
ward.

4. Solve the above system for the best match coefficients b. We used LU
decomposition in our experiments.

3.3 Faster Matching: Orthonormal Bases and Projection

The approach of the last section is reasonably effective, but by precondi-
tioning the sample set during model construction we can have much faster
matching. The trick is to transform the set of sample vectors into an or-
thonormal basis. Adding up the projections of the novel vector onto the
elements of the basis, we obtain the best match to the novel vector, mea-
sured in terms of the sum of squared errors (which is nothing but the squared
Lo distance between the vectors). The following lemma proves this.

Lemma 1. Let V be an n-dimensional subspace of R™, n < m. Let {B;}
be an orthonormal basis of V. Given a vector X € R™, the element of V
closest to X is

n
Y (X.B))B;
i=1
where the “closest” element C is defined as that which minimizes the squared
Ly distance | X — C||%.

Proof. Let C = """ |(X.B;)B;, and let AX = X — C. Consider the dot
product of this vector with the elements of the basis.

AXB; = (X-Y7 (X.B)B,).B;
= XB; - (2L(X.B)B).B;
X.B; — > ,0;;X.B; (since the basis is orthonormal)
X.B; — X.B;
=0

(Here 6;; is the Kronecker delta: §;; = 1 if i = j, 0 otherwise.)

So AX is orthogonal to any vector in V.

Now consider any vector C’ other than C in V. Since vector spaces are
closed under linear combination, C' — Cisin V. Let Y = C’ — C. Then,

IX-C* = [X-C-Y|?
= [[AX -Y]?
= (AX - Y).(AX - Y)
= AX.AX+Y.Y —-2AXY

But AX is orthogonal to Y, since Y € V. Therefore 2AX.Y = 0. So,

IX - C2 = AXAX+Y.Y
HAXHz + Y|
[AX]|)
X —C

Therefore C =)" | (X.B;)B; is indeed the element of V' “closest” to
X.

V

O]

Each projection takes time linear in the size of the vectors. If each
vector has m dimensions (which is, in our case, the number of pixels in
each image), then the matching is performed in O(mn) time. Compare this
with the equation-solving approach, which takes O(mn? + n?) time (the
usual algorithms for solving a system of n linear equations, such as LU
decomposition, contribute the O(n3) term). Actually, since n (number of
vectors) is always assumed to be less than m (dimensionality of vectors) in
our application to maintain linear independence, the latter approach takes
O(mn?) time in general.

In our experiments, projection gave matching times of the order of 100
milliseconds, compared to 5 seconds for equation-solving. Section 5 gives
more details.

3.4 Principal Component Analysis and Eigenvectors

In practice, the transformation to an orthonormal basis is not performed on
the sample vectors themselves, but on the deviations of the sample vectors
from their mean. This complication is introduced by Principal Compo-
nent Analysis (PCA), which has the benefit of reducing the size of the
sample space by discarding “less significant” elements from the basis. PCA
transforms a set of linearly independent vectors {X;, i = 1...n} as follows:

1. Let X be the mean of the X;’s.

2. Consider the set of vectors {X! | X! = X; — X}. This set has rank
n — 1, since

n n n)
ZX’ ;Xi—X):ZXZ-—nZianZ:O

=1

3. PCA gives an orthonormal basis {E;} of size n — 1 for the space
spanned by the set {X/}. PCA additionally reduces the size of the
basis by discarding “less significant” elements, but we will ignore this
in our discussion for the moment. The E;’s are conventionally called
etgenvectors.

After constructing the basis, we match a novel vector X,, e as follows:

1. Compute X’ = X,ovel — X

novel —

2. Project X! |, onto each eigenvector E;, obtaining scalars e; = E;. X,0pe1-
Note that all eigenvectors are of unit length, since the basis is orthonor-
mal.

3. Approximate X,oper a8 X + EZ 1 B

We observe that ZZZI e;E; is equivalent to Y ;" | k;X| for some k;’s,
since the sets {E;} and {X!} span the same space. So our approximation
can be rewritten as

n
Xapprox =X + Z kZX;
i=1
Lemma 2. The set of all possible approximations of the above form is

{Z:;bx Zbi—l}

Proof.
Xapprox = X + Zz 1 k; X/
nX

= =5+ Zz 1 ki(Xi — %)
=t - B
= Z?:1 biX;

where b = k; + 1 — Z=tM _ g 1 F

Now,

Z?:l bi

We must show that each possible set of b;’s summing to 1 corresponds
to some set of k;’s. Let us take any such set of b;’s. Then we can write:

m ks

b= kg
g

b2 — k2+%—2];1]
: : .

b = k= SR

We must show that this system of equations is consistent, i.e. it has a
solution for the k;’s. Let us construct a solution as follows:
Let Z?Zl k; = K, where K is any arbitrary real number. Solving for the
k‘i’S:

ki = b —
ko = by —

kn = bh— 2+ E&

Adding all the equations and observing that K = 2?21 k;, we get back
our original condition Y1 ; b; = 1. Hence the system is consistent and the
solution is valid. We note that our choice of b;’s corresponds to an infinite
number of possible choices for the k;’s, differing in the sum Z?Zl k;.

O

Theorem 1. Approximation by projection onto eigenvectors is equivalent
to minimizing the Lo distance between a movel vector X, e and the vector

space Vi = {> 1" 1 b; X, b =1}.
/

Proof. In the procedure outlined previously, we first construct X| .= =
Xpovel — X, then project X;mel onto each of the eigenvectors to obtain
coefficients, then take the linear combination of the eigenvectors weighted by
these coefficients, and finally add the mean X to obtain the approximation.
So the approximation may be written as:

n—1
Xapproa: =X+ Z(X;’Lovel‘Ei)Ei
=1

We note, from Lemma 2, that the space of possible approximations is
precisely V7.
Let X ror = ot (XLoper-Ei)Ei. From Lemma 1, X[, ., is the point
/

in the space V’/ spanned by {E;} that minimises the Ly distance to X! .

Now, we observe that

11

Figure 3: Matches to the novel image (a) obtained by retaining b) all 49, c)
30, d) 15 and e) 7 eigenvectors.

1 X nover — Xapp?"OﬂCH2 = [[Xnover — (X + X;ppro:p)||2
= ||(X7LOU61 - X) - Xétpprox||2
= ||X;wvel - X:zpproz”
So minimizing the Ly distance between X/ . and X[., corresponds

to minimizing the Lo distance between X1 and Xgpproq-
Also, there is a one-to-one correspondence between V4 and V':

XeV e (X+X)eW

Hence the minimization is over the whole of V.
Therefore X gpproz, as constructed above, minimizes the Lo distance from
V1 to Xpovel-
]

We thus conclude that matching by projection onto the PCA space yields
exactly the same best matches as quadratic programming, with the con-
straint that the sum of the coefficients of the sample vectors must be 1. In
our experiments, we observed that except in cases where lighting conditions,
shape or overall intensity deviated drastically from the images of the sample
set, this constraint was not very restrictive and the best matches from the
two methods were virtually identical. Further, by retaining only the first
few principal components, we reduced the number of projections required,
thus speeding up the matching and generating excellent approximations to
the matches produced with the full eigenspace. Fig. 3 demonstrates this.

12

4 Feature-Based Optimizations

The eigenvector-projection approach is fast, but has a significant associated
challenge: the separation of the novel image into shape and texture com-
ponents must be done as accurately as possible. This calls for a robust
algorithm to set points in two facial images in correspondence.

The simplest approach is to compute the optical flow between the refer-
ence image and the novel image — the flow field is taken as the correspondence
field. This approach is conceptually flawed, because optical flow algorithms
are designed to track points on the same object across multiple frames, not
locate corresponding points in images of different objects. However, since
two faces are superficially similar, this approach works reasonably well in
practice.

We experimented with the Bergen-Hingorani algorithm [1] for dense op-
tical flow. It gave acceptable results on the whole, but spurious correspon-
dences were frequently generated. Larger window sizes gave noticeably bet-
ter results.

More sophisticated algorithms designed specifically for computing facial
correspondences exist, but they are usually also more computation-intensive
and not suitable for real-time processing.

To develop a suitable algorithm for our application which gave few spu-
rious correspondences and ran in real-time, we took note of the following
facts:

e Certain points in facial images are easier to track than others. Finding
correspondences for a point at the corner of the mouth where contrast
and texture are strong is, for instance, easier than for a point in the
middle of the cheek, where the surface is smooth and unbroken.

e Correspondence fields between two facial images are smooth. This
is to be expected since human faces have elastic, organic structure.
This suggests that the field can be approximated fairly accurately by
interpolation from a set of “defining points”.

e Human vision is sensitive to strong features. When we observe a face,
recognition is triggered more by the intensity variation in sharply-
defined regions such as the overall outline, the eyes, the nose and the
mouth than in undistinguished ones such as the cheek and forehead.
Therefore, in compressing a facial image, it is important to preserve the
structure of strong features using accurate correspondences at these
locations, but other regions need not be rendered so exactly.

A suitable correspondence algorithm could therefore select a set of easily
trackable feature points, compute correspondences at these points only, and
interpolate from the resulting values to obtain the correspondences at every

13

pixel in the source image. By not tracking weakly-defined points (which
resemble their neighbours), spurious correspondences may be reduced.
We implemented this method in the following manner:

Feature selection: We used a Harris-type corner detector [4] to select well-
defined feature points in the source image. The Harris detector is
sensitive to strong gradients in the image. It ranks pixels on the basis
of the invertibility of a particular matrix G at each pixel (pg,py),
defined as follows:

Pz twa Py t+wy |:

G= > >

T=Px— Wz Y=Py —Wy

2 L1,
L1, I?

where I, and I, are the gradients in the x and y directions respectively
and the sums are computed over a window of size [—w, W] X [—wy, wy].
The invertibility of the matrix is measured by the magnitude of its
minimum eigenvalue \,, — the larger this quantity, the easier it is to
invert G. We retain pixels having), greater than a threshold value,
indicating that they mark strong gradients and are easy to locate and
track. From these pixels, we select only those which have maximum
Am in their immediate neighbourhoods. Finally, we prune the set fur-
ther if necessary to ensure all pixels are separated by some minimum
threshold distance [3]. Typically, about 300 feature points were se-
lected.

Sparse correspondences: To calculate the correspondences at the feature
points, we sampled a dense optical flow field. This field was generated
using the Bergen-Hingorani algorithm [1]. Sparse sampling of a dense
flow field had the advantage that the smoothing influence of neigh-
bouring pixels on the value at each pixel was retained in the sparse set
of flows. This helped prevent spurious correspondences.

Interpolation: We triangulated the set of feature points using Delaunay
triangulation. To compute the flow at a pixel p, we determined which
Delaunay facet f it lay in. The flow at p was computed by interpo-
lation from the vertices of f. We used generalized barycentric coordi-
nates as interpolation coefficients: the coefficient w; corresponding to
the jth vertex was calculated as in [7]:

v — cot(y;) + cot(d;)
’ Ip — qj?
where the vertex q; and the angles v; and J; are as in Fig. 4. In

practice, the coefficients at each pixel were computed during model
construction and stored in a lookup table. The costs of triangulation,

14

Figure 4: Barycentric coordinates in an irregular convex polygon.

point location and barycentric coordinate computation were therefore
not incurred during matching. We developed this approach from origi-
nal ideas, but discovered later that Kardouchi et al [6] had done similar
work.

Fig. 5 illustrates the entire process.

4.1 Features for Speed

Although our feature-based approach was initially designed to generate good
correspondences, we observed that it could also be used to drastically speed
up the matching process. The shape components were completely defined
by their values at the feature points. Hence, we could restrict the shape
vectors to these values only, reducing their dimensionality from m, the total
number of pixels in each image, to ny, the number of feature points. In our
experiments with 256 x 256 images and 300 feature points, this implied a
reduction from 65536 dimensions to 300.

We compute the PCA space of the restricted shape vectors and match
by projection onto this space. The projection-based approach executes in

Reference Image 300 features located Delaunay Triangulation Interpolation Map

Figure 5: The feature-based interpolation process. For clarity, background
triangles are not shown in the Delaunay triangulation. The interpolation
map is colour-coded: each feature point is assigned an unique intensity and
the intensity at each pixel is obtained by interpolation from the appropriate
feature points.

15

time linear in the dimensionality of the vectors, so execution time is reduced
from O(mn) (see Section 3.3) to O(nyn). The full (dense) shape compo-
nent is approximated after matching, by interpolating from the best match
restricted shape.

Ideally, we would like to show that matching with restricted vectors first
and interpolating afterwards is equivalent to interpolating first and matching
with full vectors afterwards.

4.1.1 Investigating Equivalence

We are given a set X of n linearly independent vectors {X;, ¢ = 1...n}
in R™, n < m. We are also given a set Y of “restricted vectors” {Y;, i =
1...n}in R™, ny < m. These sets have the following property: for any j:

n

Xi; = XuLiepnYu
n

Xoj = YLy cinYor

Xnj = XLy cinYur

where X;; denotes the jth element of X; and Y;; denotes the jth element of
Y;. The cj;’s are a set of scalar interpolation coefficients — there is one such
set for each j. In simple terms, the set X may be obtained by interpolation
from the set Y.

We are now given a novel vector X,,oe; € R™ and the corresponding
restricted vector Y,ower € R™f, related by the same sets of interpolation
coefficients as above: for any j:

ny
Xnovel,j = § CjkYnovel,k:
k=1
We obtain two approximations to X,,ope; as follows:

1. Minimize the Lo distance from the space spanned by the elements of
X to X,ovel, Obtaining the closest match X!

approx*

2. Minimize the Lo distance from the space spanned by the elements of Y
to Y povel, Obtaining the closest match Y gppr0-. Now interpolate from

Yapprox using the coefficients {c;ji} to obtain X2 .,

. o . 1 2
We ask if and under what conditions Xg,, .., and X7, .., are equal.

We are currently working on an answer to this question.

4.1.2 Theoretical Speed Gain

We conclude this section with some explicit calculations for the speed gain
from the feature-based approach, compared to the case when full vectors are

16

projected for all components. We assume that features are used to restrict
only the two shape components (x and y), not the texture component. We
also assume that the platform is serial-processing, not parallel-processing.

As mentioned previously, each shape component restricted to the feature
points is projected onto the set of eigenvectors in O(nyn) time, compared
to O(mn) for projecting full vectors. This results in a net speed gain by a
factor of g:

B 3 x O(mn)
9= O(mn) +2 x O(nsn)

If a sequence of one multiplication and one addition (a unit operation in
projection) takes time 7, then the speed gain is:

3mnt 3m 6n s

prg = :3—7
g mnT +2ngnt m+2ny m+ 2ny

For practical purposes, ny < m, so g = 3: we expect the feature-based
approach to be three times faster in projection. (Matching in PCA space
requires us to add the mean, but this is linear in the dimensions of the
vectors and does not change g.) The results satisfy our expectations: as
noted in Section 5, feature-based projection takes ~20ms while full-vector
projection takes ~60ms. We exclude the (more or less identical) times taken
to compute correspondences in the two approaches.

If the texture vectors could somehow be restricted as well, i.e. if we
could predict an entire texture map from values at feature points, then the
speedup is g = m/ny, typically of the order of a few hundred.

5 Implementation and Results

We implemented our approach on a dual 2.7 GHz Pentium 4 system with
1GB RAM, running RedHat Linux 9 (Shrike) with the symmetric multi-
processing (SMP) kernel 2.4.20-8smp. A uname -a command yielded the
following;:

Linux lappcl6.epfl.ch 2.4.20-8smp #1 SMP Thu Mar 13 17:45:54 EST
2003 1686 1686 1386 GNU/Linux

The coding language was C. OpenCV-0.9.5 was used as the image-
processing library. No explicit multi-processing or threading instructions
were included in the source code.

In our experiments, we obtained a minimum average matching time of
120ms. A slightly slower implementation which was easier to time took
140ms, of which 120ms was for computing sparse correspondences (pruning
a Bergen-Hingorani optical flow field) and 20ms for projecting feature-based

17

restricted vectors. We quote the times from the latter implementation since
we are more confident that the timing was accurate.

We present the execution times for various approaches in tabular form
(all measurements on the above platform).

Method Approximate average
matching time (ms)

Iterative error-minimization 3 x 10*

(Conjugate Gradient Descent)

Unconstrained quadratic 5 x 103

programming (LU decomposition)

Full-image projection with 5 x 103

Black [2] correspondences

Full-image projection with 180
Bergen-Hingorani [1] correspondences | (Correspondence: 120
+ Projection: 60)

Feature-based projection with 140
pruned Bergen-Hingorani [1] (Correspondence: 120
correspondences + Projection: 20)

Reconstruction typically took 40-80ms.

The reconstructed images in general closely resembled the original novel
images. However, there were some spurious deformations in the results that
are a cause for concern. It seems a better feature-tracking / correspondence
/ interpolation scheme is required. Incidentally, we note that interpolation
with barycentric coordinates only ensures C° continuity, i.e. the interpo-
lation surface is continuous but not necessarily smooth across edges of the
subdivision. Spline-based interpolation schemes give C! (continuous first
derivatives) and higher continuity, and are more suitable.

We present a selection of matches obtained, both good and bad, in Figs.
6, 7, 8 and 9. 50 images were present in the sample set. 40 principal
components (out of a possible maximum of 49) were used for both shape
and texture. The novel images were rendered from textured 3D models at
the Max Planck Institute, Germany.

6 Future Work

We list work that needs to be done, ranked in increasing order of immediate
requirement and complexity:

1. Investigate how much of the spurious deformations in reconstructed

images are due to the inadequate size of the sample set and how much
are due to incorrect correspondences.

18

Figure 6: A selection of novel images (first and third columns) and the
corresponding feature-based matches (second and fourth columns): some
good, some not-so-good. Part 1.

19

Figure 7: A selection of novel images (first and third columns) and the
corresponding feature-based matches (second and fourth columns): some
good, some not-so-good. Part 2.

20

Figure 8: A selection of novel images (first and third columns) and the
corresponding feature-based matches (second and fourth columns): some
good, some not-so-good. Part 3.

21

Figure 9: A selection of novel images (first and third columns) and the
corresponding feature-based matches (second and fourth columns): some
good, some not-so-good. Part 4.

22

2. Obtain substantial quantitative information about the performance of
the algorithm. Measure running times on a variety of facial images,
and also measure the accuracy of the approximation using multiple
norms.

3. Implement a smoother interpolation scheme, such as a spline-based
approach.

4. Implement the algorithm on a parallel-processing platform. The al-
gorithm is highly parallelizable and a large speed increase could be
achieved in a multi-processor environment.

5. Investigate whether preprocessing by wavelet decomposition and sim-
ilar techniques can give smaller and more workable images to increase
accuracy and speed.

6. Research, develop and implement a method to extend the feature-
based approach to texture components as well. This will make projec-
tion a few hundred times more efficient.

7. Research, develop and implement a better correspondence scheme.
The performance of the algorithm really hinges on just this step.

Acknowledgements

I am grateful to Dr. Edoardo Charbon and Randhir K. Singh of the EPFL,
Switzerland, for their suggestions, encouragement and patience. Randhir
wrote the code for matching morphable models by error-minimization which
formed the basis for my efforts, and provided help and advice at crucial
stages. He is also responsible for the idea of using wavelet decompositions
for better matching, a work-in-progress. I also thank the people at the
Processor Architecture Laboratory, EPFL, who tolerated me for two-and-
a-half months, and the countless people in the scientific community whose
ideas and publications influenced my work.

References

[1] J. Bergen and R. Hingorani, “Hierarchical Motion-Based Frame Rate
Conversion,” Technical Report, David Sarnoff Research Center, Prince-
ton, 1990.

[2] M. J. Black, “Robust Incremental Optical Flow,” Ph.D. Thesis, Yale,
1992.

23

[3]

J.-Y. Bouget, “Pyramidal Implementation of the Lucas Kanade Fea-
ture Tracker: Description of the Algorithm,”, Microprocessor Research
Labs, Intel Corp., 2000.

C. Harris and M. Stephens, “A combined corner and edge detector,”
Proc. Alvey Vision Conf., pp.147-151, 1988.

M. J. Jones and T. Poggio, “Model-Based Matching by Linear Combi-
nations of Prototypes,” unpublished AI memo, MIT, 1996.

M. Kardouchi, J. Konrad and C. Véazquez, “Estimation of large-
amplitude motion and disparity fields: Application to intermediate view
reconstruction,” Proc. Visual Communications and Image Processing,
ISET/SPIE Symp. on Elec. Imaging, San Jose, 2000.

M. Meyer, Haeyoung L., A. Barr, M. Desbrun, “Generalized Barycen-
tric Coordinates on Irregular Polygons,”, Journal of Graphics Tools,
7(1):pp.13-22, 2002.

T. Vetter and N. F. Troje, “Separation of texture and shape in images
of faces for image coding and synthesis,” JOSA, A 14:9 pp.2152-2161,
1997.

24

