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Abstract— We study the problem of locating sensors to detect
the failure of any set of radiation sources in a system. For
computing illumination data, we suggest the use of radiosity
methods. We then consider the problem of optimising sensor
placement to unambiguously identify any inactive sources. We
show that the problem can be transformed from a numerical to
a geometrical domain, relate it to set covering, and then attempt
to transform it into the domain of graphs. We present some
results on hypercube cutting planes that help us progress towards
the latter transformation by characterizing its combinatorial
structure. Also, we outline an approach to estimate the size of
the input space.

I. I NTRODUCTION

Optimal sensor placement is a challenging problem, not
least because optimality is variously defined in this context.
For instance, we may say a layout is optimal if it covers
every part of a region with the fewest possible sensors.
In computational geometry, this aspect has been extensively
studied as the Art Gallery Problem [1]. Alternatively, a layout
may be considered optimal if the sensor outputs are highly
sensitive to changes in specific parts of the environment.

We will consider optimality in the light oferror detection.
Briefly, we are interested in finding which elements of a set of
sources have failed. We assume we cannot examine the sources
directly, so we must resort to observing the readings from a
set of strategically placed sensors. We also require that we
must be able to unambiguously distinguish between different
sets of failing sources.

We will show that our model has strong links with studies
of linear separability of point sets, common in neural network
literature [9]. In particular, our work examines, among other
things, the conditions under which a set ofm-bit binary strings
(which are represented as vertices of the unit hypercube in
m-dimensional space) may be separated from all otherm-bit
binary strings by a hyperplane. Probabilistic estimates of the
linear separability of a set of points in general position in space
have been derived by Cover [4]. Later work addressed the case

when the points are not in general position, specifically when
the input consists of the vertices of a hypercube [2]. We try
to formulate graph-theoretic conditions for a linear separation
of binary strings: this has the advantage of highlighting the
combinatorial aspect of our sensor placement problem over
the geometric one. Although we do not yet have the general
conditions, we provide a subsidiary result for vertex pairs
which we hope to be able to extend to the general case.

Our final goal is to prove or disprove NP-completeness of
the problem, and use its combinatorial structure to design an
efficient algorithm that gives optimal or near-optimal sensor
layouts. In this report, we briefly describe the problem, suggest
a method for the generation of input data, examine the problem
geometrically, establish a link with set covering, obtain some
simple bounds on the size of the input space, present results
that help us progress towards a graph formulation and finally
outline an approach to refine our estimate of the size of the
input space.

We would like to mention that this report extends previous
work by the authors in the CS397 course – the report [3] from
the latter study provides an extended discussion of some of the
preliminary topics such as radiosity.

II. T HE PROBLEM

We will consider a region withm radiation sources. We are
given a set of sensors that respond to the amount of incident
radiation as follows:

Each sensor hask threshold levelsτ1, τ2,. . .τk, each greater
than 0, andk+1 distinctoutput valuesv1, v2,. . .vk+1. Let the
radiant energy incident on the sensor bee. The sensor output
is defined as follows:

out(e) =

 v1 if e < τ1

vi if τi−1 ≤ e < τi, 2 ≤ i ≤ k
vk+1 if e ≥ τk



Some of the sources may have been disabled or are malfunc-
tioning, and hence do not contribute to the overall illumination.
We assume that an active source always radiates with the same
(non-zero) strength and the same directionality, and an inactive
source has zero strength. What is the minimum number of
sensors that can always tell us exactly which of them sources
are inactive, and how do we place them?

We assume that the radiation incident on a sensor is the
linear sum of contributions from all sources. Specifically, if
eij ≥ 0 is the energy incident on theith sensor due to thejth
source (when it is active), thenei, the total energy incident on
the ith sensor, can be written as

ei = Ei.X

where Ei = [ei1 ei2 . . . eim] and thesource vectorX =
[X1 X2 . . . Xm], where

Xi =
{

1 if sourcei is active
0 if sourcei is inactive

We observe that our sensor model is essentially identical to
the perceptron model of [9], with binary inputs, weights equal
to the contribution of each source to the incident energy, and
a thresholded output functionout.

III. D ATA GENERATION WITH RADIOSITY

The first step in attacking the problem is to gather illumi-
nation data from different parts of the environment. As we
have seen above, we need to know the intensity distribution
due to each source separately. This can be done by switching
on the sources one at a time and measuring each single-
source illumination pattern. Such an approach may be tedious
and impractical. A reasonable alternative is to use a radiosity
method [6] to simulate the illumination model.

The surfaces in the scene are divided into a number of
patches, each patch small enough to be considered homoge-
nous. A standard radiosity computation will give the incident
radiation at each patch. Let us performm such computations,
keeping exactly one (a different one) of them sources active
each time. This will give the illumination at each patch due
to each source individually.

At a patchP , let the incident energy due to thejth source
be εP

j ≥ 0 when the source is active. Let us selectn patches
P1, P2,. . .Pn for placingn sensors. Then, for theith sensor,
we have

eij = εPi
j , 1 ≤ j ≤ m

We recall thatei is the total energy incident on theith sen-
sor. We can write thesensor input vectorSin ≡ [e1 e2 . . . en]
as:

Sin = EXT

where
E = [eij ]n×m

The sensor output vectorSout(Sin) is defined as
[out(e1) out(e2) . . . out(en)]. Sout is the observable quantity
in our system. Our task is to choose sensor locations such that
Sout is unique for each possibleX, so that we have a bijective
mapping from sensor outputs to sets of inactive sources.

IV. T HE GEOMETRICAL PICTURE

The problem may be expressed geometrically. Let the input
to the ith sensor beei for source vectorX ande′i for source
vector X′. We say the sensordistinguishesbetweenX and
X′ if out(ei) 6= out(e′i), i.e. if there is some threshold level
betweenei ande′i.

Let us now consider them-dimensional spaceRm. We
represent a point in this space asx = [x1 x2 . . . xm]. Each
source vectorX represents one of the2m vertices of the unit
hypercubeQm in this space. Sensori distinguishes between
X andX′ if and only if there is some threshold levelτh such
that X andX′ lie on opposite sides of the plane

Ej .x = τh

For each sensor, there arek parallel planes, one for each
threshold value. For a set ofn sensors, there are a total of
nk planes. If the sensor output vector is unique for each
source vector, then there must be at least one sensor that
distinguishes between each possible pair of source vectors. In
other words, the linear subdivision ofRm induced by these
planes must contain each vertex ofQm in an unique cell
(maximal connectedm-dimensional region). We will require
that no plane contains a vertex.

If we connect each pair of distinct vertices ofQm, we obtain
Qclique

m , thehypercube clique, with
(
2m

2

)
= O(22m) edges. To

distinguish between all possible source vectors, we must place
sensors at selected patches so that the resulting set of planes
intersects the interior of every edge of this graph.

At this point, let us define the following two concepts:

Definition 1: A planeA.x = b is “non-negative” if all the
coordinates ofA are non-negative andb is strictly positive.
We observe that each plane generated by illumination data for
a sensor is non-negative.

Definition 2: A set of edges ofQclique
m is “valid” if there

is some non-negative plane that intersects the interior of each
edge in the set. Each valid set directly corresponds to an unique
linear separation of the vertices of the hypercube.

V. SET COVERING

We note that the problem is essentially a set covering
problem. With each patch we may associate a set ofk planes
and hence a set of intersected edges ofQclique

m . We must select
patches so that the entire set of edges inQclique

m is covered.
Unconstrained set covering is known to be an NP-complete

problem [8]. A simple greedy algorithm provides a solution
within a factorα(η) of the optimum, whereη is the size of
the ground set andα(η) ≡ ln η− ln ln η + Θ(1), with the last
term in [−0.31, 0.78] [10]. Using the greedy algorithm, we
can easily obtain a fair approximation to the optimal sensor
locations in polynomial time.

However, it is not established whether our particular prob-
lem is NP-complete or not, since it is a constrained version
of set covering. Certain subsets do not occur in the input:
all the edges in a such a subset cannot be simultaneously
intersected by a set ofk parallel non-negative planes. For



example, in the 3-dimensional cube, it is easy to check that
no single non-negative plane (k = 1) can intersect both the
edges([0 0 0], [1 0 0]) and ([1 1 0], [1 1 1]) (see Fig. 1).

Let Nk b the number of subsets thatcan occur. To prove
(or disprove) NP-completeness, it would be helpful to have
some idea of the relative size of the input space, i.e. the
ratio Nk/|Φ|, where Φ = 2EDGES(Qclique

m ) is the power set
of the edges of the hypercube clique. We note that|Φ| =
2|EDGES(Qclique

m )| = 2(2m

2 ) = 2(4m−2m)/2. Also, N1 is simply
the number of different linear separations of the vertices of
the hypercube.

VI. SOME SIMPLE BOUNDS

Theorem 1:A plane must intersect at least2m − 1 edges
of Qclique

m , if it intersects any edge and does not contain a
vertex, and at most22m−2 edges.

Proof: Let planeA.x = b intersect at least one edge
of Qclique

m . Of the 2m vertices, sayp vertices are on the
positive side of the plane (A.x > b) andq = 2m − p vertices
on the negative side. A pair of vertices on opposite sides of the
plane corresponds to an intersected edge. This is a bijective
mapping, since no intersected edge can join two vertices on
the same side of the plane. The graph defined by the vertices
and intersected edges ofQclique

m is thus isomorphic to the
complete bipartite graphKp,q (Fig. 1). The number of edges in
such a graph is simplypq = p(2m − p). The minimum of this
expression is2m − 1, and it is obtained whenp or q is 1. The
maximum is22m−2, and it is obtained whenp = q = 2m−1.

Theorem 2:There is at least one non-negative plane that
intersects exactly2m − 1 edges ofQclique

m and at least one
non-negative plane that intersects exactly22m−2 edges.

Proof: To prove the first part, we must show that
some non-negative planeA.x = b can isolate a single vertex.
Choose any positiveb, and make each coordinate ofA greater
thanb. The resulting plane has the origin on its negative side
and all other vertices ofQclique

m on its positive side. The
number of intersected edges is2m − 1.

To prove the second part, we must construct a non-negative
plane that has half the vertices on its positive side and half
on its negative side. Let us make the first coordinate ofA
greater thanb and all other coordinates 0. Since exactly half
the vertices of the unit hypercube have their first coordinate
1 and the rest have 0, this plane evenly splits the vertices.
The number of intersected edges is22m−2. (We note that the
edges and vertices on each side of this plane define graphs
isomorphic toQclique

m−1 .)

These results show that the size of each valid set is tightly
bounded above and below by22m−2 and2m − 1 respectively.

Also, the number of different possible cuts ofQclique
m is

bounded by22m

, the number of ways of separating the vertices
into two sets. Each valid set corresponds to exactly one cut.
Therefore the number of valid sets is less than22m

, and

N1

|Φ|
<

22m

2(2m

2 )
= 2(3×2m−4m)/2 → 0

Fig. 1. Bipartite graphK2,6 formed by intersection of a plane (grey) with
the 3-cube clique. The black vertices are on one side of the plane and the
white vertices on the other side. Thick lines denote intersected edges (some
non-intersected edges have been omitted for clarity).

We note in passing that the maximum number of cells in a
linear subdivision induced byH hyperplanes inRm [7] is

m∑
i=0

(
H

m− i

)
This tells us that for isolating each of2m points, we need at

leastm hyperplanes. A set ofm hyperplanes aligned with the
coordinate planes (and with suitable intercepts) is an obvious
example that does the job. Interpreting these results for our
sensor layout, we find that at leastdm/ke sensors are required,
and if we are lucky we may be able to make do with just this
many.

VII. T OWARDS A PURE GRAPH PROBLEM

We would like to remove the geometrical component and
transform the problem into the graph domain, so that we
can try to use the large body of results in graph theory that
have been associated with studies of NP-completeness and
optimisation. As a first step, we shall construct a directed
graph that has some properties equivalent to those related to
the intersection of the hypercube clique with a plane.

We will use boldface to denote the position vector of a point,
i.e. p is the position vector ofp.

Consider a vertexu of Qm. Its position vector[u1 u2 . . . um]
is a bit vector, i.e. it contains only 0’s and 1’s as elements.
Let us defineONES (u) as the index set of the 1’s inu, that
is,

ONES (u) = {i | ui = 1}

We observe that for any planeA.x = b, where A =
[a1 a2 . . . am],

A.u =
m∑

i=1

aiui =
∑

i∈ONES(u)

ai

Consider two verticesu and v such thatONES (u) ⊂
ONES (v), where⊂ denotes theproper subsetrelation. Then



for any non-negative planeA.x = b we haveA.u ≤ A.v.
Consider thedirected hypercube graph~Qm on the vertices
of Qm. Its edges coincide with the edges of the hypercube
(those that join vertices differing in exactly one coordinate)
and are directed from[0 0 . . . 0] to [1 1 . . . 1], i.e. edge(u, v)
is present iffv has a 1 whereu has a 0 and they agree in all
other coordinates.

Lemma 1:There is a path of non-zero length fromu to v
in ~Qm if and only if ONES (u) ⊂ ONES (v).

Proof: If part : Successively change each 0 inu to 1, if
v has a 1 in that coordinate. After a finite number of steps,
we will obtain v, sinceONES (u) ⊂ ONES (v). Each step
corresponds to an edge of~Qm, since the initial and final values
differ by exactly one 1. We see by induction that there is a
path u ; v in ~Qm. Also, sinceu 6= v, we must change a 0
to a 1 at least once, so the path has non-zero length.

Only-if part : Consider any edge(u′, v′) on the pathu ;

v (there must be at least one such edge since the path has
non-zero length). By the construction of~Qm, we know that
v′ is the same asu′ but for an extra 1. SoONES (u′) ⊂
ONES (v′). Further,⊂ is a transitive relation. Applying this
inductively to the vertices in the path, starting fromu, we
obtainONES (u) ⊂ ONES (v).

Since the subset relationship and path existence in~Qm have
been shown to be equivalent, we will introduce a common no-
tation for them. We say thatu → v if the following equivalent
statements hold:

1) ONES (u) ⊂ ONES (v) (⊂ denotesproper subset).
2) There is a path of non-zero length fromu to v in ~Qm.
If u → v, then for any non-negative planeA.x = b,

A.u ≤ A.v.

We will now present a result aboutvalid pairs, i.e. valid
sets of 2 edges.

Theorem 3:There is a non-negative plane that intersects
the distinct edges(u1, v1) and (u2, v2) in Qclique

m if and
only if both u1 andv1 do not lie on paths from the origin
0 = [0 0 . . . 0] to u2 andv2 in ~Qm, and vice versa.

In other words, there is a non-negative plane that intersects
(u1, v1) and (u2, v2) in Qclique

m iff the following do not hold
simultaneously (whenu1, v1, u2 andv2 are all distinct):

u1 → u2, v1 → u2, u1 → v2, v1 → v2

and also, the following do not hold simultaneously:

u2 → u1, v2 → u1, u2 → v1, v2 → v1

These “forbidden configurations” may be expressed graph-
ically as

u1

�� !!C
CC

CC
C

v1

}}{{
{{
{{

��
u2 v2

and

u1 v1

u2

OO =={{{{{{
v2

aaCCCCCC

OO

If the edges share a common endpoint, sayu1 = u2 = u,
then the forbidden configurations reduce to

u // v1

v2

OO ==||||||
and

u

��

v1oo

}}||
||
||

v2

A further way of expressing the condition for a disallowed
configuration is

ONES (u1) ∪ONES (v1) ⊆ ONES (u2) ∩ONES (v2), or
ONES (u2) ∪ONES (v2) ⊆ ONES (u1) ∩ONES (v1).

Proof: Only-if part (by contradiction) : There is
some non-negative planeA.x = b that intersects(u1, v1) and
(u2, v2). Let us suppose, without loss of generality, that both
u1 and v1 lie on paths from the origin tou2 and v2 in
~Qm, i.e., u1 → u2, v1 → u2, u1 → v2 and v1 → v2 hold
simultaneously. This implies that:

A.u1 ≤ A.u2

A.v1 ≤ A.u2

A.u1 ≤ A.v2

A.v1 ≤ A.v2

Now if the plane intersects(u2, v2), we must have

A.u2 < b < A.v2, or
A.v2 < b < A.u2

In the first case, we haveA.u1 ≤ A.u2 < b andA.v1 ≤
A.u2 < b, so the plane cannot intersect(u1, v1). Similarly in
the second case, we haveA.u1 ≤ A.v2 < b and A.v1 ≤
A.v2 < b, so the plane cannot intersect(u1, v1).

This is a contradiction, so our supposition was incorrect:
u1 andv1 cannot both lie on paths from the origin tou2 and
v2 in ~Qm. By an identical argument, with subscripts 1 and2
interchanged, we can show thatu2 andv2 cannot both lie on
paths from the origin tou1 andv1.

If part : We know that the configuration is allowed. We will
examine each possible configuration of(u1, v1) and (u2, v2)
that does not contain any set of forbidden relationships.

The base configuration space is very large: each pair(p, q)
from the set{u1, v1, u2, v2} may be related asp → q, or
q → p, or not related at all, a total of 3 possibilities. There
are

(
4
2

)
= 6 possible pairs, so the total number of possible

configurations is36 = 729. Fortunately, three factors drasti-
cally reduce the number of configurations we must examine.
These are:

1) There are many forbidden configurations.
2) The subset relationship is transitive, so configurations

such as the following are equivalent:

u1 // v1

��
u2 v2

≡
u1 //

!!C
CC

CC
C

v1

��
u2 v2

Also, configurations that contain a cycle do not occur
in our graph: we cannot havep → q → r → p because
this would imply thatp → p, which is impossible since
a set cannot be a proper subset of itself.



3) Symmetries may be exploited. We can (a) swap the
endpoints of either edge or (b) exchange the two edges,
without essentially altering the configuration and the
associated arguments.

a) u1 //

��

v1

u2 v2oo

OO
≡

u1 v1oo

}}||
||
||
||

u2 v2oo

aaBBBBBBBB

b) u1 // v1

u2

OO

v2oo

OO
≡

u1

��

v1oo

��
u2 // v2

We will enumerate all possible unique allowed configura-
tions (by unique we mean that we will not consider equivalent
configurations separately) and show that in each case, we
can construct a non-negative planeA.x = b, where A =
[a1 a2 . . . am], that intersects both the edges.

But before we begin listing all the cases, let us look at some
caveats:

• Observation 1: If two verticesp andq have no relation
between them, i.e.p 9 q andq 9 p, thenONES (p) has
an element not inONES (q) and vice versa, since neither
is a subset of the other.

• Observation 2: If p has a 1 not in q, i.e. ∃t, t ∈
ONES (p), t /∈ ONES (q), then by choosingat > b and
all otherai’s = 0, we getA.p > b, A.q = 0 < b.
∴ The plane intersects(p, q).

• Observation 3: If p → q, then for eacht ∈ ONES (q),
we can set

at = γ =
b + ε

|ONES (q)|
whereε > 0 is small enough so that

∀w.w ≤ |ONES (q)| − 1 ⇒ wγ < b

Evidently, A.q > b. Also, since |ONES (p)| ≤
|ONES (q)| − 1,

A.p = |ONES (p)|γ < b

∴ The plane intersects(p, q). In general, we will say that
in the context ofγ = (b + ε)/c, ε is small enoughif ε > 0
and∀w.w ≤ c− 1 ⇒ wγ < b. It is simple to check that
this requiresε < γ.

A. u1, u2, v1 and v2 are distinct

We may divide the possible configurations into 7 cases, as
presented below.

Case 1: Configurations with the following subgraph or its
symmetrical equivalents:

u1 v1

u2

OO ==

// v2

where a dotted line indicatesabsenceof the corresponding ar-
row. If this subgraph is present, then for eachs ∈ ONES (u2),
set as = (b + ε)/ |ONES (u2)|, ε > 0. Set all other coef-
ficients to 0. This givesA.u1 > b and A.u2 > b. Since
neitherONES (v1) or ONES (v2) contains all the elements of
ONES (u2), ε can be made small enough so thatA.v1 < b
andA.v2 < b.

∴ This plane intersects(u1, v1) and (u2, v2).
Some of the configurations in this class are:

u1 v1

��
u2

OO

v2

u1 v1oo

}}{{
{{
{{

��
u2

OO

v2

and

u1 v1oo

��}}{{
{{
{{

u2

OO

v2oo

aaCCCCCC

Case 2: Configurations with the following subgraph or its
symmetrical equivalents:

u1

��

v1

}}
u2 v2oo

where a dotted line again indicates absence of the correspond-
ing arrow. If this subgraph is present,ONES (v1) must have
some elements not in ONES (u2), hence not inONES (u1)
either, andONES (v2) must have a similar elementt (s
and t need not be distinct). Setas, at > b, and all other
coefficients to 0. This givesA.u1 = 0 < b < A.v1 = as and
A.u2 = 0 < b < A.v2 = at.

∴ This plane intersects(u1, v1) and (u2, v2).
Some of the configurations in this class are:

u1 //

��

v1

u2 v2

u1 //

�� !!C
CC

CC
C

v1

u2 v2

and

u1 //

�� !!C
CC

CC
C

v1

u2 //

=={{{{{{
v2

Case 3: The configuration

u1 v1oo

��
u2

OO

// v2

ONES (u1) must have an elements not in ONES (v2),
hence not inONES (v1) or ONES (u2) either. Setas > b. This
givesA.u1 > b. Similarly, ONES (v2) must have an element
t not in ONES (u1), hence not inONES (v1) or ONES (u2)
either. Setat > b. This givesA.v2 > b. Set all otherai’s to
0. This givesA.v1 = A.u2 = 0 < b.

∴ This plane intersects(u1, v1) and (u2, v2).

Case 4: The configuration

u1 v1oo

u2

OO

// v2

For eachs ∈ ONES (u1), setas = (b + ε)/ |ONES (u1)|,
ε > 0. For small enoughε, this givesA.u1 > b, A.v1 < b



andA.u2 < b. Now ONES (v2) must have an elementt not
in ONES (u1), hence not inONES (v1) or ONES (u2) either.
Setat > b. This givesA.v2 > b.

∴ This plane intersects(u1, v1) and (u2, v2).

Case 5: The configuration

u1 // v1

u2 // v2

We can write

ONES (u1) = A ∪B1

ONES (u2) = A ∪B2

ONES (v1) = A ∪B1 ∪ S1 ∪ T1

ONES (v2) = A ∪B2 ∪ S2 ∪ T2

where A = ONES (u2) ∩ ONES (u1), B1 = ONES (u1) −
ONES (u2), B2 = ONES (u2) − ONES (u1), S1 ⊂ B2,
S2 ⊂ B1 (proper subsets), andT1 and T2 are disjoint from
ONES (u1) andONES (u2).

We observe thatB1 and B2 are non-empty and disjoint.
Also, S1 ∪ T1 and S2 ∪ T2 are non-empty. For eachs ∈ A,
we setas = 0. For eachs ∈ B1, let us setas = γ1, and for
eachs ∈ B2, let us setas = γ2, such that

γ1 =
b− ε

|B1|
and

γ2 =
b− ε

|B2|

where0 < ε < b.
This givesA.u1 = γ1|B1| < b andA.u2 = γ2|B2| < b.
Now if T1 is empty, thenS1 is not empty, and we require∑
s∈S1

as = γ2|S1| > ε to get A.v1 > b. This is ensured
if we chooseγ2 > ε. Similarly, if T2 is empty, we require∑

s∈S2
as = γ1|S2| > ε to get A.v2 > b, which is ensured

if γ1 > ε. By simple algebra, bothγ1 > ε and γ2 > ε are
ensured if we choose

ε <
b

max{|B1|, |B2|}+ 1

Also, if T1 is not empty, we merely setat > b for any
t ∈ T1, and if T2 is not empty, we setat > b for any t ∈ T2.
This gives usA.v1 > b andA.v2 > b.

∴ This plane intersects(u1, v1) and (u2, v2).

Case 6: The configuration

u1 // v1

u2 v2

ONES (u2) must have an element not inONES (v1) (hence
not in ONES (u1) either). Similarly forONES (v2). So we
can write

u2 = S1 ∪ T1

v2 = S2 ∪ T2

where S1 ⊂ ONES (v1), S2 ⊂ ONES (v1), and T1 and T2

are disjoint fromONES (v1). We note thatT1 andT2 must be
non-empty. Also,|S1| < |ONES (v1) and|S2| < |ONES (v1).

For each s ∈ ONES (v1), we set as = γ =
(b + ε)/ |ONES (v1)|, where ε < γ. By Obs. 3, this gives
A.u1 < b < A.v1. Also,

∑
s∈S1

as < b and
∑

s∈S2
as < b.

If T1 = T2 = T , we cannot haveS1 = S2. Consider anyt
in S1−S2 (we assume, without loss of generality, that this is
not empty: else we can interchangeS1 andS2). Increaseat by
δ > 0, whereδ < γ− ε (the RHS is positive, by Obs. 3). It is
easy to check that any proper subset of{as | s ∈ ONES (v1)}
still sums to less thanb, so we still haveA.u1 < b < A.v1.

Now we definitely have
∑

s∈S1
as 6=

∑
s∈S2

as, since the
two sums differ by (δ plus some integer multiple ofγ), which
cannot be 0 since0 < δ < γ. Without loss of generality, let us
assume

∑
s∈S1

as <
∑

s∈S2
as. For eacht ∈ T , setat = β,

whereβ > 0 is chosen so that

A.u2 =
∑

s∈S1
as + β|T | < b, and

A.v2 =
∑

s∈S2
as + β|T | > b

∴ This plane intersects(u1, v1) and (u2, v2).
If T1 6= T2, set at > b for any t ∈ T2 − T1 (again we

assume, without loss of generality, that this is not empty: else
we can interchangeT1 and T2). For all othert’s in T1 ∪ T2,
setat = 0. ThenA.u2 < b < A.v2.

∴ This plane intersects(u1, v1) and (u2, v2).

Case 7: The configuration

u1 v1

u2 v2

We observe that none ofu1, v1, u2, v2 can be the origin
0, since 0 → p for any other vertexp of ~Qm. Therefore
|ONES (p)| > 0 for eachp ∈ {u1, v1, u2, v2}.

Let us consider the case whenONES (u1) has an elementt
not in ONES (v1) or ONES (v2). We setat > b. Also, we set
as = (b + ε)/ |ONES (u2)| for eachs ∈ ONES (u2), s 6= t,
ε > 0. All other ai’s are set to 0. This gives usA.u1 > b and
A.u2 > b.

ONES (v1) does not havet, nor does it have all the elements
of ONES (u2) (else u2 → v1). Similarly for ONES (v2).
Therefore for small enoughε, A.v1 < b andA.v2 < b.

∴ This plane intersects(u1, v1) and (u2, v2).
In general, we can construct a plane in similar fashion

whenever the endpoint of an edge has a 1 where the other
endpoint of the same edge and at least one endpoint of the
other edge have 0’s.



If there is no such 1, then the following sets are empty:

ONES (u1) ∩ ONES (v1) ∩ ONES (u2)
ONES (u1) ∩ ONES (v1) ∩ ONES (v2)
ONES (u2) ∩ ONES (v2) ∩ ONES (u1)
ONES (u2) ∩ ONES (v2) ∩ ONES (v1)
ONES (v1) ∩ ONES (u1) ∩ ONES (u2)
ONES (v1) ∩ ONES (u1) ∩ ONES (v2)
ONES (v2) ∩ ONES (u2) ∩ ONES (u1)
ONES (v2) ∩ ONES (u2) ∩ ONES (v1)

These correspond to the greyed-out regions in the Venn
diagram in Fig. 2.

Fig. 2. Venn Diagram for Case 7 (all vertices distinct)

So we have

ONES (u1) = S ∪A ∪B ∪ C ∪D
ONES (u2) = S ∪A ∪B ∪ E ∪ F
ONES (v1) = S ∪B ∪ C ∪D ∪ E
ONES (v2) = S ∪A ∪D ∪ E ∪ F

whereS, A, B, C, D, E andF , as shown in Fig. 2, are all
disjoint.

A and E cannot be empty, since thenONES (u1) ⊆
ONES (v1) or vice versa. SimilarlyB andD cannot be empty.

For eachs ∈ A∪B, we setas = (b + ε)/|A ∪B|, ε > 0. We
also set all otherai’s to 0. This givesA.u1 > b andA.u2 > b,
since bothONES (u1) andONES (u2) are supersets ofA∪B.
Also, ONES (v1) does not containA and ONES (v2) does
not containB. SinceA and B are disjoint and non-empty,
|A| < |A ∪ B| and |B| < |A ∪ B|. So for small enoughε,
A.v1 < b andA.v2 < b.

∴ This plane intersects(u1, v1) and (u2, v2).

It is simple, though tedious, to check that the cases listed
above cover all valid configurations whenu1, u2, v1 and v2

are distinct.

B. The edges share a common endpoint, sayu1 = u2 = u

Again, we may divide our work into cases. These are:

Case 1: Configurations with the following subgraph or its
symmetrical equivalents:

u //

��

v1

v2

where a dotted line indicates absence of the corresponding
arrow. If this subgraph is present, then for eachs ∈ ONES (u),
setas = (b + ε)/ |ONES (u)|, ε > 0. Set all other coefficients
to 0. This givesA.u > b. Since neitherONES (v1) or
ONES (v2) contains all the elements ofONES (u), ε can be
made small enough so thatA.v1 < b andA.v2 < b.

∴ This plane intersects(u, v1) and (u, v2).

Case 2: Configurations with the following subgraph or its
symmetrical equivalents:

u v1oo

v2

OO

where a dotted line again indicates absence of the correspond-
ing arrow. If this subgraph is present,ONES (v1) must have
some elements not in ONES (u) andONES (v2) must have
a similar elementt (s and t need not be distinct). Setas,
at > b, and all other coefficients to 0. This givesA.u = 0 < b,
A.v1 = as > b andA.v2 = at > b.

∴ This plane intersects(u, v1) and (u, v2).

VIII. G ENERALIZATION

If we could extend Theorem 3 to sets of edges of any
size, we would have a purely combinatorial way to test if a
hyperplane can perform a given linear separation. This would
completely characterize valid sets in graph-theoretic terms, and
a combinatorial enumeration could be possible.

In the absence of such a result at present, we outline a
different approach to estimateN1, the number of valid sets.
We observe that the partition induced by a non-negative plane
on the vertices of a hypercube has a pleasing structure. Firstly,
as we have mentioned in Sec. VI, the intersected edges define
a complete bipartite subgraph ofQclique

m . Secondly, from Sec.
VII, if a vertex u lies on the positive side of the plane, then
all verticesv such thatu → v also lie on the positive side (a
similar result holds for the negative side).

Let us consider thebasis setB+, which comprises all the
verticesv on the positive side for which there are no other
verticesu also on the positive side such thatu → v. It is easy
to check thatB+ uniquely defines the complete set of vertices
on the positive side. A similar basis setB− may be obtained
for the negative side. Further,B+ andB− are complementary,
so specifying either one of them completely and uniquely
defines the partition, and hence the corresponding valid set
of edges. Our comments onB+ in the next few paragraphs
apply equivalently toB−.

Let Γ+ be the set of all possible basis setsB+. We define
Λ as the set of all subsetsV of the vertices ofQm such that



no u, v ∈ V haveu → v, i.e. it is not possible to go fromu
to v via the edges of~Qm. Evidently,Γ+ ⊆ Λ. So

N1 = |Γ+| ≤ |Λ|

We may write an expression for|Λ| using the inclusion-
exclusion principle and attempt to bound the sum. Alterna-
tively, we may adopt a probabilistic approach.

WARNING : Because of the paucity of reasonable symbols,
many symbols in the rest of this report may be reminiscent
of those used earlier, although they denote distinct quantities.
The reader is advised to use caution when interpreting them.

A. The Subset Graph

For convenience, we define the “hypercube subset graph”
~Qsub

m as the graph on the vertices of the hypercubeQm with
an edge fromu to v if and only if u → v. Λ is then simply
the set of independent sets of~Qsub

m . Let the set of vertices of
~Qsub

m be denotedVsub
m and the set of edges be denotedEsub

m .

Fig. 3. The hypercube subset graph~Qsub
m , shown in layers from no 1’s to

all 1’s.

The structure of~Qsub
m is shown graphically in Fig. 3. The

vertices of the subset graph can be classified into a number of
“layers”, depending on the number of 1’s in them. If layerk
has exactlyk 1’s, then there areVk =

(
m
k

)
vertices in layerk.

The number of edges from layerj incident on a single vertex
in layer i (j < i) is enter i,j =

(
i
j

)
. Also, the number of edges

from a single vertex in layeri to vertices in layerj (i < j) is
leavei,j =

(
m−i
m−j

)
.

1) Edges of the subset graph:Let E be the number of edges
of the subset graph (E ≡ |Esub

m |). We can write

E =
m∑

k=1

Ek

whereEk is the number of edges spanningk+1 layers (i.e. an
edge between layeri and layerj, i < j, contributes toEj−i).
We have

Ek =
m∑

i=k

Vi × enter i,i−k

=
m∑

i=k

(
m

i

)(
i

i− k

)

Grouping coefficients of
(
m
i

)
, we have

E =
(

m

1

)
+ (2 + 1)

(
m

2

)
+ (3 + 3 + 1)

(
m

3

)
+ · · ·+

(
m∑

i=1

(
m

i

))(
m

m

)

=
m∑

k=1

(
k∑

i=1

(
k

i

))(
m

k

)
=

m∑
k=1

(2k − 1)
(

m

k

)
=

m∑
k=1

2k

(
m

k

)
−

m∑
k=1

(
m

k

)
= [(1 + 2)m − 1]− [(1 + 1)m − 1]
= 3m − 2m

B. Inclusion-Exclusion

We require the number of independent sets of~Qsub
m . Denote

this by N0. Also denote the power set of edges byP (i.e.
P ≡ 2E

sub
m ). Then by the inclusion-exclusion principle,

N0 = N −
∑
e∈P,
|e|=1

Ne +
∑
e∈P,
|e|=2

Ne−
∑
e∈P,
|e|=3

Ne + · · ·+(−1)ENEsub
m

whereN = 22m

is the number of all possible sets of vertices
and Ne is the number of sets of vertices that include both
endpoints of each edge ine.

For convenience, we will write

Mr ≡
∑
e∈P,
|e|=r

Ne

Assuming we have a lower boundLr and an upper bound
Ur for Mr, and observing thatE = 3m−2m is odd form ≥ 1,
we can write

N0 = N −M1 + M2 −M3 + · · ·+ (−1)EME

= N − (M1 + M3 + · · ·+ ME)
+ (M2 + M4 + · · ·+ ME−1)

= N − Sodd + Seven

≤ N −
E∑

i=1,
i is odd

Lr +
E−1∑
i=2,

i is even

Ur

We will attempt to boundMr. Observe thatr edges must
be incident to at least⌊

1
2

+
√

1 + 8r

2

⌋
≥
√

2r vertices

(if they approximate a clique as closely as possible) and at
most 2r vertices (if they are pairwise disjoint). So a set of
r edges “determines” at least

√
2r and at most2r vertices.

We are free to choose the remaining vertices as we wish. This
gives the following bounds onNe, |e| = r:

22m−2r ≤ Ne ≤ 22m−
√

2r



and onMr:(
E

r

)
22m−2r ≤ Mr ≤

(
E

r

)
22m−

√
2r

These bounds are probably not very tight.
We further observe that2−

√
2r ≤ 1. This enables us to

perform the necessary summations to boundSodd andSeven ,
yielding the following results:

22m−1

[(
5
4

)E

−
(

3
4

)E
]
≤ Sodd ≤ 22m+E−1

22m−1

[(
5
4

)E

+
(

3
4

)E

− 2

]
≤ Seven ≤ 22m

(2E−1 − 1)

Unfortunately, the resulting upper bound onN0 is much
looser than our previous simple bound of22m

on the number
of valid sets (Sec. VI). We still have some hope, however, that
we can formulate tighter bounds onMr and hence improve
the bound onN0.

C. A Probabilistic Approach

The probability that two randomly picked verticesu andv
of ~Qsub

m have an edge between them is

Pr(edge(u, v)) =
E(
2m

2

) = 2
3m − 2m

4m − 2m

Denote this probability byq. Then the probability that there
is no edge between a pair of randomly picked vertices isq =
1− q. Näively, we might immediately say that the probability
that a randomly picked set ofs vertices is an independent
set isqs. The problem is that the events of edge absence are
not independent. Hence we need to examine the conditional
probabilities of these events before we can obtain a good upper
bound on the probability that a set of vertices is independent.

Let us conclude this section by reminding ourselves that
independent sets have a one-one correspondence with vertex
covers. So it may be possible to use a different approach based
on counting vertex covers. Also, for what it’s worth, finding
the minimum vertex cover (or equivalently the maximum
independent set) of a graph is an NP-complete problem (this
might mislead more than guide).

IX. CONCLUSION

We have described a problem in sensor placement and
outlined an approach towards its analysis and solution. The
results obtained in this report are a first step towards char-
acterizing the problem combinatorially. We have shown that
the problem is a highly constrained version of set covering,
with a considerably smaller input space. We are working on
establishing whether the problem is NP-complete or not, using
the results in this report and those of other authors. Our
immediate goal is a tight estimate of the exact size of the input
space. With a generalized version of Theorem 3, we envisage
an optimized covering algorithm for sensor placement that
yields better results in less time.
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