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Abstract—We study the problem of locating sensors to detect when the points are not in general position, specifically when
the failure of any set of radiation sources in a system. For the input consists of the vertices of a hypercube [2]. We try
computing illumination data, we suggest the use of radiosity 1, formylate graph-theoretic conditions for a linear separation

methods. We then consider the problem of optimising sensor - . o s
placement to unambiguously identify any inactive sources. We Of binary strings: this has the advantage of highlighting the

show that the problem can be transformed from a numerical to Combinatorial aspect of our sensor placement problem over
a geometrical domain, relate it to set covering, and then attempt the geometric one. Although we do not yet have the general

to transform it into the domain of graphs. We present some conditions, we provide a subsidiary result for vertex pairs

results on hypercube cutting planes that help us progress towards \hich we hope to be able to extend to the general case.
the latter transformation by characterizing its combinatorial . . .
structure. Also, we outline an approach to estimate the size of  OUr final goal is to prove or disprove NP-completeness of

the input space. the problem, and use its combinatorial structure to design an
efficient algorithm that gives optimal or near-optimal sensor
. INTRODUCTION layouts. In this report, we briefly describe the problem, suggest
Optimal sensor placement is a challenging problem, natmethod for the generation of input data, examine the problem
least because optimality is variously defined in this contexjeometrically, establish a link with set covering, obtain some
For instance, we may say a layout is optimal if it coversimple bounds on the size of the input space, present results
every part of a region with the fewest possible senso$iat help us progress towards a graph formulation and finally
In computational geometry, this aspect has been extensiveltine an approach to refine our estimate of the size of the
studied as the Art Gallery Problem [1]. Alternatively, a layounput space.
may be considered optimal if the sensor outputs are highlywe would like to mention that this report extends previous
sensitive to changes in specific parts of the environment. work by the authors in the CS397 course — the report [3] from
We will consider optimality in the light okrror detection  the latter study provides an extended discussion of some of the
Briefly, we are interested in finding which elements of a set @f‘eliminary topics such as radiosity.
sources have failed. We assume we cannot examine the sources
directly, so we must resort to observing the readings from a
set of strategically placed sensors. We also require that we
must be able to unambiguously distinguish between differentWe will consider a region withn radiation sources. We are
sets of failing sources. given a set of sensors that respond to the amount of incident
We will show that our model has strong links with studiesadiation as follows:
qf linear separability'of point sets, common in neural networé(ach sensor hak threshold levelsr;,
literature [9]. In particular, our work examines, among oth
things, the conditions under which a setofbit binary strings
(which are represented as vertices of the unit hypercube
m-~dimensional space) may be separated from all othdoit
binary strings by a hyperplane. Probabilistic estimates of the vy if e<m
linear separability of a set of points in general position in space  out(e) = < v; if i1 <e<m, 2<i<k
have been derived by Cover [4]. Later work addressed the case Vg1 If e >T7p

Il. THE PROBLEM

To,...Tk, €Ach greater
%han 0, and: + 1 distinctoutput values, vs,...viy1. Let the
radiant energy incident on the sensordd@he sensor output
idldefined as follows:



Some of the sources may have been disabled or are malfunc- IV. THE GEOMETRICAL PICTURE

tioning, and hence do not contribute to the overall illumination. Thea problem may be expressed geometrically. Let the input
We assume that an active source always radiates with the sagehe ith sensor be:; for source vectoiX and e/ for source
K3

(non-zero) strength and the same directionality, and an inactiyg.ior x’. We say the sensatistinguishesbetweenX and
source has zero strength. What is the minimum number @ out(e;) # out(e}), i.e. if there is some threshold level
sensors that can always tell us exactly which ofitheources paonveene: ande! ’
. . 7 '

are inactive, and how do we place them? _ Let us now consider then-dimensional spac&™. We

We assume that the radiation incident on a sensor is %resent a point in this space &s= [z; =3 ...z,,]. Each
linear sum of contributions from all sources. Specifically, if rce vectox represents one of thes" vertices (;?the unit
eij > 0 is the energy incident on thigh sensor due to thth  \ hercuber), . in this space. Sensardistinguishes between
source (when it is actlve),_ then, the total energy incident on x ,nq4X’ if and only if there is some threshold leve] such
the ith sensor, can be written as that X and X’ lie on opposite sides of the plane

€; = Ei.X

where E; = [e;1 e;2...e:4,] and thesource vectorX =
(X1 X5 ... X, where For each sensor, there akeparallel planes, one for each
threshold value. For a set of sensors, there are a total of
nk planes. If the sensor output vector is unique for each
. . _ ~ source vector, then there must be at least one sensor that

We observe that our sensor model is essentially identicaldgstinguishes between each possible pair of source vectors. In
the perceptron model of [9], with binary inputs, weights equakher words, the linear subdivision &™ induced by these
to the contribution of each source to the incident energy, apthnes must contain each vertex ©f,, in an unique cell
a thresholded output functiomt. (maximal connectedn-dimensional region). We will require

[1l. DATA GENERATION WITH RADIOSITY that no plane contains a vertex.

s - - : - . If we connect each pair of distinct vertices@f,,, we obtain
The first step in attacking the problem is to gather illumi-_ . ™
P g b g gdzq“e, the hypercube cliquewith (%, ) = O(22™) edges. To

Ej.X = Th

1 if sourcei is active
X; = ) S
0 if source: is inactive

nation data from different parts of the environment. As wgm_ | .
have seen above, we need to know the intensity distributi fptinguish between all possible source vectors, we must place

due to each source separately. This can be done by switchfifgSOrs at selected patches so that the resulting set of planes
on the sources one at a time and measuring each singfiESECts the interior of every edge of this graph.
source illumination pattern. Such an approach may be tedioug't this Point, let us define the following two concepts:
and impractical. A reasonable alternative is to use a radiosityDefinition 1: A plane A.x = b is “non-negative” if all the
method [6] to simulate the illumination model. coordinates ofA are non-negative andl is strictly positive.

The surfaces in the scene are divided into a number \8fe observe that each plane generated by illumination data for
patches, each patch small enough to be considered homagéensor is non-negative.
nous. A standard radiosity computation will give the incident Definition 2: A set of edges of9< e ¢ is “valid” if there
radiation at each patch. Let us performsuch computations, js some non-negative plane that intersects the interior of each
keeping exactly one (a different one) of thesources active edge in the set. Each valid set directly corresponds to an unique
each time. This will give the illumination at each patch dugnear separation of the vertices of the hypercube.
to each source individually.

At a patchP, let the incident energy due to thiéh source V. SET COVERING
be <! > 0 when the source is active. Let us selecpatches  We note that the problem is essentially a set covering
Py, P,...P, for placingn sensors. Then, for thih sensor, problem. With each patch we may associate a sét pfanes

we have and hence a set of intersected edgeQfjf?“*. We must select
€ij = Ef’b l<j<m patches so that the entire set of edge€ji¥?c is covered.

We recall thate; is the total energy incident on thth sen- ~ Unconstrained set covering is known to be an NP-complete
sor. We can write theensor input vectoB;,, = [e; e>...e,] Problem [8]. A simple greedy algorithm provides a solution
as: within a factora(n) of the optimum, where, is the size of

S,, = EX” the ground set and(n) = Inn — Inlnn + ©(1), with the last

term in [—0.31,0.78] [10]. Using the greedy algorithm, we
can easily obtain a fair approximation to the optimal sensor
E = [eijlnxm locations in polynomial time.

The sensor output vectorS,.:(S;,) is defined as However, it is not established whether our particular prob-
[out(e1) out(es) ... out(en)]. Sous IS the observable quantity lem is NP-complete or not, since it is a constrained version
in our system. Our task is to choose sensor locations such tbhtset covering. Certain subsets do not occur in the input:
Sout IS unigue for each possibl, so that we have a bijective all the edges in a such a subset cannot be simultaneously
mapping from sensor outputs to sets of inactive sources. intersected by a set of parallel non-negative planes. For

where



example, in the 3-dimensional cube, it is easy to check that
no single non-negative plan& & 1) can intersect both the
edges([0 0 0],[1 0 0]) and([1 1 0],[1 1 1]) (see Fig. 1).

Let Ny b the number of subsets the&n occur. To prove
(or disprove) NP-completeness, it would be helpful to have
some idea of the relative size of the input space, i.e. the
ratio Ni,/|®|, where ® = 2EPCGES(QL™) is the power set
of the edges of the hypercube clique. We note tldgt =
2l EDGES(@™)| = (") = 2(4™=2")/2, Also, Ny is simply
the number of different linear separations of the vertices of
the hypercube.

VI. SOME SIMPLE BOUNDS

Theorem 1:A plane must intersect at lea8t” — 1 edges
of Qchiave  if it intersects any edge and does not contain a
2m—2
vertex, and at mos2*™ edges: Fig. 1. Bipartite graphk, ¢ formed by intersection of a plane (grey) with
Proof: Let plane A.x = b intersect at least one edgethe 3-cube clique. The black vertices are on one side of the plane and the
of chique Of the 2™ vertices sayp vertices are on the white vertices on the other side. Thick lines denote intersected edges (some
rmo ’ m . non-intersected edges have been omitted for clarity).
positive side of the plane.x > b) andg = 2™ — p vertices
on the negative side. A pair of vertices on opposite sides of the

plane corresponds to an intersected edge. This is a bijectivgye note in passing that the maximum number of cells in a

mapping, since no intersected edge can join two vertices Rear subdivision induced by hyperplanes irR™ [7] is
the same side of the plane. The graph defined by the vertices m

and intersected edges @J;.“** is thus isomorphic to the Z( H >

complete bipartite grapk, , (Fig. 1). The number of edges in i—o \T—1
such a graph is simplyg = p(2™ — p). The minimum of this

expression i2™ — 1, and it is obtained whep or ¢ is 1. The

This tells us that for isolating each f* points, we need at
] o - : o leastm hyperplanes. A set af. hyperplanes aligned with the
maximum is2 , and it is obtained whep = ¢ = 2™7".  cq5rdinate planes (and with suitable intercepts) is an obvious
u example that does the job. Interpreting these results for our
Theorem 2:There is at least one non-negative plane thaknsor layout, we find that at ledst /k] sensors are required,
intersects exacth2™ — 1 edges ofQ:le“c and at least one and if we are lucky we may be able to make do with just this
non-negative plane that intersects exaef{’ —2 edges. many.
Proof: To prove the first part, we must show that
some non-negative plank.x = b can isolate a single vertex.
Choose any positive, and make each coordinate Afgreater ~ We would like to remove the geometrical component and
thanb. The resulting plane has the origin on its negative sideansform the problem into the graph domain, so that we
and all other vertices of)cl4uc on its positive side. The can try to use the large body of results in graph theory that
number of intersected edgesag — 1. have been associated with studies of NP-completeness and
To prove the second part, we must construct a non_negat%imisation. As a first Step, we shall construct a directed
plane that has half the vertices on its positive side and hafaph that has some properties equivalent to those related to
on its negative side. Let us make the first coordinateAof the intersection of the hypercube clique with a plane.
greater tharb and all other coordinates 0. Since exactly half We will use boldface to denote the position vector of a point,
the vertices of the unit hypercube have their first coordinak€- P is the position vector op.
1 and the rest have 0, this plane evenly splits the vertices Consider a vertex of Q.. Its position vectofu; us ... up]
The number of intersected edges2&"—2. (We note that the is a bit vector, i.e. it contains only 0’s and 1's as elements.
edges and vertices on each side of this plane define grapfé us defineONES(u) as the index set of the 1's in, that
isomorphic toQ<"4%e. m 'S

m—1
These results show that the size of each valid set is tightly ONES(u) ={i | ui =1}
bounded above and below By™~2 and2™ — 1 respectively. ~ We observe that for any pland.x =b, where A =
Also, the number of different possible cuts @4 is  [a; ay...an],
bounded by2?", the number of ways of separating the vertices m
into two sets. Each valid set corresponds to exactly one cut. Au= Zaiui = Z a;
Therefore the number of valid sets is less ti2dn, and i—1

VIl. TOWARDS A PURE GRAPH PROBLEM

i€ ONES(u)

N 22" HBx2m—a™y2 Consider two verticesu and v such that ONES(u) C
|®| o) ONES (v), whereC denotes theroper subsetelation. Then



for any non-negative pland.x =b we haveA.u < A.v. U —> U1 U<~— 11
Consider thedirected hypercube graply,, on the vertices T / and i /
of Q,,. Its edges coincide with the edges of the hypercube

(those that join vertices differing in exactly one coordinate)
and are directed fronf0 0...0] to [1 1...1], i.e. edge(u, v) A further way of expressing the condition for a disallowed
is present iffv has a 1 wherex has a 0 and they agree in allconfiguration is

other coordinates.

Lemma 1:There is a path of non-zero length fromto v

in @,, if and only if ONES(u) C ONES(v).
Proof: If part : Successively change each Ourto 1, if Proof: Only-if part (by contradiction) : There is

v has a 1 in that coordinate. After a finite number of stepspme non-negative plank.x = b that intersectgu,,v;) and
we will obtain v, since ONES(u) C ONES(v). Each step (us,v2). Let us suppose, without loss of generality, that both
corresponds to an edge@tm since the initial and final valuesu; and v, lie on paths from the origin ta:; and v, in
differ by exactly one 1. We see by induction that there is @,,L, i.e., u; — ua, v — u2, u; — v9 and v; — vy hold
pathu ~ v in Q,,. Also, sinceu # v, we must change a 0 simultaneously. This implies that:
to a 1 at least once, so the path has non-zero length.

V2 V2

ONES (u1) U ONES(vy) € ONES (u3) N ONES(vy), or

. . Au <Ay

Only-if part : Consider any edgéu’,v’) on the pathu ~» Avi <Au

v (there must be at least one such edge since the path has Aw < A.vy
non-zero length). By the construction &f,,, we know that Av, < Av,

v’ is the same as’ but for an extra 1. SOONES(u') C

ONES(v'). Further,C is a transitive relation. Applying this  Now if the plane intersectéus, v2), we must have
inductively to the vertices in the path, starting from we

obtain ONES (u) C ONES(v). n Ay <b< Ay, or

. . . . o Avy<b< A
Since the subset relationship and path existenecg, inhave
been shown to be equivalent, we will introduce a common no-In the first case, we havA.u; < Aup < b andA.v; <
tation for them. We say that — v if the following equivalent A.u, < b, so the plane cannot interseet,, v,). Similarly in

statements hold: the second case, we haveu; < A.vy < b andA.v; <
1) ONES(u) C ONES(v) (C denotesproper subsét A.vy < b, so the plane cannot interseat;, vy ).
2) There is a path of non-zero length framto v in Q,,. This is a contradiction, so our supposition was incorrect:
If w — wv, then for any non-negative pland.x =b, U1 andv; cannot both lie on paths from the origin t@ and
Au<Av. ’ " vy in @,,. By an identical argument, with subscripts 1 ahd

interchanged, we can show that andv, cannot both lie on

We will now present a result abowlid pairs, i.e. valid paths from the origin tai; andv,.

sets of 2 edges.

If part : We know that the configuration is allowed. We will
examine each possible configuration (af, v1) and (uq, vs)
that does not contain any set of forbidden relationships.

The base configuration space is very large: each (pair)
from the set{u;,v1,us,v2} may be related ap — ¢, or

q — p, or not related at all, a total of 3 possibilities. There

In other words, there is a non-negative plane that intersegig ( ) = 6 possible pairs, so the total number of possible
(u,v1) and (uz, v2) in Q" iff the following do not hold  configurations is3¢ = 729. Fortunately, three factors drasti-

Theorem 3:There is a non-negative plane that intersects
the distinct edgesu,,v;) and (uq,vs) in Qcliawe if and
only if bothu; andwv; do not lie on paths from the origin
0=1[00...0] to uy andv, in @,,, and vice versa.

simultaneously (whem, vy, u; andv, are all distinct): cally reduce the number of configurations we must examine.
Uy — Uz, V1 — Uz, Ul — Vg, V1 — V2 These are:
and also, the following do not hold simultaneously: 1) There are many forbidden configurations.
Uy — Uy, Vy — Uy, Us — V], Vg — V] 2) The subset relationship is transitive, so configurations
These “forbidden configurations” may be expressed graph- such as the following are equivalent:
ically as Uy — U1 Uy — U1
Uy U1 Uy U1 \L = \ \L
U9 Vg U9 V2
l >< i and T >< T Also, configurations that contain a cycle do not occur
2 U2 U2 v2 in our graph: we cannot haye— ¢ — r — p because
If the edges share a common endpoint, say= us = u, this would imply thatp — p, which is impossible since

then the forbidden configurations reduce to a set cannot be a proper subset of itself.



3) Symmetries may be exploited. We can (a) swap thehere a dotted line indicatedsenceof the corresponding ar-
endpoints of either edge or (b) exchange the two edgesw. If this subgraph is present, then for each ONES (u2),
without essentially altering the configuration and theeta, = (b+¢€)/|ONES(ug)|, € > 0. Set all other coef-

associated arguments. ficients to 0. This givesA.u; > b and A.uy, > b. Since
a) v uy v neither ONES(v;) or ONES(v2) contains all the elements of
B ONES (uz), € can be made small enough so thatv; < b
i T = >< andA.vy < b.
s vy s s .. This plane inter_sect@l,vl_) anq (ug,v2).
Some of the configurations in this class are:
b) Uy — U1 U =—— V1 U1 U1 Uy <=— U1 Uy <=— 11
R A Lo X
U9 Vo U2 V2 U2 <— V2

Uy <—— V2 Uy ——> U2
We will enumerate all possible unique allowed configura- Case 2: Configurations with the following subgraph or its

tions (by unique we mean that we will not consider equivaleSymmetrical equivalents:
configurations separately) and show that in each case, we

. u v
can construct a non-negative pladex = b, where A = ! !
[a1 a2 ...an], that intersects both the edges. J, 4
But before we begin listing all the cases, let us look at some Ug < V2
caveats: where a dotted line again indicates absence of the correspond-

« Observation I If two verticesp and ¢ have no relation ing arrow. If this subgraph is preser®NES (v) must have
between them, i.e» - ¢ andq - p, thenONES(p) has  some element not in ONES (uz), hence not inONES (u;)
an element not irONES (¢) and vice versa, since neithereither, and ONES(v9) must have a similar element (s
is a subset of the other. and t need not be distinct). Set,, a; > b, and all other

 Observation 2 If p has al not in q, i.e. 3, t € coefficients to 0. This giveA.u; =0 < b < A.v; = a, and
ONES(p), t ¢ ONES(q), then by choosing; >band Au,=0<b< A.vy = ay.

all othera;’s = 0, we getA.p > b, A.q=0<b. . This plane intersectéu;, v;) and (uz, vs).
. The plane intersectg, g). Some of the configurations in this class are:
« Observation 3 If p — ¢, then for eacht € ONES(q),
we can set Uy — v Uy — vy Uy —> v
ar = __bre i i\ and i><
77 oNES(q)]
U2 V2 Uz (2] Uy —> Vg

wheree > 0 is small enough so that
Case 3: The configuration
Yw.w < |ONES(q)| — 1= wy <b
Uy <=— V1
Evidently, A.q > b. Also, since |ONES(p)] <
|ONES ()] - 1, T l

A.p=|ONES(p)ly <b Uz ——>"12

ONES(u;) must have an element not in ONES (vs),
hence not iNONES (vy) or ONES (uz) either. Sets; > b. This
gives A.u; > b. Similarly, ONES(v2) must have an element
t not in ONES(uy), hence not inONES(v1) or ONES (uz)
either. Seta; > b. This givesA.v, > b. Set all othera;’s to
o 0. This givesA.v; = A.up =0 < b.
A. uy, uz, v1 and v, are distinct . This plane intersectéu;,v;) and (uz, vs).

We may divide the possible configurations into 7 cases, ascgse 4: The configuration
presented below.

.. The plane intersect®, ¢). In general, we will say that
in the context ofy = (b + ¢€)/c, € is small enoughf ¢ > 0
andvVw.w < c¢—1 = wvy < b. It is simple to check that
this requirese < 7.

Case 1: Configurations with the following subgraph or its U <——u
symmetrical equivalents: T
U1l U1 Uy — V2
7
T 0 For eachs € ONES(uy), setas = (b+¢€)/|ONES (u1)],

U o> Vg e > 0. For small enougk, this givesA.u; > b, A.vy < b



and A.u; < b. Now ONES(v2) must have an elementnot

in ONES (uy), hence not inONES(v1) or ONES (ug) either. Uy = S UTY
Seta; > b. This givesA.vy > b. vy = Sy UTh
.. This plane intersectguy, v1) and (us, v2).
Case 5: The configuration where S; C ONES(v1), S2 C ONES(v1), andT; and Ty
are disjoint fromONES (v1). We note thafl; andT> must be
=" non-empty. Also}S, | < |ONES(v,) and|Ss| < |ONES (vy).
For eachs € ONES(v1), we seta;, = vy =

(b+¢€)/|ONES(vy)|, wheree < ~. By Obs. 3, this gives
_ A.u; <b< A.vy. Also, Zsesl as < band 28652 as < b.
We can write If T, =T, =T, we cannot haves; = S,. Consider anyt
ONES(u) = AU B, in S; — SQ-(We assume,.wnhout loss of generality, that this is
not empty: else we can interchan§eand.S,). Increaser; by
ONES('LLQ) :AUB2 . . .
0 > 0, whered < v — e (the RHS is positive, by Obs. 3). It is
ONES(Ul) =AUB,USUT;
ONES(v3) = AU By U Sy UT. easy to check that any proper subsefef | s € ONES(v1)}
v2) = 2=z a2 still sums to less thah, so we still haveA.u; < b < A.v;.
where A = ONES(uz) N ONES(u1), By = ONES(uq) — Now we definitely have) " g as # > .cg, s, Since the
ONES(uz), By = ONES(uz) — ONES(u1), S1 C Bz, two sums differ by { plus some integer multiple of), which
Sy C B (proper subsets), an@l; and 75 are disjoint from cannot be 0 sincé < J < v. Without loss of generality, let us
ONES(u1) and ONES (us). assumezses1 as < 25652 as. For eacht € T, seta; = (3,
We observe thaB; and B, are non-empty and disjoint. where 3 > 0 is chosen so that
Also, S; UT; and S; U T, are non-empty. For each e A,
we seta, = 0. For eachs € By, let us seta, = ~4, and for
eachs € B, let us setus = 2, such that

U9 — V2

Aug =3 g as+6|T] <b, and
Avy =3 cq as+BIT|>b

b—e€
TN .. This plane intersectéuy, v;) and (uz, vs).
and If Ty # Ty, seta; > b for anyt € Ty — Ty (again we
_b—e assume, without loss of generality, that this is not empty: else
T2 = 1Ba| we can interchang@, and75). For all othert’s in Ty U T,

seta; = 0. ThenA.us < b < A.vs.

where0 < e < b. . .
.. This plane intersectguy, v1) and (ug, v2).

This givesA.u; = y|B1| < b and A.uy = 2| Bz| < b.

Now if 77 is empty, thenS; is not empty, and we require  Case 7: The configuration
Zsesl as = 7Y2|S1| > € to get A.vy > b. This is ensured
if we choosey, > e. Similarly, if 75 is empty, we require Uy o
25652 as = 71|S2| > € to get A.vy > b, which is ensured
if 71 > e. By simple algebra, both; > ¢ and~, > € are
ensured if we choose w2 v2
b We observe that none afy, vi, us, v2 can be the origin

€< 0, since0 — p for any other vertexp of Q™. Therefore
max{|Bi, | Bz|} + 1 |ONES(p)| > 0 for eachp € {u, vy, us, v}

Also, if T is not empty, we merely set; > b for any Let us consider the case whéhVES (u;) has an elemertt

t € Ty, and if T, is not empty, we set; > b for anyt € T5. notin ONES(vy) or ONES(vy). We seta; > b. Also, we set

This gives usA.v; > b and A.vy > b. as = (b+¢€)/|ONES (ug)| for eachs € ONES (us3), s # t,
.. This plane intersectéu;,v1) and (ug, vs). e > 0. All other a;'s are set to 0. This gives us.u; > b and
Case 6: The configuration A.ug > 0.
ONES (vy) does not have, nor does it have all the elements
Uy —— U1 of ONES(us) (else uy — v1). Similarly for ONES(vs).

Therefore for small enough A.v; < b andA.vy < b.

.. This plane intersectguy, v1) and (usg, v2).

In general, we can construct a plane in similar fashion

ONES(us) must have an element not MNES(v;) (hence whenever the endpoint of an edge has a 1 where the other
not in ONES(uy) either). Similarly for ONES(v2). So we endpoint of the same edge and at least one endpoint of the
can write other edge have O's.

U2 V2



If there is no such 1, then the following sets are empty: Case 1: Configurations with the following subgraph or its
symmetrical equivalents:

ONES(u1) N ONES(vy) N ONES(vq) U= U1

ONES(us) N ONES(vs) N ONES(v1) 0y

ONES(v1) N ONES(u) N ONES(up) where a dotted line indicates absence of the corresponding
ONES(v1) N ONES(u1) N ONES(v) arrow. If this subgraph is present, then for each ONES (u),
ONES(vz) N ONES(uz) N ONES(u1) seta; = (b+¢€)/|ONES(u)|, € > 0. Set all other coefficients
ONES(v2) N ONES(uz2) N ONES(v1) to 0. This givesA.u > b. Since neitherONES(v;) or

ONES (v2) contains all the elements @dDNES(u), € can be
Hihde small enough so that.v; < b andA.vy < b.
.. This plane intersectgu, v1) and (u, vz).

These correspond to the greyed-out regions in the Ve
diagram in Fig. 2.

ONES(v)) Case 2: Configurations with the following subgraph or its
! symmetrical equivalents:

U<Vl

- ONES(v,) A
o) :
6’ where a dotted line again indicates absence of the correspond-
ing arrow. If this subgraph is preser®NES (v;) must have
v’ some element not in ONES (u) and ONES (v2) must have

a similar element (s andt¢ need not be distinct). Set;,
a; > b, and all other coefficients to 0. This givasu = 0 < b,

ONES(MJ) ONES(H;) Avi=as>bandA.vo =a; > b.
i .. This plane intersectéu, v1) and (u, vz). [ |

Fig. 2. Venn Diagram for Case 7 (all vertices distinct) VIII. GENERALIZATION

So we have If we could extend Theorem 3 to sets of edges of any
size, we would have a purely combinatorial way to test if a
ONES(u;) =SUAUBUCUD hyperplane can perform a given linear separation. This would
ONES(uz) = SUAUBUEUF completely characterize valid sets in graph-theoretic terms, and
ONES(v1) =SUBUCUDUE a combinatorial enumeration could be possible.
ONES(v2) =SUAUDUEUF In the absence of such a result at present, we outline a

Idifferent approach to estimat®,, the number of valid sets.
We observe that the partition induced by a non-negative plane
on the vertices of a hypercube has a pleasing structure. Firstly,
as we have mentioned in Sec. VI, the intersected edges define
a complete bipartite subgraph gf#ev¢, Secondly, from Sec.

VII, if a vertex u lies on the positive side of the plane, then
all verticesv such thatu — v also lie on the positive side (a
similar result holds for the negative side).

Let us consider thdasis setB™, which comprises all the
verticesv on the positive side for which there are no other
verticesu also on the positive side such that— v. It is easy
to check that3™ uniquely defines the complete set of vertices
on the positive side. A similar basis S8t may be obtained

It is simple, though tedious, to check that the cases listést the negative side. Furthe8™ and B3~ are complementary,
above cover all valid configurations when, us, v; andv, so specifying either one of them completely and uniquely

where S, A, B, C, D, E and F', as shown in Fig. 2, are al
disjoint.
A and E cannot be empty, since the®NES(u;) C
ONES (vy) or vice versa. Similariy3 and D cannot be empty.
For eachs € AUB, we seta, = (b+¢€)/|AU B|, e > 0. We
also set all otheti;’s to 0. This givesA.u; > bandA.us > b,
since bothONES (u;) and ONES (uz) are supersets ol U B.
Also, ONES(vy) does not contaird and ONES(vy) does
not contain B. Since A and B are disjoint and non-empty,
|A] < |[AU B| and |B| < |A U B|. So for small enougl,
Avi <bandA.vy, <b.

.. This plane intersectguy, v1) and (ug, v2).

are distinct. defines the partition, and hence the corresponding valid set
of edges. Our comments o™ in the next few paragraphs
B. The edges share a common endpoint, $ay us = u apply equivalently ta5—.

Let I't be the set of all possible basis s#&%. We define

Again, we may divide our work into cases. These are: A as the set of all subseis of the vertices ofQ,,, such that



now, v € V haveu -0, i.e. it is not possible to go from Grouping coefficients o(’;‘), we have
to v via the edges of),,. Evidently, 't C A. So

m
E = 2+1 3+43+1
Ni = [T < A (1)“ i )(2)” i )(3)
We may write an expression fd\| using the inclusion- o (Y (m> (m)

exclusion principle and attempt to bound the sum. Alterna- o\t m
tively, we may adopt a probabilistic approach. m L m
WARNING : Because of the paucity of reasonable symbols, = Z ( <Z>> (k)
many symbols in the rest of this report may be reminiscent k=1 \i=1
of those used earlier, although they denote distinct quantities. B i@k —1) m
The reader is advised to use caution when interpreting them. o po k
A. The Subset Graph _ zm: o <m) B zm: (m>
_ For convenience, we define the “hypercube subset graph” b1 k st k
Q:ub as the graph on the vertices of the hypercahg with = [14+2™ -1 -[1+1)™—1]
an edge fromu to v if and only if u — v. A is then simply — gm_om

the set of independent sets @f“’. Let the set of vertices of
Qsub be denotedVs** and the set of edges be deno@jt’. B. Inclusion-Exclusion

We require the number of independent set@@jb. Denote
this by Ny. Also denote the power set of edges By(i.e.
P = 2¢"). Then by the inclusion-exclusion principle,

No=N-=> N+ > No= > Net-+(-1)FNeows
cEP, cEP, cEP,
le]=1 le|]=2 le|]=3

000..0

/ where N = 22" is the number of all possible sets of vertices
and N, is the number of sets of vertices that include both
’ endpoints of each edge in
For convenience, we will write

M.= Y N,

Fig. 3. The hypercube subset gra@tﬁ#b, shown in layers from no 1's to |8€|7’v
all 1's. er=r

Assuming we have a lower bourid. and an upper bound

The structure o@;",’jb is shown graphically in Fig. 3. The {/, for M,, and observing thab = 3" —2™ is odd form > 1,
vertices of the subset graph can be classified into a numbef@f can write

“layers”, depending on the number of 1's in them. If layer

— E
has exactlyt 1's, then there ar&}, = (') vertices in layetk. 0 = N-M+M—M+ -+ (-1)"Mg
The number of edges from laygrincident on a single vertex = N—(My+M3+---+ Mg)
in layeri (j < i) is enter; ; = (). Also, the number of edges + (My+ My+-+ Mg_y)

from a single vertex in layer to vertices in layer (i < j) is

leave; j = (mﬂ')_ = N — So4q + Secven

m—j E E-1
1) Edges of the subset graphet E be the number of edges < N-— Z L, + Z U,
of the subset graphH = |£34°|). We can write i=1, i=2
4 is odd i is even
o iEk We yviII attempt to boundV,.. Observe that edges must
Pt be incident to at least
whereFE, is the number of edges spannihg-1 layers (i.e. an {1 + H&J > V/2r vertices
edge between layerand layer;j, ¢ < j, contributes taE;_;). 2 2
We have (if they approximate a clique as closely as possible) and at
m most 2r vertices (if they are pairwise disjoint). So a set of
E, = ZVi x enter; r edges “determines” at least2r and at most2r vertices.
i—k We are free to choose the remaining vertices as we wish. This
", i gives the following bounds oiV,, |e| = r:
B ; (l) (Z - k) 92" -2 < N, < 22"V



and onM,.:

E 22m_2"<M < E 22’"—\/?

r - = \r

These bounds are probably not very tight.

We further observe tha?—v2" < 1. This enables us to

perform the necessary summations to boshg, and S¢,en,
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yielding the following results: that
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[ ()

Unfortunately, the resulting upper bound @, is much
looser than our previous simple bound23f" on the number
of valid sets (Sec. VI). We still have some hope, however, that
we can formulate tighter bounds aW,. and hence improve
the bound onVj.

3

E

(1]

5

4

3

4 S Seven S 22m (2E71 - 1)

(6]
C. A Probabilistic Approach

The probability that two randomly picked verticesand v
of @=“* have an edge between them is
R
( 2 ) [9]
Denote this probability by;. Then the probability that there [10]
is no edge between a pair of randomly picked vertices 4s
1 — ¢. Naively, we might immediately say that the probability
that a randomly picked set of vertices is an independent
set isg®. The problem is that the events of edge absence are
not independent. Hence we need to examine the conditional
probabilities of these events before we can obtain a good upper
bound on the probability that a set of vertices is independent.

Let us conclude this section by reminding ourselves that
independent sets have a one-one correspondence with vertex
covers. So it may be possible to use a different approach based
on counting vertex covers. Also, for what it's worth, finding
the minimum vertex cover (or equivalently the maximum
independent set) of a graph is an NP-complete problem (this
might mislead more than guide).

(7]

(8]

Pr(edge(u,v))

IX. CONCLUSION

We have described a problem in sensor placement and
outlined an approach towards its analysis and solution. The
results obtained in this report are a first step towards char-
acterizing the problem combinatorially. We have shown that
the problem is a highly constrained version of set covering,
with a considerably smaller input space. We are working on
establishing whether the problem is NP-complete or not, using
the results in this report and those of other authors. Our
immediate goal is a tight estimate of the exact size of the input
space. With a generalized version of Theorem 3, we envisage
an optimized covering algorithm for sensor placement that
yields better results in less time.

| consulted.
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