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Abstract

The probabilistic roadmap algorithm is a leading heuristic for robot motion planning.
It is extremely efficient in practice, yet its worst case convergence time is unbounded as
a function of the input’s combinatorial complexity. We prove a smoothed polynomial
upper bound on the number of samples required to produce an accurate probabilistic
roadmap, and thus on the running time of the algorithm, in an environment of simplices.
This sheds light on its widespread empirical success.
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1. Introduction

Smoothed analysis. It is well-documented that many geometric algorithms that are ex-
tremely efficient in practice have exceedingly poor worst-case performance guarantees.
Two approaches were put forth to address this issue. The first tries to formally model
various classes of inputs that arise in practice and analyze the performance of algorithms
on these models [16]. For example, it was proposed that in practice geometric objects are
fat [1, 13, 32, 40], point sets have bounded spread [8, 10, 18, 19], and geometric scenes
have low density, are uncluttered, sparse, etc. [6, 14, 15, 34].

The second approach stems from the observation that geometric inputs often contain
a small amount of random noise, such as with point clouds generated by a laser scanner
[30]. It can be argued that small degrees of randomness creep into geometric inputs
even if they are created by a human modeler [37]. By this reasoning, finely tuned worst-
case examples have a low probability of arising and should not disproportionately skew
theoretical measures of algorithm performance. This is formalized in smoothed analysis
[39], which measures the maximum over inputs of the expected running time of the
algorithm under slight random perturbations of those inputs. For example, let A ∈ Rn×d
specify a set of n points in Rd, and let fX(A), where fX : Rn×d 7→ R, be a measure of
the performance of algorithm X on A. Then the worst-case performance of X is

max
A∈Rn×d

fX(A),
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the average-case performance of X is

E
A∼D

[
fX(A)

]
,

where D : Rn×d 7→ R is a suitable distribution, and the smoothed performance of X is

max
A∈Rn×d

E
R∼N

[
fX(A+ ‖A‖R)

]
,

where ‖A‖ denotes the Frobenius norm of A or some similar measure of the numerical
magnitude of the input, and N = N(0, σ2In×d) is a Gaussian distribution in Rn×d with
mean 0 and variance σ2. The parameter σ controls the magnitude of the random per-
turbation, and as it varies from 0 to ∞ the smoothed performance measure interpolates
between worst-case and average-case performance.

Smoothed analysis is a new framework that has already been applied to a wide vari-
ety of problems [3, 4, 7, 11, 12, 17, 38]. Its advantage compared to the above-described
explicit formulation of realistic input models lies in its generality and immediate appli-
cability across contexts, and its reliance on only one assumption, namely the presence of
some degree of randomness in the input.

Probabilistic roadmaps. The probabilistic roadmap (PRM) algorithm revolutionized robot
motion planning [23, 25, 27]. It is a simple heuristic that exhibits rapid performance and
has become the standard algorithm in the field [20, 21, 36]. Yet its worst-case run-
ning time is unbounded as a function of the input’s combinatorial complexity. The basic
algorithm for constructing a probabilistic roadmap is as follows:

Sample uniformly at random a set of points, called milestones, from the con-
figuration space C of the robot. Keep only those milestones that lie in the free
configuration space Cfree. 3 Let V be the resulting point set. For every u, v ∈ V ,
if the straight line segment between u and v lies entirely in Cfree, add {u, v} to
the set of edges E, initially empty. The graph G = (V,E) is the probabilistic
roadmap.

Given such a roadmap G, a motion between two points p, q in Cfree can be constructed
as follows:

Find a milestone p′ (resp., q′) in V that is visible from p (resp., from q). If p′

and q′ lie in different connected components of G, report that there is no feasible
motion between p and q. Otherwise plan the motion using a path in G that
connects p′ and q′.

The above PRM construction and query algorithms can be efficiently implemented in
very general settings. The outstanding issue is what the number of samples should be to
guarantee (in expectation) that G accurately represents the connectivity of Cfree. Clearly,

3A robot’s configuration space is the set of physical positions it may attain (which may or may
not coincide with obstacles), parametrized by its degrees of freedom (so a robot with d degrees
of freedom has a d-dimensional configuration space). The robot’s free configuration space is the
subset of these positions which do not coincide with obstacles, i.e. are possible in real life. These
terms are standard in the motion planning literature [29].
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for the algorithm to be accurate there should be a milestone visible from any point in Cfree,
and there should be a bijective correspondence between the set of connected components
of G and the set of connected components of Cfree. Unfortunately, the number of random
samples required to guarantee this can be made arbitrarily large even for very simple
configuration spaces [21].

A number of theoretical analyses provide bounds for the number of samples under
assumptions on the structure of Cfree such as goodness [5, 26], expansiveness [22], and
the existence of high-clearance paths [24]. However, none of these assumptions were
justified in terms of realistic motion planning problems. In practice, the number of
random samples is chosen ad hoc.

Contributions. This paper initiates the use of smoothed analysis to explain the success
of PRM. We model the free configuration space of the robot using a set of n (d − 1)-
simplices in Rd, which act as obstacles. The vertices of these simplices are subject to
Gaussian perturbations of variance (σD)2, where D is the diameter of the configuration
space. We prove a smoothed upper bound on the required number of milestones that is
polynomial in n and 1

σ . The result extends to all γ-smooth perturbations, see below.
In order to achieve this bound we define a space decomposition called the locally

orthogonal decomposition. Previously known decompositions, like the vertical decompo-
sition [9, 28] and the “castles in the air” decomposition [2] turn out to be unsuitable for
our purpose. We prove that for the roadmap to accurately represent the free configura-
tion space it is sufficient that a milestone is sampled from every cell of this decomposition.
We then prove a smoothed lower bound on the volume of every decomposition cell. This
leads to the desired bound on the number of milestones.

Our result is only a step towards a convincing theoretical justification of PRM. The
analysis is quite challenging already for the simple representation of the configuration
space using independently perturbed simplices. In Section 4 we outline directions for its
extension to more general configuration space models.

2. Bounding the Number of Milestones

Notation. Let V be a d-dimensional vector space and assume d to be constant. For
0 ≤ k ≤ d, a k-subspace of V is the set of linear combinations of k linearly independent
vectors lying in V . A subspace necessarily contains the origin. A k-flat is an affine
translation of a k-subspace. Points are 0-flats, straight lines are 1-flats, planes are 2-
flats and hyperplanes are (d − 1)-flats. A k-dimensional flat is the intersection of d − k
hyperplanes.

A hyperplane divides V into two halfspaces. More generally, a set of hyperplanes H

subdivides V into a number of disjoint, open, d-dimensional cells. Further, assume a
subset U of H intersects in a k-flat F , and let U′ be the set of hyperplanes in H which
intersect F but do not contain it. U′ subdivides F into disjoint, open, k-dimensional
regions called k-faces (if U′ is empty, F is a k-face on its own — note that this handles
the special case of 0-faces, which are closed, not open). A 0-face is called a vertex, and
a (d − 1)-face is called a facet. Extending the notation, a cell is considered a d-face.
The entire structure is referred to as the arrangement of the set of hyperplanes H. An
arrangement of hyperplanes is a convex subdivision, since all its faces are convex sets.
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A set of hyperplanes H (or their arrangement) is in general position if every d-tuple
of hyperplanes in H intersect in exactly one point. We note that the precise meaning
of “general position” we adopt here defines a suitable “general case” for our problem —
other authors may use different notions.

The distance between two flats X and Y is defined as minx∈X,y∈Y ‖x− y‖. Two flats
are said to be ε-close if their distance is at most ε; otherwise they are ε-distant.

A⊕B is the Minkowski sum of sets A and B, i.e. it is the set of all sums of the form
a+ b, where a ∈ A and b ∈ B.

The d-ball of radius r, denoted Bd(r), is the set of points at distance at most r from
the origin. (Bd(x, r) is defined as Bd(r)⊕x.) The boundary of Bd(r) is the (d−1)-sphere
of radius r, written Sd−1(r).

The volume of a k-dimensional object will refer to its k-dimensional Lebesgue measure.
If this object is embedded in a space of higher dimension (such as the (k − 1)-sphere,
which is usually embedded in Rk), we may also refer to this measure as the area of the
object. The meaning of these terms should be clear from context, and the Vol() and
Area() predicates may be used.

The volume of Bd(r) will be written as Vd(r). It is a standard result [33] that

Vd(r) =
π
d
2 rd

Γ
(
d
2 + 1

) ,
where Γ(·) denotes the (complete) gamma function.

For fixed r this quantity diminishes to zero as d goes to infinity, and Vd(1) is bounded
by 8π2/15 for all d. Also,

Area(Sd−1(r)) =
d Vd(r)

r
.

Throughout the paper, the uppercase letter K, with or without a subscript or super-
script, will always denote some constant value.

The model. Let the robot have a d-dimensional configuration space C, defined by a
polytope of unit diameter in Rd. (The restriction on the diameter will be removed later,
when we present the main theorem.) C is the domain from which the milestones are
sampled by the PRM algorithm. Let Din be the diameter of the largest ball contained
completely within C. The dimension d of the space and the domain parameter Din will
be considered constants in our treatment. Let S be a set of n (d − 1)-simplices in C.
These are the configuration space obstacles in our model. Thus Cfree = C \

⋃
s∈S s.

A probability distribution D on Rd with density function µ(·) is said to be γ-smooth,
for some γ ∈ R, if

1. µ(x) ≤ γ for all x ∈ Rd, and
2. given any hyperplane H in Rd, a point distributed under D is on H with probability

0.

A symmetric d-variate Gaussian distribution with variance σ2 is Θ
(

1
σd

)
-smooth. We

assume that each vertex of each simplex in S is independently perturbed according to a
γ-smooth distribution within the domain.
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The locally orthogonal decomposition. The locally orthogonal decomposition Ξ(S) of S is
the arrangement of the following two collections of hyperplanes:

• The affine hull Aff(s) of s, for each s ∈ S.

• The hyperplane orthogonal to s and containing f , for each s ∈ S and each facet f
of s.

Hyperplanes of the second type are called walls. A facet of Ξ(S) is bound if it is contained
in some s ∈ S, otherwise it is free. In the following, the decomposition is assumed to be
restricted to C. The second property of γ-smooth distributions ensures that under our
perturbation model, Ξ(S) is in general position with probability 1.

Lemma 1. Let c1 and c2 be two cells of Ξ(S) that are incident at a free facet. Then for
any p1 ∈ c1 and p2 ∈ c2, the line segment between p1 and p2 is disjoint from S.

Proof. Let H be the hyperplane containing the facet that separates c1 and c2. H is part
of Ξ({s}) for some s ∈ S. Let Ξ({s})−H refer to the subdivision induced by the simplex
s and all the hyperplanes of Ξ({s}) other than H. Ξ({s})−H is a convex subdivision: if
H is the affine hull of s we have a prism split in half by s, otherwise we have a subdivision
induced by a set of hyperplanes. Thus the overlay O of Ξ(S − {s}) with Ξ({s}) −H is
also a convex subdivision. The cells c1 and c2 lie in the same cell of O. This implies the
lemma.

Corollary 2. If a milestone is placed in each cell of Ξ(S) then any two points that can
be connected by a path in Cfree can also be connected by a piecewise linear path whose
only internal vertices are milestones.

Proof. Let p and q be points in Cfree that can be connected by a feasible path Π. Let
{c1, c2, . . . , ck} be the sequence of cells of Ξ(S) traversed by Π, and let mi be a milestone
in ci. By Lemma 1, the piecewise linear path with vertices {p,m1,m2, . . . ,mk, q} is
feasible. Figure 1 illustrates this.

Volume bound. Corollary 2 implies that it suffices to place a milestone in every cell of
Ξ(S). To show that this can be accomplished with a polynomial number of samples we
prove a high-probability lower bound on the volume of each cell of Ξ(S). This is achieved
with the help of the following simple lemma, which is easily proved by induction.

Lemma 3. Let A(H) be the arrangement of a set of hyperplanes H. If every vertex v
of A(H) is ε-distant from every hyperplane H ∈ H for which v 6∈ H, then the volume
(k-dimensional measure) of any k-face of the arrangement is at least εk/k!, for 1 ≤ k ≤ d.

This lemma implies that volume bounds can be proved through vertex-hyperplane
separation bounds. Accordingly, Section 3 is devoted to proving the following theorem:

Theorem 4. Consider a vertex v and a hyperplane H of Ξ(S) such that v 6∈ H, and let
∆ := min{1, Din}. Given ε ∈ [0,∆), v is ε-close to H with probability at most

O
(
ε1−α max{γ, γd

2
}
)

for any α > 0.
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Figure 1: If two points p and q can be connected by a path in Cfree they can also be connected by a
linear interpolation of milestones {mi}, as long as one is placed in each cell of the locally orthogonal
decomposition.

The number of hyperplanes in Ξ(S) is O(n) and the number of vertices is O(nd).
A union bound and an application of Lemma 3 thus yield the following corollary to
Theorem 4.

Corollary 5. Given ε ∈
[
0, ∆d

d!

)
, the probability that some cell of Ξ(S) has volume less

than or equal to ε is
O
(
nd+1ε

1−α
d max{γ, γd

2
}
)

for any α > 0. Hence each cell has volume at least ε with probability at least 1− ω if

ε ≤ min
{
K ω

d
1−α n−

d(d+1)
1−α

(
max{γ, γd

2
}
)− d

1−α
,

∆d

d!

}
for an appropriate constant K.

If each cell of Ξ(S) has volume at least ε, standard probability theory implies that the
expected number of samples sufficient for placing a milestone in every cell is O

(
1
ε log 1

ε

)
[31]. Applying Corollary 5, we conclude that with high probability, a set of Poly(n, γ)
samples from C is expected to place a milestone in every cell of Ξ(S). This yields our
main theorem, which we state for arbitrarily large domains in the special case of Gaussian
perturbations.

Theorem 6. For constant d, let a free configuration space be defined by n (d − 1)-
simplices in Rd within a polyhedral domain of diameter D. If independent Gaussian
perturbations of variance (σD)2 are applied to the simplex vertices then the expected
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number of uniformly chosen random samples required to construct an accurate proba-
bilistic roadmap is polynomial in n and 1

σ .

In the statement of this theorem, we have removed the restriction that the domain
have unit diameter. For a domain of diameter D 6= 1, smoothed analysis requires us
to apply a perturbation of variance (σD)2 (recall that the perturbation is proportional
to some measure of the numerical magnitude of the input: the diameter is a good fit).
When we scale the domain to unit diameter, the variance becomes σ2 to maintain scale
invariance of the problem. This is precisely the situation we studied for unit diameter,
and the same bounds apply.

3. Distance Bounds

This section is devoted to proving Theorem 4, which upper-bounds the probability
that a vertex v and a hyperplane H of Ξ(S) are ε-close. The one-dimensional case admits
a simple proof which does not require the decomposition machinery, so we assume d ≥ 2
in the balance of this paper. H can fall into three categories:

1. The affine span of s ∈ S.
2. A wall containing a facet of s ∈ S.
3. A hyperplane defining the boundary of C.

We analyze these cases separately, devoting a subsection to each.

3.1. Affine Spans of Simplices
Theorem 7. Consider a fixed point p in Rd. Given 0 ≤ k < d, let the points U =
{u1, u2, . . . , uk+1} be distributed independently and γ-smoothly in C. The probability that
the affine span of U is ε-close to p is at most

Kεd−kγk+1

for ε ≥ 0 and a constant K that depends only on k and d.

Proof. For k = 0 the result is trivial. Assume 1 ≤ k ≤ d
2 . We will integrate over all

k-flats formed by the affine span of (k+ 1)-tuples of points. Let F denote the affine span
of U . For a given u1, the k-subspace F − u1 of Rd can be represented as the span of k
orthonormal vectors v1, v2, . . . , vk. The constraint that the vectors must be orthonormal
makes direct parametrization and integration difficult. Instead, we will show that there
is a mapping from arbitrary k-tuples of unit vectors in (d− k + 1)-space to orthonormal
bases for k-subspaces of d-space that satisfies certain necessary properties. With this
mapping in hand, we can integrate in a straightforward fashion over the former space
instead.

Let N be an arbitrary k-tuple of unit vectors in Rd−k+1, i.e. each vector is drawn
from the (d− k)-dimensional unit sphere Sd−k. Assume for the moment that we have a
mapping φ that maps N to an orthonormal basis for a k-subspace of Rd and satisfies the
following properties:
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• It is surjective, or onto, in the sense that every k-subspace of Rd has an orthonormal
basis W such that there is some k-tuple N drawn from Sd−k with φ(N) = W . Note
that we do not require that every set of k orthonormal d-vectors have a pre-image
under φ.

• It is continuous under a particular metric ρk. For any two k-tuples of vectors
W = (v1, v2, . . . , vk) and W ′ = (v′1, v

′
2, . . . , v

′
k) in some space, define ρk(W,W ′) =

supki=1 ‖vi − v′i‖. We require that if N and N ′ are two k-tuples of unit vectors in
Rd−k+1 such that ρk(N,N ′) ≤ δ, then ρk(φ(N), φ(N ′)) ≤ K∗δ for some constant
K∗ that depends only on k.

Now we divide Sd−k into differential elements A1, A2, . . . , Am. Assume that the subdi-
vision scheme has the following properties. (Diam(Ai) and Area(Ai) denote the diameter
(measured in Rd−k+1) and area of Ai, respectively.)

Property 1: infi Area(Ai) ≥ C supi Diam(Ai)d−k for all i := 1 . . .m and a positive
constant C independent of m. That is, the differential elements are “round”.

Property 2: supi Area(Ai)→ 0 as m increases.

It is not hard to prove that such a scheme exists: consider, for example, drawing an
uniform grid on the surface of the cube inscribed in the sphere and radially projecting
the grid onto the sphere. We omit the formal proof in our presentation.

Let δ = supi Diam(Ai). We now choose a representative point n̂0
i in each Ai. Given

an index k-tuple I := (i1, . . . , ik), let N0
I denote the k-tuple (n̂0

i1
, n̂0
i2
, . . . , n̂0

ik
) and write

φ(N0
I ) := (v0

1 , . . . , v
0
k). Let NI denote a k-tuple of the form (n̂i1 , . . . , n̂ik), where each

n̂ij ∈ Aij . Write φ(NI) := (v1, . . . , vk). By our continuity criterion above, ‖v0
i − vi‖ ≤

K∗δ for 1 ≤ i ≤ k.
Let q := α1v1 + α2v2 + · · ·+ αkvk be any point on Span(φ(NI)) within unit distance

from the origin: this implies that each coefficient αi has absolute value at most 1. This is
a crucial observation that relies on the orthonormality of the set φ(NI). The “neighbour”
of q on Span(φ(N0

I )) is the point q0 := α1v
0
1 + α2v

0
2 + · · ·+ αkv

0
k. Now

‖q − q0‖ = ‖α1(v1 − v0
1) + · · ·+ αk(vk − v0

k)‖
≤ ‖α1(v1 − v0

1)‖+ · · ·+ ‖αk(vk − v0
k)‖

≤ kK∗δ.

So every point on Span(φ(NI)) within C−u1 is O(δ)-close to Span(φ(N0
I )). Now we can

write
Pr [F is ε-close to p] ≤

∑
I∈{1,...,m}k

Pr [A and B]

where A := “F is ε-close to p”, and B := “F − u1 = Span(φ(NI)) for some NI”. The
inequality results from the observation that while the mapping φ is onto, it is not one-
to-one: a basis is unchanged if we permute its members, so many k-tuples drawn from
Sd−k (which are ordered) map to the same (unordered) basis.

Write F 0 := Span(φ(N0
I )). If B is satisfied then, within C, F must be contained in

the set of points (kK∗δ)-close to u1 +F 0. Let G be the ball of radius kK∗δ in the linear
space F⊥ orthogonal to F 0. Then the required region is G⊕(u1 +F 0), which has volume
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(within C) at most Vd−k(kK∗δ)Vk(1) = K ′δd−k. Each of u2, . . . , uk+1 must lie within
this region, so Pr[B] ≤ (γK ′δd−k)k.

Assume δ�ε. LetGε be the ball of radius ε+kK∗δ ≈ ε in F⊥. Pr[A | B] is 1 only if u1

is in Gε⊕(p+F 0), which has volume K ′′εd−k within C, and is 0 otherwise. So integrating
the indicator function over all possible locations of u1, we get Pr[A | B] ≤ γK ′′εd−k.
Multiplying and applying Property 1:

Pr[A and B] = Pr[A | B] Pr[B]
≤ K ′′′εd−kγk+1δk(d−k)

≤ K ′′′

Ck
εd−kγk+1

k∏
j=1

Area(Aij )

Summing over all possible k-tuples of indices, we have

Pr [F is ε-close to p] ≤ K ′′′

Ck
γk+1εd−kArea(Sd−k)k

= Kεd−kγk+1

for a constant K that depends only on d and k.
To wrap things up, we must handle the case k > d

2 . Observe that if F is a k-flat for
such k, then the orthogonal complement of F − u1 is a (d − k)-subspace which can be
studied as above. Further, if two (d−k)-subspaces are defined by orthonormal bases that
are pairwise O(δ)-close, then their orthogonal complements must be O(δ)-close within
C − u1 (i.e. every point on one is O(δ)-close to the other). Running through the above
argument in this scenario yields an identical result.

All we need to do now is to construct an appropriate mapping φ. LetN = (n̂1, n̂2, . . . , n̂k)
be a k-tuple of points drawn from Sd−k. We will start by rigidly embedding Sd−k in a
canonical (d − k + 1)-subspace of Rd with center at the origin. Let T1 be the rigid
transformation that achieves this. Now consider another (d − k + 1)-subspace orthog-
onal to T1(n̂1) and similarly embed Sd−k in it with a rigid transformation T n̂1

2 . Now
take a third subspace orthogonal to both T1(n̂1) and T n̂1

2 (n̂2), embed Sd−k in it, and
recurse in this way until we have considered k subspaces. We then have the mapping
φ(N) = (T1(n̂1), T n̂1

2 (n̂2), . . . , T n̂1,...,n̂k−1
k (n̂k)).

Consider an arbitrary k-subspace Fk of Rd. It must intersect the first embedded
sphere at at least one point v1. Since T1(n̂1) covers every point on this sphere as n̂1

varies over Sd−k, v1 = T1(n̂1) for some choice of n̂1. Fk also intersects the second
sphere, embedded in a subspace orthogonal to v1. Assume v2 is a point of intersection.
By similar reasoning, v2 = T n̂1

2 (n̂2) for some n̂2. Continue in this way until we have the
tuple (v1, v2, . . . , vk) := φ((n̂1, n̂2, . . . , n̂k)): it is easily verified that this is an orthonormal
basis for Fk. Hence φ is surjective.

It is more difficult to choose the transformations so that φ is continuous. We will
make do with an intermediate result. Informally, we will take a known mapping for a
single k-tuple and “fudge” it to obtain the mapping for other k-tuples “near” the first.
By doing this for a large number of “known” k-tuples, we cover the domain of φ. The
resulting mapping is not guaranteed to be continuous as we defined the term, but it turns
out to be sufficient for our needs.
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Assume some arbitrarily chosen valid sequence of transformations T1, T
n̂1
2 , . . . , T

n̂1,...,n̂k−1
k

for the k-tuple N := (n̂1, n̂2, . . . , n̂k). Consider another k-tuple N ′ := (n̂′1, n̂
′
2, . . . , n̂

′
k)

such that ρk(N,N ′) ≤ δ. Associate with this k-tuple the following sequence of transfor-
mations:

T1

T
n̂′1
2 := R2 ◦ T n̂1

2

T
n̂′1,n̂

′
2

3 := R3 ◦ T n̂1,n̂2
3

...

T
n̂′1,...,n̂

′
k−1

k := Rk ◦ T
n̂1,...,n̂k−1
k

Here, the Ri’s are a set of rotations. R2 maps T1(n̂1) to T1(n̂′1), R3 maps T1(n̂1) to T1(n̂′1)
and T n̂1

2 (n̂2) to T n̂′1
2 (n̂′2), and so on for longer and longer prefixes of the bases. Note that

for any n̂,

〈T1(n̂′1), T n̂′1
2 (n̂)〉 = 〈(R2 ◦ T1)(n̂1), (R2 ◦ T n̂1

2 )(n̂)〉
= 〈T1(n̂1), T n̂1

2 (n̂)〉 (rotation is orthogonal and preserves
inner products by definition)

= 0 (by the definition of T n̂1
2 )

Hence, our construction of T n̂′1
2 is valid in that it maps Sd−k to a subspace orthogonal to

T1(n̂′1). Similar arguments establish the validity of the other transformations.
We require each rotation to displace unit vectors in Rd by at most K∗∗δ, where K∗∗

depends only on k. To prove that such a sequence of rotations can be constructed, we
state the following lemma.

Lemma 8. Given δ ≥ 0 and t ≤ d, let (v1, v2, . . . , vt) and (v′1, v
′
2, . . . , v

′
t) be two t-tuples

of orthonormal vectors in Rd, such that ‖vi − v′i‖ ≤ δ for 1 ≤ i ≤ t. Then there exists a
rotation R of Rd about the origin that maps vi to v′i for 1 ≤ i ≤ t, and maps each unit
vector u in Rd to another unit vector u′ such that ‖u− u′‖ ≤ Kδ, where K depends only
on t. Such a transformation R is called a (Kδ)-rotation.

Proof. We will prove the result by induction on t. In the base case t = 1, if v1 = v′1
(which, incidentally, we have by default when t = d = 1) then R can be taken to be the
identity transformation and we are done. Else, consider the 2-space H spanned by v1

and v′1. Without loss of generality, assume this plane is spanned by the first two basis
vectors x̂1 and x̂2 in some canonical orthonormal basis B of Rd. The two-dimensional
rotation that maps v1 to v′1 in H, expressed in terms of the x1 and x2 components of
a vector, is a standard result. Extend this rotation to d dimensions by stipulating that
the final transformation R does not change any of the other components, i.e. the d-
dimensional matrix for the transformation becomes identity when the first two rows and
columns (corresponding to the x1 and x2 components) are deleted. Since this rotation R
changes only the x1 and x2 components of a vector u when mapping it to u′, the distance
‖u− u′‖ is precisely the distance between the orthogonal projections of u and u′ on H.

10



Call these projections uH and u′H respectively. It is straightforward to see that u′H must
be the image of uH under the rotation R (in the basis B, they have the same first two
components as u′ and u respectively, and their other components are identical, being
zero). Since R behaves as a two-dimensional rotation in H that maps v1 to v′1, with
‖v1 − v′1‖ ≤ δ, it must be that the distance between any vector of length at most one
in H and its image under rotation is at most δ. In particular, this holds for uH and its
image u′H , both of which have length at most ‖u‖ = ‖u′‖ = 1. By the reasoning above,
we have ‖u− u′‖ = ‖uH − u′H‖ ≤ δ.

Now assume t > 1, and that the result holds for all t′, 1 ≤ t′ < t. By the same
reasoning as for the base case, there is a rotation Rt that maps v1 to v′1 and displaces any
unit vector in Rd by a distance of at most δ. In particular, the vectors v2, v3, . . . , vt move
to new positions v′′2 , v

′′
3 , . . . , v

′′
t respectively such that each of ‖v2−v′′2‖, ‖v3−v′′3‖, . . . , ‖vt−

v′′t ‖ is at most δ. By the triangle inequality, ‖v′′i − v′i‖ ≤ ‖v′′i − vi‖+ ‖vi − v′i‖ ≤ 2δ, for
2 ≤ i ≤ t. Note also that since Rt is a rotation, (v′1, v

′′
2 , v
′′
3 , . . . , v

′′
t ) is an orthonormal

set. Apply the induction hypothesis in the (d − 1)-dimensional orthogonal complement
of v′1, with the two (t− 1)-tuples (v′′2 , v

′′
3 , . . . , v

′′
t ) and (v′2, v

′
3, . . . , v

′
t) which have pairwise

distances bounded by 2δ: there is a rotation Rd−1
t−1 in this subspace that maps the first

tuple to the second and displaces any unit vector by a distance of at most 2Kt−1δ for
some Kt−1 that depends only on t. Extend Rd−1

t−1 to a d-dimensional rotation Rt−1

by stipulating that the component of a d-vector along v′1 remains unchanged: note in
particular that Rt−1 does not displace v′1 itself. As in the base case, this extension ensures
that Rt−1 displaces any unit vector in Rd by at most 2Kt−1δ. Let R = Rt−1 ◦ Rt: this
rotation maps (v1, v2, . . . , vt) to (v′1, v

′
2, . . . , v

′
t). By the triangle inequality again, R moves

any unit vector in Rd by at most (1 + 2Kt−1)δ = Kδ for some K that depends only on
t, and is the required rotation. The result is thus proved by induction.

Now let us return to the original discussion. Since T1 is a rigid transformation,
‖T1(n̂1)−T1(n̂′1)‖ = ‖n̂1− n̂′1‖ ≤ δ. Let R2 be a (K2δ)-rotation, with K2 depending only
on k: its existence is guaranteed by Lemma 8. We have

‖T n̂′1
2 (n̂′2)− T n̂1

2 (n̂2)‖ = ‖(R2 ◦ T n̂1
2 )(n̂′2)− T n̂1

2 (n̂2)‖
≤ ‖(R2 ◦ T n̂1

2 )(n̂′2)− T n̂1
2 (n̂′2)‖+ ‖T n̂1

2 (n̂′2)− T n̂1
2 (n̂2)‖

≤ K2δ + δ

= (K2 + 1)δ

Now we can recurse. Invoking Lemma 8 with (K2 + 1)δ instead of δ and by using
identical arguments, we establish that R3 can be a (K3δ)-rotation, and similarly for
R4, . . . , Rk. K∗∗ is then the maximum of K2,K3, . . . ,Kk. Denote by ψN this restriction
of φ to a domain of k-tuples δ-close to N . Observe that ρk(ψN (N), ψN (N ′)) ≤ K∗δ,
where K∗ = K∗∗ + 1.

Recall that in our integration, we divided the sphere Sd−k into differential elements
A1, A2, . . . , Am of diameter δ and picked a representative point n̂0

i from each Ai. We
will define φ differently for each m: properly, we should replace it with a symbol such
as φm, but for clarity of exposition we will be a bit loose with our notation. As before,
given an index k-tuple I := (i1, . . . , ik), let N0

I denote the k-tuple (n̂0
i1
, n̂0
i2
, . . . , n̂0

ik
),

and let NI denote a k-tuple of the form (n̂i1 , . . . , n̂ik), where each n̂ij ∈ Aij . Define
11



φ(NI) := ψN0
I
(NI): thus we are guaranteed that ρk(φ(NI), φ(N0

I )) ≤ K∗δ. In other
words, the mapping φ is continuous within each unique sequence of k differential elements.
Since the main proof only compares the image of a k-tuple of points from a sequence of
differential elements to that of its representative k-tuple from the same sequence, this
“local” version of continuity is enough for the proof to go through.

We derive the following corollary of Theorem 7.

Corollary 9. For nonnegative integers k, k′ that satisfy k+k′ < d, consider an arbitrarily
distributed k′-flat F in Rd, as well as a set U = {u1, . . . , uk+1} of γ-smoothly distributed
points in C, independent of F and of each other. The shortest distance between F and
Aff(U) is at most ε with probability at most

Kεd−k−k
′
γk+1

for ε ≥ 0 and a constant K that depends only on k and d.

Proof. For k′ = 0, Theorem 7 immediately yields the result: since the point F is dis-
tributed independently of U , we can hold it fixed, apply the theorem and then integrate
the result over the range of F — it is trivially verified that this last step does not
change the probability bound from the previous step. For k′ > 0, fix F : by indepen-
dence, the points in U retain their original distributions under this restriction. Let F0 be
the subspace of Rd identical to F except for translation, and let F⊥ be the orthogonal
complement of F0. Evidently, the shortest distance of a point to F is preserved under
orthogonal projection to F⊥. F itself maps to a single point p of F⊥. Further, the points
in Rd mapping to a volume element dσ of F⊥ are exactly those in dσ ⊕ F0. The k′-area
of any k′-flat, when restricted to C, is at most Vk′(1), so the volume of the Minkowski
sum (in C) is at most Vk′(1)dσ. This is illustrated in Figure 2. Hence the projection u⊥i
of each ui is (γVk′(1))-smoothly and independently distributed in F⊥. Now we can apply
Theorem 7 in the (d− k′)-dimensional space F⊥ to upper-bound the probability that p
is ε-close to Aff(u⊥1 , . . . , u

⊥
k+1), and hence the probability that F is ε-close to Aff(U), by

Kεd−k−k
′
γk+1

This has no dependence on F , so integrating over the distribution of F gives the same
overall probability that F is ε-close to Aff(U). The formula simplifies to the required
result.

From Theorem 7 we see that a hyperplane-vertex pair of Ξ(S), in which the hyperplane
is the affine span of a simplex s, and the vertex v is defined entirely by hyperplanes not
associated with s, is ε-close with probability at most polynomial in ε and γ. Specifically,
the bound is Kεγd for a constant K that depends only on d.

Corollary 9 applies to the case when the vertex is formed by the intersection of one
or more walls supporting s with hyperplanes not associated with s. We extend the use
of the term “wall” as follows: The intersection of a number of walls of s is the wall W
spanned by Aff(U) and the normal to s, for a subset U of the vertices of s. Since W is
orthogonal to s and contains v, we have

dist(Aff(s), v) = dist(Aff(U), v) ≥ dist(Aff(U), Z)
12



Figure 2: F is a (1D) subspace of R3, and F⊥ is its (2D) orthogonal complement. dσ is a small volume
(here, length) element of F and R is a ball of unit radius in F⊥. dσ ⊕ R (here, a cylinder) contains all
points within the domain that orthogonally project onto dσ.

where Z is the intersection of the hyperplanes unrelated to s. W and Z intersect at a
point, so dim(W ) + dim(Z) = d. Also, dim(Aff(U)) = dim(W ) − 1, and the points in
U are distributed γ-smoothly and independently (of each other and of Z) in C. These
are precisely the conditions required to apply Corollary 9, giving an upper bound on the
probability that dist(Aff(U), Z) ≤ ε, and hence on the probability that dist(Aff(s), v) ≤ ε,
that is again polynomial in ε and γ. Specifically, if k is the cardinality of U , then the
bound is Kεγk for a constant K that depends only on k and d.

3.2. Walls Supporting Simplices
When the hyperplane is a wall containing a simplex facet, the analysis is trickier. We

will divide it into three cases based on the relationship between the wall and the vertex.
These cases may be summarized as:

1. The wall and the vertex are independent.
2. The wall and the vertex depend on the same simplex but the vertex does not lie in

the affine span of that simplex.
3. The wall and the vertex depend on the same simplex and the vertex lies in the

affine span of that simplex.

13



Case 1. We will assume that the simplex associated with the wall is independent of the
vertex and prove a rather general result.

Theorem 10. Consider a simplex s ∈ S. For nonnegative integers k, k′ that satisfy
k + k′ < d, consider a subset U = {u1, u2, . . . , uk} of the vertices of s and let W be the
wall spanned by Q := Aff(U) and the normal to s. Let F be a random k′-flat whose
distribution is independent of s. The probability that W is ε-close to F is at most

Kεd−k−k
′
γd−1

for ε ≥ 0 and a constant K that depends only on k and d.

Proof. Let H be the affine span of the simplex. Fix F , and let FH be the orthogonal
projection of F to H. By orthogonality, it is immediate that dist(W,F ) = dist(Q,FH).
We assume a tessellation scheme of Sd−1 into area elements A1, A2, . . . , Am as in the
proof of Theorem 7, satisfying Properties 1 and 2. Write

Pr [W is ε-close to F ] =
m∑
i=1

Pr [n̂(H) ∈ Ai and W is ε-close to F ]

=
m∑
i=1

Pr
[
n̂(H) ∈ Ai and Q is ε-close to FH

]
Now fix an arbitrary normal n̂i in each Ai and let H0 be the plane 〈x, n̂i〉 = 0. Another
normal n̂ also in Ai satisfies ‖n̂ − n̂i‖ ≤ Diam(Ai). We will show that when n̂(H), the
unit normal to the hyperplane H, is in Ai, projection to H0 instead of to H will almost
surely not change the shortest distance by “much”. For this the following simple lemma
is required.

Lemma 11. Let v1 and v2 be the orthogonal projections of vector v onto hyperplanes
H1 and H2, respectively, and assume that the normals of H1 and H2 are δ-close, i.e.,
‖n̂2 − n̂1‖ ≤ δ. Then ‖v2‖ − ‖v1‖ ≤ 2δ‖v‖.

Proof. Write ∆n := n̂2 − n̂1. We have v1 = v − 〈n̂1, v〉n̂1 and v2 = v − 〈n̂2, v〉n̂2. So

‖v2‖ − ‖v1‖ ≤ ‖v2 − v1‖
≤ ‖(v − 〈n̂1, v〉n̂1)− (v − 〈n̂2, v〉n̂2)‖
= ‖〈n̂2, v〉n̂2 − 〈n̂1, v〉n̂1)‖
= ‖〈n̂1 + ∆n, v〉(n̂1 + ∆n)− 〈n̂1, v〉n̂1)‖
= ‖〈n̂2, v〉∆n+ 〈∆n, v〉n̂1)‖
≤ 2‖∆n‖‖v‖ ≤ 2δ‖v‖

Let (q, fH) be a pair in Q × FH such that dist(q, fH) = dist(Q,FH) and let f be
the pre-image of fH under the projection—if there are multiple pre-images we choose
the one closest to q. Let QH0 , FH0 , qH0 and fH0 be the orthogonal projections of Q,
F , q and f respectively to H0. By the above lemma, dist(QH0 , FH0) ≤ dist(qH0 , fH0) ≤

14



Figure 3: The projections of vector
−→
qf onto two hyperplanes H and H0 differ by at most 2δ dist(q, f),

where δ is the length of the difference of the normals of the hyperplanes. The notation is that of Theorem
10.

dist(q, fH)+2δidist(q, f) = dist(Q,FH)+2δidist(q, f), where δi := Diam(Ai) (see Figure
3). For every possible configuration of s and F , dist(q, f) is a finite positive quantity, so
given ω ∈ (0, 1) we can always find a large enough constant M such that dist(q, f) ≤M
with probability at least ω. This implies

Pr
[
n̂(H) ∈ Ai and Q is ε-close to FH

]
= Pr[n̂(H) ∈ Ai and dist(q, f) ≤Mand Q is ε-close to FH ]

+ Pr[n̂(H) ∈ Ai and dist(q, f) > Mand Q is ε-close to FH ]

≤ Pr[n̂(H) ∈ Ai and dist(q, f) ≤Mand QH0 is (ε+ 2δiM)-close to FH0 ]
+ Pr[n̂(H) ∈ Ai and dist(q, f) > M ]

≤ Pr[n̂(H) ∈ Aiand QH0 is (ε+ 2δiM)-close to FH0 ]
+ Pr[n̂(H) ∈ Ai and dist(q, f) > M ]

Let ud be a vertex of s not in U . For the first term, observe that n̂(H) is in Ai only
if every vertex of s is in the slab T between the parallel planes 〈x − ud, n̂i〉 = ±δi.
The probability that a single vertex, considered independently from other factors, is in
this slab is at most 2γδiVd−1(1). Let uH0

i be the orthogonal projection of each ui ∈ U
on H0 — under the above restriction, the uH0

i ’s are (2γδi)-smoothly and independently
distributed on H0. Corollary 9 can now be directly applied in H0 to obtain, for some
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constants K1 and K2,

Pr
[
n̂(H) ∈ Ai and QH0 is (ε+ 2δiM)-close to FH0

]
≤ (2γδiVd−1(1))d−k−1︸ ︷︷ ︸

vertices not in U ∪ {ud}

× K1(ε+ 2δiM)d−k−k
′
(2γδi)k︸ ︷︷ ︸

vertices in U

≤ K2(ε+ 2δiM)d−k−k
′
γd−1Area(Ai).

Summing over all i,

Pr [W is ε-close to F ]

≤
∑
i

K2(ε+ 2δiM)d−k−k
′
γd−1Area(Ai)

+
∑
i

Pr [n̂(H) ∈ Ai and dist(q, F ) > M ]

≤ K2(ε+ 2 sup
i
δiM)d−k−k

′
γd−1Area(Sd−1)

+ Pr [dist(q, F ) > M ]

≤ 8π2K2

15
(ε+ 2 sup

i
δiM)d−k−k

′
γd−1 + (1− ω)

Make ω arbitrarily close to 1 and choose small enough area elements so that supi δiM � ε,
thus obtaining

Pr [W is ε-close to F ] ≤ Kεd−k−k
′
γd−1

for a constant K. By independence, integrating over the range of F does not change the
expression.

Setting k = d − 1 and k′ = 0 yields the required vertex-wall separation result: The
probability of ε-closeness is at most Kεγd−1.

Case 2. The next case to be treated is when the simplex associated with the wall is
involved in the definition of the vertex but does not contain it in its affine span.

Theorem 12. Consider a simplex s ∈ S. Given a set U = {u1, u2, . . . , uk} of k vertices
of s, for 1 ≤ k < d, define Q := Aff(U). Let Z be the wall spanned by Q and the normal
to s, let F be a random (d − k)-flat whose distribution is independent of s, and define
v := Z ∩ F . Let W be a wall of Ξ({s}) that does not contain Z. Given ε ∈ [0, 1), the
probability that v is ε-close to W is at most

Kε1−αγd−1

for any α > 0 and a constant K that depends on α, k and d.

Proof. For d ≤ 2 the proof is straightforward. Assume d > 2. Let H be the affine span of
the simplex. Assume, without loss of generality, thatW containsWb := Aff(u2, u3, . . . , ud).
The intersection of W and Z is the wall Y spanned by Yb := Aff(u2, u3, . . . , uk) and the
normal to s (refer to Figure 4 for an illustration in three dimensions). Consider the
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(d− k + 1)-dimensional linear space Y ⊥ orthogonal to Y , in which Y itself orthogonally
projects to a point y and Z projects to a line L. Note that Y ⊥ must contain n̂(W ).
Let ~a be the vector v⊥ − y, where v⊥ is the orthogonal projection of v to Y ⊥, lying
on L. Since the projection to Y ⊥ is orthogonal to the perpendicular from v on W , it
preserves the length of this vector, i.e. the perpendicular distance of v from W . Hence,
we may measure this distance after projection as the dot product |〈~a, n̂(W )〉|. If v is
ε-close to W , this implies that 〈~a, n̂(W )〉| ≤ ε. Figure 4 illustrates that v⊥ must then be
(ε sec Θ)-close to y, where Θ is the (acute) angle between L and n̂(W ). This means that
dist(F, Y ) ≤ dist(v, Y ) = dist(v⊥, y) ≤ ε sec Θ. Hence for infinitesimally small dθ,

Pr [v is ε-close to W and Θ ∈ [θ, θ + dθ)] ≤ Pr [F is (ε sec θ)-close to Y and Θ ∈ [θ, θ + dθ)]

We now localize the normal of H and follow the proof of Theorem 10 with a few changes.
Specifically, the probability

Pr
[
n̂(H) ∈ Ai and QH0 is (ε+ 2δiM)-close to FH0

]
is replaced with the probability P =

∫ π/2
0

Pθ, where

Pθ := Pr[n̂(H) ∈ Ai and Θ ∈ [θ, θ + dθ)] and Y H0
b is ((ε+ 2δiM) sec θ)-close to FH0 ]

(The differential dθ will be shown to be present as a factor in Pθ.)
The fixed point is taken to be ud as before. Note that if Wb is fixed then L, and hence

the angle Θ, depends only on the position of u1. In Y ⊥, let R be the region between the
double cones with vertex y, axis n̂(W ) and half-angles θ and θ + dθ. Evidently, Θ lies
in the required range if and only if u1 lies in the extruded region RY := R⊕ Yb. This is
illustrated in Figure 4.

Even if Wb and hence Yb are fixed, R depends on Y ⊥ and thus on n̂(W ) and on u1.
This yields a circularity. However, n̂(W ) can be approximated by a single normal n̂i
in Ai — the approximation improves as Ai shrinks. This fixes Y independently of u1

(denote this value by Y0) and places R in Y ⊥0 as the region R0, which extrudes to R0
Y in

H0. The required probability can now be approximated as

Pr [u1 lies in RY ] ≈ Pr
[
uH0

1 lies in R0
Y

]
,

where uH0
1 is the orthogonal projection of u1 to H0. R0, in domain H0, has measure at

most
2Area(Sd−k−1(sin θ))× 12dθ

d− k + 1
≤ 2(d− k)Vd−k(1)dθ

d− k + 1
as may be verified by picturing R0 as a rotational sweep of a 2D double-cone. This
implies that the volume of R0

Y within C is at most

1k−1 × 2(d− k)Vd−k(1) dθ
d− k + 1

.

We can now evaluate the required probability using

Pθ ≤ Pr[n̂(H) ∈ Ai and Θ ∈ [θ, θ + dθ) | B1]
× Pr[n̂(H) ∈ Ai and Y H0

b is ((ε+ 2δiM) sec θ)-close to FH0 ]

≤ Pr[u1 ∈ T and uH0
1 is in R0

Y | B2]
× Pr[{u2, . . . , ud−1} ⊂ Tand Y H0

b is ((ε+ 2δiM) sec θ)-close to FH0 ]
17



Figure 4: A vertex v is formed by the intersection of flat F and wall Z supporting the simplex u1u2u3.
Using the notation of Theorem 12, if L is at an angle Θ ∈ [θ, θ+dθ) to n̂(W ) in Y ⊥, and v is at distance
ε from W , then the projection v⊥ of v to Y ⊥ is at distance ε sec Θ from y, the projection of Y to Y ⊥.
L is at the required angle if and only if u1 is in the shaded region RY .

where B1 and B2 are the conditions in the corresponding second factors in the two lines
and T is the usual 2δi-thick slab for localizing the normal to the differential element.
Note that the first factor in the last line depends only on u1 and the second only on
u2, . . . , ud. The first factor is

Pr
[
u1 ∈ T and uH0

1 is in R0
Y | B2

]
≤ 2γδi

2(d− k) Vd−k(1) dθ
d− k + 1

= K1γδidθ

for an appropriate constant K1. The second factor is as in Theorem 10 (minus the vertex
u1 of U , and with an extra sec θ factor), i.e. it is at most

K2(ε+ 2δiM) sec θγd−2δd−2
i ,

for another constant K2. Multiplying the bounds yields

Pθ ≤ K1K2(ε+ 2δiM) sec θγd−1δd−1
i dθ

≤ K1K2

C
(ε+ 2δiM)γd−1Area(Ai) sec θdθ
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The probability P is thus
∫ π/2

0
Pθ, which is at most

K1K2

C
(ε+ 2δiM)γd−1Area(Ai)

∫ π/2

0

sec θdθ

=
K1K2

C
(ε+ 2δiM)γd−1Area(Ai)[log(sec θ + tan θ)]π/20

Unfortunately this integral is unbounded. To circumvent this problem we write P =
Pa + Pb, for

Pa =
∫ π/2

π/2−(ε+2δiM)

Pθ and Pb =
∫ π/2−(ε+2δiM)

0

Pθ

Then

Pa ≤
∫ π/2

π/2−(ε+2δiM)

Pr
[
u1 ∈ T and uH0

1 is in R0
Y | B2

]
× Pr [{u2, . . . ud−1} ⊂ T ]

≤ K1γδi(ε+ 2δiM) × K3γ
d−2δd−2

i

≤ K1K3

C
(ε+ 2δiM)γd−1Area(Ai)

for some constant K3, and

Pb ≤
K1K2

C
(ε+ 2δiM)γd−1Area(Ai) × [log(sec θ + tan θ)]π/2−(ε+2δiM)

0

Now, for 0 < x < π/2,

log(sec θ + tan θ) |π/2−x = log(cosecx+ cotx)

= log
1 + cosx

sinx

≤ log
2

2x/π

= log
π

x
≤ Kα

(π
x

)α
for any α > 0 and a constant Kα that depends on α. Thus

Pb ≤
K1K2

C
(ε+ 2δiM)γd−1Area(Ai)Kα

(
π

ε+ 2δiM

)α
=

K1K2Kαπ
α

C
(ε+ 2δiM)1−α

γd−1Area(Ai)

The previous arguments imply that we can choose small enough area elements so that
ε+ 2 supi δiM → ε < 1. Therefore,

P = Pa + Pb ≤ K4ε
1−α γd−1Area(Ai)

for another constant K4. Summing over all i,

Pr [v is ε-close to W ] ≤ K4ε
1−α γd−1 Area(Sd−1)

≤ 8π2dK4

15
ε1−α γd−1
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Case 3. The third case is when the affine span of the simplex associated with the wall
is one of the hyperplanes defining the vertex.

Theorem 13. Consider a simplex s ∈ S. Given a set U = {u1, u2, . . . , uk} of k vertices
of s, for 1 ≤ k ≤ d, define Q := Aff(U). Let F be a random (d − k + 1)-flat whose
distribution is independent of s, and define v := Q ∩ F . Let W be a wall of Ξ({s}) that
does not contain Q. Given ε ∈ [0, 1), the probability that v is ε-close to W is at most

Kε1−α max{γ, γk}

for any α > 0 and a constant K that depends on α, k and d.

Proof. The proof is similar to, but simpler than, that of Theorem 12. Because the
intersection point lies in the affine span H of the simplex, the localization of the nor-
mal and subsequent projection onto this span is unnecessary. Assume, without loss
of generality, that W stands on Wb := Aff(u2, u3, . . . , ud). The intersection of Wb

and Q is Y := Aff(u2, u3, . . . , uk). Since the simplex and the wall are orthogonal,
dist(W, v) = dist(Wb, v) and we can restrict our attention to the hyperplane H: our
next few comments will pertain strictly to this domain. Let Y ⊥ be the orthogonal com-
plement of Y (w.r.t. H). The orthogonal projection of Y to Y ⊥ is the single point y,
that of Q is the line L, and that of v is a point v⊥ lying on L. Let the normal to Wb be
n̂(Wb). dist(Wb, v) = dist(y, v⊥) cos θ ≥ dist(Y, F ) cos θ, where θ is the measure of the
angle Θ between n̂(Wb) and v⊥ − y. Let R be the region between the double cones with
vertex y, axis n̂(Wb) and half-angles θ and θ+dθ. Evidently, Θ lies in the required range
iff u1 lies in the extruded region RY := R⊕ Y , which has volume at most

2(d− k) Vd−k(1) dθ
d− k + 1

Now we shift our attention back to the full-dimensional domain. Given {u2, u3, . . . , ud},
Θ is in the required range iff u1 lies in the region R′ swept out by rotating RY around
the axis Wb. By a rough estimate, the volume of this region is at most 2π×1×Vol(RY ),
so

Pr[Θ ∈ [θ, θ + dθ)] = γVol(R′) = K1γdθ

for a suitable constant K1 that depends on k and d, and

Pθ := Pr[Θ ∈ [θ, θ + dθ) and Y is (ε sec θ)-close to F ]

≤ K1γdθ ×K2ε sec θγk−1

where K2 is another constant that depends on k and d, from Corollary 9. Now as in
the proof of Theorem 12, integrating this upper bound for Pθ over [0, π/2] gives an
unbounded result. We reuse our earlier hack to solve this problem. First,∫ π/2

π/2−ε
Pθ ≤

∫ π/2

π/2−ε
Pr[Θ ∈ [θ, θ + dθ)] ≤ K1εγ

Next, for any α > 0, ∫ π/2−ε

0

Pθ ≤ K1K2Kαε
1−αγk
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for a constant Kα that depends on α. Putting everything together,∫ π/2

0

Pθ ≤ Kε1−α max{γ, γk}

for a constant K that depends on α, k and d.

3.3. The Boundary of the Domain
For this final case, we must bound the probability that a vertex v of Ξ(S) not contained

in a hyperplane H constituting the boundary of the domain C is ε-close to it. Since this
hyperplane is fixed, we must consider the distribution of the vertex instead. A non-
boundary vertex of Ξ(S) is defined by the intersection of h1 hyperplanes associated with
one simplex, h2 hyperplanes associated with another and so on, where

∑
i hi = d. If

v lies in a small region of volume dσ with centre p and diameter δ, then all of these
hyperplanes must pass through that region. There are two possible cases for the set of h
hyperplanes associated with a particular simplex s:

Case 1: The hyperplanes are all walls supporting the simplex. Their intersection is a
(d − h)-dimensional “wall” Z standing on the affine span of d − h vertices of s.
Theorem 10, with k = d − h and k′ = 0, tells us that the probability that Z is
δ-close to p is at most Kδhγd−1.

Case 2: The hyperplanes include the affine span of the simplex itself. Then their in-
tersection is simply the affine span of a (d − h)-face of the simplex and Theorem
7, with k = d − h, tells us that the probability that Z is δ-close to p is at most
Kδhγd−h+1.

So the probability that all the hyperplanes pass through dσ is at most∏
i

Kiδ
hi max{γ, γd} ≤ K ′δd max{γ, γd

2
}

≤ K ′′dσmax{γ, γd
2
}

(The last step assumes that the small region is “round”, i.e. dσ = Θ(δd).) In other
words, the vertex v follows a K ′′max{γ, γd2}-smooth distribution. The portion of the
domain C within distance ε of the hyperplane H has volume at most εVd−1(1), so the
probability that v is ε-close to H is at most K ′′εmax{γ, γd2}Vd−1(1).

If the vertex lies on the boundary, we must modify our analysis only slightly. Con-
strain ε to be less than Din, and assume b hyperplanes from the boundary contain v. If
h1, h2, . . . hyperplanes associated with simplices also contain v as before, then it must be
the case that

∑
i hi = d−b. The b hyperplanes on the boundary intersect in a (d−b)-flat

B. Carry out the previous analysis assuming that the differential region is a subset of
B and not of the full-dimensional space. Then dσ = Θ(δd−b) and we obtain the result
that v is K ′′′max{γ, γd(d−b)}-smoothly distributed on B. The boundary is fixed, so B
and H are at a constant angle. If this angle is zero (B and H are parallel), then B is
Din-distant, and hence ε-distant, from H. Else, the (d − b)-measure of the region of B
within C ε-close to H is at most CεVd−b−1(1) for some constant C. The probability that
v lies in this region is at most K ′′′Cεmax{γ, γd(d−b)}Vd−b−1(1).

This concludes the proof of Theorem 4.
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4. Conclusion

The following extensions of the presented analysis naturally suggest themselves and
are left for future work.

• Translational motion planning. The free configuration space for translational
motion planning of a polyhedral robot among polyhedral obstacles is the comple-
ment of the union of Minkowski sums of the obstacles and the antipode of the
robot [35]. Independently perturbed simplices cannot model this setting since
the connectivity of the Minkowski sums is not preserved. Extending our results
to translational motion planning necessitates relieving the reliance of the current
analysis on complete independence of the perturbations. Preliminary derivations
suggest that the limited amount of independence present in the free configuration
space of translational motion planning is sufficient to obtain a polynomial bound
on the number of milestones.

• General motion planning and curved C-space obstacles. General motion
planning, such as holonomic or articulated motion with translations and rotations,
gives rise to configuration spaces with curved C-space obstacles, generally repre-
sented as semi-algebraic sets. In order to do smoothed analysis in this setting, a
convincing perturbation model for semi-algebraic sets needs to be defined. Build-
ing on this definition, a polynomial number of random samples has to be shown to
yield an accurate roadmap.

• Connection to previous theoretical models. It is reasonable to conjecture
that smoothly perturbed free configuration spaces are (ε, α, β)-expansive, for ap-
propriate values of ε, α, and β [22]. This would imply that results previously
obtained for expansive configuration spaces carry over to the smoothed setting.
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