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Abstract

In the context of auctions for digital goods, an interesting random sampling auction has been proposed
by Goldberg, Hartline, and Wright [2001]. This auction has been analyzed by Feige, Flaxman, Hartline,
and Kleinberg [2005], who have shown that it obtains in expectation at least 1/15 fraction of the optimal
revenue – which is substantially better than the previously proven constant bounds but still far from
the conjectured lower bound of 1/4. In this paper, we prove that the aforementioned random sampling
auction obtains at least 1/4 fraction of the optimal revenue for a large class of instances where the number
of bids above (or equal to) the optimal sale price is at least 6. We also show that this auction obtains
at least 1/4.68 fraction of the optimal revenue for the small class of remaining instances, thus leaving
a negligible gap between the lower and upper bound. We employ a mix of probabilistic techniques and
dynamic programming to compute these bounds.

1 Introduction

In recent years, there has been a considerable amount of work in algorithmic mechanism design. Most of this
work can be divided into two categories based on their assumption about prior: (i) Bayesian, and (ii) prior
free. Bayesian mechanism design is based on exploiting the knowledge of the prior to optimize the expected
performance, whereas prior free mechanism design is aimed at optimizing the worst case performance. Ran-
dom sampling auction is perhaps the most popular revenue maximization technique in prior free mechanism
design, yet an accurate analysis of its performance has proven difficult even in the simplest applications.

This paper focuses on analyzing the performance of the random sampling auction proposed by Goldberg
et al. [2001], known as the “Random Sampling Optimal Price (RSOP)” auction. The basic problem can be
described as follows. A seller has unlimited supply of a good (e.g., a digital good) 1 which he is going to
sell to unit demand bidders through the following auction: bids are partitioned into two sets uniformly at
random; then the optimal (revenue maximizing) sale price is computed for each set, and offered as the sale
price to the opposite set. The expected revenue of RSOP is then compared against the optimal revenue of
selling two or more copies at a uniform price.

Most of our analysis is based on the following approach: we develop a lower bound on the performance
of RSOP that depends on the level of balancedness of the partitions, but independent of the bid values; we
then take the expectation of this lower bound over the varying level of balancedness to obtain a general lower
bound on the performance of RSOP. This approach is in contrast to the previous work based on showing
that a certain level of balancedness is met with a reasonable probability, which inevitably requires a tradeoff
between how strong the balancedness condition is versus how likely it holds.
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1If there is a fixed production cost per copy, the auction can still be used by simply subtracting the production cost from
every bid.
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Related work. The random sampling optimal price (RSOP) auction was proposed by Goldberg and
Hartline [2001], but the problems was first studied by Goldberg et al. [2001]. The revenue of RSOP has been
shown to be close to optimal for many classes of interesting inputs by Segal [2003], and Balcan et al. [2005].
There has also been a fair amount of work analyzing the performance of RSOP. Goldberg et al. [2006]
showed that RSOP obtains a constant fraction of the optimal revenue, and conjectured the constant to be
1/4; note that the conjecture is tight for an instance with 2 bidders with distinct bids. A better analysis
was proposed by Feige et al. [2005] which proved the constant to be at least 1/15 .

Improving the lower bound on the expected revenue of RSOP is important because RSOP is a natural
and popular mechanism which is easily implementable and adaptable to various settings such as double
auctions [Baliga and Vohra, 2003], online limited supply auctions [Hajiaghayi et al., 2004], combinatorial
auctions [Balcan et al., 2005, Goldberg and Hartline, 2001], and the money burning auction Hartline and
Roughgarden [2008]). Indeed the results of this paper have been used in analysis of other auctions such as
the random sampling based auction of Devanur and Hartline [2009] for limited and online supply.

Results. The following is a summary of our main results.

I. Improved lower bounds: We prove that the ratio of the expected revenue of RSOP to its benchmark
is:

• at least 1/4.68 (e.g., Theorem 1, and Theorem 2), improving the previous lower-bound of 1/15
due to Feige et al. [2005];

• at least 1/4, if there are at least 6 bids above (or equal to) the sale price.

• at least 1/3.53, as the number of bids above (or equal to) the sale price approaches infinity.

Our analysis suggests that the worst case performance of RSOP is attained when there are only two
bidders with distinct bids.

II. Upper bound: We show that there exist instances where the expected revenue of RSOP is still less
than 1/2.65 of its benchmark, even when the number of bids above the optimal sale price approaches
infinity.

III. Combinatorial approach: We also present a combinatorial lower bound on the performance of RSOP
for a special case when each non-zero bid can take one of only two possible values.

2 Preliminaries

We consider auctioning a digital good to n bidders whose bids are represented by the vector v = (v1, . . . , vn)
which, without loss of generality, is sorted in decreasing order.

Definition 1 (RSOP). The random sampling optimal price auction partitions the bidders into two sets A
and B uniformly at random 2, computes the optimal sale price of each set, and offers it as the sale price to
the opposite set.

Definition 2 (OPT). The optimal revenue from single price sale to at least two bidders is

OPT = max
j≥2

jvj . (1)

See Goldberg et al. [2006] for motivation of the definition of OPT and why it requires selling to at least
two bidders.

2I.e., each bidder independently goes to one of A or B with probability 1
2

. Each bidder is represented by her index in the
sorted ordering of bids.

2



Assumptions. Without loss of generality, we assume there are infinitely many 0 bids, i.e., vj = 0 for all
j > n; consequently (A,B) is a partitioning of N. The previous assumption allows us to make our analysis
independent of n. Also, without loss of generality, we assume 1 ∈ B, i.e., the bidder with the highest bid is
in B. 3

Throughout most of our analysis we ignore the revenue of RSOP from bidders in A because in the
pathological case where v1 is too large (e.g., v1 > OPT), the optimal sale price for B is equal to v1 which
yields no revenue when offered to A.

Notation. Throughout this paper we adopt the following convention: vectors are represented by bold
letters; random variables are represented by italic capital letters if single dimensional, and bold capital
letters if multidimensional (such as random sets); sets are are represented by roman capital letters; and
events are represented by calligraphy capital letters.

We will use E[RSOP] to denote the expected revenue of RSOP for an implicit bid vector v, where the
expectation is taken over all random partitions (A,B); however we sometimes specify an explicit bid vector
by writing E[RSOP(v)] or OPT(v).

We use λ to denote the index of the optimal sale price which sells to at least two bidders, i.e.,

λ ∈ arg maxj≥2 jvj (2)

For every j ∈ N, we define

Sj = |A ∩ {1 · · · j}|, (3)

Zj =
|B ∩ {1 · · · j}|
|A ∩ {1 · · · j}|

=
j − Sj

Sj
, (4)

Z = min ({Zj}j∈N, 1) . (5)

Sj , Zj , and Z are random variables which depend only on how the bids are partitioned, but not on the actual
value of the bids. Sj denotes how many bidders, out of the j highest bidders, are in A. Zj denotes the ratio
of the revenue from B to the revenue from A when vj is offered as the sale price to everyone. Z denotes
the minimum of 1 and the worst case ratio of the revenue from B to the revenue from A when everyone is
offered the same sale price.

For every T ⊂ N and α, α′ ∈ [0, 1], we define the following events:

ETα =

{
max
j∈T

Sj
j
≤ α

}
, (6)

ET(α′,α] =

{
α′ < max

j∈T

Sj
j
≤ α

}
= ETα \ ETα′ (7)

We omit T if T = N, i.e., Eα = ENα and E(α′,α] = EN(α′,α]. Intuitively, ETα is the event that for every j ∈ T at
most α fraction of the j highest bidders fall in A. Figure 1 illustrates an example of Eα and E(α′,α].

Finally, for any random variable X and any event E , we use Ê[X | E ] to denote the expectation of X
conditioned on event E normalized by the probability of E , i.e.,

Ê [X | E ] = E [X | E ] Pr [E ] . (8)

We will use the following proposition extensively throughout this paper.

Proposition 1. For any random variable X and any two events E , E ′,

• if E ′ ⊆ E, then Ê[X | E \ E ′] = Ê[X | E ]− Ê[X | E ′];

• if E ∩ E ′ = ∅, then Ê[X | E ∪ E ′] = Ê[X | E ] + Ê[X | E ′]
3Otherwise we can rename A and B.
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The following lemmas are used multiple times throughout the rest of this paper.

Lemma 1. For any T,T′ ⊂ N and α ∈ [0, 1], the two events ETα and ET′α are positively correlated, i.e.,

Pr[ETα ∩ ET
′

α ] ≥ Pr[ETα ] Pr[ET′α ] (alternatively Pr[ETα ∩ E
T′

α ] ≤ Pr[ETα ] Pr[ET
′

α ]).

Proof. The claim follows directly from the FKG inequality [Fortuin et al., 1971] and can be found in Ap-
pendix B.

Lemma 2. For any α ∈ (0, 1) and j ∈ N,

if α ≥ 0.5, then Pr
[
E{j}α

]
≥ 1− (rα)

j
, where rα =

1

2αα(1− α)1−α
, (9)

if α ≤ 0.5− 1/j, then Pr
[
E{j}α

]
≤
(
r(α+1/j)

)j−1
where rα is the same as above. (10)

Proof. The claim follows from a direct application of Chernoff–Hoeffding bound and can be found in Ap-
pendix B.

3 The Basic Lower Bound

In this section we prove that RSOP obtains at least 1/4 fraction of the optimal revenue for all input instances
where λ > 10. In the next section, we prove a lower bound on the revenue of RSOP when λ ≤ 10 using a
more sophisticated analysis based on the ideas of the current section. The following theorem summarizes
the main result of this section.

Theorem 1. E[RSOP] ≥ 1
4 OPT for all λ > 10. Furthermore, E[RSOP] ≥ 1

3.53 OPT for all λ > 5000.
Table 1 lists the actual lower bounds obtained for various values of λ.

The outline of this section is as follows. First, we present a lower bound on E[RSOP] as a function of λ.
Recall that expectation is taken over all random partitions (A,B) for a fixed set of bids (and thus a fixed λ).
Our proposed lower bound depends only on λ and not the actual value of the bids. We present a dynamic
program for numerically computing the lower bound for any fixed λ. By computing the lower bound on
E[RSOP] for all λ ∈ {11 · · · 5000} we confirm that it is indeed greater than 1

4 OPT. We then prove a lower
bound of 1

3.53 OPT on E[RSOP] for all λ > 5000.
The following lemma provides a lower bound on E[RSOP] as a function of λ.

Lemma 3. E[RSOP] ≥ E[Sλλ Z ] OPT.

Proof. Let vλA
be the optimal price for A which RSOP offers to bidders in B; observe that SλA

vλA
≥ Sjvj

for all j ∈ N. The revenue of RSOP is at least the revenue it obtains from B, therefore

RSOP ≥ (λA − SλA
)vλA

because at least λA − SλA
bids in B are above or equal to vλA

= ZλA
SλA

vλA
by definition of ZλA

in (4)

≥ ZSλvλ because ZλA
≥ Z and SλA

vλA
≥ Sλvλ

= Z
Sλ
λ

OPT because OPT = λvλ.

Consequently, E[RSOP] ≥ E[Sλλ Z ] OPT which proves the claim.

Notice that the lower bound provided by the above lemma only depends on λ and does not directly
depend on the exact value of the bids.
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3.1 Small λ

We start by proving the first part of Theorem 1, i.e., that E[RSOP] ≥ 1
4 OPT for all 10 < λ ≤ 5000.

Recall that E[RSOP] ≥ E[Sλλ Z ] OPT by Lemma 3. Ideally, we would like to approximate E[Sλλ Z ] by

E[Sλλ ] E[Z ], however Sλ
λ and Z are negatively correlated. To work around this obstacle we will decompose

E[Sλλ Z ] over a set of small and disjoint events such that, conditioned on each such event, Z can be approx-
imated closely by a constant. The events are defined as follows. We partition the interval [0, 1] to small
disjoint intervals by picking m points 0.5 < α1 < · · · < αm < 1. For each interval (αi−1, αi] we consider the

event E(αi−1,αi]
. Recall that E(αi−1,αi]

is the event that (maxj
Sj
j ) ∈ (αi−1, αi] (see Figure 1). Conditioned

on E(αi−1,αi]
, it is easy to see that Z ∈ [ 1−αiαi

, 1−αi−1

αi−1
), and therefore we can obtain a good lower bound by

substituting Z with 1−αi
αi

. Notice that there is no use in picking αi from [0, 0.5] because for any α ∈ [0, 0.5],

Pr[Eα] = 0 and therefore, for any bounded random variable X , we get Ê[X | Eα] = E[X | Eα] Pr[Eα] = 0.
Also notice that there is no use in considering the event E(αm,1] because we can only guarantee a trivial lower
bound of 0 for Z under E(αm,1].

Lemma 4. Consider any increasing sequence α1, . . . , αm ∈ (0.5, 1) and let αm+1 = 1. The following
inequality holds for any non-negative random variable X .

E [XZ ] ≥
m∑
i=1

(
1

αi
− 1

αi+1

)
E
[
X
∣∣ Eαi] . (11)

Proof. Define α0 = 0. We decompose E[XZ ] over the set of disjoint events E(α0,α1]
, . . . , E(αm−1,αm] as follows.

E [XZ ] ≥
m∑
i=1

Ê
[
XZ

∣∣∣ E(αi−1,αi]

]
by law of total expectation

≥
m∑
i=1

Ê

[
X

1− αi
αi

∣∣∣∣ E(αi−1,αi]

]
because Z ≥ 1− αi

αi
conditioned on E(αi−1,αi]

=

m∑
i=1

1− αi
αi

(
Ê
[
X
∣∣∣ Eαi]− Ê

[
X
∣∣∣ Eαi−1

])
by Proposition 1 given that E(αi−1,αi]

= Eαi \ Eαi−1

=

m∑
i=1

(
1

αi
− 1

αi+1

)
Ê
[
X
∣∣ Eαi] by rearranging the terms.

Note that in the last step we have used the fact that Ê[X | Eα0
] = 0 (because Pr[Eα0

] = 0).

The choice of m and α1, . . . , αm in Lemma 4 greatly affects the value of the lower bound. Generally
speaking, increasing m improves the lower bound but at the cost of more computation.

In order to use Lemma 4 effectively, we need to be able to compute E[Sλλ | Eαi ] for each αi. However

the events Eαi are hard to deal with computationally. The next two lemmas show that E[Sλλ | Eαi ] can be

bounded below and thus approximated by E[Sλλ | E
{1···`}
αi ] − ε where ε approaches 0 exponentially fast as a

function of `.

Lemma 5. For any random variable X ∈ [0, 1], any α ∈ (0.5, 1], and ` ∈ N the following holds:

Ê
[
X
∣∣∣ Eα] ≥ Ê

[
X
∣∣∣ E{1···`}α

]
− ε where ε = Pr

[
E{1···`}α

] (
1−Pr

[
E{`+1···∞}
α

])
(12)
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Proof. Observe that Eα = E{1···`}α \ (E{1···`}α ∩ E{`+1···∞}
α ) 4, therefore

Ê
[
X
∣∣∣ Eα] = Ê

[
X
∣∣∣ E{1···`}α

]
− Ê

[
X
∣∣∣ E{1···`}α ∩ E{`+1···∞}

α

]
by Proposition 1

≥ Ê
[
X
∣∣∣ E{1···`}α

]
−Pr

[
E{1···`}α ∩ E{`+1···∞}

α

]
because X ∈ [0, 1]

≥ Ê
[
X
∣∣∣ E{1···`}α

]
−Pr

[
E{1···`}α

] (
1−Pr

[
E{`+1···∞}
α

])
by Lemma 1

The following lemma allows us to compute an upper bound on the ε of the previous lemma.

Lemma 6. For any α ∈ (0.5, 1] and any `, `′ ∈ N such that ` ≤ `′, the following holds:

Pr
[
E{`+1···∞}
α

]
≥

(
1− (rα)

`′+1

1− rα

)
`′∏

j=`+1

(
1− (rα)

j
)

where rα is defined in (9) (13)

Proof.

Pr
[
E{`+1···∞}
α

]
= Pr

 ∞⋂
j=`+1

E{j}α

 ≥ Pr

 ∞⋂
j=`′+1

E{j}α

 `′∏
j=`+1

Pr
[
E{j}α

]
by Lemma 1

≥

1−
∞∑

j=`′+1

Pr
[
E{j}α

] `′∏
j=`+1

Pr
[
E{j}α

]
by union bound

≥

(
1− (rα)

`′+1

1− rα

)
`′∏

j=`+1

(
1− (rα)

j
)

by Lemma 2

4E{`+1···∞}
α denotes the complement of E{`+1···∞}

α .
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Observe that in the special case of the above lemma in which ` = `′, the right hand side of (13) approaches
1 exponentially fast as a function of ` which implies that ε in (12) approaches 0 exponentially fast as a function
of `. Choosing `′ > ` only improves the bound.

The next lemma provides a recurrence relation which can be used to compute the exact value of

E[Sλλ | E
{1···`}
α ] and Pr[E{1···`}α ] in time O(`2).

Lemma 7. For any ` ∈ N and α ∈ [0, 1], the exact value of Ê[Sλλ | E
{1···`}
α ] and Pr[E{1···`}α ] can be computed

using the following recurrence in which E{1···`}α,k = E{1···`}α ∩ {S` = k} is the event that E{1···`}α happens and
S` = k.

Pr
[
E{1···`}α,k

]
=


1
2 Pr[E{1···`−1}α,k−1 ] + 1

2 Pr[E{1···`−1}α,k ] ` > 1, k ≤ α`
1 ` = 1, k = 0

0 otherwise

(14)

Ê

[
Sλ
λ

∣∣∣∣ E{1···`}α,k

]
=


1
2 Ê[Sλλ | E

{1···`−1}
α,k−1 ] + 1

2 Ê[Sλλ | E
{1···`−1}
α,k ] ` > λ, k ≤ α`

k
λ Pr[E{1···`}α,k ] ` = λ

0 otherwise

(15)

Pr
[
E{1···`}α

]
=
∑̀
`=0

Pr
[
E{1···`}α,k

]
(16)

Ê

[
Sλ
λ

∣∣∣∣ E{1···`}α

]
=
∑̀
k=0

Ê

[
Sλ
λ

∣∣∣∣ E{1···`}α,k

]
(17)

Proof. Let A` denote the event that ` ∈ A. First consider (14): if ` > 1 and k ≤ α`, then E{1···`}α,k can be

decomposed as two disjoint events E{1···`−1}α,k−1 ∩A` and E{1···`−1}α,k ∩A`, therefore its probability is the sum of the

probabilities of those two event; note that E{1···`−1}α,k and A` are independent for any ` and k and Pr[A`] = 1
2 ;

furthermore the base of the recursion is Pr[E{1}α,0 ] = 1 because by our assumption A1 = 0 (i.e., the highest
bid is always in B). The same argument implies the correctness of (15) for the case of ` > λ. Furthermore,

E{1···λ}α,k by its definition implies Sλ = k which implies the correctness of (15) for the case of ` = λ. Finally
(16) and (17) follow trivially from the law of total probability and the law of total expectation.

Proof of Theorem 1 for small λ (i.e., 10 < λ ≤ 5000). We show how to numerically compute a lower bound
on E[RSOP] for any fixed λ. Let m = 100 and αi = 0.5 + i

m+1 for each i ∈ [m]. Observe that

E [RSOP] ≥ E

[
Sλ
λ

Z

]
OPT by Lemma 3

≥
m∑
i=1

(
1

αi
− 1

αi+1

)
E

[
Sλ
λ

∣∣∣∣ Eαi]OPT by Lemma 4

We then compute a lower bound for each term E[Sλλ | Eαi ] (using Lemma 5, Lemma 6, and Lemma 7 with
` = 5000 and `′ = 100000), and substitute them in the last inequality above to obtain a lower bound on
E[RSOP]. The computed numerical values of our lower bound are listed in Table 1 for various choices of λ.
We have confirmed that E[RSOP] ≥ 1

4 OPT for all λ ∈ {11 · · · 5000}.

3.2 Large λ

We now prove the second part of Theorem 1, i.e., E[RSOP] ≥ 1
3.53 OPT for all λ > 5000.

Recall that E[RSOP] ≥ E[Sλλ Z ] OPT by Lemma 3. Also recall that Sλ
λ and Z are negatively correlated,

thus E[Sλλ ] E[Z ] does not yield a lower bound on E[Sλλ Z ]. Nevertheless, the correlation decreases as λ
increases which suggests that for sufficiently large λ we can separate the two terms. In other words, when
λ is large (i.e., λ > 5000), the two random variables Sλ

λ and Z are almost independent and so the expected
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value of their product is very close to the product of their expected values. Also for a large λ the value of
Sλ
λ is very close to 1

2 so E[Sλλ Z ] is close to 1
2 E[Z ]. We formalize this argument in the following lemma.

Lemma 8. For any α ∈ [0, 1]:

E

[
Sλ
λ

Z

]
≥ α

(
E
[
Z
]
−Pr

[
E{λ}α

])
(18)

Proof.

E

[
Sλ
λ

Z

]
= Ê

[
Sλ
λ

Z

∣∣∣∣ E{λ}α

]
+ Ê

[
Sλ
λ

Z

∣∣∣∣ E{λ}α

]
≥ α Ê

[
Z
∣∣∣ E{λ}α

]
because

Sλ
λ
> α conditioned on E{λ}α

= α
(
E
[
Z
]
− Ê

[
Z
∣∣∣ E{λ}α

])
≥ α

(
E
[
Z
]
−Pr

[
E{λ}α

])
because Z ≤ 1 by its definition, i.e., equation (5).

Recall that we can compute an upper bound on Pr[E{λ}α ] using Lemma 2. Also observe that, for any

fixed α ∈ (0, 0.5), Pr[E{λ}α ] approaches 0 exponentially fast as a function of λ as λ→∞. The only remaining
task is to compute a good lower bound on E[Z ].

Lemma 9. E[Z ] ≥ 0.61.

Proof. Let ` = 60000, m = 100, and αi = 0.5 + i
m+1 for each i ∈ [m]. By applying Lemma 4 and plugging

X = 1 we get

E [Z ] ≥
m∑
i=1

(
1

αi
− 1

αi+1

)
Pr
[
Eαi
]

≥
m∑
i=1

(
1

αi
− 1

αi+1

)
Pr
[
E{1···`}αi

]
Pr
[
E{`+1···∞}
αi

]
by Lemma 1

We then use Lemma 7 to compute Pr[E{1···`}αi ], and use Lemma 6 with `′ = 100000 to compute a lower

bound on Pr[E{`+1···∞}
αi ]; by substituting the computed numerical values in the above inequality we get

E[Z ] ≥ 0.61.

It is worth mentioning that by using a similar method we have computed an upper bound of E[Z ] ≤ 0.63
which indicates that our analysis is almost tight. 5

Proof of Theorem 1 for large λ (i.e., λ > 5000). Let α = 0.48. Then

E [RSOP] ≥ E

[
Sλ
λ

Z

]
OPT by Lemma 3

≥ α
(
E
[
Z
]
−Pr

[
E{λ}α

])
OPT by Lemma 8.

Using Lemma 2 we get Pr[E{λ}α ] ≤ 0.0183 for all λ > 5000; furthermore E[Z ] ≥ 0.61 by Lemma 9; substi-
tuting them in the above inequality we get E[RSOP] ≥ 1/3.53 OPT.

5Note that 1− 1/e ' 0.6321 which is slightly greater that the upper bound of E[Z ] ≤ 0.63.
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4 The Exhaustive Search Lower-Bound

In this section we propose an exhaustive search approach which yields an improved lower bound for RSOP
for small values of λ (i.e., λ ≤ 10). The following theorem summarizes the main result of this section.

Theorem 2. E[RSOP] ≥ 1
4.68 OPT for λ ≥ 2 and E[RSOP] ≥ 1

4 OPT for λ ≥ 6. Table 2 lists the actual
lower bounds obtained for various choices of λ.

The basic lower bound of E[RSOP] ≥ E[Sλλ Z ] OPT which we used in Section 3 does not yield a good
enough bound when λ is small, mainly because

(I) Sλ
λ and Z are negatively correlated and their correlation is much stronger when λ is small,

(II) the bidder with the highest bid is always in B, so E[Sλλ ] approaches 1
4 as λ goes down to 2.

Therefore, for λ = 2, E[Sλλ Z ] < E[Sλλ ] E[Z ] < 0.25 × 0.63 ≈ 1
6.55 . In fact, the lower bounds of Table 1 are

quite close to the exact value of E[Sλλ Z ], which suggests for small values of λ we need a different approach.
We now provide a high level description of the approach of this section. Without loss of generality we

assume OPT = 1 which immediately implies vj ∈ [0, 1j ] for all j. In addition to fixing the index of the optimal

price, λ, we fix the index of the second optimal price of a higher index, λ′, and also fix its corresponding
revenue, OPT′, i.e.,

λ′ ∈ arg maxj>λ jvj (19)

OPT′ = max
j>λ

jvj (20)

We divide the range of possible values for each of the d highest bids (for an appropriate choice of d) as follows.
For each j ∈ [d] we uniformly divide the interval [0, 1j ] to η subintervals for an appropriate choice of η and

restrict vj to one of them, say [vj , vj ]; similarly we uniformly divide the interval [0, 1] to η′ subintervals for an

appropriate choice of η′ and restrict OPT′ to one of them, say [w′, w′]. Let RSOPMinExpect(λ,v,v, w′, w′)
denote the minimum expected revenue of E[RSOP] where the minimum is taken over all instances in which
OPT′ ∈ [w′, w′], and vj ∈ [vj , vj ] (for all j ∈ [d]), and λ is the index of the optimal price. We compute a lower
bound on the expected revenue of RSOP by computing a lower bound on RSOPMinExpect(λ,v,v, w′, w′)
for each combination of intervals and taking the minimum over all such combinations. Formally, we have

E [RSOP] ≥ min
∀j∈[d]:(vj ,vj)∈{( i−1

ηj ,
i
ηj ) | i∈[η]}

(w′,w′)∈
{(

i−1
η′ ,

i
η′

) ∣∣∣ i∈[η′]}
RSOPMinExpect (λ,v,v, w′, w′) . (21)

Note that some combinations of intervals might be inconsistent/infeasible. For example it is not possible
to have both [v2, v2] = [ 0

10 ,
1
10 ] and [v3, v3] = [ 4

15 ,
5
15 ] because that would imply v3 > v2. We simply define

RSOPMinExpect to be ∞ if a combination is infeasible.

Computing a lower bound on RSOPMinExpect(λ,v,v, w′, w′). In the rest of this section we show
how to compute a lower bound on the expected revenue of RSOP given the assumption that OPT′ ∈ [w′, w′]
and vj ∈ [vj , vj ] for all j ∈ [d]. The high level idea is to enumerate all possible partitions of the first d bids,
define an event for each such partition, decompose E[RSOP] over those events, and compute a lower bound
conditioned on each such event.

We start with a few definitions. For every T ⊂ [d], we define the event

AT =
{

A ∩ {1 · · · d} = T
}
. (22)

Intuitively, AT is the event that, among the highest d bidders, the subset that fall in A is exactly T. Observe
that under the event AT, for every j ∈ [d], both Sj and Zj are constants; we will denote those constants
respectively by

sTj = (Sj | AT) = |{1 · · · j} ∩ T|, (23)

zTj = (Zj | AT) =
|{1 · · · j} \ T|
|{1 · · · j} ∩ T|

. (24)
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Our approach is to decompose E[RSOP] over the set of disjoint events {AT}T⊆{2···d} and then decompose

Ê[RSOP | AT] further over the set of disjoint events {E{d+1···∞}
(αi−1,αi]

}i∈[m] for some choice of 0.5 < α1 < · · · <
αm < 1 (this decomposition is similar to Section 3). Formally, we have

E [RSOP] =
∑

T⊆{2···d}

m∑
i=1

Ê
[
RSOP

∣∣∣ AT ∩ E{d+1···∞}
(αi−1,αi]

]
. (25)

Next we show how to compute a lower bound on Ê[RSOP | AT∩E{d+1···∞}
(αi−1,αi]

]. We first define the following

constants for all T ∈⊆ {2 · · · d} and α ∈ (0, 1].

rT = max
j∈[d]

sTj vj , (26)

A
T

=
{
j ∈ T

∣∣ sTj vj ≥ rT} , (27)

ρTα =

min
{
zTj

∣∣∣ j ∈ A
T
}

if rT > αw′

min
({
zTj

∣∣∣ j ∈ A
T
}
, 1−αα

)
otherwise

. (28)

Under each event AT ∩ E{d+1···∞}
(αi−1,αi]

appearing in (25), the above definitions can be interpreted as follows. rT

is a lower bound on the maximum revenue from A by offering one of the highest d bids as the sale price. A
T

contains all of the d highest bidders except those whose bid cannot possibly be an optimal sale price for A.
ρTα is a lower bound on the ratio of the revenue from B to the revenue from A when everyone is offered the
optimal sale price of A.

Lemma 10. For any d ≥ 2, any T ⊆ {2 · · · d}, and any 0.5 < α′ < α ≤ 1,

Ê
[
RSOP

∣∣∣ AT ∩ E{d+1···∞}
(α′,α]

]
≥ Ê

[
max

(
rT,

Sλ′

λ′
w′
)
ρTα

∣∣∣∣ AT ∩ E{d+1···∞}
(α′,α]

]
. (29)

Proof. Let vλA
be the optimal price for A which RSOP offers to bidders in B. Observe that

RSOP ≥ (λA − SλA
)vλA

= SλA
vλA

ZλA
.

Under event AT ∩ E{d+1···∞}
(α′,α] , we show that SλA

vλA
≥ max

(
rT, Sλ′λ′ w

′
)

(i.e., a lower bound on the optimal

revenue from A) and also show that ZλA
≥ ρTα , which combined with the above inequality imply the

statement of the lemma.

• First we prove SλA
vλA

≥ max
(
rT, Sλ′λ′ w

′
)

. Notice that SλA
vλA

is the optimal revenue of A which

must be at least rT; furthermore, the optimal revenue of A is no less than the revenue of selling to A
at price vλ′ which is at least Sλ′

λ′ w
′.

• Next we prove ZλA
≥ ρTα . The inequality follows immediately by considering the following two possi-

bilities:

(I) If λA ≤ d, then λA must be in A
T

, because for any j ∈ {1 · · · d} \ A
T

selling to A at price vj
generates a revenue which is less than rT, therefore vj cannot be the optimal price for A.

(II) If λA > d, then it must be rT ≤ αw′, otherwise the revenue of selling to A at price vλA
would

be less than rT which contradicts its optimality. 6 Furthermore, under event E{d+1···∞}
(α′,α] , we have

Zj ≥ 1−α
α for all j > d which implies ZλA

≥ 1−α
α too.

6The revenue of selling to A at price vλA
is SλA

vλA
which is at most αλAvλA

= αOPT′ under event E{d+1···∞}
(α′,α] .
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Lemma 11. For any increasing sequence α1, . . . , αm ∈ (0.5, 1) the following inequality holds (assume
αm+1 = 1).

E [RSOP] ≥
∑

T⊆{2···d}

m∑
i=1

(
ρTαi − ρ

T
αi+1

)
Ê

[
max

(
rT,

Sλ′

λ′
w′
) ∣∣∣∣ AT ∩ E{d+1···∞}

αi

]
(30)

Proof. The claim follows by applying Lemma 10 to equation (25), then decomposing each event E{d+1···∞}
(αi−1,αi]

as E{d+1···∞}
αi \ E{d+1···∞}

αi−1 and applying Proposition 1, and then rearranging the terms.

Next we sketch the proof of the main theorem of this section.

Proof of Theorem 2. We use (21) with d = 11, η = 3 and η′ = 100 together with Lemma 11 with m = 100
and αi = 0.5 + i

m+1 for each i ∈ [m]. To compute an accurate approximation (lower bound) on each term

Ê[max
(
rT, Sλ′λ′ w

′
)
| AT ∩ E{d+1···∞}

αi ], we use a combination of dynamic programming and tail bounds

similar to those of Lemma 5, Lemma 6, Lemma 7, Lemma 8, and Lemma 9 (observe that Sλ′ is the only
random variable in this term). However doing so naively requires computing a lower bound on as many as

ηd−1η′2d−1m such terms.7 Instead, we pre-compute Ê[max(c,Sλ′c
′) | {Sd = a} ∩ E{d+1···∞}

α ] for all c, c′ ∈
{ 0
η′ , . . . ,

η′

η′ }, all a ∈ {0 · · · d}, and all α ∈ {α1, . . . , αm}; and then we approximate Ê[max
(
rT, Sλ′λ′ w

′
)
| AT∩

E{d+1···∞}
αi ] with Ê[max(c,Sλ′c

′) | {Sd = a} ∩ E{d+1···∞}
α ] where c, c′ are the result of rounding rT and w′

λ′

down to the nearest integer multiples of 1
η′ respectively and a = |T| and α = αi.

8 Notice that we only need

to pre-compute (η′ + 1)2dm. Table 2 lists the lower bound obtained for each λ ∈ {1 · · · 10}. We should also
mention that we refine each configuration of intervals by cutting off infeasible regions of each interval prior
to any further computation9.

5 An Upper Bound on Performance of RSOP

It is easy to see that E[RSOP] = 1
4 OPT for any instance with exactly two non-zero bids, yielding a straight-

forward upper bound of 1
4 OPT on the performance of RSOP. However in such instances we always have

λ = 2. That raises the question of whether the performance of RSOP approaches optimality asymptotically
as λ→∞. We give a negative answer to the previous question by exhibiting a family of instances for which
E[RSOP] is no more than 1

2.65 OPT as λ→∞.

Theorem 3. For any λ ≥ 2 there exists an input instance where there are λ bids above or equal to the
optimal sale price and such that E[RSOP] < 1

2.65 OPT.

Next, we define the family of equal revenue instances for which Feige et al. [2005] proved a lower bound
of 1

4 OPT on the performance of RSOP. We prove the above theorem by deriving an upper bound on the
performance of RSOP on such instances.

Definition 3 (Equal Revenue Instance). An instance of bids is called an equal revenue instance if choosing
any of the bids as the sale price yields the same revenue. The equal revenue instance with n non-zero distinct

bids is unique (up to scaling) and given by the bid vector q(n) = (q
(n)
1 , q

(n)
2 , . . .), where

q
(n)
j =

{
1
j j ≤ n
0 otherwise

Proposition 2. For any equal revenue instance, RSOP offers the worst price to each of the sets A and B.
In other words, the optimal price of each set generates the least revenue when offered to the opposite set (i.e.,
less revenue than offering any of the other non-zero bids as the sale price).

7Because there are ηd−1η′ possible combinations of intervals in (21) and 2d−1 events of the form AT and m events of the

form E{d+1···∞}
αi .

8It is easy to see that Ê[max(c,
Sλ′
λ′ c
′) | AT ∩ E

{d+1···∞}
α ] = Ê[max(c,

Sλ′
λ′ c
′) | {Sd = |T|} ∩ E{d+1···∞}

α ].
9For example if vj < vj+1, we set vj ← vj+1.
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Proof. It follows immediately from the fact that offering any of the bids as the sale price for both sets
generates a total revenue that is equal to OPT. So the price that generates highest revenue for A also
generates lowest revenue for B and vice versa.

Proposition 2 suggests that, for any given λ, an equal revenue instance might actually be the worst case
instance for RSOP among all instances with the same λ; however based on computer simulation that seems
not to be true at least for small values of λ.

To prove Theorem 3, we need to show the expected revenue of RSOP is no more that 1
2.65 OPT for any

equal revenue instance with distinct bids. However a direct analysis of the performance of RSOP for all such
instances is not easy. Instead we define a modified variant of RSOP whose performance is easy to analyze,
and whose revenue is close to the revenue of RSOP (e.g., asymptotically equal as λ→∞).

Definition 4 (RSOP∗). The modified random sampling optimal price auction behaves exactly the same way
as RSOP (see Definition 1), except if all of the non-zero bids fall in the same set, it offers them the lowest
non-zero bid as the sale price (instead of 0) .

Note that truthful reporting of bids is not a dominant strategy for the bidders in RSOP∗, however it
is only used in the analysis and not as an actual auction. Next we show that the revenue of RSOP is
asymptotically equal to the revenue of RSOP∗.

Lemma 12. E[RSOP] ≤ E[RSOP∗] ≤ E[RSOP] + ( 1
2 )
n−1

OPT, with the second inequality being met with
equality for equal revenue instances.

Proof. Recall that RSOP∗ behaves exactly like RSOP except when all the n bids fall in the same set which

happens with probability ( 1
2 )
n−1

, in which case RSOP∗ still generates a revenue of at most OPT (exactly
OPT if it is an equal revenue instance), while RSOP generates zero revenue.

Lemma 13. E[RSOP∗(q(n))] is a monotonically decreasing function of n.

Proof. Consider an arbitrary partition (A,B). 10 We prove the following equation

RSOP∗(q(n)) = min

(
1,

{
j − Sj

j

∣∣∣∣ j ∈ A ∩ {1 · · ·n}
})

.

Increasing n only extends the range over which the minimum is taken which immediately implies the claim
of the lemma. Next we prove the above equation.

Observe that RSOP∗(q(n)) is exactly equal to the revenue RSOP∗ obtains from B because no revenue is
obtained from A which is offered the optimal price of B which is 1. If A ∩ {1 · · ·n} 6= ∅, then the optimal

price of A is 1
λA

where λA ∈ arg maxj∈A∩{1···n}
Sj
j and the revenue obtained by offering that price to B is

exactly minj∈A∩{1···n}
j−Sj
j ; otherwise if A ∩ {1 · · ·n} = ∅, the price offered to B, by definition of RSOP∗,

is exactly 1
n which yields a revenue of 1. That completes the proof.

The following is obtained by direct calculation using a computer.

Proposition 3. E[RSOP∗(q(400))] = 0.377208± 10−6.

We now prove the main theorem of this section.

Proof of Theorem 3. To prove the theorem for any λ we exhibit a bid vector v with λ bids above the optimal
sale price such that E[RSOP(v)] < 1

2.65 OPT(v). Let n = max(λ, 400), then

E
[
RSOP(q(n))

]
≤ E

[
RSOP∗(q(n))

]
by Lemma 12

≤ E
[
RSOP∗(q(400))

]
by Lemma 13

< 0.377209 by Proposition 3

<
1

2.65
OPT(q(n)) because OPT(q(n)) = 1

10Recall that by our definition there are infinitely many zero bids so (A,B) is a partitioning of N.
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Observe that the optimal sale price for q(n) is not unique. Let v be the same as q(n) everywhere except

vλ = q
(n)
λ + ε for a small ε ∈ (0, 1

λ2 ). Observe that vλ is now the unique optimal sale price for v. It is easy to

see that limε→0 E[RSOP(v)] = E[RSOP(q(n))] and limε→0 OPT(v) = OPT(q(n)) = 1, so for a small enough
ε, we get E[RSOP(v)] < 1

2.65 OPT(v) which completes the proof.

6 A Combinatorial Lower Bound

In this section we present a combinatorial approach for obtaining a lower bound on the expected revenue
of RSOP for equal revenue instance where each non-zero bid is either 1 or h (for some fixed h ∈ N). We
hope the ideas we present in the section help develop a more general combinatorial approach in the future
for proving lower bounds on mechanisms based on random sampling.

Observe that in an equal revenue instance where non-zero bids are either h or 1, if there are k bids of
value h, there must be k(h−1) bids of value 1. Throughout the rest of this section we assume h is an implicit
constant. The following theorem summarizes the main result of this section.

Theorem 4. For any equal revenue instance where each non-zero bid is either h or 1,

E [RSOP] ≥
(

1

2
+

1

2h
− 1

2kh−1

)
OPT (31)

where k is the number of bids of value h.

Observe that in the above theorem the worst case of the lower bound is when k = 1 and h = 2 for which
the lower bound becomes OPT /4. Notice that the lower bound approaches OPT /2 quickly as either k or h
increases.

Definition 5. Q(k) denotes the multi-set of bids corresponding to an equal revenue instance with k bids of
value h and k(h− 1) bids of value 1.

For the rest of this section we assume that A and B are multi-sets containing the actual bids in each side
of the partition, as opposed to the previous sections where we assumed A and B contained the indices of
those bids. Furthermore, for any multi-set of bids such as I, we use the notation E[RSOP(I)], E[RSOP∗(I)]
and OPT(I) to denote the respective quantity being computed on bids explicitly specified by I. We also
make no assumption about which of A or B gets the highest bid, unless explicitly stated otherwise.

We start by proving a lower bound on the expected revenue of RSOP∗ (see Definition 4) for equal revenue
instances where each non-zero bid is either h or 1. We then extend the lower bound to RSOP. Recall that
RSOP∗ behaves exactly the same way as RSOP, except if all non-zero bids fall in the same set, RSOP∗ offers
them the lowest non-zero bid as the sale price (instead of 0).

Lemma 14. For any k ∈ N,

E
[
RSOP∗(Q(k))

]
≥ k(h+ 1)

2
=

1

2
OPT(Q(k)) +

k

2
. (32)

Proof. We prove the claim by induction on k.
We first prove the base case which is k = 1. The single bid of value h is the highest bid. Without loss of

generality assume that the h bid is in B. Observe that the optimal price of B is h which is also the price
offered to A, so no revenue is obtained from A. Furthermore the optimal price of A is 1 which is also the
price offered to B. Each bid of value 1 falls in B with probability 1/2, so E[RSOP∗(Q(1))] = 1 + h−1

2 which
proves the base of the induction.

We now prove the induction step. For any two multi-sets of bids such as T and U, let Rev∗(T,U) denote
the revenue obtained from T by computing the optimal sale price for U (let the optimal price be 1 if U = ∅)
and offering that price to T; also let Rev(T, p) denote the revenue obtained by offering price p to T. Let
(A,B) be a random partition of Q(1), and let (A′,B′) be a random partition of Q(k−1). Observe that
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(A ∪A′,B ∪B′) is a random partition of Q(k). The induction step follows from the following inequities.

E
[
RSOP∗(Q(k))

]
= E [Rev∗(A ∪A′,B ∪B′) + Rev∗(B ∪B′,A ∪A′)]

≥ E [Rev∗(A,B) + Rev∗(A′,B′) + Rev∗(B,A) + Rev∗(B′,A′)] to be proven

= E
[
RSOP∗(Q(1))

]
+ E

[
RSOP∗(Q(k−1))

]
≥ h+ 1

2
+

(k − 1)(h+ 1)

2
>
k(h+ 1)

2
by the induction hypothesis

We shall prove Rev∗(B∪B′,A∪A′) > Rev∗(B,A)+Rev∗(B′,A′) and by symmetry we can argue Rev∗(A∪
A′,B ∪B′) > Rev∗(A,B) + Rev∗(A′,B′) which completes the proof. Let p, p′ and p′′ denote the optimal
price of A, A′ and A ∪ A′ respectively as computed by RSOP∗ (i.e., the optimal price for an empty set
would be 1). We argue that

Rev∗(B ∪B′,A ∪A′) = Rev(B, p′′) + Rev(B′, p′′)

≥ Rev(B, p) + Rev(B′, p′) explained below

= Rev∗(B,A) + Rev∗(B′, A′).

Observe that both A ∪ B and A′ ∪ B′ are equal revenue instances and by Proposition 2 in any equal
revenue instance the price that is optimal for one side generates the least revenue for the opposite side so
Rev(B, p′′) ≥ Rev(B, p) and Rev(B′, p′′) ≥ Rev(B′, p′).

Proof of Theorem 4. Recall that the only situation where RSOP∗ and RSOP behave differently is when
either A or B is empty which happens with probability 1/2kh−1, therefore

E
[
RSOP(Q(k))

]
= E

[
RSOP∗(Q(k))

]
− 1

2kh−1
OPT

≥ k(h+ 1)

2
− 1

2kh−1
OPT by Lemma 14

=

(
1

2
+

1

2h
− 1

2kh−1

)
OPT because OPT = kh

That completes the proof.
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A Results

λ E[RSOP]/OPT OPT /E[RSOP]

2 0.125148 7.99
3 0.166930 5.99
4 0.192439 5.20
5 0.209222 4.78
6 0.221407 4.52
7 0.230605 4.34
8 0.237862 4.20
9 0.243764 4.10
10 0.248647 4.02
11 0.252774 3.96
15 0.264398 3.78
20 0.273005 3.66
30 0.282297 3.54
50 0.290384 3.44
100 0.296993 3.37
200 0.300549 3.33
300 0.301784 3.31
500 0.302792 3.30
1000 0.303560 3.29
1500 0.303818 3.29
2000 0.303949 3.29

Table 1: Computed numerical values for the basic lower-bound of E[RSOP] ≥ E[Sλλ Z ] OPT.

λ E[RSOP]/OPT OPT /E[RSOP]

2 0.2138 4.68
3 0.2178 4.59
4 0.238 4.20
5 0.243 4.11
6 0.2503 3.99
7 0.2545 3.93
8 0.2602 3.84
9 0.2627 3.81
10 0.2669 3.75

Table 2: Computed numerical values for the exhaustive-search lower-bound

B Proofs

Theorem 5 (Chernoff–Hoeffding1963). For (i.i.d.) random variables X1,X2, . . . ,X` ∈ {0, 1} with E[Xi] = p,
the following inequality holds for all ε ∈ (0, 1− p):

Pr

[
1

`

∑
Xi ≥ p+ ε

]
≤

((
p

p+ ε

)p+ε(
1− p

1− p− ε

)1−p−ε
)`

(33)

Lemma (2). For any α ∈ (0, 1) and j ∈ N,

if α ≥ 0.5, then Pr
[
E{j}α

]
≥ 1− (rα)

j
, where rα =

1

2αα(1− α)1−α

if α ≤ 0.5− 1/j, then Pr
[
E{j}α

]
≤
(
r(α+1/j)

)j−1
where rα is the same as above.

Proof. Let Aj be an indicator random variable which is 1 if j ∈ A, and 0 otherwise.
The first inequality of the lemma follows immediately from Theorem 5 by setting Xj = Aj , ` = j, p = 0.5,

and ε = α − 0.5 which yields an upper bound on Pr[E{j}α ] and thus a lower bound on Pr[E{j}α ]. Note that
A1 = 0 with probability 1, however that only decreases the probability on the left hand side of (33) so it
still holds.
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To prove the second inequality, we proceed as follows.

Pr
[
E{j}α

]
= Pr

[
Sj
j
≤ α

]
= Pr

[∑j
k=1 Ak

j
> 1− α

]

= Pr

[∑j
k=2 Ak

j
> 1− α− 1

j

]
because A1 = 1 always.

≤ Pr

[∑j
k=2 Ak

j − 1
> 1− α− 1

j

]
.

The second inequality of the lemma now follows immediately from Theorem 5 by setting Xj = Aj−1, ` = j−1,
p = 0.5, and ε = 0.5− α− 1

j . Note that r1−α− 1
j

= rα+ 1
j
.

Theorem 6 (Fortuin, Kasteleyn, and Ginibre [1971]). Let L be a finite distributive lattice, and µ : L→ R+

be a function that satisfies

µ(x ∧ y)µ(x ∨ y) ≥ µ(x)µ(y), for all x, y ∈ L. (34)

Then for any two functions f, g : L→ R+ which are either both increasing, or both decreasing, the following
inequality holds. (∑

x∈L
f(x)g(x)µ(x)

)(∑
x∈L

µ(x)

)
≥

(∑
x∈L

f(x)µ(x)

)(∑
x∈L

g(x)µ(x)

)
(35)

Lemma (1). For any T,T′ ⊂ N and α ∈ [0, 1], the two events ETα and ET′α are positively correlated, i.e.,
Pr[ETα ∩ ET

′

α ] ≥ Pr[ETα ] Pr[ET′α ].

Proof. For every n ∈ N, define Tn = T ∩ {1 · · ·n}; similarly define T′n, An, Bn, etc.

We start by proving Pr[ETnα ∩ ET
′
n

α ] ≥ Pr[ETnα ] Pr[ET
′
n

α ] for every n ∈ N. Let Ln be a distributive
lattice whose elements are the subsets of {2 · · ·n} and whose meet/join operators correspond to taking
intersection/union. For all A ∈ Ln let µ(A) = 1/2n−1. Define ETnα (A) to be an indicator function which is
defined for each A ∈ Ln as

ETnα (A) =

{
1 if |A ∩ {1 · · · j}| ≤ αj for all j ∈ Tn

0 otherwise
.

By invoking Theorem 6 on lattice Ln and substituting f(x) and g(x) with ETnα (A) and ET
′
n

α (A) respectively
we get the following inequality.

 ∑
A⊆{2···n}

ETnα (A)ET
′
n

α (A)

2n−1

 ≥
 ∑

A⊆{2···n}

ETnα (A)

2n−1

 ∑
A⊆{2···n}

ET
′
n

α (A)

2n−1


Observe that the left hand side of the above inequality is exactly EA[ETnα (A)ET

′
n

α (A)] = Pr[ETnα ∩ ET
′
n

α ]

while its right hand side is exactly EA[ETnα (A)] EA[ET
′
n

α (A)] = Pr[ETnα ] Pr[ET
′
n

α ], so we have proved that

Pr[ETnα ∩ ET
′
n

α ] ≥ Pr[ETnα ] Pr[ET
′
n

α ] for every n ∈ N.

We now prove the infinite case. For every n ∈ N, define `n = Pr[ETnα ∩ ET
′
n

α ], rn = Pr[ETnα ] Pr[ET
′
n

α ],
and dn = `n − rn. Observe that dn is an infinite sequence which is bounded in [0, 1], so by invoking
BolzanoWeierstrass theorem we argue that it has an infinite converging subsequence, i.e., there exists an
infinite sequence of indices n1 < n2 < · · · and d∗ ∈ [0, 1] such that limj→∞ dnj = d∗. On the other hand
both `nj and rnj are decreasing sequences which are bounded below by 0 so they both converge, therefore

Pr
[
ETα ∩ ET

′

α

]
−Pr

[
ETα
]

Pr
[
ET
′

α

]
= lim
j→∞

`nj − lim
j→∞

rnj = lim
j→∞

dnj = d∗ ≥ 0

which proves the claim of the lemma.
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