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Abstract. In this paper we study the Nash-equilibrium and equilibrium
bidding strategies of the Pooled Reverse Auction for troubled assets.
The auction was described in (Ausubel & Cramton 2008[1]). We fur-
ther extend our analysis to a more general class of games which we call
Summation Games. We prove the existence and uniqueness of a Nash-
equilibrium in these games when the utility functions satisfy a certain
condition. We also give an efficient way to compute the Nash-equilibrium
of these games. We show that then Nash-equilibrium of these games can
be computed using an ascending auction. The aforementioned reverse
auction can be expressed as a special instance of such a game. We also,
show that even a more general version of the well-known oligopoly game
of Cournot can be expressed in our model and all of the previously men-
tioned results apply to that as well.

1 Introduction

In this paper, we primarily study the equilibrium strategies of the pooled reverse
auction for troubled assets which was described in [1]. The US Treasury is pur-
chasing the troubled assets to infuse liquidity into the market to recover from
the current financial crisis. Reverse auctions in general have been a powerful tool
for injecting liquidity into the market in places where it will be most useful. As
explained in [1] a simple and naive approach for the government could be to run
a single reverse auction for all the holders of toxic assets as follows. The auction-
eer(government) then sets a total budget to be spent. The auctioneer starts at a
price like 100¢ on a dollar. All the holders, bid the quantity of their shares that
they are willing to sell at the current prices. There can be excess supply. The
auctioneer then lowers the price in steps e.g. 95¢, 90¢, etc. and bidders indicate
the quantities that they are willing to sell at each price. At some point (for exam-
ple at 30¢ on a dollar) the total supply offered by all the holders for sale equals
or falls bellow the specified budget of the treasury. At that point the auction
concludes and the auctioneer buys the securities offered at the clearing price. As
explained in [1], this simple approach is flawed as it leads to a severe adverse
selection problem. Note that at the clearing price the securities that are offered
are only the ones that are actually worth less than 30¢ on each dollar of face
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value. They could as well worth far bellow 30¢. In other words, the government
would pay most of its budget to buy the worst of the securities.

In [1], the authors propose the following two type of auctions.

– A Security by Security Reverse Auction
– A Pooled Reverse Auction

They are both part of a two phase plan. The first one can be used to extract
private information of holders about the true value of the securities to give an
estimate on how much each security and similar securities are actual worth of.
Later, that information can be used to establish reference prices in the Pooled
Reverse Auction.

In this paper we focus our attention on the second class of auction. In a Pooled
Reverse Auction, different securities are pooled together. The government puts
a reference price on each security and then runs a reverse auction on all of them
together. We explain this auction in more detail in section 2.

In section 3, we study the Nash-equilibrium and the bidding strategies of the
Pooled Reverse Auctions in detail. We then create a more abstract model of it
at the end of section 2. In section 4 we describe a general class of games that
can be used to model the Pooled Reverse Auction as well as other problems. In
section 4, we give some exciting result on these games. We give a condition which
is sufficient for the existence of a Nash-equilibrium. We further explain how the
Nash-equilibrium can be computed efficiently using a an ascending auction-like
mechanism. Later in section 5, we show how we can apply our result of section 4
to Pooled Reverse Auctions. section 6 explains how a more general version of
the Cournot’s oligopoly game can be expressed in our model.

1.1 Related Work

We partition the related works to two main groups. The first group that is closely
related to our model, are computing equilibrium in Cournot and public good
provision games. The second one with similar model but different objective are
the works related to bandwidth sharing problems and the efficiency of computed
equilibria.

One well known problem that can be considered as an example of our model
is the Cournot’s oligopoly game. It can be described as an oligopoly of firms
producing a homogeneous good. The strategy of firm i is to choose qi which is
the quantity it produces. Assuming that the production cost is ci per item, the
utility of firm i is (p(Q) − ci)qi for which Q =

∑
i qi is the total production

and p(Q) is the global price of the good based on the total production. There
is a vast amount of literature on Cournot games (e.g. [7]). Different aspect of
Cournot equilibrium has been studied (For example, in [3] Bergstrom and Varian,
studied the effect of taxation on Cournot equilibrium and also showed some
characteristics of the Cournot equilibrium.)

Another set of results, with similar model, but with different criteria are the
works related to bandwidth sharing problem. At a high level, the problem is to



allocate a fixed amount of an infinitely divisible good among rational competing
users. [8] studies this problem from pricing perspective. Kelly [6], considered
a generalized variant of this problem in the context of routing and charging
(However the equilibrium point of his mechanism was not fully efficient) His
model, for a single resource with fixed supply, is to give each person proportional
to his bid from the resource and charge him his bid. Later, Johari et al in [4],
showed that Kelly’s mechanism is at least 75% efficient at the equilibrium point.
In another work, Johari et al show that, Kelly’s model minimizes efficiency loss
(at the equilibrium point) when price discrimination is not allowed and then they
present a class of mechanisms that has an efficient outcome at the equilibrium
point assuming that price discrimination is allowed ([5]).

2 Model for Pooled Reverse Auction

In this section, we explain the basic model for the reverse auction of pooled
securities. We will use this model throughout the rest of this paper. We start by
explaining our notations:

– There are n bidders N = {1, · · · , n}, and m securities.
– Government has evaluated a reference price of rj for each security j. Also let

r = (r1, · · · , rm) denote the vector of reference prices for all the m securities.
The reference prices are public information. These prices are in the form of
the ratio of the evaluated price to the face price and are expressed in cents
per dollar. For example rj = 0.75 means every dollar of the face value of the
security is actually worth 75¢.

– Each bidder i holds q̄i,j shares of security j. Also let q̄i = (q̄i,1, · · · , q̄i,m)
denote the vector of the quantities of shares that bidder i holds from each
security. The shares are expressed in quantity of the face value.

– Each bidder has a private valuation function vi(l) for receiving a liquidity
amount of l. In a quasi-linear setting, we would assume that vi(l) = l. In
our model, we assume the vi could be an arbitrary function. vi can capture
the bonus for acquiring a needed amount of liquidity or can be negative to
account for the cost incurred by the shortage thereof. For example consider
the following:

vi(l) =

{
l + (l − Li) l ≤ Li
l l ≥ Li

(2.1)

We could interpret the above vi as the following. Bidder i has a liquidity
need of Li dollars. She incurs a cost of Li − l dollars if she raises only l
dollars where l < Li. Her value for any liquidity that she receives beyond Li
is just the same as the amount that she receives. The experimental study of
reverse auction for troubled assets in [2] considers two cases for vi. In the
first case, each bidder i has a liquidity need Li and vi(l) = 2l for l ≤ Li and
vi(l) = l+Li for l > Li. In the second case, bidders don’t have liquidity needs,
so vi(l) = l. In this paper, we consider arbitrary vi under some constraints
as we will see later.



– Each bidder i has a private value of wi,j for each dollar of security j. Also
let wi = (wi,1, · · · , wi,m) denote the vector of the valuations of bidder i
for different securities. In reality, we should have assumed a single common
value for each security which is unknown and can only be computed by
aggregating all the private information of all bidders. However, that model
is prohibitively hard to analyze in case of non trivial valuation functions for
liquidity (i.e. when vi(l) is not the identity function). Therefore, we assume
that wi is the private values of bidder i for the securities.

Next, we briefly explain the reverse auction mechanism for pooled securities
as described in [1].

Auction 1 (Pooled Reverse Auction) Initially, the auctioneer (government)
establishes the reference prices for all the securities. These reference prices are
supposed to be the best estimate of the government about the true value of the
securities. The reference prices are announced publicly.

The auction uses a single descending clock α which specifies the current prices
as a percentage of the reference prices. For example, α = 110% means the current
price of each security is 110% of its reference price. As the clock goes down,
participants update their bids. Bidder i submits a bid bi = (bi,1, · · · , bi,m), where
bi,j is the quantity of shares from security j that bidder i would like to sell at the
current prices. These quantities are specified in terms of dollars of face value.
The auctioneer collects all the bids and computes the activity points for each
bidder i as ai = r · bi (remember r is the vector of reference prices) . In other
words, the activity points of each bidder is her bid quantity for each security
times the reference price of that security summed over all the securities. The
auctioneer also computes the total activity point A =

∑
i ai. Assuming that M

is the total budget of the government, the clock keeps going down for as long
as Aα > M . In practice, the clock goes down in discrete steps. At each step
the auctioneer collects all the bids and computes the aggregate activity point.
At the first step that Aα becomes less than or equal to M , the clock stops and
the auction concludes. The auctioneer then buys from each bidder the quantity
of shares specified in her bid. Bidders are paid at the current prices (i.e. the
reference price scaled by the current value of the clock). Assuming that α∗ was
the final value of the clock and for each bidder i, b∗i was the final bid of bidder
i, the amount of liquidity that bidder i receives is α∗ri · b∗i .

In the next section we study the equilibrium of the above auction.

3 The Equilibrium of Pooled Reverse Auction

In this section, we study the Nash-equilibrium of Auction. 1 and propose a
method that can be used to efficiently compute that. We also develop a bidding
strategy that leads to the Nash-equilibrium.

First, we show how to compute the utility of each bidder i. Assume that bi is
the bid of bidder i and α is the current value of the clock. Also, as we defined in



section 2, vi(l) is the valuation of bidder i for receiving amount l of liquidity and
wi = (wi,1, · · · , wi) is the vector of her valuations for different securities. We
denote by ui, the tentative utility of bidder i which is her utility if the auction
stops at the current value of the clock. ui can be computed as the following:

ui = vi(αr · bi)−wi · bi (3.1)

Before we start with the bidding strategies, we restate some of the definitions
from Auction. 1.

– For a bidder i with current bid bi, we use ai to define her activity point
which is defined as:

ai = r · bi (3.2)

– The total activity point of all bidders is defined as:

A =
n∑
i=1

ai (3.3)

– The auction clock, α, keeps going down for as long as αA > M where M is
the total budget of the auctioneer. If we denote the value of the clock when
the auction stops by α∗, then α∗A ≤M . Note that, to simplify the analysis,
we assume quantities do not need to be integers. We also assume that the
clock changes continuously and bidders update their bids continuously as
well. Respectively, we may assume that when the auction concludes, the
auctioneers budget constraint is met with equality so:

α∗A = M (3.4)

Next, we show that the best strategy for each player i can be described by
just specifying the activity points that she needs to generate. In other words,
the only thing that bidder i has to decide is how much activity point to generate
and her best bid vector can be specified as a function of that.

Lemma 1. In order to play her best strategy, bidder i only needs to choose her
activity points ai and then among all the bid vectors bi ∈ [0, q̄i]1 such that
r ·bi = ai her best strategy is to submit a bid bi that minimizes wi ·bi. We will
refer to one such bid vector as bi(ai). Formally:

bi(a) = argminb wi · b : b ∈ [0, q̄i] ∧ r · b = a (3.5)

1 We use the notation [a,b] to denote all the vectors that are componentwise greater
than or equal to a and less than or equal to b



Proof. The only variable parameter in the auction that correlates the utility of
different bidders is the the clock value α and the only way individual bidders
affect that variable is through their activity points. If a bidder such as i keeps her
activity points fixed and changes her bid vector, the outcome of the auction will
not change. However, among all the bid vectors that generate the same amount
of activity point, the one with the lowest wi ·bi produces the highest utility for
bidder i.

Based on Lemma 1 to describe a best strategy for a bidder i we only need
to specify the activity points ai that she should bid and then Lemma 1 tells
us what condition the corresponding bid vector should satisfy. The next lemma
describes how we can efficiently compute bi(ai) for any given ai.

Lemma 2. For any given ai ∈ [0, r · q̄i] we can compute bi(ai) by using the
following procedure.

Without loss of generality, assume securities are sorted in decreasing order
of rj

wi,j
so that rj

wi,j
≥ rj+1

wi,j+1
. To find the bid vector, we start from an initial zero

bid vector and increase each qi,j up to q̄i,j starting at j = 1 until the generated
activity point reaches ai. The following is a more formal definition of bi(a):

bi(a) = (q̄i,1, · · · , q̄i,y−1, bi,y, 0, · · · , 0) (3.6)

such that:

rybi,y +
y−1∑
j=1

rj q̄i,j = a (3.7)

Proof. The proof is by contradiction. Suppose bidder i is submitting a bid vector
bi which is not according to the mentioned schema but minimizes wi ·bi subject
to bi ∈ [0, q̄i] and r · b = ai. So there should be two different securities j and
k such that rj

wi,j
> rk

wi,k
and in her bid vector bi,j < q̄i,j and bi,k > 0. We argue

that she can decrease bi,k by some ε > 0 and increase bi,j by ε rk

rj
. Note that the

change in her activity points is −εrk + ε rk

rj
rj which is 0. However that decreases

wi ·bi by εwi,k−ε rk

rj
wi,j which is always positive and contradicts our assumption

about w · bi being the minimum.

Intuitively, Lemma 2 is saying that a strategic bidder should never sell any
shares of a security j unless for any other security k for which rk

wi,k
>

rj

wi,j
she

has already sold all of her shares of security k.

Definition 1. We can define a cost function ci(a) : [0,wi · q̄i] → R for each
bidder i which only depends on her activity points:

ci(a) = wi · bi(a) 0 ≤ a ≤ r · q̄i (3.8)



Intuitively, for bidder i, ci(a) is the minimum cost of generating ’a’ activity
points.

At this point, we can define the bid vectors and all the equations only in
terms of ai. Bidders only need to specify their activity point ai. We denote the
final activity points of bidder i when the auction concluded by a∗i and the final
total activity point by A∗. The utility of each bidder i can now be written as
the following:

ui = vi(α∗a∗i )− ci(a∗i ) (3.9)

Also, the auction concludes at the highest clock α∗ such that:

n∑
i=1

α∗A∗ = M (3.10)

Next, we define the Nash-equilibrium. Before that, notice we can write the
utility of each bidder i as ui(a,A) which is a function of her own bid and the
total aggregate bid. Formally:

ui(a,A) = vi(
a

A
M)− ci(a) (3.11)

Now we are ready to describe the Nash-equilibrium. Suppose a∗1, · · · , a∗n are
the activity points at which the auction has concluded. We say the outcome of
the auction is stable or is a Nash-equilibrium if for every bidder i, a∗i is a best
response to a∗−i. For a Nash equilibrium, the first order and boundary conditions
are sufficient. Assume that āi denotes the maximum possible activity points that
bidder i can generate (i.e., āi = r · q̄i). The first order and boundary conditions
of the Nash-equilibrium are the following:

∀i ∈ N :



d
da∗i

ui(a∗i , A
∗) = 0 and 0 < a∗i < āi

or
d
da∗i

ui(a∗i , A
∗) ≤ 0 and a∗i = 0

or
d
da∗i

ui(a∗i , A
∗) ≥ 0 and a∗i = āi

(3.12)

A∗ =
n∑
i=1

a∗i (3.13)

Note that, to use the first order conditions, we need ui(a,A) to be a con-
tinuous and differentiable function in its domain. We can however relax the
differentiability requirement and allow ui(a,A) to have different left and right
derivatives at a finite number of points. In that case, if assume that ρ−i is the



left derivative of d
da∗i

ui(a∗i , A
∗) and ρ+

i is its right derivative, then in the first

condition, we can replace d
da∗i

ui(a∗i , A
∗) = 0 with ρ−i ≤ 0 ≤ ρ+

i . To keep the
proofs simple, we do not use this general form but we will refer to it later when
we explain how to compute the equilibrium.

We further expand the first order and boundary conditions. Notice that
d
da∗i

ui(a∗i , A
∗) = ∂

∂aui(a
∗
i , A

∗) + ∂
∂Aui(a

∗
i , A

∗) d
da∗i

A∗. Because we always have
d
da∗i

A∗ = 1, we can write d
da∗i

ui(a∗i , A
∗) = ∂

∂aui(a
∗
i , A

∗) + ∂
∂Aui(a

∗
i , A

∗). So the
first order and boundary conditions can be rephrased as:

∀i ∈ N :



∂
∂aui(a

∗
i , A

∗) + ∂
∂Aui(a

∗
i , A

∗) = 0 and 0 ≤ a∗i ≤ āi
or

∂
∂aui(a

∗
i , A

∗) + ∂
∂Aui(a

∗
i , A

∗) ≤ 0 and a∗i = 0
or

∂
∂aui(a

∗
i , A

∗) + ∂
∂Aui(a

∗
i , A

∗) ≥ 0 and a∗i = āi

(3.14)

A∗ =
n∑
i=1

a∗i (3.15)

Next, we state the main theorem of this section which gives a sufficient condi-
tion for the existence of a Nash-equilibrium and provides a method for computing
it as well as a bidding strategy.

Theorem 1. Consider the Auction. 1, in which as explained before, each bid-
der’s utility is given by ui = vi(αr ·bi)−ci ·bi if the auction stops at the current
clock α. Assuming that the valuation functions vi are continuous, differentiable2

and concave, there exists a unique Nash-equilibrium that satisfies the first order
and boundary conditions of (3.14). Furthermore, there are bid functions gi(α),
such that for every i if bidder i bids b∗i (ai) where ai = gi(α), then the outcome
of the auction coincides with the unique Nash-equilibrium. gi(α) is given bellow
(v′i and c′i are the derivatives of vi and ci):

gi(α) = argmina∈[0,āi]

∣∣∣∣v′i(αa)
M − αa
M

α− c′i(a)
∣∣∣∣ (3.16)

Furthermore, the gi(α) can be computed efficiently using binary search on ’a’
(the parameter of the argmin) because the expression inside the absolute value is
a decreasing function of a.

Note that the requirement of vi functions being concave is quite natural.
It simply means that the derivative of vi should be decreasing which can be
interpreted as the marginal value of the first dollar received being more than the
marginal value of the last dollar.
2 we may relax this to allow vi to have different left and right derivatives at a finite

number of points



It is worth mentioning that the bid function gi(α), as described in (3.16)
is not necessarily an increasing function of α. In other words, as the clock goes
down, gi(α) may increase at some points which means bidder i is actually offering
more for sale although the prices are going down. This phenomenon is in fact
quite common when bidder i has liquidity needs as we will explain in section 5 .

We defer the proof of Theorem 1 to section 5. Instead of proving Theorem 1
directly, we prove a more general theorem in the next section. Later, in section 5,
we show that Theorem 1 is a special case of that.

4 Summation Games

In this section, we describe a general class of games which we will refer to as sum-
mation games. Later, we show that the reverse auction explained in the previous
section and some well known problems like the Courant-Nash equilibrium of an
oligopoly game [7] can be expressed in this model. Next, we define a Summation
Game:

Definition 2 (Summation Game). There are n players N = {1, · · · , n}.
Each player can choose a number ai from the interval [0, āi] where āi is a con-
stant. The utility of each bidder depends only on her own number as well as the
sum of all the numbers. In other words, assuming that A =

∑n
i=1 ai, the utility

of each bidder i is given by ui(ai, A).

We next show that if the utility functions ui(a,A) meet a certain require-
ment, the summation game has a unique Nash-equilibrium that can be computed
efficiently. Before that, we define the following notation

Definition 3. For each player i, assuming that ui(a,A) is her utility function,
define her characteristic function hi(x, T ) as the following:

hi(x, T ) =
∂

∂a
ui(xT, T ) +

∂

∂A
ui(xT, T ) (4.1)

Theorem 2. If all the characteristic functions hi(x, T )3 are strictly decreasing
functions in both x and T , then the game has a unique Nash-equilibrium 4 and
in that equilibrium, the bid of each player i is ai = xi(A)A where xi is defined
as the following:

xi(T ) = argminx∈[0,min(1,
āi
T )] |hi(x, T )| (4.2)

3 Note that we allow hi(x, T ) to be discontinuous at a finite number of points (e.g. a
step function).

4 if we relax the requirement of hi’s being strictly decreasing to just being non-
increasing then there is a continuum of Nash-equilibria in which there is one Nash-
equilibrium that is strictly preferred by some players and is just as good as other
Nash equilibria for other players.



Furthermore, because hi(x, T ) is decreasing in both x and T , xi(T ) is also
decreasing in T and the equilibrium can be computed efficiently using two nested
binary searches or using an auction-like mechanism with an ascending clock T
in which the each bidder i submits ai = xi(T )T and the clock T keeps going up
as long as

∑
i ai > T .

Proof. First, it is easy to see that the first order and boundary conditions that
are necessary and sufficient for the Nash-equilibrium are exactly those of (3.14)
which we wrote for the Nash-equilibrium of Auction. 1. We can rewrite those
conditions in terms of hi(x, T ) = ∂

∂aui(xT, T ) + ∂
∂Aui(xT, T ) for each player i as

the following. Again, note that the following is just a restatement of (3.14) in
which x∗i = a∗i

A∗ and T ∗ = A∗ and a∗i ’s are the equilibrium bids:

∀i ∈ N :



hi(x∗i , T
∗) = 0 and 0 ≤ x∗i ≤ min(1, āi

T∗ )
or

hi(x∗i , T
∗) ≤ 0 and x∗i = 0

or
hi(x∗i , T

∗) ≥ 0 and x∗i = min(1, āi

T∗ )

(4.3)

n∑
i=1

x∗i = 1 (4.4)

Based on our assumption that each hi(x, T ) is a decreasing function of both
x and T , it is easy to see that the above 3 conditions can be written in a compact
form as the following single condition:

∀i ∈ N : x∗i = argminx∗i∈[0,min(1,
āi
T∗ )] |hi(x

∗
i , T

∗)| (4.5)
n∑
i=1

x∗i = 1 (4.6)

To get an intuition of why (4.5) is equivalent to (4.3). Suppose for a given T ∗,
we want to find x∗i that satisfies (4.5). Take any arbitrary x ∈ [0,min(1, āi

T∗ )].
Since hi(x, T ∗) is decreasing in x, to minimize |hi(x, T ∗)|, if hi(x, T ∗) is nega-
tive we should decrease x until either hi(x, T ∗) becomes 0; or x reaches 0 and
hi(x, T ∗) is still positive. Otherwise, if hi(x, T ∗) is positive we would do the op-
posite. Note that xi(T ) as defined in (4.2) returns the value of x that minimizes
|hi(x, T )|. Based on what we just explained, it is easy to see that for any given
T , we can actually do a binary search to find the x that minimizes |hi(x, T )| and
therefore we can efficiently compute xi(T ) using a binary search even for fairly
complex hi. Next we show an important property of xi(T ).

Lemma 1. xi(T ) is is a strictly decreasing5 function of T .
5 When hi(x, T ) functions are non-increasing in x and T instead if strictly decreasing

then xi(T ) may also be non-increasing instead of strictly decreasing



Proof. We only give a sketch of the proof. Take any given T , we know that
xi(T ) gives the x that makes hi(x, T ) as close to 0 as possible. If we increase T
by ∆T > 0, that may only decrease hi(x, T ) by some ε > 0, if hi(x, T ) was 0,
now it becomes negative so to counter that and bring hi(x, T ) close to 0 we have
to decrease x by some ∆x > 0. On the other hand, if hi(x, T ) was positive6 it
means we are already in the case of x = min(1, āi

T ) which may actually cause x
to decrease if āi

T < 1 because āi

T decreases as T increases.

Finally, to find the values of ai’s at the Nash-equilibrium we can use the
following algorithm:

Algorithm 2

– Start with T = 0 (or a sufficiently small positive T ).
– Keep increasing T for as long as

∑n
i=1 xi(T ) > 1.

– Stop as soon as
∑n
i=1 xi(T ) ≤ 1 and then set each bid ai = xi(T )T 7

To see why the above algorithm works, we use Lemma 1 to argue that the
value of the equilibrium aggregate bid 8 T ∗ and all the xi(T ∗) values are unique.
Because for any T ′ > T ∗,

∑n
i=1 xi(T

′) < 1 and for any T ′ < T ∗,
∑n
i=1 xi(T

′) > 1.
Note that Alg. 2 can be implemented either using binary search on T or

as an ascending auction-like mechanism in which each player submits the bid
ai = xi(T )T where T is the ascending clock and in which the clock stops once∑
i ai ≤ T .

In the next section we finish our analysis of the pooled reverse auction of
1. Later, in section 6, we give example of a well-known problem that can be
expressed in our model and its Nash-equilibrium can be computed using Alg. 2.

5 Back to Pooled Reverse Auction

In the previous section we described a more general class of games and in The-
orem 2 we gave sufficient conditions for the existence of a Nash-equilibrium. We
explained when it is unique and how to compute it. In this section we continue
our analysis of Auction. 1. We first give a proof for Theorem 1 be reducing it to
a special case of Theorem 2.

Next, we give a proof for Theorem 1 which is based on a reduction to Theo-
rem 2.

6 In case hi is discontinuous at x and T , the proof will be slightly different
7 If

∑n
i=1 xi(T

∗) < 1 then arbitrarily choose each a∗i from the interval
[limε→0+ xi(T

∗ − ε)T ∗, xi(T ∗)T ∗] such that
∑n
i=1 a

∗
i = T ∗ (It is easy to show that

each player i is indifferent to all a∗i ∈ [limε→0+ xi(T
∗ − ε)T ∗, xi(T ∗)T ∗]).

8 When hi(x, T ) functions are non-increasing instead if strictly decreasing then this
algorithm finds the equilibrium with the smallest aggregate bid T ∗.



Proof (Proof of. Theorem 1). To be able to apply Theorem 2, we first need to
show that the utility function of each bidder in Auction. 1 meets the requirement
of Theorem 2. More specifically, we have to show that hi(x, T ) = ∂

∂aui(xT, T ) +
∂
∂Aui(xT, T ) is a decreasing function in both x and T . Remember that in our
model for Auction. 1, we can write the utility of bidder i as ui(a,A) = vi( aAM)−
ci(a). First, we show that ci(a) is a convex function.

Lemma 1. The cost function ci(x) as defined in (3.8) is always a convex func-
tion and has an non-decreasing first order derivative in [0, r.q̄] although its
derivative might be discontinuous in at most m points.

Proof. The proof is based on the construction given in the proof of Lemma 2.
Note that based on the definition of bi(a) from (3.6) and (3.7) ci(a) is a piece-
wise linear function consisting of m segments and its derivative is given by the
following:

∂

∂x
ci(a) =

wy
ry

:
y−1∑
j=1

rj q̄i,j < a <

y∑
j=1

rj q̄i,j (5.1)

Since we assumed that securities are sorted such that rj

wj
≥ rj+1

wj+1
we can see

that the derivative of each segment of ci is greater than or equal to the previous
segment which means its derivative is non-decreasing and so ci is convex.

Lemma 2. The hi(x, T ) functions for bidders in Auction. 1 are decreasing in
both x and T :

hi(x, T ) =
∂

∂a
ui(xT, T ) +

∂

∂A
ui(xT, T ) (5.2)

= v′i(xM)
1− x
T

+ c′i(Tx) (5.3)

Proof. We showed in Lemma 2 that ci is a convex function. We also assumed
in Theorem 1 that vi is a concave function. It is then easy to verify that (5.3)
is indeed a decreasing function in both x and T . First, because vi is concave
v′i is non-increasing, 1−x

T is decreasing in both x and T , ci is convex and c′i is
non-decreasing which means −c′i(Tx) is non-increasing in both x and T . Putting
them all together, hi(x, T ) is a strictly decreasing function of both x and T .

Since in Lemma 2 we proved that hi(x, T ) is decreasing in both x and T ,
we can now apply Theorem 2 and all of the claims of Theorem 1 follow from
Theorem 2. Also note that gi(α) which was defined in (3.16) is actually the same
as xi(T )T , where T = M

α

It is interesting to notice that the auction-like mechanism of Theorem 2 and
Auction. 1 are actually equivalent. In fact, the xi(T ) where T = M/α, has a
very natural interpretation in Auction. 1. It specifies the fraction of the budget
of the auctioneer that the bidder i is demanding at the clock α. In fact we may



modify the auction to ask the bidders to submit the amount of liquidity that
they are demanding directly at each step of the clock and then the auction stops
when the demand becomes less than or equal to the budget of the auctioneer.
Then, each bidder will be required to sell enough quantity of her shares at the
current prices to pay for the liquidity that she had demanded.

It is easy to see that the liquidity that each bidder demands may only decrease
as the α increases. However, the value of the bid, xi(T )T , may actually increase
because bidder I may want to maintain her demand for the liquidity.

6 Application to Cournot’s Oligopoly

In this section, we show how the well-known problem of Cournot’s Oligopoly can
be expressed in our model of a summation game and all the results of Theorem 2
can therefore be applied:

Definition 4 (Cournot’s Oligopoly).

– There are n firms. The firms are oligopolist suppliers of a homogenous good.
– At each period, each firm chooses a quantity qi to supply.
– The total supply Q on the market is the sum of all firms’ supplies:

Q =
∑
i

qi (6.1)

– All firms receive the same price p per unit of the good. The price p on the
market depends on the total supply Q as:

p(Q) = p0(Qmax −Q) (6.2)

– Each firm i incurs a cost ci per unit of good. These costs can be different for
different firms and are private information

– Each firm i’s profit is given by:

ui(qi, Q) = (p(Q)− ci)qi (6.3)

– After each market period, firms are informed of the total quantity Q and the
market price p(Q) of the previous period.

If we write down the hi(x, T ) for each firm i we get:

hi(x, T ) =
∂

∂a
ui(xT, T ) +

∂

∂A
ui(xT, T ) (6.4)

= p(T )− ci + p′(T )Tx (6.5)
= p0(Qmax − T )− ci − p0Tx (6.6)

Notice that clearly the above hi(x, T ) is a decreasing function of both x and
T and therefore all of the nice results of Theorem 2 can be applied. Notice in
fact that as long as p(Q) is concave and a decreasing function of Q, hi(x, T ) is
still a decreasing function of both x and T and all of the results of Theorem 2
still holds.



7 Conclusion

In this paper we studied the Nash-equilibrium and equilibrium bidding strategies
of the troubled assets reverse auction. We further generalized our analysis to
a more general class of games with non quasi-linear utilities. We proved the
existence and uniqueness of a Nash-equilibrium in those games and we also gave
an efficient way to compute the equilibrium of those games. We also showed that
finding the Nash equilibrium can be implemented using an ascending mechanism
so that the participants don’t need to reveal their utility functions. We also,
showed that even a more general version of the well-known problem of Cournot’s
Oligopoly can be expressed in our model and all of the previously mentioned
results apply to that as well.
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