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Abstract

Algorithmic Applications of Propositional Proof Complexity
Ashish Sabharwal

Co-Chairs of the Supervisory Committee:
Professor Paul W. Beame
Computer Science and Engineering
Professor Henry Kautz
Computer Science and Engineering

This thesis explores algorithmic applications of proof complexity theory to the
areas of exact and approximation algorithms for graph problems as well as proposi-
tional reasoning systems studied commonly by the artificial intelligence and formal
verification communities. On the theoretical side, our focus is on the propositional
proof system called resolution. On the practical side, we concentrate on propositional
satisfiability algorithms (SAT solvers) which form the core of numerous real-world
automated reasoning systems.

There are three major contributions in this work. (A) We study the behavior of
resolution on appropriate encodings of three graphs problems, namely, independent
set, vertex cover, and clique. We prove lower bounds on the sizes of resolution proofs
for these problems and derive from this unconditional hardness of approximation
results for resolution-based algorithms. (B) We explore two key techniques used in
SAT solvers called clause learning and restarts, providing the first formal framework
for their analysis. Formulating them as proof systems, we put them in perspective
with respect to resolution and its refinements. (C) We present new techniques for
designing structure-aware SAT solvers based on high-level problem descriptions. We
present empirical studies which demonstrate that one can achieve enormous speed-up
in practice by incorporating variable orders as well as symmetry information obtained
directly from the underlying problem domain.
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Chapter 1
INTRODUCTION

Propositional proof complexity is the study of the structure of proofs of mathemat-
ical statements expressed in a propositional or Boolean form. This thesis explores the
algorithmic applications of this field, focusing on exact and approximation algorithms
for combinatorial graph problems as well as on propositional reasoning systems used
frequently in artificial intelligence and formal verification.

Science relies heavily on modeling systems and providing proofs of properties of
interest. This motivates the study of the nature of proofs themselves and the use
of computers to automatically generate them when possible. What do mathematical
proofs look like? How are problems of interest represented in formats suitable for
proving properties about them? What are the computational challenges involved in
finding such proofs? Do short proofs even always exist when one’s reasoning abilities
are limited? How can our understanding of proof structures be used to improve
combinatorial search algorithms? This work is a step towards answering these very
natural and influential questions.

We concentrate on propositional statements. These are logical statements over a
set of variables each of which can be either TRUE or FALSE. Suppose a propositional
statement S is a tautology, i.e., it is TRUE for all possible combinations of values of
the underlying variables. S is alternatively referred to as being valid. How can one
provide a proof of the validity of S7 Computationally, what does it mean to have
such a proof?

Cook and Reckhow [39] introduced the formal notion of a proof system in order to
study mathematical proofs from a computational perspective. They defined a propo-
sitional proof system to be an efficient algorithm A that takes as input a propositional
statement S and a purported proof 7 of its validity in a certain pre-specified format.
The crucial property of A is that for all invalid statements S, it rejects the pair (S, )
for all 7, and for all valid statements .S, it accepts the pair (S, 7) for some proof 7.
This notion of proof systems can be alternatively formulated in terms of unsatisfiable
formulas — those that are FALSE for all assignments to the variables.

They further observed that if there is no propositional proof system that admits
short (polynomial in size) proofs of validity of all tautologies, i.e., if there exist compu-
tationally hard tautologies for every propositional proof system, then the complexity
classes NP and co-NP are different, and hence P £ NP. This observation makes finding



tautological formulas (equivalently, unsatisfiable formulas) that are computationally
difficult for various proof systems one of the central tasks of proof complexity re-
search, with far reaching consequences to complexity theory and Computer Science
in general. These hard formulas naturally yield a hierarchy of proof systems based
on the sizes of proofs they admit. Tremendous amount of research has gone into un-
derstanding this hierarchical structure. A slightly outdated but interesting survey by
Beame and Pitassi [20] nicely summarizes many of the results obtained along these
lines in the last two decades.

As the most theoretical part of this work, we explore the proof complexity of a
large class of structured formulas based on certain NP-complete combinatorial search
problems on graphs. We prove that these formulas are hard for a very commonly stud-
ied proof system known as resolution. Algorithmically, this implies lower bounds on
the running time of a class of algorithms for solving these problems exactly as well as
approximately. These results complement the known approximation hardness results
for these problems which build on the relatively sophisticated and recent machinery
of probabilistically checkable proofs (PCPs) [9, 8].

On the more applied side which relates to automated reasoning systems, our focus
is on propositional satisfiability algorithms, or SAT solvers as they are commonly
known. Given a propositional formula F' as input, the task of a SAT solver is to
either find a variable assignment that satisfies F' or declare F' to be unsatisfiable.
SAT solvers have evolved tremendously in the last decade, becoming general-purpose
professional tools in areas as diverse as hardware verification [24, 112], automatic
test pattern generation [74, 104], planning [70], scheduling [59], and group theory
[114]. Annual SAT competitions have led to dozens of clever implementations [e.g.
13, 84, 113, 88, 57, 64], exploration of many new techniques [e.g. 80, 58, 84, 88], and
creation of extensive benchmarks [63].

Researchers involved in the development and implementation of such solvers tackle
the same underlying problem as those who work on propositional proof complexity
— the propositional satisfiability problem. They have typically focused on specific
techniques that are efficient in real world domains and have arguably interacted with
the proof complexity community in a somewhat superficial way. One must grant
that relatively straightforward correlations such as the equivalence between the basic
backtracking SAT procedure called DPLL and a simple proof system called tree-like
resolution as well as the relationship between more advanced SAT solvers using in-
equalities with a proof system called cutting planes have been regarded as common
knowledge. However, a more in-depth connection between the ideas developed by the
two communities is lacking. They have traditionally used very different approaches,
rarely letting the concepts developed by one influence the techniques or focus of the
other in any significant way.

The aim of the latter half of this work is to advance both of these fields — sat-
isfiability algorithms and proof complexity — through independent work as well as



cross-fertilization of ideas. It explores the inherent strength of various propositional
reasoning systems and uses theoretical insights to comprehend and improve the most
widely implemented class of complete SAT solvers. It tries to achieve a balance be-
tween providing rigorous formal analysis and building systems to evaluate concepts.
The results are a blend of theoretical complexity bounds, some of which explain ob-
served behavior, and systems such as SymChaff built to demonstrate performance
gains on real world problems.

Graph
Algorithms

\ Theory Theory

Satisfiability
Algorithms

Implementation

Figure 1.1: The three applications of proof complexity explored in this work

This thesis contains a broad spectrum of work from answering purely theoretical
questions on one end to building systems that change the way we solve problems of
human interest on the other (see Figure 1.1). A constant flow of ideas between the
two extremes has far reaching benefits, as does research that addresses the middle
ground. Realizing inherent strengths and limitations directs one’s focus on concepts
critical to good implementations and is the foundation of better systems. The work we
will present in Chapters 5 and 6 is a testimony to this. On the other hand, systems
whose development is motivated by real world applications provide a new avenue
for utilizing the analysis techniques developed theoretically. The work in Chapter 4
stands in support of this.

The quest for short proofs continues amongst researchers for several reasons. One
is pure mathematical curiosity in search for simplicity and elegance. Another is the
far reaching effect on complexity theory that existence of short proofs might have. Yet
another is computational efficiency demanded by the numerous real world applications
that have come to depend on SAT solvers. The purpose of this thesis is to bring
these motivations together in order to attain a better theoretical as well as practical
understanding of the algorithmic applications of propositional proof complexity.

1.1 Theoretical Contributions

From a proof complexity perspective, the focus of this work is on the proof system
called resolution. It is a very simple system with only one rule which applies to dis-



junctions of propositional variables and their negations: (a OR b) and ((NOT a) OR c)
together imply (b OR ¢). Repeated application of this rule suffices to derive an empty
disjunction if and only if the initial formula is unsatisfiable; such a derivation serves
as a proof of unsatisfiability of the formula.

1.1.1 The Resolution Complexity of Structured Problems

In Chapter 3 we combine combinatorial and probabilistic techniques to show that
propositional formulations of the membership in co-NP of almost all instances of some
interesting co-NP complete graph problems, namely complements of Independent Set,
Clique, and Vertex Cover, unconditionally require exponential size resolution proofs.

Resolution, although powerful enough to encompass most of the complete SAT
solvers known today, does not admit short proofs of even simple counting-based for-
mulas, most notably those encoding the pigeonhole principle: there is no one-one
mapping from n pigeons to (n — 1) holes. Progress in the last decade has shown that
almost all randomly chosen formulas are also difficult for resolution. However these
random formulas are completely unstructured, unlike most real world problems. Are
there large classes of hard but structured formulas that may be more representative
of the instances encountered in practice? We give an affirmative answer to this.

More formally, we consider the problem of providing a resolution proof of the
statement that a given graph with n vertices and average degree A does not contain an
independent set of size k. For graphs chosen randomly from the distribution G(n, p),
where A = np, we show that such proofs asymptotically almost surely require size
roughly exponential in n/AS for k < n/3. This, in particular, implies a 29" Jower
bound for constant degree graphs. We deduce similar complexity results for the
related vertex cover problem on random graphs.

This work was done jointly with Paul Beame and Russell Impagliazzo. It has been
published in the proceedings of the 16" Annual Conference on Computational Com-
plexity (CCC), 2001 [16] and is currently under review for the journal Computational
Complexity.

1.1.2 Hardness of Approzimation

The complexity results described above translate into exponential lower bounds on
the running time of a class of search algorithms for finding a maximum independent
set or a minimum vertex cover. In fact, all resolution proofs studied in the above
work turn out to be of exponential size even when one attempts to prove the non-
existence of a much larger independent set or clique than the largest one, or a much
smaller vertex cover than the smallest one. This in turn implies that a natural class of
approximate optimization algorithms for these problems performs poorly on almost
all problem instances.



In particular, we show that there is no resolution-based algorithm for approximat-
ing the maximum independent set size within a factor of A/(6log A) or the minimum
vertex cover size within a factor of 3/2. This latter result contrasts well with the
commonly used factor of 2 approximation algorithm for the vertex cover problem.

We also give relatively simple algorithmic upper bounds for these problems and
show them to be tight for the class of exhaustive backtracking techniques.

This work was done jointly with Paul Beame and Russell Impagliazzo and is
currently under review for the journal Computational Complexity.

1.2 Proof Systems Underlying SAT Solvers

Our next contribution is in providing a formal understanding of the numerous satisfi-
ability algorithms developed in the last decade. It is common knowledge that most of
today’s complete SAT solvers implement a subset of the resolution proof system. How-
ever, where exactly do they fit in the proof system hierarchy? How do they compare
to refinements of resolution such as regular resolution? Why do certain techniques
result in huge performance gains in practice while others have limited benefits? This
work provides the first answers to some of these questions.

1.2.1 Clause Learning, Restarts, and Resolution

Chapter 4 develops an intuitive but formal understanding of the behavior of SAT
solvers in practice. Using a new framework for rigorous analysis of techniques fre-
quently used in solver implementations, we show that the use of a critical technique
called clause learning makes a solver more powerful than many refinements of resolu-
tion, and with yet another technique — arbitrary restarts — and a slight modification,
makes it as strong as resolution in its full generality.

Conflict-driven clause learning works by caching and reusing reasons of failure on
subproblems. Random restarts help a solver avoid unnecessarily exploring a poten-
tially huge but uninteresting search space as a result of a bad decision. These are two
of the most important ideas that have lifted the scope of modern SAT solvers from ex-
perimental toy problems to large instances taken from real world challenges. Despite
overwhelming empirical evidence, not much was known of the ultimate strengths and
weaknesses of the two. We provide a formal explanation of the observed exponential
speedups seen when using these techniques.

This presents the first precise characterization of clause learning as a proof system
and begins the task of understanding its power by relating it to resolution. In partic-
ular, we show that with a new learning scheme called FirstNewCut, clause learning
can provide exponentially shorter proofs than any proper refinement of general reso-
lution satisfying a natural self-reduction property. These include regular and ordered
resolution, which are already known to be much stronger than the ordinary DPLL
procedure which captures most of the SAT solvers that do not incorporate clause



learning. We also show that a slight variant of clause learning with unlimited restarts
is as powerful as general resolution itself.

This work was done jointly with Paul Beame and Henry Kautz. It has been
published in the proceedings of the 18" International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2003 [18] as well as in the Journal of Artificial Intelligence
Research (JAIR), 2004 [19].

1.3 Building Faster SAT Solvers

The input to almost all SAT solvers of today is a formula in conjunctive normal form
(CNF), i.e., a conjunction of disjunctions of variables or their negations. This shallow
representation results in several algorithmic and implementation-related advantages
and can, in most cases, be made fairly compact with the use of additional auxiliary
variables.

On the other hand, one can easily argue that most real world problem instances
given as input to a SAT solver in the CNF form originate from a more structured,
high level problem description known to the problem designer. For example, the
underlying high level structured object could be a circuit, a planning graph, or a
finite state model for which one wants to prove a desired property.

In Chapters 5 and 6 we show how we can gain substantially by providing the
solver extra information that relates variables to the high level object they originated
from. This information can, for instance, be in the form of an ordering of variables
based on the original structure (e.g. a depth-first traversal of a planning graph) or
their semantics (e.g. variable x represents loading truck & with block ¢). Of course, a
well-translated formula itself contains all this information, but in a hidden way. We
argue that making, as is commonly done, a solver rediscover the structure that was
clear to start with is unnecessary, if not totally wasteful.

1.3.1 Variable Ordering Using Domain Knowledge

Motivated by the theoretical work in Chapter 4, we propose in Chapter 5 a novel way
of exploiting the underlying problem structure to guide clause learning algorithms
toward faster solutions. The key idea is to generate a branching sequence for a CNF
formula encoding a problem from the high level description of the problem such as a
graph or a planning language specification. We show that this leads to exponential
empirical speed-ups on the class of grid and randomized pebbling problems, as well
as substantial improvements on certain ordering formulas.

Conflict-directed clause learning is known to dramatically increase the effectiveness
of branch-and-bound SAT solvers. However, to realize its full power, a clause learner
needs to choose a favorable order of variables to branch on. While several proposed
formula-based static and dynamic ordering schemes help, they face the daunting task
of recovering relevant structural information from the flat CNF formula representation



consisting only of disjunctive clauses. We show that domain knowledge can allow one
to obtain this critical ordering information with much more ease. This is a case in
point for using domain knowledge to boost performance of a SAT solver rather than
using the solver as a pure blackbox tool in the traditional manner.

This work was done jointly with Paul Beame and Henry Kautz. It has been pub-
lished in the proceedings of the 6 International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), 2003 [99] as well as in the Journal of Artificial
Intelligence Research (JAIR), 2004 [19].

1.3.2  Utilizing Structural Symmetry in Domains

In Chapter 6 we present a novel low-overhead framework for encoding and utiliz-
ing structural symmetry in SAT solvers. We use the notion of complete multi-class
symmetry and demonstrate the efficacy of our technique through a new solver called
SymChaff which achieves exponential speedup by using simple tags in the specification
of problems from both theory and practice.

A natural feature of many application domains in which SAT solvers are used
is the presence of symmetry or equivalence with respect to the underlying objects,
such as that amongst all trucks at a certain location in logistics planning and all
wires connecting two switch boxes in an FPGA circuit. Many of these problems
turn out to have a concise description in what is called many-sorted first order logic.
This description can be easily specified by the problem designer and almost as easily
inferred automatically. SymChaff, an extension of the popular SAT solver zChaff, uses
information obtained from the “sorts” in the first order logic constraints to create
symmetry sets that are used to partition variables into classes and to maintain and
utilize symmetry information dynamically.

The challenge in such work is to do it in a way that pushes the underlying proof
system up in the hierarchy without incurring the significant cost that typically comes
from large search spaces associated with complex proof systems. While most of the
current SAT solvers implement subsets of resolution, SymChaff brings it up closer
to symmetric resolution, a proof system known to be exponentially stronger than
resolution [111, 76]. More critically, it achieves this in a time- and space-efficient
manner.

This work has been published in the proceedings of the 20" National Conference
on Artificial Intelligence (AAAT), 2005 [98].



Chapter 2
PRELIMINARIES

Throughout this thesis, we work with propositional or Boolean variables, that
is, variables that take value in the set {TRUE, FALSE}. A propositional formula F
representing a Boolean function is formed by combining these variables using various
Boolean operators. We use the two binary operators conjunction (AND, A) and dis-
junction (OR, V), and the unary operator negation (NOT, —). These three operators
are sufficient to express all Boolean functions and, at the same time, provide enough
expressiveness to encode many interesting functions in a fairly compact way.

Definition 2.1. A propositional formula F' is satisfiable if there exists an assignment
p to its variables such that F' evaluates to TRUE under p. If no such p exists, F' is
unsatisfiable. F'is a tautology if —F' is unsatisfiable.

We often use the abbreviations SAT and UNSAT for satisfiable and unsatisfiable,
respectively. A variable assignment p under which F' evaluates to TRUE is referred to
as a satisfying assignment for F.

Definition 2.2. A propositional formula F is in conjunctive normal form (CNF) if
it is a conjunction of clauses, where each clause is a disjunction of literals and each
literal is either a variable or its negation. The size of F' is the number of clauses in
F.

It is natural to think of F' as a set of clauses and each clause as a set of literals.
We use the symbol A to denote the empty clause which is always unsatisfiable. A
clause with only one literal is referred to as a unit clause. A clause that is a subset
of another is called its subclause. Let p be a partial assignment to the variables of F'.

Definition 2.3. The restricted formula F* is obtained from F' by replacing variables
in p with their assigned values. F' is said to be simplified if all clauses with at least
one TRUE literal are deleted and all occurrences of FALSE literals are removed from
clauses. F'|, denotes the result of simplifying the restricted formula F”.

The construction of Tseitin [109] can be used to efficiently convert any given
propositional formula to one in CNF form by adding new variables corresponding
to its subformulas. For instance, given an arbitrary propositional formula G, one
would first locally re-write each of its operators in terms of A,V, and — to obtain,
say, G = (((a Ab) V (ma A =b)) A =c) V d. To convert this to CNF, one would add
four auxiliary variables w, z, y, and z, construct clauses that encode the four relations



w < (aND), x < (maA-b),y — (wVzx),and z < (y A —~c), and add to that the
clause (zVd). Given this efficient conversion mechanism, we restrict ourselves to CNF
formulas.

2.1 The Propositional Satisfiability Problem

The combinatorial problem that lies at the heart of this work is the satisfiability
problem that asks whether a given propositional formula has a satisfying assignment.
More precisely,

Definition 2.4. The propositional satisfiability problem is the following: Given a
CNF formula F' as input, determine whether F' is satisfiable or not. If it is satisfiable,
output a satisfying assignment for it.

The decision version of this problem, where one is only asked to report SAT
or UNSAT, is also referred to as CNF-SAT in the literature. In their well-known
work, Cook [38] and Levin [79] proved the problem to be NP-complete, setting the
foundation for a vast amount of research in complexity theory.

In this thesis, we will look at this problem from various perspectives. When a
formula F' is unsatisfiable, we will be interested in analyzing the size of the shortest
proof of this fact. The formal machinery using which such proofs are presented and
verified is discussed in the following section. From the practical perspective, we will
also be interested in designing algorithms to find such proofs efficiently. When F
is satisfiable, the task will be to design algorithms that efficiently find a satisfying
assignment for it. Although some applications may require one to output several
satisfying assignments, we will focus on finding one.

An algorithm that solves the propositional satisfiability problem is called a sat-
isfiability algorithm. Practical implementations of such algorithms typically involve
smart data structures and carefully chosen parameters in addition to an efficient top-
level algorithm. These implementations are referred to as SAT solvers. Note the use
of SAT here as referring to the propositional satisfiability problem in contrast to being
an abbreviation of satisfiable. Henceforth, we leave it up to the context to make the
meaning of “SAT” unambiguous.

2.2 Proof Systems

The notion of a propositional proof system was first defined in the seminal work of
Cook and Reckhow [39]. It is an efficient (in the size of the proof) procedure to check
the correctness of proofs presented in a certain format. More formally,

Definition 2.5. A propositional proof system is a polynomial time computable pred-
icate S such that a propositional formula F' is unsatisfiable iff there exists a proof (or
refutation) m for which S(F, ) holds.
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We refer to such systems simply as proof systems and omit the word propositional.
Note that proof systems can alternatively be defined for tautologies because of the
fact that F' is an unsatisfiable formula iff —F is a tautology. In this manuscript,
however, we use the phrase proof system in the context of unsatisfiable formulas only.

The strength of a proof system is characterized by the sizes of proofs it admits
for various unsatisfiable formulas: a stronger proof system can verify the correctness
of shorter proofs presented in a more complex format. This motivates the following
definition.

Definition 2.6. The complezity of a formula F' under a proof system .S, denoted
Cs(F), is the length of the shortest refutation of F' in S.

Let {F,} be a family of formulas over an increasing number of variables n. The
asymptotic complexity of {F},} in S with respect to n is given by the function f(n) =
Cs(F,) and is denoted Cg(F),), with abuse of notation. We will be interested in
characterizing families of formulas as having polynomial or exponential asymptotic
complexity under specific proof systems.

2.2.1 Resolution

Resolution (RES) is a widely studied simple proof system that can be used to prove
unsatisfiability of CNF formulas. It forms the basis of many popular systems for
practical theorem proving. Lower bounds on resolution proof sizes thus have a bearing
on the running time of these systems.

The resolution rule states that given clauses Cy = (AVz) and Cy = (BV —x), one
can derive the clause C' = (AV B) by resolving on x. Cy and C; are called the parent
clauses and C' is called their resolvent. The resolution rule has the property that a
derived clause is satisfied by any assignment that satisfies both the parent clauses.

Definition 2.7. A resolution derivation of C' from a CNF formula F' is a sequence
m = (C1,Cs,...,Cs = C) with the following property: each clause C; in 7 is either a
clause of F' (an initial clause) or is derived by applying the resolution rule to C; and
Cr, 1 < j,k <i (a derived clause). The size of 7 is s, the number of clauses occurring
in it.

We assume that the clauses in 7 are non-redundant, i.e., each C; # C in 7 is used
to derive at least one other clause C;,7 > j. Any derivation of the empty clause A
from F', also called a refutation or proof of F', shows that F' is unsatisfiable.

Definition 2.8. Let F' be a CNF formula and 7 a resolution proof of its unsatisfia-
bility.

(a) The size of 7, size(r), is the number of clauses appearing in 7.
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(b) The resolution complezity of F', RES(F), is the minimum of size(r) over all
resolution proofs 7 of F'; if no such proofs exist, RES(F") = oc.

(¢) The width of a clause is the number of literals occurring in it. The width w(F)
of F and the width w(7) of 7 are the maximum of the widths of all clauses in
F and 7, respectively.

(d) The refutation width of F'; w(F t A), is the minimum of w(m) over all proofs
mof F.

As we shall see in Section 2.2.3, to prove a lower bound on RES(F), it is sufficient
to prove a lower bound on the refutation width of F'. It also typically turns out to
be easier to analyze the width rather than the size of the smallest refutation. This
makes the concept of width quite useful in proof complexity.

It is often insightful to think of the structure of a resolution refutation (or deriva-
tion) 7 in terms of a directed acyclic graph G, defined as follows. G, has a vertex
for each clause in 7, labeled with that clause. If the clause C} labeling a vertex v
in G, is derived by resolving clauses C; and C; upon a variable z, then (a) v has a
secondary label z, and (b) v has two outgoing edges directed to the vertices labeled
C; and C;. All vertices labeled with initial clauses of m do not have a secondary label
and have outdegree zero.

2.2.2  Refinements of Resolution

Despite its simplicity, unrestricted resolution as defined above (also called general
resolution) is hard to implement efficiently due to the difficulty of finding good choices
of clauses to resolve; natural choices typically yield huge storage requirements. Various
restrictions on the structure of resolution proofs lead to less powerful but easier to
implement refinements that have been studied extensively in proof complexity.

Definition 2.9. Let 7 = (C1,Cs,...,Cs = C) be a resolution derivation, G be the
graph associated with it, a be an assignment to the variables in 7, ar be the all
FALSE assignment, and o be the all TRUE assignment.

(a) 7 is tree-like if each vertex in G corresponding to a derived clause has indegree
L.

(b) 7 is regular if no secondary vertex label appears twice in any directed path in

Gr.

(c) 7 is ordered or Davis-Putnam if the sequence of secondary vertex labels along
every directed path in G, respects a fixed total ordering of the variables.
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(d) 7 is linear if each C; in 7 is either an initial clause or is derived by resolving
Ci—l with Oj,j <1—1.

(e) m is an a-derivation if at least one parent clause involved in each resolution
step in it is falsified by «.

(f) = is positive if it is an a-derivation for a = ap.
(g) 7 is negative if it is an a-derivation for a = ar.

(h) 7 is semantic if it is an a-derivation for some «.

While all these refinements are sound and complete as proof systems, they differ
vastly in efficiency. For instance, in a series of results, Bonet et al. [27], Bonet and
Galesi [28], and Buresh-Oppenheim and Pitassi [31] have shown that regular, ordered,
linear, positive, negative, and semantic resolution are all exponentially stronger than
tree-like resolution. On the other hand, Bonet et al. [27] and Alekhnovich et al. [3]
have proved that tree-like, regular, and ordered resolution are exponentially weaker
than RES.

2.2.3 The Size-Width Relationship

Most known resolution complexity lower bounds, including our results in subsequent
chapters, can be proved using a general result of Ben-Sasson and Wigderson [23] that
is derived from earlier arguments by Haken [60] and Clegg, Edmonds, and Impagliazzo
[36]. It provides a relationship between the size of resolution proofs and their width
(recall Definition 2.8), namely, any short proof of unsatisfiability of a CNF formula
can be converted to one of small width. Therefore, a lower bound on the width of a
resolution proof implies a lower bound on its size.

For a reason that will become clear in Section 2.3.1, we will use DPLL(F") to denote
the tree-like resolution complexity of a formula F'.

Proposition 2.1 ([23]). For any CNF formula F, DPLL(F) > 2w(FrA)—w(),

Proposition 2.2 ([23]). For any CNF formula F' over n variables and ¢ = 1/(91n2),
RES(F) > 20(w(F)—A)fw(F))2/n'

For completeness, we sketch the proof of this result for the case of tree-like res-
olution. Suppose we have a refutation 7 of F (over n variables) with size(m) < 2°.
The idea is to use induction on n and b to construct a refutation 7’ of F' such that
width(m') < b. Let the last variable resolved upon in 7 be z. Assume without loss of
generality that x is derived in 7 by a tree-like derivation of size at most 2°~!. This
gives a refutation of F|_, of the same size by simply removing z from all clauses. By
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induction on b, this can be converted into a refutation of F|—, of width at most b—1,
which immediately gives a derivation 7" of x from F of width at most b by adding x
back to the initial clauses from which it was removed and propagating the change.

On the other hand, 7 contains a derivation of -z of size at most 2° which can be
converted to a refutation of F'|, of the same size. By induction on n, this refutation,
and hence the original derivation of —x, can be converted to one of width at most
b. Now resolve, wherever possible, each of the initial clauses of this small width
derivation of —x with the result x of the derivation 7" and propagate the resulting
simplification. This gives a refutation #’ of F' of width at most b.

2.3 The DPLL Procedure and Clause Learning

The Davis-Putnam-Logemann-Loveland or DPLL procedure is both a proof system as
well as a collection of algorithms for finding proofs of unsatisfiable formulas. It can
equally well be thought of as a collection of complete algorithms for finding a satisfying
assignment for a given formula; its failure to find such an assignment constitutes a
proof of unsatisfiability of the formula. While the former view is more suited to proof
complexity theory, the latter is the norm when designing satisfiability algorithms.
Davis and Putnam [44] came up with the basic idea behind this procedure. However,
it was only a couple of years later that Davis, Logemann, and Loveland [43] presented
it in the efficient top-down form in which it is widely used today.

Algorithm 1, DPLL-recursive(F,p), sketches the basic DPLL procedure on CNF
formulas. The idea is to repeatedly select an unassigned literal ¢ in the input formula
F and recursively search for a satisfying assignment for F'|, and F.,. The step where
such an ¢ is chosen is commonly referred to as the branching step. Setting ¢ to TRUE
or FALSE when making a recursive call is called a decision. The end of each recursive
call, which takes F' back to fewer assigned variables, is called the backtracking step.

A partial assignment p is maintained during the search and output if the formula
turns out to be satisfiable. If F'|, contains the empty clause, the corresponding clause
of F' from which it came is said to be wviolated by p. To increase efficiency, unit clauses
are immediately set to TRUE as outlined in Algorithm 1. Pure literals (those whose
negation does not appear) are also set to TRUE as a preprocessing step and, in some
implementations, in the simplification process after every branch.

At any point during the execution of the algorithm, a variable that has been
assigned a value at a branching step is called a decision variable while one that
has been assigned a value by unit propagation is called an implied variable. The
decision level of an assigned variable is the recursive depth (starting at 0) of the call
to DPLL-recursive that assigns it a value.

Variants of this algorithm form the most widely used family of complete algorithms
for formula satisfiability. They are frequently implemented in an iterative rather than
recursive manner, resulting in significantly reduced memory usage. The key difference
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Input : A CNF formula F' and an initially empty partial assignment p
Output : UNSAT, or an assignment satisfying F’
begin
(F,p) < UnitPropagate (F, p)
if F' contains the empty clause then return UNSAT
if F' has no clauses left then
Output p
return SAT
{ « a literal not assigned by p // the branching
step
if DPLL-recursive(F|,, pU{l}) = SAT then return SAT
return DPLL-recursive (F|_g, p U {~(})
end

UnitPropagate (F)
begin
while F' contains no empty clause but has a unit clause x do
L F — F|,
p—pU{z}
return (F,p)
end
Algorithm 2.1: DPLL-recursive(F, p)

in the iterative version is the extra step of unassigning variables when one backtracks.
The naive way of unassigning variables in a CNF formula is computationally expen-
sive, requiring one to examine every clause in which the unassigned variable appears.
However, the watched literals scheme of Moskewicz et al. [88] provides an excellent
way around this and merits a brief digression.

The Watched Literals Scheme

The key idea behind the watched literals scheme, as the name suggests, is to maintain
and “watch” two special literals for each active (i.e., not yet satisfied) clause that are
not FALSE under the current partial assignment. Recall that empty clauses halt the
DPLL process and unit clauses are immediately satisfied. Hence, one can always find
such watched literals in all active clauses. Further, as long as a clause has two such
literals, it cannot be involved in unit propagation. These literals are maintained as
follows. When a literal ¢ is set to FALSE, we must find another watched literal for
the clause that had ¢ as a watched literal. We must also let =¢ be a watched literal
for previously active clauses that are now satisfied because of this assignment to £.
By doing this, positive literals are given priority over unassigned literals for being the
watched literals.
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With this setup, one can test a clause for satisfiability by simply checking whether
at least one of its two watched literals is TRUE. Moreover, the relatively small amount
of extra book-keeping involved in maintaining watched literals is well paid off when one
unassigns a literal ¢ by backtracking — in fact, one needs to do absolutely nothing! The
invariant about watched literals is maintained as such, saving a substantial amount
of computation that would have been done otherwise.

2.8.1 Relation to Tree-like Resolution

When a formula F' is unsatisfiable, the transcript of the execution of DPLL on F
forms a proof of its unsatisfiability. This proof is referred to as a DPLL refutation
of F'. The size of a DPLL refutation is the number of branching steps in it. As the
following Proposition shows, the structure of DPLL refutations is intimately related
to the structure of tree-like resolution refutations.

Proposition 2.3. A CNF formula F' has a DPLL refutation of size at most s iff it
has a tree-like resolution refutation of size at most s.

Proof. The idea is to associate with every DPLL refutation 7 a tree 77 and show
how T7 can be viewed as or simplified to the graph G, associated with a tree-like
resolution refutation 7 of F. Given a DPLL refutation 7, the tree 1" is constructed
recursively by invoking the construction for DPLL-recursive (F, ¢). We describe below
the construction in general for DPLL-recursive (H, p) for any sub-formula H of F' and
partial assignment p to the variable of F'.

Start by creating the root node v for the tree corresponding to the procedure
call DPLL-recursive(H, p). If the procedure terminates because there is an empty
clause after unit propagation, label v with an initial clause of F' that has become
empty and stop. If not, let ¢ be the literal chosen in the branching step of the
call. Recursively create the two subtrees T, and T, associated with the recursive
calls to DPLL-recursive(H |y, {¢}) and DPLL-recursive(H|_,, {—¢}), respectively. If
either of T, or 1., is labeled by a clause that does not contain —¢ or ¢, respectively,
then discard v and the other subtree, associate this one with the procedure call
DPLL-recursive(H, p), and stop. Otherwise, add edges from v to the roots of T, and
T_ 4. Let x be the variable corresponding to ¢. Label v with the clause obtained by
resolving on x the clauses labeling T, and T',. Finally, assign x as the secondary label
for v.

It can be verified that the label of the root node of the final tree T corresponding
to the call to DPLL-recursive (F, ¢) is the empty clause A and that T is precisely the
graph G, associated with a legal tree-like resolution refutation m of F'.

On the other hand, if one starts with a graph G|, associated with a tree-like
resolution refutation m of F', the graph can be viewed unchanged as the tree T7
associated with a DPLL refutation 7 of F'. This finishes the proof. O
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Corollary 2.1. For a CNF formula F, the size of the smallest DPLL refutation of F'
1s equal to the size of the smallest tree-like resolution refutation of F.

This explains why we used DPLL(F) to denote the tree-like resolution complexity
of F'in Section 2.2.3.

2.3.2  Clause Learning

The technique of clause learning was first introduced in the context of the DPLL-based
SAT solvers by Marques-Silva and Sakallah [84]. It can be thought of as an extension
of the DPLL procedure that caches causes of assignment failures in the form of learned
clauses. It proceeds by following the normal branching process of DPLL until there is a
“conflict,” i.e., a variable is implied to be TRUE as well as FALSE by unit propagation.
We give here a brief sketch of how conflicts are handled, deferring more precise details
to Section 4.2.

If a conflict occurs when no variable is currently branched upon, the formula is
declared UNSAT. Otherwise, the algorithm looks at the graphical structure of variable
assignment implications (caused by unit propagation). From this, it infers a possible
“cause” of the conflict, i.e., a relatively small subset of the currently assigned variables
that, by unit propagation, results in the conflict. This cause is learned in the form
of a “conflict clause.” The idea is to avoid any future conflicts that may result from
a careless assignment to the subset of variables already known to potentially cause a
conflict. The algorithm now backtracks and continues as in ordinary DPLL, treating
the learned clause just like the initial ones. A clause is said to be known at a stage if
it is either an initial clause or has previously been learned.

Algorithm 2.2 gives the basic structure of the clause learning algorithm by Moskewicz
et al. [88] used in the popular SAT solver zChaff. This algorithm forms the basis of
our implementations and experiments in subsequent chapters. We present it here as
the top-level iterative process that lies at the heart of zChaff.

The procedure DecideNextBranch chooses the next variable to branch on. In
zChaff, this is done using the Variable State Independent Decaying Sum (VSIDS)
heuristic which assigns a slowly decaying weight to each literal that is boosted when-
ever the literal is involved in a conflict. Note that there is no explicit variable flip
in the entire algorithm. The conflict clause learning strategy used by zChaff auto-
matically (by unit propagation) flips the assignment of the current variable before
backtracking. The procedure Deduce applies unit propagation, keeping track of any
clauses that may become empty, causing what is known as a conflict. If all clauses
have been satisfied, it declares the formula to be SAT. The procedure AnalyzeConflict
looks at the structure of implications and computes from it a conflict clause to learn.
It also computes and returns the decision level that one needs to backtrack.

In general, the learning process is expected to save us from redoing the same
computation when we later have an assignment that causes conflict due in part to
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Input : A CNF formula

Output : UNSAT, or SAT along with a satisfying assignment
begin

while TRUE do

DecideNextBranch

while TRUE do
status <« Deduce

if status = CONFLICT then
blevel «+— AnalyzeConflict

if blevel = 0 then return UNSAT
| Backtrack (blevel)

else if status = SAT then

Output current assignment stack

L return SAT
L else break

end
Algorithm 2.2: DPLL-ClauselLearning

the same reason. Variations of such conflict-driven learning include different ways of
choosing the clause to learn (different learning schemes) and possibly allowing multiple
clauses to be learned from a single conflict. In the last decade, many algorithms based
on this idea have been proposed and demonstrated to be empirically successful on large
problems that could not be handled using other methodologies. These include Relsat
by Bayardo Jr. and Schrag [13], Grasp by Marques-Silva and Sakallah [84], SATO by
Zhang [113], and, as mentioned before, zChaff. We leave a more detailed discussion of
the concepts involved in clause learning as well as its formulation as a proof system
CL to Section 4.2.

Remark 2.1. Throughout this thesis, we will use the term DPLL to denote the basic
branching and backtracking procedure given in Algorithm 1, and possibly the iterative
version of it. It will not include learning conflict clauses when backtracking, but
will allow intelligent branching heuristics as well as common extensions such as fast
backtracking and restarts discussed in Section 4.2. Note that this is in contrast
with the occasional use of the term DPLL to encompass practically all branching and
backtracking approaches to SAT, including those involving learning.
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Chapter 3

THE RESOLUTION COMPLEXITY OF GRAPH
PROBLEMS

We are now ready to describe the technical contributions of this thesis in detail.
We begin in this chapter with our main proof complexity results. These are for the
resolution proof system and apply to the CNF formulations of three graph problems,
namely, (the existence of) independent sets, vertex covers, and cliques.

An independent set in an undirected graph is a set of vertices no two of which
share an edge. The problem of determining whether or not a given graph contains
an independent set of a certain size is NP-complete as shown by Karp [69]'. Con-
sequently, the complementary problem of determining non-existence of independent
sets of that size in the graph is co-NP-complete. This chapter studies the problem of
providing a resolution proof of the non-existence of independent sets.

Any result that holds for nearly all graphs can be alternatively formalized as a
result that holds with very high probability when a graph is chosen at random from
a “fair” distribution. We use this approach and study the resolution complexity of
the independent set problem in random graphs chosen from a standard distribution.
Independent sets and many other combinatorial structures in random graphs have
very interesting mathematical properties as discussed at length in the texts by Bol-
lobés [26] and Janson, Luczak, and Ruciniski [66]. In particular, the size of the largest
independent set can be described with high certainty and accuracy in terms of simple
graph parameters.

This work proves that given almost any graph G and a number k, exponential-size
resolution proofs are required to show that G does not contain an independent set of
size k. In fact, when G has no independent set of size k, exponential-size resolution
proofs are required to show that independent sets of even a much larger size k' > k do
not exist in G. This yields running time lower bounds for certain classes of algorithms
for approximating the size of the largest independent sets in random graphs.

Closely related to the independent set problem are the problems of proving the
non-existence of cliques or vertex covers of a given size. Our results for the indepen-
dent set problem also lead to bounds for these problems. As the approximations for
the vertex cover problem act differently from those for independent sets, we state the
results in terms of vertex covers as well as independent sets. (Clique approximations
are essentially identical to independent set approximations.)

'Karp actually proved the related problem of clique to be NP-complete.
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Many algorithms for finding a maximum-size independent set have been proposed.
Influenced by algorithms of Tarjan [105] and Tarjan and Trojanowski [106], Chvatal
[34] devised a specialized proof system for the independent set problem. In this
system he showed that with probability approaching 1, proofs of non-existence of
large independent sets in random graphs with a linear number of edges must be
exponential in size. Chvatal’s system captures many backtracking algorithms for
finding a maximum independent set, including those of Tarjan [105], Tarjan and
Trojanowski [106], Jian [67], and Shindo and Tomita [100]. In general, the transcript
of any f-driven algorithm [34] for independent sets running on a given graph can be
translated into a proof in Chvatal’s system.

Our results use the well-known resolution proof system for propositional logic
rather than Chvatal’s specialized proof system. Given a graph G and an integer k,
we consider encoding the existence of an independent set of size k in G as a CNF
formula and examine the proof complexity of such formulas in resolution. Resolution
on one of the encodings we present captures the behavior of Chvatal’s proofs on the
corresponding graphs. For all our encodings, we show that given a randomly chosen
graph G' of moderate edge density, almost surely, the size of any resolution proof of
the statement that G does not have an independent set of a certain size must be
exponential in the number of vertices in G. This implies an exponential lower bound
on the running time of many algorithms for searching for, or even approximating, the
size of a maximum independent set or minimum vertex cover in G.

Although resolution is a relatively simple and well-studied proof system, one may
find the concept of resolution proofs of graph theoretic problems somewhat unnatural.
The tediousness of propositional encodings and arguments related to them contributes
even more to this. Chvatal’s proof system, on the other hand, is completely graph
theoretic in nature and relates well to many known algorithms for the independent set
problem. By proving that resolution can efficiently simulate Chvatal’s proof system,
we provide another justification for studying the complexity of resolution proofs of
graph problems.

In the proof complexity realm, exponential bounds for specialized structured for-
mulas and for unstructured random k-CNF formulas have previously been shown by
several researchers including Haken [60], Urquhart [110], Razborov [95], Chvatal and
Szemerédi [35], Beame et al. [17], and Ben-Sasson and Wigderson [23]. However,
much less is known for large classes of structured formulas. Our results significantly
extend the families of structured random formulas for which exponential resolution
lower bounds are known beyond the graph coloring example recently shown by Beame
et al. [14]. (Note that our results neither imply nor follow from those in [14]. Although
the non-existence of an independent set of size n/K implies in a graph of n vertices
implies that the graph is not K-colorable, the argument requires an application of
the pigeonhole principle which is not efficiently provable in resolution [60].)

For obtaining our lower bounds, instead of looking at the general problem of dis-



20

proving the existence of any large independent set in a graph, we focus on a restricted
class of independent sets that we call block-respecting independent sets. We show
that even ruling out this smaller class of independent sets requires exponential-size
resolution proofs. These restricted independent sets are simply the ones obtained by
dividing the n vertices of the given graph into k blocks of equal size (assuming k
divides n) and choosing one vertex from each block. Since it is easier to rule out a
smaller class of independent sets, the lower bounds we obtain for the restricted ver-
sion are stronger in the sense that they imply lower bounds for the general problem.
While block-respecting independent sets are a helpful tool in analyzing general reso-
lution proofs, we are able to give better lower bounds for DPLL proofs by applying a
counting argument directly to the general problem.

We show that our results extend the known lower bounds for Chvatal’s system [34]
to resolution and also extend them to graphs with many more than a linear number of
edges, yielding bounds for approximation algorithms as well as for exact computation.
More precisely, we show that no resolution-based technique can achieve polynomial-
time approximations of independent set size within a factor of A/(6log A). For the
vertex cover problem, we show an analogous result for approximation factors better
than 3/2.

Recently, by computing a property related to the Lovasz number of a random
graph, more precisely its vector chromatic number, Coja-Oghlan [37] gave an expected
polynomial time O(v/A/log A)-approximation algorithm for the size of the maximum
independent set in random graphs of density A. Thus our results show that this new
approach is provably stronger than that obtainable using resolution-based algorithms.

The proof our of main lower bound is based on the size-width relationship of
resolution proofs discussed in Section 2.2.3. It uses the property that any proof of
non-existence of an independent set of a certain size in a random graph is very likely
to refer to a relatively large fraction of the vertices of the input graph, and that any
clause capturing the properties of this large fraction of vertices must have large width.

More precisely, the proof can be broadly divided into two parts, both of which use
the fact that random graphs are almost surely locally sparse. We first show that the
minimum number s of input clauses that are needed for any refutation of the problem
is large for most graphs. We then use combinatorial properties of independent sets in
random graphs to say that any clause minimally implied by a relatively large subset
of these s clauses has to be large. Here minimally implied means that implied by the
size-s set of clauses under consideration but not by any proper subset of it. These
two arguments together allow us to deduce that the width of any such refutation has
to be large. The size-width relationship translates this into a lower bound on the
refutation size.

We begin with basic properties of independent sets in Section 3.1. In Section 3.2
we describe three natural encodings of the independent set problem as CNF formulas
and compare the proof sizes of the different encodings. In Sections 3.3 and 3.4 we com-
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pare these to proofs in Chvatal’s proof system for independent sets and to the proof
complexity of related graph theory problems, namely, vertex cover and clique. After
giving some simple proof complexity upper bounds based on exhaustive backtracking
algorithms in Section 3.5, we prove the main resolution lower bounds in Sections 3.6
to 3.8. Note that Sections 3.2 to 3.5 contain somewhat tedious details that the reader
may want to skip during the first read. Finally, in Section 3.10 we prove a somewhat
stronger lower bound that applies to exhaustive backtracking algorithms (as well as
the DPLL procedure) and qualitatively matches our upper bounds for the same.

Remark 3.1. Although we described DPLL algorithms in Section 2.3 as working on
propositional CNF formulas, they capture a much more general class of algorithms
that are based on branching and backtracking. For instance, basic algorithms for
finding a maximum independent set, such as that of Tarjan [105], branch on each
vertex v by either including v in the current independent set and deleting it and all
its neighbors from further consideration, or excluding v from the current independent
set and recursively finding a maximum independent set in the remaining graph. This
can be formulated as branching and backtracking on appropriate variables of a CNF
formulation of the problem. In fact, more complicated algorithms, such as that of
Tarjan and Trojanowski [106], branch in a similar manner not only on single vertices
but on small subsets of vertices, reusing subproblems already solved. Such algorithms
also fall under the category of resolution-based (not necessarily tree-like) algorithms
and our lower bounds apply to them as well because of the following reasoning. The
computation history of these algorithms can be translated into a proof in Chvatal’s
system by replacing each original branch in the computation with a small tree of
single-vertex branches. We then resort to our result that resolution can efficiently
simulate Chvétal’s proof system.

3.1 Independent Sets in Random Graphs

For any undirected graph G = (V, E), let n = |V| and m = |E|. A k-independent set
in G is a set of k vertices no two of which share an edge. We will describe several
natural ways of encoding in clausal form the statement that G has a k-independent
set. Their refutations will be proofs that G does not contain any k-independent set.
We will be interested in size bounds for such proofs.

Combinatorial properties of random graphs have been studied extensively (see, for
instance, [26, 66]). We use the standard model G(n, p) for graphs with n vertices where
each of the (g) edges is chosen independently at random with probability p € [0, 1].
G ~ G(n,p) denotes a graph G chosen at random from this distribution. We will

state most of our results in terms of parameters n and A, where A def np is (roughly)
the average degree of G.

We will need both worst case and almost certain bounds on the size of the largest
independent set in graphs of density A.
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Proposition 3.1 (Turan’s Theorem). Every graph G with n vertices and average
degree A has an independent set of size LALHJ . In general, for any integer k satisfying
A < %5 — 1, G has an independent set of size k.

For € > 0, let ki, be defined as follows?:

2n

k:I:EZLA

(log A —loglog A +1—1log2+¢)]

Proposition 3.2 ([66], Theorem 7.4). For every ¢ > 0 there is a constant C, such
that the following holds. Let A = np, C. < A < n/log’n, and G ~ G(n,p). With
probability 1 — o(1) in n, the largest independent set in G is of size between k_. and
kic.

This shows that while random graphs are very likely to have an independent set of
size k_., they are very unlikely to have one of size k.. +1. The number of independent
sets of a certain size also shows a similar threshold behavior. While there are almost
surely no independent sets of size (2n/A)log A, the following lemma, which follows
by a straightforward extension of the analysis in [66, Lemma 7.3|, shows that there
are exponentially many of size (n/A)log A. We use this bound later to put a limit
on the best one can do with exhaustive backtracking algorithms that systematically
consider all potential independent sets of a certain size.

Lemma 3.1. There is a constant C' > 0 such that the following holds. Let A = np,
A < n/log’n, and G ~ G(n,p). With probability 1 — o(1) in n, G contains at least
20/ M)log® A iy dependent sets of size | (n/A)log Al.

Proof. Let X be a random variable whose value is the number of independent sets
of size k in G = (V, E). The expected value of X, is given by:

E[X:y] = Z Pr[S is an independent set in G|
SCV,|S|=k

_ (Z) (1-p)&)

k
> (%) P for ¢ > 1/2, p=o0(1) in n, and large enough n

k
— (% echk/n>

2Throughout this thesis, logarithms denoted by log will have the natural base e and those denoted
by log, will have base 2.
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Let ¢ = 0.55 and C' = 0.05/log2 so that A'=¢/log A > 2¢1¢2  Setting k =
|(n/A)log A| and observing that ((n/k’)e‘mk/”)lC decreases with k,

(n/A)log A
> A e—clogA
— \logA

> QC(n/A) log? A‘

E [X|(n/a)10g)]

We now use the standard second moment method to prove that X for k =
|(n/A)log A| asymptotically almost surely lies very close to its expected value. We
begin by computing the expected value of X? and deduce from it that the variance
of X, is small.

k
E[X;] = Z Pr[S is independent] Z Z Pr[T is independent]
SCV, |S|=k i=0 TCV, |T|=k, |SOT|=i
n 6 s (R (r* (5)-0)
- (})a-nt > GG a-nort
2
Therefore var [ X E [X;]

ma-pnt ¥, HEHa-peG

_ 1

(Ma-p®]

This is the same expression as equation (7.8) of [66, page 181]. Following the calcula-
tion of Lemma 7.3 of [66], we obtain that var[X}]/(E[X?])* — 0 for k = [ (n/A)log A|
as n — oo when A > y/nlog”n. When A < /nlog®n, an argument along the lines of
Theorem 7.4 of [66] provides the same result. Applying the second moment method,
this leads to the desired bound. O]

3.2 Encoding Independent Sets as Formulas

In order to use a propositional proof system to prove that a graph does not have
an independent set of a particular size, we first need to formulate the problem as a
propositional formula. This is complicated by the difficulty of counting set sizes using
CNF formulas.

One natural way to encode the independent set problem is to have indicator vari-
ables that say which vertices are in the independent set and auxiliary variables that
count the number of vertices in the independent set. This encoding is discussed in
Section 3.2.1. The clauses in this encoding, although capturing the simple concept of
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counting, are somewhat involved. Moreover, the existence of two different types of
variables makes this encoding difficult to reason about directly.

A second encoding, derived from the counting-based encoding, is described in
Section 3.2.2. It is based on a mapping from the vertices of the graph to k additional
nodes as an alternative to straightforward counting, and uses variables of only one
type. This is essentially the same encoding as the one used by Bonet, Pitassi, and
Raz [29] for the clique problem, except that in our case we need to add an extra set
of clauses, called ordering clauses, to make the lower bounds non-trivial. (Otherwise,
lower bounds trivially follow from known lower bounds for the pigeonhole principle [60]
which have nothing to do with the independent set problem; in [29] this problem did
not arise because the proof system considered was cutting planes where, as shown by
Cook et al. [40], the pigeonhole principle has short proofs.)

Section 3.2.3 finally describes a much simpler encoding which is the one we analyze
directly for our lower bounds. This encoding considers only a restricted class of
independent sets that we call block-respecting independent sets, for which the problem
of counting the set size is trivial. Hence, the encoding uses only one type of variable
that indicates whether or not a given vertex is in the independent set. Refutation
of this third encoding rules out the existence of the smaller class of block-respecting
independent sets only. Intuitively, this should be easier to do than ruling out all
possible independent sets. In fact, we show that the resolution and DPLL refutations
of this encoding are bounded above in size by those of the mapping encoding and are
at worst a small amount larger than those of the counting encoding. As a result, we
can translate our lower bounds for this third encoding to each of the other encodings.
Further, we give upper bounds for the two general encodings which also apply to the
simpler block-respecting independent set encoding.

For the rest of this chapter, identify the vertex set of the input graph with
{1,2,...,n}. Each encoding will be defined over variables from one or more of the
following three categories:

e 1,,1 < v <n, which is TRUE iff vertex v is chosen by the truth assignment to
be in the independent set,

® 4,i,0<i<v<n,0 <7<k, which is TRUE iff precisely ¢ of the first v vertices
are chosen in the independent set, and

o z,;,1 <v<n,1<i<k, which is TRUE iff vertex v is chosen as the i node of
the independent set.

A desirable property of all independent set encodings is their monotonicity, i.e.,
for k' > k, proving the non-existence of an independent set of size k£’ in that encoding
must not be any harder than doing so for size k, up to a polynomial factor. This
property indeed holds for each of the three encodings we consider below.
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3.2.1 FEncoding Based on Counting

The counting encoding, ceount(G, k), of the independent set problem is defined over
variables =, and y,,. As mentioned previously, this encoding is somewhat tedious in
nature. It has the following three kinds of clauses:

(a) Edge Clauses: For each edge (u,v), Qeount(G, k) has one clause saying that at
most one of u and v is selected; V(u,v) € F,u < v: (=2, VZy) € Qeount (G, k)

(b) Size-k Clause: There is a clause saying that the independent set chosen is of
size k; Yn,k S acount(G7 k)

(c) Counting Clauses: There are clauses saying that variables y,,; correctly count
the number of vertices chosen. For simplicity, we first write this condition not
as a set of clauses but as more general propositional formulas. For the base
case, Qeount (G, k) contains yo o and the clausal form of (y,0 < (Yo—1,0 A "2y))
for v € {1,...n}. Further, Vi,v,1 < i < v < n, 1 <i <k, qeoun(G, k)
contains the clausal form of (y,; < ((Yp—1: A 7Ty) V (Yo—1.i-1 A Zy))), unless
i = v, in which case Qeouni(G, k) contains the clausal form of the simplified
formula (yy < (Yo—1,0-1 A Zy)).

Translated into clauses, these conditions take the following form. Formulas
defining y, o for v > 1 translate into {(—yu0 V Yu-1,0), (“Yvo V 2y), (Yvo V
“WYy—10 V Ty)}. Further, formulas defining y,; for v > ¢ > 1 translate into
{ (Wi Vo1V 20)s (Yo,i V WYo1,i-1 V 0), (Y0 V Yu—1 V Yo1,i-1)5 (T V
Yo—1, V Ty)y (Yo V Yp—1,—1 V 7T,) }, whereas in the case ¢ = v they translate
into {(_'yv,v \ yv—l,v—l)v (_'yv,v \ (L’v), (_‘wv \ Yu—1,0-1 \% yv,v)}~

Lemma 3.2. For any graph G over n vertices and k' > k,

RES(ount (G, K)) < 1 RES(Qeount (G, k)) +2n*  and
DPLL((tepunt(G, K)) < 1 DPLL(Clopuunt (G, ) + 202,

Proof. If G contains an independent set of size k, then there are no resolution refuta-
tions of Qeount(G, k). By our convention, Res(eount(G,k)) = DPLL(eount(G, k)) =
oo, and the result holds. Otherwise consider a refutation 7 of @eount(G, k). Using 7,
we construct a refutation 7’ of qeount (G, k') such that size(n’) < (n—k+1) size(m)+
2(k" — k)(n — k), which is less than n size(w) + 2n%.  Further, if 7 is a tree-like
refutation, then so is 7’.

Qeount (G, k') contains all clauses of eount(G, k) except the size-k clause, y, .
Therefore, starting with aeeun:(G, k') as initial clauses and using 7 modified not to
use the clause y, 1, we derive a subclause of =y, ;. This clause, however, cannot be
a strict subclause of =y, x because eount (G, k) \ {yni} is satisfiable. Hence, we must
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obtain —y, ;. Call this derivation D,,. By construction, size(D,,) < size(m). Making
a copy of D,,, we restrict it by setting x,, < FALSE, Yy, < Yn—1.; to obtain a deriva-
tion D,,_y of —y,_1%. Continuing this process, construct derivations D, of -y, for
p€{n—1,n—2,... k} by further setting x,1 < FALSE, Ypi1x < Ypi- Again, by
construction, size(D,) < size(m). Combining derivations D,,, D,,_1,..., Dy into 7’
gives a derivation of size at most (n — k+ 1)size(m) of clauses —y,x, k < p < n, which
is tree-like if 7 is.

Continuing to construct 7', resolve the above derived clause -y, with the count-
ing clause (—Yrt+1k+1 V Ykk) Of Qeount(G,K') to obtain —yyi1,+1. Now for v going
from k + 2 to n, resolve the already derived clauses —y,_; ;41 and —y,_;, with the
counting clause (—yyx+1 V Yo—1k+1 V Yo—1k) Of Qeount(G, k') to obtain =y, 1. This
gives a tree-like derivation of size less than 2(n — k) of clauses =y, k11, k+1 < p < mn,
starting from clauses —wy,x, k < ¢ < n. Repeating this process (k' — k) times gives
a tree-like derivation of size less than 2(k" — k)(n — k) of clauses =y, k' < p < n,
starting from clauses =y, , & < ¢ < n, derived previously. In particular, =y, » is now
a derived clause. Resolving it with the size-k" clause y,, x of Qeount(G, k') completes
refutation =’ O

3.2.2  FEncoding Based on Mapping

This encoding, denoted ayu.,(G, k), uses a mapping from n vertices of G to k nodes
of the independent set as an indirect way of counting the number of vertices chosen
by a truth assignment to be in the independent set. It can be viewed as a set of
constraints restricting the mapping (see Figure 3.1). The idea is to map the nodes
of the independent set to the sequence (1,2,...,k) in the increasing order of their
index as vertices in the graph. This encoding is defined over variables z,; and has
the following five kinds of clauses:

(a) Edge Clauses: For each edge (u,v), there are clauses saying that at most one
of w and v is chosen in the independent set; V(u,v) € E,i,j,1 <i < j<k:
(m2ui V "205) € Qmap(GL k)

(b) Surjective Clauses: For each node i, there is a clause saying that some vertex
is chosen as the ¥ node of the independent set; Vi,1 < i < k : (21 V 22, V
ooV 2ni) € Qap(GL k)

(c) Function Clauses: For each vertex v, there are clauses saying that v is not
mapped to two nodes, i.e. it is not counted twice in the independent set;
Vo,i,5,1 <o <n,1<i<j<k: (72 V 2p;) € Qmep(G, k)

(d) 1-1 Clauses: For each node i, there are clauses saying no two vertices map
to the i node of the independent set; Vi,u,v,1 < i < k,1 <u<wv <n:
(m2ui V 2204) € Qmap(GL k)
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(e) Ordering Clauses: For every pair of consecutive nodes, there are clauses saying
that vertices are not mapped to these in the reverse order. This, by transi-
tivity, implies that there is a unique mapping to k£ nodes once we have chosen
k vertices to be in the independent set. Vu,v,i,1 <u<v <n,1 <1< k:
<_‘Zu,i+1 \ _‘Zv,z'> € amap(Ga k)

n vertices
of the graph

lo k nodes of the
29 independent set 2

3%1
40 2
3

an ordered

a k-independent set k-independent set

Figure 3.1: Viewing independent sets as a mapping from n vertices to k nodes

Lemma 3.3. For any graph G and k' > k,

RES(map(GL ') < RES(tmap(G,k)) and
DPLL(ctnap (G, k') < DPLL(aap(G, k)

Proof. 1f G contains an independent set of size k, then there are no resolution refuta-
tions of e, (G, k). By our convention, Res(qmap(G,k)) = DPLL(Qnap(G,k)) = 00,
and the result holds. Otherwise consider a refutation m of ae,(G, k). Observe that
all clauses of qnq,(G, k) are also clauses of qunq,y(G, k). Hence 7 is also a refutation
of Qap(G, k'), proving the desired bounds. O

3.2.83  FEncoding Using Block-respecting Independent Sets

Fix b = n/k for the rest of the chapter and assume for simplicity that &k divides n
(denoted k| n). Arbitrarily partition the vertices of G into k subsets, called blocks, of
size b each. A block-respecting independent set of size k in G under this partitioning
is an independent set in G with precisely one vertex in each of the k blocks. Clearly,
if a graph does not contain any k-independent set, then it certainly does not contain
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any block-respecting independent set of size k either. Note that the restriction k| n
is only to make the presentation simple. We can extend our arguments to all £ < n
by letting each block have either b or b + 1 vertices for b = |n/k]|. The calculations
are nearly identical to what we present here.

We now define a CNF formula ayeqr (G, k) over variables xz,, that says that G con-
tains a block-respecting independent set of size k. Assume without loss of generality
that the first b vertices of G form the first block, the second b vertices form the second
block, and so on. Henceforth, in all references to GG, we will implicitly assume this
fixed order of vertices and partition into &£ blocks. Since this order and partition are
chosen arbitrarily, the bounds we derive hold for any partitioning of GG into blocks.

The encoding apecr (G, k) contains the following three kinds of clauses:

(a) Edge Clauses: For each edge (u,v), there is one clause saying that not both
u and v are selected; V(u,v) € E,u <v: (—x, V —xy) € Qpock (G, k)

(b) Block Clauses: For each block, there is one clause saying that at least one of
the vertices in it is selected; V 1,0 < i < k : (piyq V Tpiza V ... V Tpigp) €
ablock(G7 k)

(c¢) 1-1 Clauses: For each block, there are clauses saying that at most one of the
vertices in it is selected; Vi, p,q,0 <i < k,1 <p < q <b: (mZpitpV Tpitq) €
ablock(G7 k)

apock (G, k) s satisfiable iff G has a block-respecting independent set of size k
under the fixed order and partition of vertices implicitly assumed. Note that there
is no exact analog of Lemmas 3.2 and 3.3 for the block encoding. In fact, if one
fixes the order of vertices and division into blocks is based on this order, then the
non-existence of a block-respecting independent set of size k doesn’t even logically
imply the non-existence of one of size k' for all £/ > k. This monotonicity, however,
holds when k | k.

Lemma 3.4. For any graph G, k' > k, k| k', and k' | n,

RES(ablOCk(G, k/)) S RES(CkblOCk(G, k)) and
DPLL(OéblOCk(G, k,)) S DPLL(ablOCk(G, k’))

The result holds even when the 1-1 clauses are omitted from both encodings.

Proof. If G contains a block-respecting independent set of size k, then there is
no resolution refutation of (G, k). By our convention, Res(apok(G,k)) =
DPLL(oer (G, k)) = 00, and the result holds. Otherwise consider a refutation
of apioek (G, k). The two encodings, apocr (G, k) and apoer (G, k'), are defined over the
same set, of variables and have identical edge clauses. We will apply a transformation
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o to the variables so that the block and 1-1 clauses of ek (G, k) become a subset of
the block and 1-1 clauses of ayeer (G, k'), respectively.

o works as follows. Each block of vertices in auoer (G, k) consists exactly of k'/k
blocks of vertices in agyeer(G, k') because k| k. o sets all but the first n/k" vertices
of each block of ayeer (G, k) to FALSE. This shrinks all block clauses of ayoer (G, k) to
block clauses of apoer (G, k'). Further, it trivially satisfies all 1-1 clauses of apeck (G, k)
that are not 1-1 clauses of ayeer (G, k'). Hence 7|, is a refutation of ayeer (G, k') which
in fact uses only a subset of the original block and 1-1 clauses of the formula. O]

3.2.4  Relationships Among Encodings

For reasonable bounds on the block size, resolution refutations of the block encoding
are essentially as efficient as those of the other two encodings. We state the precise
relationship in the following lemmas.

Lemma 3.5. For any graph G over n vertices, k|n, and b =n/k,

RES(ablock(G, k))
DPLL(ablock(G, l{))

b*> RES(Qeount (G, k))  and

<
< (2 DPLL(0tount (G )))'o8220,

Proof. Fix a resolution proof 7 of aeount (G, k). We describe a transformation p on the
underlying variables such that for each initial clause C' € qeount(G, k), C|, is either
TRUE or an initial clause of (G, k). This lets us generate a resolution proof of
Qpiock (G, k) from 7|, of size not much larger than size(r). p is defined as follows: for
eachi € {0,1,...,k}, set yp;; = TRUE and yp; ; = FALSE for j # i; set all y,; = FALSE
if vertex v does not belong to either block 7 + 1 or block ¢; finally, for 1 < 5 < b,
replace all occurrences of ypiyji+1 and —Ypiyj; With (Zpig1 V Tpiga V... V Tpipj), and
all occurrences of =yt i1 and Ypitj; With (Tpipjg1 V Teivjrz V...V Zpigp). Note that
setting ys;; = TRUE for each 7 logically implies the rest of the transformations stated
above.

We first prove that p transforms initial clauses of @couni(G, k) as claimed. The
edge clauses are the same in both encodings. The size-k clause v, , and the counting
clause Yo of Qeount (G, k) transform to TRUE. The following can also be easily verified
by plugging in the substitutions for the y variables. The counting clauses that define
Yvo for v > 1 are either satisfied or translate into the first block clause (z; V...V xp).
Further, the counting clauses that define vy, ; for v > 1,7 > 1 are either satisfied or
transform into the i or the (i 4 1) block clause, i.e., into (zpi—1)41 V...V Tpi—1)+b)
or (Tpit1 V...V Tpisp). Hence, all initial clauses of aeount(G, k) are either satisfied or
transform into initial clauses of apeck (G, k).

We now describe how to generate a valid resolution proof of apeer(G, k) from
this transformation. Note that the substitutions for ys;4;;+1 and g4, replace these
variables by a disjunction of at most b positive literals. Any resolution step performed
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on these y’s in the original proof must now be converted into a set of equivalent
resolution steps, which will lengthen the transformed refutation. More specifically, a
step resolving clauses (yV A) and (—yV B) on the literal y (where y is either yy;1 ;41 or
Ypi+j,i) Will now be replaced by a set of resolution steps deriving (A’V B’) from clauses
(@, V...V, VA) and (z,, V...V, VB’) and any initial clauses of aock (G, k),
where all z’s mentioned belong to the same block of G, {uy,...,u,} is disjoint from
{vi,...,v,}, p+q=>, and A" and B’ correspond to the translated versions of A and
B, respectively.

The obvious way of doing this is to resolve the clause (z,, V...V z,, V A’) with
all 1-1 clauses (-, V —z,, ) obtaining (-x,, V A’). Repeating this for all z,,’s gives
us clauses (—z,, V A’). Note that this reuses (2, V...V z,, V A’) ¢ times and is
therefore not tree-like. Resolving all (=x,, V A’) in turn with (z,, V...V 2, V B')
gives us (A’V B’). This takes pg+ ¢ < b? steps. Hence the blow-up in size for general
resolution is at most a factor of b?. Note that this procedure is symmetric in A" and
B’; we could also have chosen the clause (—y V B) to start with, in which case we
would need gp + p < b? steps.

The tree-like case is somewhat trickier because we need to replicate clauses that
are reused by the above procedure. We handle this using an idea similar to the one
used by Clegg et al. [36] for deriving the size-width relationship for tree-like resolution
proofs. Let newSize(s) denote the maximum over the sizes of all transformed tree-like
proofs obtained from original tree-like proofs of size s by applying the above procedure
and creating enough duplicates to take care of reuse. We prove by induction that
newSize(s) < (2s)'822%. For the base case, newSize(1) = 1 < 2b = 2'°622°_ For
the inductive step, consider the subtree of the original proof that derives (A V B) by
resolving (yV A) and (—yV B) on the literal y as above. Let this subtree be of size s > 2
and assume without loss of generality that the subtree deriving (yV A) is of size s4 <
5/2. By induction, the transformed version of this subtree deriving (z,,V...Va,,VA")
is of size at most newSize(s4) and that of the other subtree deriving (z,, V...V, VB')
is of size at most newSize(s—s4—1). Choose (x,, V... x,,V A’) as the clause to start
the new derivation of (A’V B’) as described in the previous paragraph. The size of this
refutation is at most b-newSize(sa)+newSize(s—sa—1)+b?. Since this can be done
for any original proof of size s, newSize(s) < b-newSize(sa)+newSize(s—sa—1)+b
for s > 2 and s4 < s/2. It can be easily verified that newSize(s) = 2bs bl°&2°® =
(25)1°822 g a solution to this. This proves the bound for the DPLL case. O

Lemma 3.6. For any graph G over n vertices and k| n,

RES(ozblock(G, k?))
DPLL(O&blOCk(G, ]{3))

RES(amaep(G, k)  and

<
< DPLL(nap(G, k)).

Proof. In the general encoding o,q,(G, k), a vertex v can potentially be chosen as the
i" node of the k-independent set for any i € {1,2,...,k}. In the restricted encoding,
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however, vertex v belonging to block j can be thought of as either being selected as
the j*" node of the independent set or not being selected at all. Hence, if we start with
a resolution (or DPLL) refutation of ., (G, k) and set z,; = FALSE for i # j, we get
a simplified refutation where the only variables are of the form z, ;, where vertex v
belongs to block j. Renaming these z, ;’s as x,’s, we get a refutation in the variables
of ok (G k) that is no larger in size than the original refutation of cv,q,(G, k).

All we now need to do is verify that for every initial clause of q,(G, k), this
transformation either converts it into an initial clause of ayeek (G, k) or satisfies it. The
transformed refutation will then be a refutation of ageek (G, k) itself. This reasoning
is straightforward:

(a) Edge clauses (—zy,; V —2y;) 0f Qunep(G, k) that represented edge (u,v) € E
with w in block ¢ and v in block j transform into the corresponding edge
clause (—x, V —x,) of Qpoek(G, k). If vertex u (or v) is not in block i (or j,
resp.), then the transformation sets z,; (or 2, ;, resp.) to FALSE and the clause
is trivially satisfied.

(b) Surjective clauses of aq(G, k) clearly transform to the corresponding block
clauses of uyoer(G, k) — for the i such clause, variables corresponding to
vertices that do not belong to block ¢ are set to FALSE and simply vanish, and
we are left with the i block clause of aper(G, k).

(c) It is easy to see that all function clauses and ordering clauses are trivially
satisfied by the transformation.

(d) 1-1 clauses (—2y,;V2y,:) Of Qumap (G, k) that involved vertices w and v both from
block i transform into the corresponding 1-1 clause (—z,, V ;) of Qpock (G, k).
If vertex u (or v) is not in block 4, then the transformation sets z,; (or z,.,,
resp.) to FALSE and the clause is trivially satisfied.

Thus, this transformed proof is a refutation of (G, k) and the desired bounds
follow. u

3.3 Simulating Chvatal’s Proof System

In this section, we show that resolution on e (G, k) can efficiently simulate Chvatal’s
proofs [34] of non-existence of k-independent sets in G. This indirectly provides
bounds on the running time of various algorithms for finding a maximum indepen-
dent set in a given graph. We begin with a brief description of Chvatal’s proof system.
Let (S,t) for t > 1 be the statement that the subgraph of G induced by a vertex subset
S does not have an independent set of size t. (¢, 1) is given as an axiom and the goal
is to derive, using a series of applications of one of two rules, the statement (V) k),
where V' is the vertex set of G and k is given as input. The two inference rules are
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Branching Rule: for any vertex v € S, from statements (S \ N(v),t — 1) and
(S'\ {v},t) one can infer (S,t), where N(v) is the set containing v and all
its neighbors in Gj

Monotone Rule: from statement (S,¢) one can infer any (S’,¢') that (S,t) domi-
nates, i.e., S O S and t <t

For a graph G with vertex set V(G), let Chu(G, k) denote the size of the smallest
proof in Chvatal’s system of the statement (V(G),k). Following our convention,
Chv(G, k) = oo if no such proof exists. As an immediate application of the monotone
rule, we have:

Proposition 3.3. For k' > k, Chv(G, k') < Chu(G, k) + 1.

Proposition 3.4. Let G and G’ be graphs with V(G) = V(G') and E(G) C E(G).
For any k, Chv(G', k) < 2-Chv(G, k) and the number of applications of the branching
rule in the two shortest proofs is the same.

Proof. Let m be a proof of (V(G), k) in G. We convert 7 into a proof 7’ of (V(G’), k)
in G’ by translating proof statements in the order in which they appear in 7. The
axiom statement translates directly without any change. For the derived statements,
any application of a monotone inference can be applied equally for both graphs. For
an application of the branching rule in 7, some (.5, t) is derived from (S\ N(v),t —1)
and (S \ {v},t). To derive (S,t) for G’, the only difference is the replacement of
(S\ N(v),t—1) by (S\ N'(v),t — 1), where N’(v) is the set containing v and all its
neighbors in G'. If these two statements are different then since N'(v) 2 N(v), the
latter follows from the former by a single application of the monotone rule. In total,
at most size(rm) additional inferences are added, implying size(n’) < 2size(m). O

The following lemma shows that by traversing the proof graph beginning with the
axioms one can locally replace each inference in Chvatal’s system by a small number
of resolution inferences.

Lemma 3.7. For any graph G over n vertices and k|n,
RES(poek (G, k) < 4n Cho(G, k).

Proof. Let V denote the vertex set of G. Arbitrarily partition V' into k blocks of
equal size. Let Gy be the graph obtained by adding to G all edges (u, v) such that
vertices u and v belong to the same block of G. In other words, Gy is G modified
to contain a clique on each block so that every independent set of size k in Gyoer is
block-respecting with respect to G. By Proposition 3.4, the shortest proof in Chvatal’s
system, say Tcny, of (V) k) in Gyeer 1 at most twice in size as the shortest proof of
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(V, k) in G. We will use m¢p, to guide the construction of a resolution refutation wrgs
of piock (G, k) such that size(mgrps) < 2n size(mep, ), proving the desired bound.

Observe that without loss of generality, for any statement (5,t) in wcp,, t is at
least the number of blocks of G containing vertices in S. This is so because it is true
for the final statement (V, k), and if it is true for (S,¢), then it is also true for both
(S\ {v},t) and (S \ N(v),t — 1) from which (5,t) is derived. Call (S,t) a trivial
statement if ¢ is strictly bigger than the number of blocks of G containing vertices
in S. The initial statement (¢, 1) of the proof is trivial, whereas the final statement
(V, k) is not. Furthermore, all statements derived by applying the monotone rule are
trivial.

mres Will have a clause associated with each non-trivial statement (5, ¢) occurring

in mcpe. This clause will be a subclause of the clause Cg % (Vueng Tu), where Ny is

the set of all vertices in V'\ S that are in blocks of G containing at least one vertex
of S. mres will be constructed inductively, using the non-trivial statements of w¢y,.
Note that the clause associated in this manner with (V, k) will be the empty clause,
making mrrs a refutation.

Suppose (5, t) is non-trivial and is derived in 7oy, by applying the branching rule
to vertex v € S. Write the target clause Cg as (C%V C%), where C% is the disjunction
of all variables corresponding to vertices of Ng that are in the same block as v, and
C% is the disjunction of all variables corresponding to vertices of Ng that are in the
remaining blocks. Before deriving the desired subclause of Cg, derive two clauses C'ly
and Cly as follows depending on the properties of the inference that produced (.S, t):

Case 1: Both (S'\ {v},t) and (S \ N(v),t — 1) are trivial. It is easy to see that
since (S, t) is non-trivial, if (S\ {v},?) is trivial then v is the only vertex of S in its
block. Let C'l; be the initial block clause for the block containing v, which is precisely
(z, V C%). The fact that (S\ N(v),t — 1) is also trivial implies that the neighbors of
v include not only every vertex of S appearing in the block containing v but also all
vertices in S N B, where B is some other block that does not contain v. Resolving
the block clause for block B with all edge clauses (—z, V —x,,) for u € SN B gives a
subclause Cly of (—z, vV C%).

Case 2: (S\ {v},t) is trivial but (S'\ N(v),t — 1) is non-trivial. Set Cl; exactly
as in case 1. Given that (S\ N(v),t — 1) is non-trivial, by the inductive assumption
the prefix of Trps constructed so far contains a subclause of Cg\n(y). Since the given
proof applies to Gpoer, N(v) U v contains every vertex in the block containing v as
well as all neighbors of v in G that are not in v’s block. Therefore, the subclause
of Cs\n(v) we have by induction is a subclause of (Cg V zy, V...V x,,), where each
u; is a neighbor of v in S in blocks other than v’s block. Derive a new clause Cly
by resolving this clause with all edge clauses (—xz, V —z,,). Observe that Cl, is a
subclause of (-, V C%).

Case 3: (S\ {v},?) is non-trivial but (S'\ N(v),t—1) is trivial. Set Cls as in case
1. Since (S '\ {v},t) is non-trivial, by the inductive assumption the prefix of Trgs
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constructed so far contains a subclause Cly of Cg\ ), i.e., a subclause of (z, V Cs).

Case 4: Both (S\ {v},t) and (S\ N(v),t —1) are non-trivial. In this case, derive
C'ly as in case 3 and Cl5y as in case 2.

It is easy to verify that Cl; is a subclause of (z, V Cs) and Cl, is a subclause of
(—z, V C%). If either Cl; or Cly does not mention z, at all, then we already have the
desired subclause of Cg. Otherwise resolve Cl; with Cly to get a subclause of Clg.
This completes the construction. Given any non-trivial statement in w¢y,, it takes at
most 2n steps to derive the subclause associated with it in the resolution proof, given
that we have already derived the corresponding subclauses for the two branches of
that statement. Hence, size(mrps) < 2n size(Tcopy). O

It follows that lower bounds on the complexity of ag.er apply to Chvatal’s system
and hence also to many algorithms for finding a maximum independent set in a given
graph that are captured by his proof system, such as those of Tarjan [105], Tarjan
and Trojanowski [106], Jian [67], and Shindo and Tomita [100].

3.4 Relation to Vertex Cover and Coloring

This section discusses how the independent set problem relates to vertex covers and
colorings of random graphs in terms of resolution complexity.

3.4.1 Vertex Cover

As for independent sets, for any undirected graph G = (V, E), let n = |V|, m = |E|,
and A =m/n. A t-vertex cover in G is a set of t vertices that contains at least one
endpoint of every edge in GG. [ is an independent set in G if and only if V' \ I is a
vertex cover of GG. Hence, the problem of determining whether or not G has a t-vertex
cover is the same as that of determining whether or not it has a k-independent set
for k = n —t. We use this correspondence to translate our bounds on the resolution
complexity of independent sets to those on the resolution complexity of vertex covers.

Consider encoding in clausal form the statement that G has a t-vertex cover. The
only defining difference between an independent set and a vertex cover is that the
former requires at most one of the endpoints of every edge to be included, where as
the latter requires at least one. Natural methods to count remain the same, that
is, explicit counting variables, implicit mapping variables, or blocks. Similar to the
independent set encoding variables, let 27,1 < v < n, be a set of variables such that
T, = TRUE iff vertex v is chosen to be in the vertex cover. Let y, ;,1 <v <n,1 <i <
t, denote the fact that exactly 7 of the first v vertices are chosen in the vertex cover.
Let 2, ;,1 <v <n,1 <7<t represent that vertex v is mapped to the i*" node of the
vertex cover.

The counting encoding of vertex cover, VCepun(G,t), is defined analogous to
Qeount (G k) except for the change that for an edge (u,v) € FE, the edge clause
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for vertex cover is (x), V x}) and not (—z, V —z,). The rest of the encoding is
obtained by setting k «— t,x, «— 2, y,; — yq’” The mapping encoding of ver-
tex cover, VCapping(G, t) is similarly defined analogous to apping(G, k) by setting
k et 2,; + z,,;, except for the change in edge clauses for edges (u,v) € E from
(m2ui V 2zu) to (2, V 2,,;). For b=n/(n—t), the block encoding of vertex cover over
(n —t) blocks of size b each, V Coer (G, 1), is also defined analogous to apecr (G, k) by
setting k «— (n—t),x, <« —al. It says that each edge is covered, and exactly b—1 ver-
tices from each block are selected in the vertex cover, for a total of (n —¢)(b—1) =t
vertices. Note that the 1-1 clauses of ager translate into “all-but-one” clauses of
VOblock-

It is not surprising that the resolution complexity of various encodings of the
vertex cover problem is intimately related to that of the corresponding encodings of
the independent set problem. We formalize this in the following lemmas.

Lemma 3.8. For any graph G over n wvertices,
RES(V Copunt(G,1)) < RES(eount(G,n —t)) 4 6nt>.

Proof. If G has an independent set of size n—t, then there is no resolution refutation of
Aeount (G, n —t). Consequently, Res(eount(G,n—1)) = DPLL(count(G,n —t)) = 00,
trivially satisfying the claimed inequalities. Otherwise, consider a refutation 7 of
Qeount (G, n —1t). We use 7 to construct a refutation 7’ of VClpyni (G, t) that is not too
big.

Recall that the variables of 7 are z,,1 < u <mn, and y,,;,,0 < <v <n,0 <7<
n —t. The variables of 7' will be 77,1 <u < n, and y,,;,0 <7 <v <n,0 <@ <t
Notice that the number of independent set counting variables ¥, ; is not the same as
the number of vertex cover counting variables y; ;. We handle this by adding dummy
counting variables, transforming 7, and removing extra variables. To obtain 7/, apply
transforms o1, 09 and o3 defined below to .

oy simply creates new counting variables y,;,0 <v <n,(n —t+1) <i < wv, and
adds counting clauses corresponding to these variables as unused initial clauses of .
09 SetS Ty +— 7T, Yui < Yy, Intuitively, oo says that i of the first v vertices being
in the independent set is equivalent to exactly v — ¢ of the first v vertices being in the
vertex cover. o3 sets y, ; « FALSE for 0 <v < n,(t +1) <7 < wv. Since 01,0, and 03
only add new clauses, rename literals or set variables, their application transforms
into another, potentially simpler, refutation on a different set of variables and initial
clauses. Call the resulting refutation x”.

The initial edge clauses (-, V —z,) of 7 transform into edge clauses (z, V z!)) of
VCeoount(G, t). The initial size-(n—t) clause of 7 transforms into the initial size-t clause
of VCoount(G, t). Finally, the initial counting clauses of 7, including those correspond-
ing to the variables added by oy, transform into counting clauses of VC@ypuni(G, 1)
and n extra clauses. To see this, note that o, transforms counting formulas yg
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into yo.0, (Yoo < (Yo-10 A 2@)) o (Y, < (Y11 AT)), for i =12 (yo; <
(Yo—1,i A 220) V (Yo—1,i-1 A Tp))) 060 (Yy oy = (Y10t ATV (Y10 A T3))),
and (Yoo < (Yo-10-1 A Ty)) into (¥, o < (Yo—10 A —1y,)). Applying o3 to set y, ; «
FALSE for (t4 1) < < v removes all but the initial counting clauses of VC\puni(G, t)
and the counting formulas corresponding to the variables y, ,,,t +1 < v < n, that
simplify to (—y,_;,V —z;,). Call this extra set of n —t clauses Bdry(G,t), or boundary
clauses for (G,t).

At this stage, we have a refutation 7" of size at most size(w) starting from clauses
VCeoount(G,t) U Bdry(G,t). The boundary clauses together say that no more than ¢
vertices are chosen in the vertex cover. This, however, is implied by the rest of the
initial clauses. Using this fact, we first give a derivation 7 g4y, of every boundary clause
starting from the clauses of VCepunt(G,t). Appending 7" to mp4, gives a refutation
7" of VCipunt(G,1).

Let S; = \/;“:no{”t} Y iy for 0 < i < mn—t Let R,;; = (—y,, vV —w,,) for
0<i<j<wv<nandj <t Wefirst give a derivation of these S and R clauses,
and then say how to derive the boundary clauses from these. Sy = y;,, is an initial
clause, and S;,7 > 1, is obtained by sequentially resolving S;_; with the counting
clauses (=¥, i1 V Yn_isir ¥V Yn_iswy) for 0 <" < min{s, ¢}. Similarly, when
i =0, Ryp, is derived by resolving counting clauses (—y, , V —z,) and (-y, , V 7,)
on z, clauses R, ; for 0 < j < v are derived by sequentially resolving R,_; ¢ ; with
the counting clauses (—y, ; V y, 1, V ;) and (=y, oV —z;). Note that R, o, and
R, ; are defined and derived only when j < ¢. When ¢ > 0, R, ;, is derived by
sequentially resolving R, ;1,1 with the counting clauses (—y,; V y, ;1 V ~7,)
and (=¥, V¥ 1,1 V T,,), and resolving the result on x, with the counting clause
(=Y, V). Finally, R,;; for j < v is derived by resolving R, 1, ; with the counting
clauses (—y,; V y,_1; V y,) and (—y, ; Vy, 4, V x,), resolving R, 1, 1; 1 with the
counting clauses (—y, ;Vy,_ 1,1V —-,) and (=y, ;Vy, 4 ;1 V—x),), and resolving the
result of the two on 7.

To derive the boundary clause (—y,,_ ,V ;) for any v, resolve each pair of clauses
(“Yos—ir VYp 1 pga Vo) and Ry 4 i1, for 0 <i" <min{n —wv,}, and resolve all
resulting clauses with S,,_,. Note that when min{n—v,t} = t, thereis no R,_1 41+,
but the corresponding counting clause itself is of the desired form, (—y;, oV —a;,). This
finishes the derivation mpg., of all clauses in Bdry(G,t). As stated before, appending
7" t0 TRary gives a refutation 7' of VCiouni(G, t).

For general resolution, size(n’) = size(n”) + size(mpary) < size(w) + size(Tpary).
Each S; in mgayy, starting with ¢ = 0, is derived in min{i,¢} resolution steps from
previous clauses, and each R, ;;, starting with ¢« = 0,v = j = 1, requires at most 5
resolution steps from previous clauses. Hence, size(mpuy) < nt+5nt? < 6nt? for large
enough n, implying that size(r’") < size(w) + 6nt®. Note that this approach doesn’t
quite work for tree-like resolution proofs because g4, itself becomes exponential in
size due to the heavy reuse of clauses involved in the derivation of the R, ; ;’s. ]
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Given that the encodings @ eount (G, n—1) and V Coouni (G, t) are duals of each other,
the argument made for the Lemma above can also be made the other way, immediately
giving us the following reverse result:

Lemma 3.9. For any graph G over n vertices,
RES<&count<Ga k)) < RES(VCcount(Gv n— k)) + 6nk2
Lemma 3.10. For any graph G over n vertices and (n —t)|n,

RES(V Chioek (G, 1)) = RES(apoer(G,n —1t)) and
DPLL(VCblOCk(G,t)) = DPLL(ablOCk(G,n—t)).

This result also holds without the 1-1 clauses of Qpoer and the corresponding all-but-
one clauses of V Cyoct-

Proof. If G has an independent set of size n — ¢, then it also has a vertex cover of size
t. In this case, there are no resolution refutations of VCyper (G, 1) or ek (G, n — t),
making the resolution complexity of both infinite and trivially satisfying the claim.
Otherwise, consider a refutation 7 of apeer(G,n —t). We use 7 to construct a
refutation 7" of V Cioer (G, t), which is of the same size and is tree-like if 7 is. 7’ is
obtained from 7 by simply applying the transformation z, <« —z/,1 < v < n. Since
this is only a 1-1 mapping between literals, 7’ is a legal refutation of size exactly
size(m). All that remains to argue is that the initial clauses of 7’ are the clauses of
V Chioer (G, t). This, however, follows immediately from the definition of V Cyer (G, t).
Given the duality of the encodings V Cyoer (G, t) and o (G, n—t), we can repeat
the argument above to translate any refutation of the former into one of the latter.
Combining this with the above, the resolution complexity of the two formulas is
exactly the same. O

3.4.2  Coloring

A K-coloring of a graph G = (V, E) is a function col : V. — {1,2,..., K} such
that for every edge (u,v) € E, col(u) # col(v). For a random graph G chosen from
a distribution similar to G(n,p), the resolution complexity of the formula y (G, K)
saying that G is K-colorable has been addressed by Beame et al. [14].

Suppose G is K-colorable. Fix a K-coloring col of G and partition the vertices
into color classes V;,1 <i < K, where V; = {v € V : col(v) = i}. Each color class, by
definition, must be an independent set, with the largest of size at least n/K. Thus,

non-existence of a k & n /K size independent set in GG implies the non-existence of a
K-coloring of G.

Let a(G, k) be an encoding of the k-independent set problem on graph G. The
correspondence above can be used to translate properly encoded resolution proofs of
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a(G, k) into those of x(G, K). A lower bound on RES(x(G, K)), such as the one in
[14], would then imply a lower bound on RES(a(G, k)). However, such a translation
between proofs must involve a resolution counting argument showing that K sets of
vertices, each of size less than n/ K, cannot cover all n vertices. This argument itself is
at least as hard as PH P ., the (weak) pigeonhole principle on n pigeons and n — K
holes, for which exponential lower bound has been shown by Raz [94]. This makes
any translation of a proof of a(G, k) into one of x(G, K) necessarily large, ruling out
any interesting lower bound for independent sets as a consequence of [14].

On the other hand, non-existence of a K-coloring does not imply the non-existence
of a k-independent set. In fact, there are very simple graphs with no K-coloring but
with an independent set as large as n — K (e.g. a clique of size K + 1 along with
n — K — 1 nodes of degree zero). Consequently, our lower bounds for independent
sets do not give any interesting lower bounds for K-coloring.

3.5 Upper Bounds

Based on a very simple exhaustive backtracking strategy, we give upper bounds on
the DPLL (and hence resolution) complexity of the independent set and vertex cover
encodings we have considered.

Lemma 3.11. There is a constant Cy such that if G is a graph over n vertices with
no independent set of size k, then

DPLL(amap(G7 k)) < 2COk10g(ne/k)'
This bound also holds when cunq,(G, k) does not include 1-1 clauses.

Proof. A straightforward way to disprove the existence of a k-independent set is to
go through all (Z) subsets of vertices of size k and use as evidence an edge from each
subset. We use this strategy to construct a refutation of a.,(G, k).

To begin with, apply transitivity to derive all ordering clauses of the form (—z, ; V
—z,4) for w < vandi < j. If j =4+ 1, this is simply one of the original ordering
clauses. For j = i+ 2, derive the new clause (—zy+2 V —2,,;) as follows. Consider any
w e {1,2,...,n}. If u < w, we have the ordering clause (=241 V —2yit2), and if
u > w, then v > w and we have the ordering clause (—z,;V —2y.11). Resolving these
n ordering clauses (one for each w) with the surjective clause (21,41 V ...V Zpit1)
gives the new ordering clause (=212 V —12,,;) associated with u and v. This clearly
requires only n steps and can be done for all w < v and j = 7+ 2. Continue to apply
this argument for j =i+ 3,7+ 4, ...,k and derive all new ordering clauses in n steps
each.

We now construct a tree-like refutation starting with the initial clauses and the
new ordering clauses we derived above. We claim that for any ¢ € {1,2,...,k} and
for any 1 <w; < wipq < ... <wvg < n, asubclause of (—z,,; V bl VoV Zu k)
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can be derived. We first argue why this claim is sufficient to obtain a refutation. For
i = k, the claim says that a subclause of -z, , can be derived for all 1 < v, <n. If
any one of these n subclauses is a strict subclause of —z,, i, it has to be the empty
clause, resulting in a refutation. Otherwise, we have —z,, ; for every v,. Resolving
all these with the surjective clause (214 V ...V z,4) results in the empty clause.

We now prove the claim by induction on ¢. For the base case, fix ¢ = 1. For any
given k vertices v; < vy < ... < v, choose an edge (v,,v,) that witnesses the fact
that these k vertices do not form an independent set. The corresponding edge clause
(D2u,p V D2y,,q) Works as the required subclause.

For the inductive step, fix v;11 < V2 < ... < vx. We will derive a subclause
of (m2y,1,i41 V %0042 V - .. 2y k). By induction, derive a subclause of (—z,,; V
“Zpgiritl Vo . V 2y, i) for any choice of v; < v;4q. If for some such v;, —z,,; does not
appear in the corresponding subclause, then the same subclause works here for the
inductive step and we are done. Otherwise, for every v; < v;;1, we have a subclause
of (m2y, iV 22y, 1,041 V... V 712y, 1) that contains —z,, ;. Resolving all these subclauses
with the surjective clause (z1; V 22, V ...V z,;) results in the clause (Zogpri V-0 V
Zogi V 2w gy VooV T2y, 50), where each 2, ;. lies in {2y, 11, - 5 2o k). Observe
that for each positive literal z,, ;,7 +1 < ¢ < k, in this clause, (—zy,; V 22y, 1,i41)
is either a 1-1 clause or an ordering clause. Resolving with all these clauses finally
gives (m2y,, 1,41 V "Zuyjy V- -V D2y,,5, ), Which is the kind of subclause we wanted to
derive. This proves the claim.

Associate each subclause obtained using the iterative procedure above with the
tuple (v, vit1,---,v;) for which it was derived, giving a total of Zle (") < (ne/k)*
subclauses. Each of these subclauses is used at most once in the proof. Further, the
derivation of each such subclause uses at most n new ordering clauses, each of which
can be derived in at most n? steps. Thus, with enough copies to make the refutation
tree-like, the size of the proof is O(n?(ne/k)*), which is at most 2€0klee/k) for g
large enough constant C). O

Lemma 3.12. There is a constant C such that if G is graph over n vertices with no
independent set of size k, then

DPLL(Qeount (G, k)) < 2C0klosne/k),

Proof. As in the proof of Lemma 3.11, we construct a refutation by looking at each
size k subset of vertices and using as evidence an edge from that subset.

For every #,v such that 0 < i < v < n, first derive a new counting clause
("Yot1,i41 V Yoi V Yp—14 V... V ;) by resolving original counting clauses (—y41,4+1 V
Yuit1 V Yui) for u = v,v —1,...,i + 1 together, and resolving the result with the
counting clause (—w;i1,41 V vi;). Next, for any edge (i,7), ¢ > j, resolve the edge
clause (—z; V —x;) with the counting clauses (—y;; V z;) and (—y;; V x;) to get the
clause (—y;;V—y; ;). Call this new clause E; ;. We now construct a tree-like refutation
using the initial clauses, these new counting clauses, and the new E; ; clauses.
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We claim that for any ¢ € {1,2,...,k} and forany 1 <wv; <v;01 < ... <wv <n
with v; > j for i < j <k, we can derive a subclause of (=, ; V Yv,—1i V "Woyrit1 V
Yoir—1,i41 V- -V W, &V Y, —1k) such that if Yu;_,,j Occurs in the subclause for some j,
then so does —y,, ;. Note that for v; = j, the variable y,, 1 ; does not even exist and
will certainly not appear in the subclause. Given this claim, we can derive for ¢ = k
a subclause B; of (—yj V yj—1x) for each j € {k+1,...,n} and a subclause By, of
-y, 1f any of these B;’s is the empty clause, the refutation is complete. Otherwise
every B; contains —y; . Let j° be the largest index such that Bj does not contain
Yjy—1k. Since By has to be the clause -y, such a j° must exist. Resolving all B;’s
for j € {j/,..., k} with each other gives the clause y, ;. Resolving this with the size-k
clause y, i gives the empty clause.

We now prove that the claim holds by induction on ¢. For the base case 1 = 1,
fix 1 <v; <wy <...<wv, <n. Choose an edge (v,,v,) that witnesses the fact that
these v;’s do not form an independent set. Resolve the corresponding edge clause
(—2y, Vo, ) with the counting clauses (=Y, V Yo, -1,V Tp) and (<Y, ¢V Yo,—1,4 V Tq)
to get (“Wu,p V Yop—1.0 V Wogq V Yu,—1,4), Which is a subclause of the desired form.

For the inductive step, fix v;11 < v;49 < ... < vg. By induction, derive a subclause
Cj of (_'ij‘ V Yj—1,i vV TWuigq,it1 V Yvi1—1,+1 V...V Yok V yvk_lvk) for any J in {Z, 1+
1,...,v;41 — 1}. If for some such j, neither —y;; nor y;_1; appears in Cj, then this

subclause also works here for the inductive step and we are done. Otherwise for
every j, C; definitely contains —y;;, possibly y;_1;, and other positive or negative
occurrences of variables of the form v, ; where i’ > i. Now use these C}’s to derive
clauses C}’s such that C} contains —y;; but not y;_1;. The other variables appearing
in ¢ will all be of the form y, ; for i’ > i.

If {vit1,...,vx} is not an independent set, then there is an edge (v,, v,) witnessing
this. In this case, simply use £, , as the desired subclause and the inductive step is
over. Otherwise there must be an edge (i,v,) from vertex i touching this set. Let
C; be the clause Ej, . For j going from i + 1 to k, do the following iteratively.
If y;_1; does not appear in Cj, then set €7 = Cj. Otherwise set C to be the
clause obtained by resolving Cj with C}_;. If C}_; does not contain —y;;, then
it can be used as the desired subclause for this inductive step and the iteration is
stopped here, otherwise it continues onto the next value of j. If desired subclause
is not derived somewhere along this iterative process, then we end up with all C}’s
containing —y;,; but not y;_;;. Resolving all these with the new counting clause
(Wos1,i41 V Yo 1—1,3 V Yoy —2,4 V- .. V1) finally gives a subclause of the desired form.
This proves the claim.

Associate each subclause obtained using the iterative procedure above with the
tuple (v;, vig1,...,vx) for which it was derived, giving a total of 3% | (") < (ne/k)*
subclauses. Each of these subclauses is used at most once in the proof. Further, the
derivation of each such subclause uses one new counting clause and one new clause
E; ;, each of which can be derived in at most n steps. Thus, with enough copies to
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make the refutation tree-like, the size of the proof is O(n(ne/k)*), which is at most
2C0oklog(ne/k) for a large enough constant Cy. O

Theorem 3.1 (Independent Set Upper Bounds). There are constants ¢, ¢y such
that the following holds. Let A = np, A < n/log’n, and G ~ G(n,p). Let k be such
that G has no independent set of size k. With probability 1 — o(1) in n,

DPLL(O{map(G’ k‘)) ZCO(n/A) 10g2 A7
DPLL(atcount (G ))
DPLL(ablock<G, k))

206(71/A) logQA7 and

ININ TN

9¢0 (n/A)log? A )

The bounds also holds when 1-1 clauses are removed from Qna,(G,k) or ek (G, k).
The block encoding bound holds when k| n.

Proof. By Proposition 3.1, n/(A+1) < k < n. Hence klog(ne/k) < nlog(e(A+1)).
We will use this fact when A is a relatively small constant.

Fix any ¢ > 0 and let C, be the corresponding constant from Proposition 3.2.
When A < C., the desired upper bounds in this theorem are of the form 20,
Moreover, the upper bounds provided by Lemmas 3.11 and 3.12 for the mapping and
counting encodings, respectively, are exponential in klog(ne/k) < nlog(e(A + 1)),
and thus also of the form 2™ when A < C.. Hence, for large enough constants cg
and ¢, the claimed bounds hold with probability 1 for the mapping and counting
encodings when A < C¢. Lemma 3.6 extends this to the block encoding as well.

Assume for the rest of this proof that C. < A < n/ logZn. Let kmin < k be
the smallest integer such that G does not have an independent set of size k,,;,. By
Proposition 3.2, with probability 1 — o(1) in n, ki < kie + 1.

For the mapping-based encoding,

DPLL(tlmap(G, k) < DPLL(0map (G, Kiin)) by Lemma 3.3
< 9Cokmin l0g(n/kmin) by Lemma 3.11
< 2C0(ktet1)log(n/ (ket1)) almost surely
< 9lcon/A)log A for large enough c.

The bound for apee(G, k) follows immediately from this bound for t,.,(G, k)
and Lemma 3.6. Further, Lemma 3.11 implies that these bounds hold even when the
corresponding 1-1 clauses are removed from the mapping and block encodings. For
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the counting-based encoding,

DPLL(ount (G, k) < n DPLL(Qeount (G, kmin) + 2n* by Lemma 3.2
< n2C0Fminlog(n/kmin) | 9p2 by Lemma 3.12
< 2Ctkminlog(n/kmin) | 92
< p2Cokretlog(n/(kect1)) 4 9n2  glmost surely

< 2(eon/A)log® A for a large enough constant cj.

This finishes the proof. O
Corollary 3.1 (Vertex Cover Upper Bounds). There are constants cg,cy such
that the following holds. Let A = np, A < n/log’n, and G ~ G(n,p). Lett be such
that G has no vertex cover of size t. With probability 1 — o(1) in n,

2cg(n/A) 10g2A7 and

RES(V Ceount (G, 1))

DPLL(V Chioer (G 1)) gco(n/A)log” A

IA A

The bounds also holds when all-but-one clauses are removed from V Ciyoer(G,t). The
block encoding bound holds when (n —t) | n.

Proof. Apply Theorem 3.1 with k set to n—t and use Lemmas 3.8 and 3.10 to translate
the result of the Theorem to encodings of vertex cover. Note that RES(cveount(G,n —
t)) < DPLL(eount(G,m —t)). O

3.6 Key Concepts for Lower Bounds

This section defines key concepts that will be used in the lower bound argument given
in the next section. Fix a graph GG and a partition of its n vertices into k subsets of
size b each. For any edge (u,v) in G, call it an inter-block edge if u and v belong to
different blocks of G, and an intra-block edge otherwise.

Definition 3.1. A truth assignment to variables of (G, k) is critical if it sets
exactly one variable in each block to TRUE.

Critical truth assignments satisfy all block, 1-1 and intra-block edge clauses but
may leave some inter-block edge clauses unsatisfied.

Definition 3.2. The block multi-graph of G, denoted B((G), is the multi-graph ob-
tained from G by identifying all vertices that belong to the same block and removing
any self-loops that are thus generated.
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B(G) contains exactly k nodes and possibly multiple edges between pairs of nodes.
The degree of a node in B(G) is the number of inter-block edges touching the corre-
sponding block of G. Given the natural correspondence between G and B(G), we will
write nodes of B(G) and blocks of G interchangeably. For a subgraph H of G, B(H)
is obtained analogously by identifying all vertices of H that are in the same block of
G and removing self-loops.

Definition 3.3. Let S be a set of blocks of G. H is block induced by S if it is the
subgraph of GG induced by all vertices present in the blocks S. H is a block induced
subgraph of G if there exists a subset S of blocks such that H is block induced by S.

If H is block induced by S, then B(H) is induced by S in B(G). The reverse,
however, may not be true. If H is a block induced subgraph, then there is a unique
minimal block set S such that H is block induced by S. This S contains exactly
those blocks that have non-zero degree in B(H). With each block induced subgraph,
associate such a minimal S and say that the subgraph is induced by |S| blocks. Note
that every block in any such minimal S must have non-zero degree.

Definition 3.4. The block width of a clause C' with respect to G, denoted wg, . (C),
is the number of different blocks of G' the variables appearing in C' come from.

Clearly, w(C) > w,..(C). For a block induced subgraph H of G, let E(H) denote
the conjunction of the edge clauses of (G, k) that correspond to the edges of H.
Let H be induced by the block set S.

Definition 3.5. H critically implies a clause C, denoted H = C, if E(H) — C
evaluates to true for all critical truth assignments to the variables of aeer (G, k).

Definition 3.6. H minimally implies C, denoted H = C, if H % C and for every
subgraph H’ of GG induced by a proper subset of S, H /4 C.

Note that “minimally implies” should really be called “minimally critically im-
plies,” but we use the former phrase for brevity. Note further that if H - C, then
every block of H has non-zero degree.

Definition 3.7. The complexity of a clause C, denoted ug(C'), is the minimum over
the sizes of subsets S of blocks of G such that the subgraph of G induced by S
critically implies C.

Proposition 3.5. Let G be a graph and A denote the empty clause.

(a) For C € apoek(G, k), ug(C) < 2.

(b) pa(A) is the number of blocks in the smallest block induced subgraph of G that
has no block-respecting independent set.
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(c) Subadditive property: If clause C' is a resolvent of clauses Cy and Cy, then
1c(C) < pua(Ch) + pa(Cs).

Proof. Each initial clause is either an edge clause, a block clause or a 1-1 clause.
Any critical truth assignment, by definition, satisfies all block, 1-1 and intra-block
edge clauses. Further, an edge clause corresponding to an inter-block edge (u,v) is
implied by the subgraph induced by the two blocks to which v and v belong. Hence,
complexity of an initial clause is at most 2, proving part (a).

Part (b) follows from the definition of pg. Part (c) follows from the simple obser-
vation that if G critically implies C, G4 critically implies C5, and both G, and Go
are block induced subgraphs, then G s, defined as the block graph induced by the
union of the blocks G'; and G5 are induced by, critically implies both C and C5, and
hence critically implies C. O

3.7 Proof Sizes and Graph Expansion

This section contains the main ingredients of our lower bound results and is tech-
nically the most interesting and challenging part at the core of this chapter. We
use combinatorial properties of block graphs and independent sets to obtain a lower
bound on the size of resolution refutations for a given graph in terms of its expansion
properties. Next, we argue that random graphs almost surely have good expansion
properties. Section 3.8 combines these two to obtain an almost certain lower bound
for random graphs.

The overall argument in a little more details is as follows. We define the notion of
“boundary” for block induced subgraphs as a measure of the number of blocks in it
that have an isolated vertex and thus contribute trivially to any block-respecting in-
dependent set. Lemmas 3.13 and 3.14 relate this graph-theoretic concept to resolution
refutations. The main lower bound follows in three steps from here. First, Lemma
3.16 argues that one must almost surely consider a large fraction of the blocks of a
graph to prove the non-existence of a block-respecting independent set in it. Second,
Lemma 3.17 shows that almost all subgraphs induced by large fractions of blocks must
have large boundary. Finally, Lemma 3.18 combines these two to obtain an almost
certain lower bound on the width of any refutation.

We begin by defining the notion of boundary.

Definition 3.8. The boundary of a block induced subgraph H, denoted G(H), is the
set of blocks of H that have at least one isolated vertex.
3.7.1 Relating Proof Size to Graph Expansion

We first derive a relationship between the width of clauses and the boundary size of
block-induced subgraphs that minimally imply them.
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Lemma 3.13. Let C be a clause in the variables of apeer(G, k) and H be a block
induced subgraph of G. If H ™ C, then w§, . (C) > |B(H)|.

Proof. We use a toggling property of block-respecting independent sets (Figure 3.2)
to show that each boundary block of H contributes at least one literal to C'.
Let H be induced by the set of blocks S. Fix a boundary block B € S. Let Hp

be the subgraph induced by S\ {B}. By minimality of H, Hp 72 C. Therefore, there
exists a critical truth assignment v such that v(E(Hpg)) = TRUE but 7(C') = FALSE.
Since v(C') = FALSE and H -5 O, it follows that v(E(H)) = FALSE. Further, since
v(E(Hp)) = TRUE, v(E(H) \ E(Hp)) must be FALSE, implying that 7 violates the
edge clause corresponding to an inter-block edge (v, w),v € B,w ¢ B. In particular,

v(v) = TRUE.
( Block B with v selected

.\au owo
T T
L IN.
1

Conflicting edge I

<

/

w)
* — "

o—t+—¢

v

K Block B with u selected

Figure 3.2: Toggling property of block-respecting independent sets; selected vertices
are shown in bold

Fix an isolated vertex u € B. Create a new critical truth assignment ¥ as follows:
~(v) = FALSE, 7(u) = TRUE, and §(z) = 7(z) for every other vertex x in H. By
construction, ¥(E(Hpg)) = v(E(Hp)) = TRUE. Further, since u does not have any
inter-block edges and « is critical, even ¥(E(H)) is TRUE. It follows from H % C
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that ¥(C') = TRUE. Recall that y(C') = FALSE. This is what we earlier referred to
as the toggling property. Since v and 7 differ only in their assignment to variables in
block B, clause C' must contain at least one literal from B. ]

The subgraph of G induced by the empty set of blocks clearly has a block-
respecting independent set while the subgraph induced by all blocks does not. This
motivates the following definition. Let s + 1 denote the minimum number of blocks
such that some subgraph of G induced by s+1 blocks does not have a block respecting
independent set.

Definition 3.9. The sub-critical expansion, e(G), of G is the maximum over all
t,2 <t < s, of the minimum boundary size of any subgraph H of G induced by ¢’
blocks, where t/2 < t' <t.

Lemma 3.14. Any resolution refutation of apeer (G, k) must contain a clause of width
at least e(G).

Proof. Let t be chosen as in the definition of e¢(G) and 7 be a resolution refutation
of apioer (G, k). By Proposition 3.5 (b), ug(A) = s+ 1. Further, Proposition 3.5 (a)
says that any initial clause has complexity at most 2. Therefore for 2 < ¢t < s there
exists a clause C' in 7 such that ug(C) >t > 2 and no ancestor of C' has complexity
greater than t.

Since pg(C) > 2, C cannot be an initial clause. It must then be a resolvent of
two parent clauses C and Cy. By Proposition 3.5 (¢) and the fact that no ancestor
of C' has complexity greater than ¢, one of these clauses, say C7, must have pug(Ch)
between (t + 1)/2 and ¢. If H is a block induced subgraph that witnesses the value
of ug(Ch), then by Lemma 3.13, w¢,,,, (C1) > |3(H)|. Hence, w(C;) > |3(H)|. By
definition of e(G), |5(H)| > e(G). Thus w(C) > e(G) as required. O

Corollary 3.2. Let ¢ = 1/(9log2) and k|n. For any graph G with its n vertices
partitioned into k blocks of size b=n/k each,

RES(ablock(G,k)) > 26(3(G)—b)2/n and
DPLL(apioek (G, k) > 9e(G)=b.

Proof. This follows immediately from Lemma 3.14 and Propositions 2.2 and 2.1 by
observing that the initial width of apee (G, k) is b. O

3.7.2  Lower Bounding Sub-critical Expansion

Throughout this section, the probabilities are with respect to the random choice of a
graph G from the distribution G(n,p) for some fixed parameters n and p. Let B(G)
be a block graph corresponding to G with block size b. For the rest of this chapter,
we will fix b to be 3, which corresponds to the largest independent set size (k = n/3)
for which the results in this section hold. Although the results can be generalized to
any b > 3, our best bounds are obtained for the simpler case of b = 3 that we present.
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Definition 3.10. B(G) is (1, q)-dense if some subgraph of G induced by r blocks
(i.e., some subgraph of B(G) with r nodes) contains at least g edges.

The following lemma shows that for almost all random graphs G, the correspond-
ing block graph B(G) is locally sparse.

Lemma 3.15. Let G ~ G(n,p) and B(G) be a corresponding block graph with block
size 3. Forr,q > 1,

PIB(G) is (r,q)-densd] < (5-)' (9627:79 )q.

Proof. Let H be a subgraph of GG induced by r blocks. H contains 3r vertices. For
G ~ G(n,p), the number of edges contained in H has the binomial distribution with
parameters (32r) and p. Therefore,

3r 9,,,2 9 q

= 9
Pr[H has at least ¢ edges| < ((2))pq < ( 2 )pq < ( er p) ‘
q q

Summing this over all ("ﬁ 3) < (ne/3r)" subgraphs H induced by r blocks gives the
desired bound. O

We use this local sparseness property of the block graphs of almost all random
graphs to prove that the smallest pair-induced subgraph one needs to consider for
proving that G does not have a paired vertex cover is almost surely large.

Lemma 3.16. There is a constant C such that the following holds. Let A = np and
s < Cn/A3. The probability that G ~ G(n,p) contains a subgraph induced by at most
s blocks that has no block-respecting independent set is o(1) in s.

Proof. The probability that G contains a subgraph induced by at most s blocks that
has no block-respecting independent set is the same as the probability that there is
some minimal subgraph H of G induced by r < s blocks that has no block-respecting
independent set. By minimality, 4 has no isolated vertices and hence no boundary
blocks. Consequently, each of the r blocks that induce H must have at least 3 inter-
block edges. Hence, the subgraph of B(G) with the r nodes corresponding to the r
blocks that induce H must have at least 3r/2 edges.

Thus, the probability that G contains such a block induced subgraph H is at most

Z Pr[B(G) is (r,3r/2)-dense].
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By Lemma 3.15, we have Pr[B(G) is (r, 3r/2)-dense| < D(r) where

ne

D) = (%) @erp)™””

r

= (% (3ep)™? r1/2>r

= (Q(n,p) T1/2)T
for Q(n,p) = (ne/3)(3ep)*?. Now
Dr+1) _ (Q(n,p) (T+1>1/2)r+1
D(r) (Q(n,p) r/2)"
= Q(n,p) (T+1)1/2 (r+1)r/2

T
Q(n,p) (r+1)1/% "2

3/2

IN

IN

3 n
(36%3(7« + 1))1/2

n

This quantity, and hence D(r + 1)/D(r), is at most 1/2 for 1 < r < Cn/A3, where

c¥ 1/(12¢€%) is a constant. Let s+ 1 = Cn/A3. Tt follows that the probability that
G contains such a block induced subgraph H is bounded above by a geometric series
in 7 with common ratio 1/2. It is therefore at most twice the largest term of the series

which is less than D(1). Now
3eA Y 35 A3\ /2 3¢50\ ?
3 (T) N ( n > B <s + 1) '

D) = Qn,p) = =

Therefore, D(1) is o(1) in s as claimed. O

We again use the local sparseness property to prove that any subgraph induced
by not too many blocks has large boundary for almost all random graphs G. The
intuition is that for sparse subgraphs, most blocks have degree less than 3 and thus
belong to the boundary.

Lemma 3.17. There is a constant ¢ such that the following holds. Let A = np,
0<e<1/6,b=3(1—¢),t< cn/Aﬁ, and G ~ G(n,p). The probability that there
exists r € (t/2,t] such that G has a subgraph H induced by r blocks with (H) < er
is o(1) in t.
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Proof. Fix V¢, and t satisfying the conditions of the Lemma. Let H be a subgraph
of GG induced by r blocks. By definition, all r blocks inducing H must have non-zero
degree in B(H). Moreover, if H has at most er boundary blocks, the other (1 — €)r
blocks of non-zero degree inducing it must have degree at least 3. Hence, the r nodes
of B(G) that induce H form a subgraph with at least (1 — €)r3/2 = b'r/2 edges.
Therefore, H has at most er boundary blocks only if B(G) is (r,b'r/2)-dense. Thus,
by Lemma 3.15, the probability that such an H exists is at most

- b'r/2
Pr[B(G) is (r,b'r)-dense] < (g) (927;]))

e [3eAN\" <r><b'—2>/2 '
B 3\1—e¢ n
For r > t/2, it suffices to obtain an upper bound on this probability that is expo-
nentially small in . Rearranging the terms in the expression above, Pr[B(G) is (r, b'r)-dense| <

27" when
3\ A\ V-2
2e 3eA

B 1—e¢ 2/(¥-2) 1—¢€
n 2e2 3eAV/(V'=2)"

Note that ¢ < 1/6 and b’ = 3(1 —¢) > 5/2. Hence (1 — €)/(2e*)¥¥ =2 is at least
(5/(12¢?))* and it suffices to have

3=
IN

r_ (5 5 e
n = \12e2) 18eAV/('-2) — AV/('-2)

for a constant ¢ & 5°/(12418¢°). Therefore, the probability that B(G) is (r, b'r)-dense
is at most 277 for r < en/AY/'=2) Tt follows that the probability that there exists
such. an H with r € (¢/2,t] is at most Zi:f(t‘i'l)/ﬂ 277, This sum is o(1) in ¢ as
required. O

Lemmas 3.16 and 3.17 combine to give the following lower bound on sub-critical
expansion:

Lemma 3.18. For each ¢ € (0,1/6] there is a constant c. such that the following
holds. Let A =np, V' =3(1 —¢), W = n/AY/®=2 and G ~ G(n,p). The probability
that e(G) < c¢.W is o(1) in W.

Proof. Let C be the constant from Lemma 3.16 and ¢ be the one from Lemma 3.17.
Let s + 1 be the minimum number of blocks such that some subgraph of G induced
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by s + 1 blocks does not have a block induced independent set. By Lemma 3.16,
s < Cn/A3? with probability o(1) in n. Now let ¢ = min(C,c¢)W. Conditioned on
s > Cn/A?® and because b’ < 3, we have that ¢ < s as in the definition of e(G).
By Lemma 3.17, the probability that some subgraph of G induced by r blocks with
t/2 < r <t < s has less than er > et/2 = ¢.W boundary blocks is o(1) in n, where
ce = (€/2) min(C, ¢). It follows from a union bound on the two bad events (s is small
or some subgraph has small boundary) that e(G) < ¢.W with probability o(1) in
n. U

3.8 Lower Bounds for Resolution and Associated Algorithms

We now use the ideas developed in Sections 3.6 and 3.7, and bring the pieces of the
argument together in a general technical result from which our resolution complexity
lower bounds follow.

Lemma 3.19. For each § > 0 there are constants Cs, Cs > 0 such that the following
holds. Let A = np and G ~ G(n,p). With probability 1 — o(1) in n,
QC'ML/AG"'Q‘S

RES (o (G, 1/3))
DPLI—(ablock(G7 n/3))

> and
>

2C’(’;n/A3+‘s

Proof. Observe that the expressions n/A%2 and n/A3 in the desired bounds de-
crease as ¢ increases. Hence, it suffices to prove the bounds for § € (0,2], and for
d > 2, simply let C5 = Cy and C§ = (Y.

Let € = 0/(6 +35), ¥ = 3(1 —¢), and W = n/AY/®'=2 For § € (0,2], we have
that € € (0,1/6]. From Lemma 3.18, there is a constant ¢, such that with probability
1—o0(1) in n, e(G) > ¢ W. It follows from Corollary 3.2 that for ¢ = 1/(91log2) and
with probability 1 — o(1) in n,

RES<ablock(G7n/3)) > 2C(CEW73)2/H and
DPLL(tock (G, n/3)) = 2073,

Given the relationship between € and 9, there are constants Cy, C5 > 0 depending
only on § such that c(c.W — 3)* > Cs;W? and ¢.W — 3 > C{IW. Note also that
b/t —2)=(3—-3¢)/(1 —3€) =3+ 4. Hence,

logy (RES (ot (G, n/3))) > CsW?/n = Cén/A% — Csn/A™  and

10g, (DPLL (ot (G, 0/3))) > C4W = Cin/AT= = Chn/A3.
This finishes the proof. O
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Theorem 3.2 (Independent Set Lower Bounds). For each 6 > 0 there are
constants Cs, C5, C§, CJ', C{" > 0 such that the following holds. Let A = np,
k<n/3, k|n, and G ~ G(n, p) With probability 1 — o(1) in n,

RES(map (G, k) > 20/
DPLL((tnap(G, k) > 20547
RES(Cteount (G, k) > 205m/A°7
DPLL (oot (G, k) > 265/2%
RES(qtproon (G, k)) > 20/ A%
DPLL(qtpioek (G, k) > 2057/4°F  and
Cho(G k) > 205"m/a

The bounds for the block encoding require k| (n/3).

Proof. All of the claimed bounds follow by applying monotonicity of the encoding at
hand, using its relationship with the block encoding, and applying Lemma 3.19. Let
Cs and Cf be the constants from Lemma 3.19. For the mapping-based encoding,

RES(0ap(GL k) > RES(tnap(G,1/3)) by Lemma 3.3
> RES(piock (G, 1/3)) by Lemma 3.6
> 9Csn/ACT2 by Lemma 3.19,
DPLL(@map(G, k) > DPLL(tmap(G,n/3)) by Lemma 3.3
> DPLL(apiocer (G, 1/3)) by Lemma 3.6
> 9C5n/ A% by Lemma 3.19.

For the counting-based encoding,

1
RES(eount (G, k) > — (RES(acount(G, n/3)) — 2n2) by Lemma 3.2
n
1/1
> — (§RES(ablock(Ga n/3)) — 2”2) by Lemma 3.5
n
> Cyn/A% by Lemma 3.19

for a large enough constant C§. Similarly,

DPLL(count (G k) > (DPLL(acmmt(G, n/3)) — 2n2) by Lemma 3.2

S|l— 3|+

1
> (QDPLL(ozblock(G,n/3))1/1°g26 — 2n2> by Lemma 3.5

90§ /AT by Lemma 3.19
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for a large enough constant CY’.

The bounds for the block encoding follow immediately from Lemmas 3.4 and 3.19.
Finally, for the bound on the proof size in Chvatal’s system,

Chu(G,k) > Chv(G,n/3) — 1 by Proposition 3.3
> %RES(%ZOC;@(G, n/3)) —1 by Lemma 3.7
> 05" n/ A0t by Lemma 3.19
for a large enough constant cj”. O

Corollary 3.3 (Vertex Cover Lower Bounds). For each § > 0 there are constants
Cs,Cs, C5 > 0 such that the following holds. Let A = np, t > 2n/3, (n —t)|n, and
G ~ G(n,p). With probability 1 — o(1) in n,

RES(VCiount(G, 1)) > 26571/A6+267
RES(V Chioer (G, 1)) > 20511/A6+26)7 and
DPLL(VCblock:<G, t)) > QCSn/ABHL&).

The bounds for the block encoding require (n —t)|(n/3).

Proof. Let Cy,C}, and C§ be the constants from Theorem 3.2 and let Cj be any
constant less than C§. For the counting encoding bound, apply Theorem 3.2 with
k set to n — t and use Lemma 3.9 to translate the results to the encoding of vertex
cover. For the block encoding bounds, apply Theorem 3.2 in conjunction with Lemma

3.10. U]

3.9 Hardness of Approximation

Instead of considering the decision problem of whether a given graph G has an in-
dependent set of a given size k, one may consider the related optimization problem:
given G, find an independent set in it of the largest possible size. We call this opti-
mization problem the maximum independent set problem. One may similarly define
the optimization problem minimum vertex cover problem.

Since the decision versions of these problems are NP-complete, the optimization
versions are NP-hard and do not have any known polynomial time solutions. From
the perspective of algorithm design, it is then natural to ask whether there is an
efficient algorithm that finds an independent set of size “close” to the largest possible
or a vertex cover of size close to the smallest possible. That is, is there an efficient
algorithm that finds an “approximate” solution to the optimization problem? In this
section, we rule out the existence of any such efficient “resolution-based” algorithm
for the independent set and vertex cover problems.
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Remark 3.2. The results we prove in this section contrast well with the known
approximation hardness results for the two problems which are both based on the
PCP (probabilistically checkable proofs) characterization of NP [9, 8]. Hastad [62]
showed that unless P = NP, there is no polynomial time n!~¢-approximation algorithm
for the clique (and hence the independent set) problem for any e > 0. For graphs with
maximum degree A,,,., Trevisan [108] improved this to a factor of A4,/ 20(Vlog Amaz)
More recently, Dinur and Safra [47] proved that unless P = NP, there is no polynomial
time 10v/5 — 21 ~ 1.36 factor approximation algorithm for the vertex cover problem.
Our results, on the other hand, hold irrespective of the relationship between P and
NP but apply only to the class of resolution-based algorithms defined shortly.

3.9.1 Maximum Independent Set Approximation

We begin by making several of the above notions precise. Let A be an algorithm for
finding a maximum independent set in a given graph.

Definition 3.11. Let v > 1. A is a y-approzimation algorithm for the maximum
independent set problem if on input G with maximum independent set size k, A
produces an independent set of size at least k/~.

In other words, if A produces an independent set of size k on input G, it proves that
G does not have one of size kv + 1. This reasoning allows us to use our lower bounds
from the previous section to prove that even approximating a maximum independent
set is exponentially hard for certain resolution-based algorithms.

Definition 3.12. A ~-approximation algorithm A for the maximum independent set
problem is resolution-based if it has the following property: if A outputs an inde-
pendent set of size k on input G, then its computation history along with a proof of
correctness within a factor of y yields a resolution proof of (G, k), Qeount (G, k), or
Qock (G, k) for k < ky+1,k|n. (For the block encoding, we further require k | (n/3).)

The manner in which the computation history and the proof of correctness are
translated into a resolution refutation of an appropriate encoding depends on specific
details and varies with the context. We will see a concrete example of this for the
vertex cover problem when discussing Proposition 3.7 later in this section.

Let AZFS=ind denote the class of all resolution-based y-approximation algorithms
for the maximum independent set problem. We show that while there is a trivial
algorithm in this class for v > A + 1, there isn’t an efficient one for v < A/(6log A).

Proposition 3.6. For y > A+1, there is a polynomial-time algorithm in AFFS=nd,

Proof. Let A be the polynomial-time algorithm that underlies the bound in Turan’s
theorem (Proposition 3.1), that is, on a graph G with n nodes and average degree A
as input, A produces an independent set of size k > n/(A + 1). Since the size of a
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maximum independent set in G is at most n, A is a (A + 1)-approximation. We will
argue that A is also resolution-based.

To be a resolution-based, the computation history of A on G along with a proof
of correctness within a factor of (A + 1) must yield a resolution proof of a suitable
encoding a(G, k) for some k < k* = k(A+1)+ 1,k |n. When G has no edges, A = 0
and A produces an independent set of size k = n. In this case, there is nothing to
prove. When G has at least one edge (u,v), k* > n + 1 and we can choose k = n. In
this case, A indeed yields a straightforward resolution proof of a(G, k) for both the
mapping and the counting encodings by utilizing the edge clause(s) corresponding to
(u,v). Therefore, A is resolution-based as a (A + 1)-approximation algorithm. O

While Proposition 3.2 guarantees that there is almost never an independent set
of size larger than (2n/A)log A, Theorem 3.2 shows that there is no efficient way to
prove this fact using resolution. Indeed, there exist efficient resolution proofs only for
the non-existence of independent sets of size larger than n/3. We use this reasoning
to prove the following hardness of approximation result.

Theorem 3.3 (Independent Set Approximation). There is a constant ¢ such that
the following holds. Let 6 >0, A =np, A > ¢, v < A/(6logA), and G ~ G(n,p).
With probability 1 — o(1) in n, every algorithm A € AﬁEs —ind takes time exponential
in n/ A2,

Proof. Recall the definitions of k.. and C, from Proposition 3.2. Fix € > 0 such that
kie < (2n/A)log A and let ¢ > C.. The claimed bound holds trivially for A > n'/6.
We will assume for the rest of the proof that C. < A <n/ log2 n.

From Proposition 3.2, with probability 1 —o(1) in n, a maximum independent set
in G is of size kyue < kie < (2n/A)log A. If A approximates this within a factor
of v, then, in particular, it proves that G does not have an independent set of size
k = kmary +1 < n/3. Convert the transcript of the computation of A on G along
with an argument of its correctness within a factor of v into a resolution proof 7 of

an appropriate encoding «(G, k). From Theorem 3.2, size(m) must be exponential in
n/A6+26‘ O

3.9.2  Minimum Vertex Cover Approximation

A similar reasoning can be applied to approximation algorithms for finding a minimum
vertex cover.

Definition 3.13. Let v > 1. A is a ~y-approzimation algorithm for the minimum
vertex cover problem if on input G with minimum vertex cover size ¢, A produces a
vertex cover of size at most t.

Definition 3.14. A ~v-approximation algorithm A for the minimum vertex cover
problem is resolution-based if it has the following property: if A outputs a vertex cover
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of size ¢t on input G, then its computation history along with a proof of correctness
within a factor of v yields a resolution proof of VCepunt(G,t) or VCioek(G,t) for
t>1t/y—1,(n—1t)|n. (For the block encoding, we further require (n —t)|(n/3).)

Let AfFP5~VC denote the class of all resolution-based y-approximation algorithms
for the minimum vertex cover problem.

As the following proposition shows, the usual greedy 2-approximation algorithm
for vertex cover, for instance, is in AX¥57VC It works by choosing an arbitrary edge,
say (u,v), including both u and v in the vertex cover, throwing away all edges incident
on u and v, and repeating this process until all edges have been removed from the
graph. This gives a 2-approximation because any optimal vertex cover will also have
to choose at least one of u and v. For concreteness, we describe this algorithm below
as Algorithm 3.1 and denote it by VC-greedy. We use E(G) for the set of edges in G
and E(w) for the set of edges incident on a vertex w.

Input : An undirected graph G with minimum vertex cover size t + 1
Output : A vertex cover for G of size at most 2(¢t + 1)
begin
cover «— ¢
while E(G) # ¢ do
Choose an edge (u,v) € E(G) arbitrarily
L cover «— cover U {u,v}
E(G) < E(G)\ (E(u) U E(v))
Output cover
end
Algorithm 3.1: VC-greedy, a greedy 2-approximation algorithm for the minimum
vertex cover problem

Proposition 3.7. Lett =t/2—1 and (n—t) |n. If VC-greedy outputs a vertex cover
of size t on input G, then RES(V C\punt(G, 1)) < 812,

Proof. Consider a run of VC-greedy on G that produces a vertex cover of size ¢ =
2(t + 1). This yields a sequence of /2 = t + 1 vertex disjoint edges of G that are
processed sequentially till G has no edges left. Without loss of generality, assume
that these t + 1 edges are (vq,v3), (v3,04), ..., (Ua4r1,Vorso). Extend this ordering of
the vertices of G to the remaining n — 2¢ — 2 vertices. Under this ordering, we will
construct a refutation of Qeuni (G, t) of size at most 8¢2. Note that depunt (G, t) includes
(X9p—1 V xgy),1 < p < t+1, among its edge clauses.

In order to construct this derivation, it will be helpful to keep in mind that one
can resolve any clause (y,, V B),1 < ¢ < n,1 < i < t, with the initial clause
(Y1, V g V Tyy1) to derive (y,41; V 2441 V B). For convenience, we will refer to
this as a Z; derivation. Similarly, for i < t, (y,; V B) can be resolved with the initial
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clause (Ygt1,i+1 V Yqi V " %g41) to derive (Ygr1,i41 V "2g41 V B). We will refer to this
as a Z, derivation.

Using the above derivations as building blocks, we show that for 0 < p < t,0 <17 <
t—1, and any clause (y2,,; V A), we can derive the clause (yapt2.i+1V Yoproir2VA) in 8
resolution steps. First, apply a Z; derivation to (ya,;VA) to obtain (yapi1:V a1 VA).
Apply a Z, derivation to this to get (yapt2,i+1V Topt1V "T2pra V A). Resolve this with
the edge clause (29,41 V T2p4+2) to finally obtain the clause C1 = (Yap+2,i+1 V Zapy1 V A).
Starting again from (ys,;V A), apply a Zs derivation to obtain (yop+1.i4+1V %2pr1VA).
Apply Z; and Z, derivations separately to this clause and resolve the results together
on the variable 9,12 to obtain the clause Cy = (Yopr2it1 V Yopi2it2 V Topi1 V A).
Resolving clauses C} and C5 on the variable xy,1 finishes the 8 step derivation of
(Yopt2,i+1 V Yopt2,ire V A). We will refer to this derivation as Zs.

A similar argument shows that for the boundary case ¢ = t — 1, one can derive
from (y2p—1 V A) in at most 8 steps the clause (yap12: V A).

We are ready to describe the overall construction of the refutation. Starting from
the initial clause yoo, apply Z3 to derive (y21 V y22). Now apply Z3 successively to
the two literals of this clause to obtain (y42 V ya3 V ys4). Applying Z; repeatedly to
the literals of the clause obtained in this manner results in the derivation of (ya,, V
Yoppr1 V...V Yap,) in at most 8p® steps, where 1 < p < ¢ and r = min(2p,t). For
p = t, this gives a derivation of ¥y, in a total of 8¢2 steps.

Resolving yo; ¢+ with the initial clauses (ot V —orr1) and (—yors V 2%oria), and
resolving the two resulting clauses with the edge clause (xa:41 V Zg449) derives the
empty clause A and finishes the refutation. OJ

Theorem 3.4 (Vertex Cover Approximation). There is a constant ¢ such that
the following holds. Let § > 0, A = np, A > ¢, v < 3/2, and G ~ G(n,p). With
probability 1 — o(1) in n, every algorithm A € .AfES_VC takes time exponential in
n/A6+25.

Proof. This proof is very similar to that of Theorem 3.3. Recall the definitions of k.,
and C, from Proposition 3.2. Fix € > 0 such that k. < (2n/A)log A and let ¢ > C..
The claimed bound holds trivially for A > n'/%. We will assume for the rest of the
proof that C. < A < n/log*n.

From Proposition 3.2 and the relation between independent sets and vertex covers,
with probability 1 —o0(1) in n, a minimum vertex cover in G is of size t,; > n—ky >
n— (2n/A)log A. If A approximates this within a factor of v, then, in particular, it
proves that G does not have a vertex cover of size t = t,,;,/7—1 > 2n/3. Convert the
transcript of A’s computation on G along with an argument of its correctness within
a factor of v into a resolution proof 7 of an appropriate encoding VC(G,t). From
Corollary 3.3, size(m) must be exponential in n/A%T2. O
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3.10 Stronger Lower Bounds for Exhaustive Backtracking Algorithms
and DPLL

We conclude this chapter with a stronger lower bound for a natural class of back-
tracking algorithms for the independent set and vertex cover problems, namely the
class of exhaustive backtracking search algorithms. The key difference between the
algorithms captured by resolution that we have considered so far and the ones in this
class is that the latter do not reuse computation performed for previous branches;
instead, they systematically rule out all potential independent sets or vertex covers
of the desired size by a possibly smart but nonetheless exhaustive search. As an illus-
tration, we will give an example of a non-trivial exhaustive backtracking algorithm
for the independent set problem shortly.

The argument for our lower bound is based on the density of independent sets and
vertex covers in random graphs and is quite straightforward in the light of Lemma
3.1. We derive as a consequence a tighter lower bound for the DPLL complexity of the
mapping and counting encodings of the two problems that allows the edge density in
the underlying graph to be much higher than in Theorem 3.2 and Corollary 3.3.

Returning to the class of exhaustive backtracking algorithms, recall that the ap-
proach we used for our upper bounds (cf. Section 3.5) was to systematically rule out
all potential independent sets of a certain size k' = k,,;,. This is the simplest algo-
rithm in the class. Of course, instead of simply considering all (,?,) subsets of vertices
of size k' as we did, one can imagine more complex techniques for exhaustive search.
For instance, an idea similar to the one used by Beame et al. [14] for the graph col-
oring problem would be to consider all subsets of size u < k' in the first stage. For
a random graph, most of these subsets are very likely to already contain an edge
and need not be processed further. For any remaining subset .S, one can recursively
refute the existence of an independent set of size k' — u in the residual graph with
|n—k— N(9)| vertices, where N(5) denotes all neighbors of S outside S. This is also
an exhaustive backtracking algorithm.

Such algorithms may require a more complex analysis than we gave in our upper
bound proofs and could potentially be more efficient. However, as the following result
shows, any technique that systematically rules out all possible k’-independent sets by
an exhaustive backtracking search cannot improve the relatively simple upper bounds
in Theorem 3.1 and Corollary 3.1 by more than a constant factor in the exponent.

Let A4 oo (01 AVC  ive) denote the class of backtracking algorithms for prov-
ing non-existence of independent sets (vertex covers, resp.) of a given size in a given
graph, that work by recursively subdividing the problem based on whether or not a
set of vertices is included in the independent set (vertex cover, resp.) and that do
not reuse computation performed in previous branches. For example, our approach
in Section 3.5 as well as the algorithm based on [14] sketched above, both belong to
Aind

erhaustive*
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Theorem 3.5 (Exhaustive Backtracking Algorithms). There are constants C
and ¢ such that the following holds. Let A = np, c < A < n/log’n, and G ~ G(n,p).
With probability 1—o(1) in n, every algorithm A € A4 . (or AYG  ive) TUNTING
on input (G,k) must branch at least 20/ A times when G does not have an

independent set (vertex cover, resp.) of size k.

Proof. Let C' be the constant from Lemma 3.1. Recall the definitions of k.. and C,
from Proposition 3.2. Fix ¢ > 0 such that k.. +1 > (2n/A)log A and let ¢ > C..
With probability 1 —o(1) in n, algorithm A € A4 . succeeds in proving the non-
existence of a k-independent set in G only when k£ > k.. + 1. However, Lemma 3.1
says that G almost surely contains at least 26(%/4) log? A independent sets of size k* =
|(n/A)log AJ, which is less than (ki. + 1)/2. Hence, while recursively subdividing
the problem based on whether or not to include a vertex in the k-independent set,
A must explore at least 26(/2) log” A distinct k*-independent sets before finding a
contradictory edge for each and backtracking.

For the vertex cover case, note that the algorithms in AYS . “are the duals of
the algorithms in A’E"x‘fwustwe; including a vertex in a vertex cover to create a smaller
subproblem is equivalent to not including it in an independent set. Further, the
number of vertex covers of size n — k in G is exactly the same as the number of inde-
pendent sets of size k in GG. Hence, the above lower bound applies to the algorithms

in AVC as well. ]

Theorem 3.6 (Stronger DPLL Lower Bounds). There are constants C' and ¢ such
that the following holds. Let A = np, ¢ < A < n/(2log®n), and G ~ G(n,p). With
probability 1 — o(1) in n,

exhaustive

DPLL((tnap(G, k) > 20/ log" A,

DPLL(acount< , k)) > 9C(n/A) log2 A)
DPLL(V Coap(G, 1)) > 200/A)08°A g

DPLL(V Clopunt (G, 1)) > 20(/4) log? A

Proof. The DPLL complexity of the encodings, by our convention, is co if G does have
an independent set of size k. If it does not, the tree T associated with any DPLL
refutation of e,(G,k) o Qeount(G, k) can be viewed as the trace of an exhaustive
backtracking algorithm A € A"¢ . on input (G, k) as follows. An internal node
in T with variable z, as its secondary label corresponds to the decision of A to branch
based on whether or not to include vertex v in the independent set it is creating. Nodes
in T" with counting variables as secondary labels represent the counting process of A.

Given this correspondence, Theorem 3.5 immediately implies the desired lower
bounds for the independent set problem. The results for the vertex cover problem
can be derived in an analogous manner. Note that refuting the block encoding may
be easier than ruling out all independent sets (vertex covers, resp.) of size k. Hence,
Theorem 3.5 does not translate into a bound for this encoding. 0
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3.11 Discussion

In this chapter, we used a combination of combinatorial and probabilistic arguments
to obtain lower and upper bounds on the resolution complexity of several natural CNF
encodings of the independent set, vertex cover, and clique problems. Our results hold
almost surely when the underlying graph is chosen at random from the G(n, p) model.
Consequently, they hold (deterministically) for nearly all graphs. A key step in the
main lower bound arguments was to simplify the task by considering the induced
block graph in place of the original graph. The expansion properties of the block
graph then allowed us to relate refutation width with structural properties of the
graph.

Our results imply exponential lower bounds on the running time of resolution-
based backtracking algorithms for finding a maximum independent set (or, equiv-
alently, a maximum clique or a minimum vertex cover) in a given graph. Such
algorithms include some of the best known ones for these combinatorial problems
[105, 106, 67, 100].

A noteworthy contribution of this work is the hardness of approximation result.
We showed unconditionally that there is no polynomial time resolution-based approx-
imation algorithm that guarantees a solution within a factor less than A/(6log A) for
the maximum independent set problem or within a factor less than 3/2 for the mini-
mum vertex cover problem. This complements the hardness results conditioned on P
# NP that rule out efficient approximations within factors of A,,,q,/20(V108 &maz) [108]
and 10y/5 — 21 ~ 1.36 [47] for the two problems, respectively. (Here A, denotes
the maximum degree of the underlying graph rather than the average degree.)

On the flip side, some algorithms, such as those of Robson [97], Beigel [21], Chen
et al. [33], and Tomita and Seki [107], employ techniques that do not seem to be
captured by resolution. The techniques they use, such as unrestricted without loss
of generality arguments [97], vertex folding [33], creation of new vertices [21], and
pruning of search space using approximate coloring [107], represent global properties
of graphs or global changes therein that appear hard to argue locally using a bounded
number of resolution inferences. For instance, the algorithm of Robson [97] involves
the reasoning that if an independent set contains only one element of N(v), then
without loss of generality, that element can be taken to be the vertex v itself. It is
unclear how to model this behavior efficiently in resolution.

Restricted versions of these general properties, however, can indeed be simulated
by resolution. This applies when one restricts, for instance, to vertices of small,
bounded degree, as is done in many case-by-case algorithms cited at the beginning of
this chapter [105, 106, 67, 100].

Finally, as we mentioned in the introduction, the spectral algorithm of Coja-
Oghlan [37] achieves an O(v/A/log A) approximation and, in the light of our lower
bounds, cannot be simulated by resolution.
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Chapter 4
CLAUSE LEARNING AS A PROOF SYSTEM

We now move on to satisfiability algorithms and present in this chapter a new (and
first-ever) proof theoretic framework for formally analyzing the core of the numerous
practical implementations of such algorithms being developed today.

As discussed in Chapter 1, in recent years the task of deciding whether or not
a given CNF formula is satisfiable has gone from a problem of theoretical interest
to a practical approach for solving real-world problems. SAT procedures are now a
standard tool for tasks such as hardware and software verification, circuit diagnosis,
experiment design, planning, scheduling, etc.

The most surprising aspect of such relatively recent practical progress is that the
best complete satisfiability testing algorithms remain variants of the DPLL procedure
for backtrack search in the space of partial truth assignments (cf. Section 2.3). The
key idea behind its efficacy is the pruning of the search space based on falsified clauses.
Since its introduction in the early 1960’s, the main improvements to DPLL have been
smart branch selection heuristics such as by Li and Anbulagan [80], extensions like
randomized restarts by Gomes et al. [58] and clause learning (cf. Section 2.3.2),
and well-crafted data structures such as watched literals for fast unit propagation
by Moskewicz et al. [88]. One can argue that of these, clause learning has been
the most significant in scaling DPLL to realistic problems. This chapter attempts to
understand the potential of clause learning and leads on to the next chapter which
suggests practical ways of harnessing its power.

Clause learning grew out of work in artificial intelligence on explanation-based
learning (EBL), which sought to improve the performance of backtrack search algo-
rithms by generating explanations for failure (backtrack) points, and then adding the
explanations as new constraints on the original problem. The results of de Kleer and
Williams [46], Stallman and Sussman [103], Genesereth [55], and Davis [45] proved
this approach to be quite effective. For general constraint satisfaction problems the
explanations are called “conflicts” or “no goods”; in the case of Boolean CNF satisfi-
ability, the technique becomes clause learning — the reason for failure is learned in the
form of a “conflict clause” which is added to the set of given clauses. Through a series
of papers and accompanying solvers, Bayardo Jr. and Schrag [13], Marques-Silva and
Sakallah [84], Zhang [113], Moskewicz et al. [88], and Zhang et al. [115] showed that
clause learning can be efficiently implemented and used to solve hard problems that
cannot be approached by any other technique.

Despite its importance there has been little work on formal properties of clause



61

learning, with the goal of understanding its fundamental strengths and limitations.
A likely reason for such inattention is that clause learning is a rather complex rule
of inference — in fact, as we describe below, a complex family of rules of inference. A
contribution of this work is a precise mathematical specification of various concepts
used in describing clause learning.

Another problem in characterizing clause learning is defining a formal notion of
the strength or power of a reasoning method. We address this issue by defining a new
proof system called CL that captures the complexity of a clause learning algorithm
on various classes of formulas. From the basic proof complexity point of view, only
families of unsatisfiable formulas are of interest because only proofs of unsatisfiability
can be large; minimum proofs of satisfiability are linear in the number of variables of
the formula. In practice, however, many interesting formulas are satisfiable. To justify
our approach of using a proof system CL, we refer to the work of Achlioptas, Beame,
and Molloy [1] who have shown how negative proof complexity results for unsatisfiable
formulas can be used to derive time lower bounds for specific inference algorithms,
especially DPLL, running on satisfiable formulas as well. The key observation in their
work is that before hitting a satisfying assignment, an algorithm is very likely to
explore a large unsatisfiable part of the search space that corresponds to the first bad
variable assignment.

Proof complexity does not capture everything we intuitively mean by the power
of a reasoning system because it says nothing about how difficult it is to find shortest
proofs. However, it is a good notion with which to begin our analysis because the size
of proofs provides a lower bound on the running time of any implementation of the
system. In the systems we consider, a branching function, which determines which
variable to split upon or which pair of clauses to resolve, guides the search. A negative
proof complexity result for a system tells us that a family of formulas is intractable
even with a perfect branching function; likewise, a positive result gives us hope of
finding a good branching function.

Recall from Chapter 2 that general resolution or RES is exponentially stronger
than the DPLL procedure, the latter being exactly as powerful as tree-like resolution.
Although RES can yield shorter proofs, in practice DPLL is better because it provides
a more efficient way to search for proofs. The weakness of the tree-like proofs that
DPLL generates is that they do not reuse derived clauses. The conflict clauses found
when DPLL is augmented by clause learning correspond to reuse of derived clauses in
the associated resolution proofs and thus to more general forms of resolution proofs.
As a theoretical upper bound, all DPLL based approaches, including those involving
clause learning, are captured by RES. An intuition behind the results we present is
that the addition of clause learning moves DPLL closer to RES while retaining its
practical efficiency.

It has been previously observed by Lynce and Marques-Silva [82] that clause learn-
ing can be viewed as adding resolvents to a tree-like resolution proof. However, we
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provide the first mathematical proof that clause learning, viewed as a propositional
proof system CL, is exponentially stronger than tree-like resolution. This explains,
formally, the performance gains observed empirically when clause learning is added to
DPLL based solvers. Further, we describe a generic way of extending families of formu-
las to obtain ones that exponentially separate CL from many refinements of resolution
(see Section 2.2.2) known to be intermediate in strength between RES and tree-like
resolution. These include regular and ordered resolution, and any other proper re-
finement of RES that behaves naturally under restrictions of variables, i.e., for any
formula F' and restriction p on its variables, the shortest proof of F|, in the system
is not any larger than a proof of F' itself.

The argument used in our result above involves a new clause learning scheme called
FirstNewCut that we introduce specifically for this purpose. Our second technical
result shows that combining a slight variant of CL, denoted CL--, with unlimited
restarts results in a proof system as strong as RES itself. This intuitively explains the
speed-ups obtained empirically when randomized restarts are added to DPLL based
solvers, with or without clause learning.

Remark 4.1. MacKenzie [83] has recently used arguments similar to those of Beame
et al. [15] to prove that a variant of clause learning can simulate all of regular resolu-
tion.

4.1 Natural Proper Refinements of a Proof System

We discussed various refinements of resolution in Section 2.2.2. The concept of re-
finement applies to proof systems in general. We formalize below what it means for
a refinement of a proof system to be natural and proper. Recall that the complexity
Cs(F) of a formula F' under a proof system S is the length of the shortest refutation
of Flin S.

Definition 4.1. For proof systems S and T, and a function f: N — [1, 00),

e S is natural if for any formula F' and restriction p on its variables, Cs(F|,) <

Cs(F).
e S is a refinement of T if proofs in S are also (restricted) proofs in 7.

e A refinement S of T is f(n)-proper if there exists a witnessing family {F),} of
formulas such that Cs(F,) > f(n) - Cr(F,). The refinement is ezponentially-
proper if f(n) = 27" and super-polynomially-proper if f(n) = n*W,

Proposition 4.1. Tree-like, reqular, linear, positive, negative, semantic, and ordered
resolution are natural refinements of RES.
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The following proposition follows from the separation results of Bonet et al. [27]
and Alekhnovich et al. [3].

Proposition 4.2 ([27, 3]). Tree-like, reqular, and ordered resolution are exponentially-
proper natural refinements of RES.

4.2 A Formal Framework for Studying Clause Learning

Although many SAT solvers based on clause learning have been proposed and demon-
strated to be empirically successful, a theoretical discussion of the underlying concepts
and structures needed for our analysis is lacking. This section focuses on this formal
framework.

For concreteness, we will use Algorithm 2.2 on page 17 as the basic clause
learning algorithm. We state it again below for ease of reference. Recall that
DecideNextBranch implements the variable selection process, Deduce apply unit propa-
gation, AnalyzeConflict does clause learning upon reaching a conflict, and Backtrack
unassigns variables up to the appropriate decision level computed during conflict anal-
ysis.

Input : A CNF formula

Output : UNSAT, or SAT along with a satisfying assignment
begin

while TRUE do

DecideNextBranch

while TRUE do
status <« Deduce

if status = CONFLICT then
blevel «+— AnalyzeConflict

if blevel = 0 then return UNSAT
| Backtrack(blevel)
else if status = SAT then
Output current assignment stack

L return SAT
L else break

end
Algorithm 4.1: DPLL-ClauselLearning

4.2.1 Decision Levels and Implications

Although we have already defined concepts such as decision level and implied variable
in the context of the DPLL procedure, we did so with the simpler-to-understand re-
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cursive version of the algorithm in mind. We re-define these concepts for the iterative
version with clause learning given above.

Variables assigned values through the actual branching process are called decision
variables and those assigned values as a result of unit propagation are called implied
variables. Decision and implied literals are analogously defined. Upon backtracking,
the last decision variable no longer remains a decision variable and might instead
become an implied variable depending on the clauses learned so far. The decision level
of a decision variable x is one more than the number of current decision variables at
the time of branching on x. The decision level of an implied variable is the maximum
of the decision levels of decision variables used to imply it. The decision level at any
step of the underlying DPLL procedure is the maximum of the decision levels of all
current decision variables. Thus, for instance, if the clause learning algorithm starts
off by branching on z, the decision level of x is 1 and the algorithm at this stage is
at decision level 1.

A clause learning algorithm stops and declares the given formula to be UNSAT
whenever unit propagation leads to a conflict at decision level zero, i.e., when no
variable is currently branched upon. This condition will be referred to as a conflict
at decision level zero.

4.2.2  Branching Sequence

We use the notion of branching sequence to prove an exponential separation between
DPLL and clause learning. It generalizes the idea of a static variable order by letting
the order differ from branch to branch in the underlying DPLL procedure. In addition,
it also specifies which branch (TRUE or FALSE) to explore first. This can clearly be
useful for satisfiable formulas, and can also help on unsatisfiable ones by making the
algorithm learn useful clauses earlier in the process.

Definition 4.2. A branching sequence for a CNF formula F' is a sequence o =
(I1,19,...,lx) of literals of F', possibly with repetitions. A DPLL based algorithm
A on F branches according to o if it always selects the next variable v to branch on
in the literal order given by o, skips v if v is currently assigned a value, and otherwise
branches further by setting the chosen literal to FALSE and deleting it from 0. When
o becomes empty, A reverts back to its default branching scheme.

Definition 4.3. A branching sequence o is complete for a formula F under a DPLL
based algorithm A if A branching according to ¢ terminates before or as soon as o
becomes empty. Otherwise it is incomplete or approximate.

Clearly, how well a branching sequence works for a formula depends on the specifics
of the clause learning algorithm used, such as its learning scheme and backtracking
process. One needs to keep these in mind when generating the sequence. It is also
important to note that while the size of a variable order is always the same as the
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number of variables in the formula, that of an effective branching sequence is typically
much more. In fact, the size of a branching sequence complete for an unsatisfiable for-
mula F' is equal to the size of an unsatisfiability proof of F', and when F' is satisfiable,
it is proportional to the time needed to find a satisfying assignment.

4.2.8  Implication Graph and Conflicts

Unit propagation can be naturally associated with an implication graph that captures
all possible ways of deriving all implied literals from decision literals.

Definition 4.4. The implication graph G at a given stage of DPLL is a directed acyclic
graph with edges labeled with sets of clauses. It is constructed as follows:

Step 1: Create a node for each decision literal, labeled with that literal. These
will be the indegree zero source nodes of G.

Step 2: While there exists a known clause C' = (I3 V...l V1) such that =iy, ..., —ly
label nodes in G,

i. Add a node labeled [ if not already present in G.
ii. Add edges (I;,1),1 < i <k, if not already present.

iii. Add C' to the label set of these edges. These edges are thought of as
grouped together and associated with clause C.

Step 3: Add to G a special “conflict” node A. For any variable x that occurs both

positively and negatively in G, add directed edges from x and —x to A.

Since all node labels in G are distinct, we identify nodes with the literals labeling
them. Any variable x occurring both positively and negatively in G is a conflict
variable, and x as well as —x are conflict literals. G contains a conflict if it has at
least one conflict variable. DPLL at a given stage has a conflict if the implication
graph at that stage contains a conflict. A conflict can equivalently be thought of as
occurring when the residual formula contains the empty clause A.

By definition, an implication graph may not contain a conflict at all, or it may
contain many conflict variables and several ways of deriving any single literal. To
better understand and analyze a conflict when it occurs, we work with a subgraph
of an implication graph, called the conflict graph (see Figure 4.1), that captures only
one among possibly many ways of reaching a conflict from the decision variables using
unit propagation.

Definition 4.5. A conflict graph H is any subgraph of an implication graph with the
following properties:
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a cut corresponding
to clause (—a v —b)

conflict
variable

reason side conflict side

Figure 4.1: A conflict graph

(a) H contains A and exactly one conflict variable.
(b) All nodes in H have a path to A.

(¢) Every node [ in H other than A either corresponds to a decision literal or has
precisely the nodes —ly, =la, .. ., -l as predecessors where (I3 VIg V... VI V1)
is a known clause.

While an implication graph may or may not contain conflicts, a conflict graph
always contains exactly one. The choice of the conflict graph is part of the strategy
of the solver. A typical strategy will maintain one subgraph of an implication graph
that has properties (b) and (c¢) from Definition 4.5, but not property (a). This can be
thought of as a unique inference subgraph of the implication graph. When a conflict
is reached, this unique inference subgraph is extended to satisfy property (a) as well,
resulting in a conflict graph, which is then used to analyze the conflict.

Conflict clauses

Recall that for a subset U of the vertices of a graph, the edge-cut (henceforth called
a cut) corresponding to U is the set of all edges going from vertices in U to vertices
not in U.

Consider the implication graph at a stage where there is a conflict and fix a conflict
graph contained in that implication graph. Choose any cut in the conflict graph that
has all decision variables on one side, called the reason side, and A as well as at least
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one conflict literal on the other side, called the conflict side. All nodes on the reason
side that have at least one edge going to the conflict side form a cause of the conflict.
The negations of the corresponding literals forms the conflict clause associated with
this cut.

4.2.4  Trivial Resolution and Learned Clauses

Definition 4.6. A resolution derivation (Ci,Cy,...,Cy) is trivial iff all variables
resolved upon are distinct and each C;,i > 3, is either an initial clause or is derived
by resolving C;_; with an initial clause.

A trivial derivation is tree-like, regular, linear, as well as ordered. As the follow-
ing propositions show, trivial derivations correspond to conflicts in clause learning
algorithms.

Proposition 4.3. Let ' be a CNF formula. If there is a trivial resolution derivation
of a clause C ¢ F from F then setting all literals of C' to FALSE leads to a conflict by
unit propagation.

Proof. Let m = (C1,Cy,...,C, = C) be a trivial resolution derivation of C' from F'.
Let C, = (I VIy V...V ,) and p be the partial assignment that sets all [;,1 <1i < g,
to FALSE. Assume without loss of generality that clauses in 7 are ordered so that
all initial clauses precede any derived clause. We give a proof by induction on the
number of derived clauses in 7.

For the base case, m has only one derived clause, C' = C}. Assume without loss
of generality that Cy, = (A V B) and Cj is derived by resolving two initial clauses
(AV z) and (B V —z) on variable z. Since p falsifies CY, it falsifies all literals of A,
implying = TRUE by unit propagation. Similarly, p falsifies B, implying x = FALSE
and resulting in a conflict.

When 7 has at least two derived clauses, C}, by triviality of 7, must be derived
by resolving Cy_; ¢ F with a clause in F. Assume without loss of generality that
Cr—1 = (AV ) and the clause from F' used in this resolution step is (B V —x), where
Cr = (AV B). Since p falsifies C' = CY, it falsifies all literals of B, implying # = FALSE
by unit propagation. This in turn results in falsifying all literals of C_; because all
literals of A are also set to FALSE by p. Now (C,...,Ck_1) is a trivial resolution
derivation of Cy_; ¢ F from F with one less derived clause than 7, and all literals of
C}_1 are falsified. By induction, this must lead to a conflict by unit propagation. [J

Proposition 4.4. Any conflict clause can be derived from initial and previously de-
rived clauses using a trivial resolution derivation.

Proof. Let o be the cut in a fixed conflict graph associated with the given conflict
clause. Let Vionfiict(0) denote the set of variables on the conflict side of o, but
including the conflict variable only if it occurs both positively and negatively on the
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conflict side. We will prove by induction on |Vee,fiict(0)| the stronger statement that
the conflict clause associated with a cut o has a trivial derivation from known (i.e.
initial or previously derived) clauses resolving precisely on the variables in Veg, fiict(0).

For the base case, Vonfiict(0) = ¢ and the conflict side contains only A and a
conflict literal, say x. Informally, this cut corresponds to the immediate cause of
the conflict, namely, the single unit propagation step that led to the derivation of
—x. More concretely, the clause associated with this cut consists of the node —x
which has an edge to A, and nodes —ly, —ls, . .., =), corresponding to a known clause
C,=(1VIgV...VI V), that each have an edge to . The conflict clause for this
cut is simply the known clause C, itself, having a length zero trivial derivation.

(Ve vivy)

by by

o _ ° -
e A e A
o] o
X K X
" Cuto Cuto’

C=(llvlzv...vlp) C’=(—|yvlzvlk+1v...vlp)

Figure 4.2: Deriving a conflict clause using trivial resolution. Resolving C' with C)
on variable y gives the conflict clause C.

When Vo f1ict(0) # ¢, choose a node y on the conflict side all whose predecessors
are on the reason side (see Figure. 4.2). Let the conflict clause be C' = (I3 VIa V... V1,)
and assume without loss of generality that the predecessors of y are =iy, =ls, ..., 2l
for some k < p. By definition of unit propagation, C, = (I VIa V... VI, V y)
must be a known clause. Obtain a new cut ¢’ from o by moving node y from the
conflict side to the reason side. The new associated conflict clause must be of the
form C" = (—y V D), where D is a subclause of C. Now Vioniict(0') C Veonfiict(0).
Consequently, by induction, C must have a trivial resolution derivation from known
clauses resolving precisely upon the variables in Vi, ict(0’). Recall that no variable
occurs twice in a conflict graph except the conflict variable. Hence Vi, iict(0’) has
precisely the variables of Vo, fiiet(0) except y. Using this trivial derivation of C” and
finally resolving C' with the known clause C,, on variable y gives us a trivial derivation
of C' from known clauses. This completes the inductive step. O
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4.2.5 Learning Schemes

The essence of clause learning is captured by the learning scheme used to analyze
and learn the “cause” of a failure. More concretely, different cuts in a conflict graph
separating decision variables from a set of nodes containing A and a conflict literal
correspond to different learning schemes (see Figure 4.3). One may also define learning
schemes based on cuts not involving conflict literals at all such as a scheme suggested
by Zhang et al. [115], but the effectiveness of such schemes is not clear. These will
not be considered here.

Decision clause 1UIP clause
(pvgv—b) t

- x3
rel-sat clause FirstNewCut clause
(—mav—b) (X, VX, vxy)

Figure 4.3: Various learning schemes

It is insightful to think of the nondeterministic scheme as the most general learning
scheme. Here we select the cut nondeterministically, choosing, whenever possible, one
whose associated clause is not already known. Since we can repeatedly branch on the
same last variable, nondeterministic learning subsumes learning multiple clauses from
a single conflict as long as the sets of nodes on the reason side of the corresponding
cuts form a (set-wise) decreasing sequence. For simplicity, we will assume that only
one clause is learned from any conflict.

In practice, however, we employ deterministic schemes. The decision scheme [115],
for example, uses the cut whose reason side comprises all decision variables. rel-sat [13]
uses the cut whose conflict side consists of all implied variables at the current decision
level. This scheme allows the conflict clause to have exactly one variable from the
current decision level, causing an automatic flip in its assignment upon backtracking.

This nice flipping property holds in general for all unique implication points (UIPs)
[84]. A UIP of an implication graph is a node at the current decision level d such
that any path from the decision variable at level d to the conflict variable as well as
its negation must go through it. Intuitively, it is a single reason at level d that causes
the conflict. Whereas rel-sat uses the decision variable as the obvious UIP, Grasp [84]



70

and zChaff [88] use FirstUIP, the one that is “closest” to the conflict variable. Grasp
also learns multiple clauses when faced with a conflict. This makes it typically require
fewer branching steps but possibly slower because of the time lost in learning and unit
propagation.

The concept of UIP can be generalized to decision levels other than the current
one. The 1UIP scheme corresponds to learning the FirstUIP clause of the current
decision level, the 2UIP scheme to learning the FirstUIP clauses of both the current
level and the one before, and so on. Zhang et al. [115] present a comparison of all these
and other learning schemes and conclude that 1UIP is quite robust and outperforms
all other schemes they consider on most of the benchmarks.

The FirstNewCut Scheme

We propose a new learning scheme called FirstNewCut whose ease of analysis helps
us demonstrate the power of clause learning. We would like to point out that we
use this scheme here only to prove our theoretical bounds using specific formulas. Its
effectiveness on other formulas has not been studied yet. We would also like to point
out that the experimental results that we present are for the 1UIP learning scheme,
but can also be extended to certain other schemes, including FirstNewCut.

The key idea behind FirstNewCut is to make the conflict clause as relevant to
the current conflict as possible by choosing a cut close to the conflict literals. This is
what the FirstUIP scheme also tries to achieve in a slightly different manner. For the
following definitions, fix a cut in a conflict graph and let S be the set of nodes on the
reason side that have an edge to some node on the conflict side. S is the reason side
frontier of the cut. Let Cg be the conflict clause associated with this cut.

Definition 4.7. Minimization of conflict clause Cs is the following process: while
there exists a node v € S all of whose predecessors are also in .S, move v to the conflict
side, remove it from S, and repeat.

Definition 4.8. FirstNewCut scheme: Start with a cut whose conflict side consists
of A and a conflict literal. If necessary, repeat the following until the associated
conflict clause, after minimization, is not already known: choose a node on the conflict
side, and move all its predecessors that lie on the reason side, other than those that
correspond to decision variables, to the conflict side. Finally, learn the resulting new
minimized conflict clause.

This scheme starts with the cut that is closest to the conflict literals and iteratively
moves it back toward the decision variables until a new associated conflict clause is
found. This backward search always halts because the cut with all decision variables
on the reason side is certainly a new cut. Note that there are potentially several ways
of choosing a literal to move the cut back, leading to different conflict clauses. The
FirstNewCut scheme, by definition, always learns a clause not already known. This
motivates the following:
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Definition 4.9. A clause learning scheme is non-redundant if on a conflict, it always
learns a clause not already known.

4.2.6  Clause Learning Proofs

The notion of clause learning proofs connects clause learning with resolution and pro-
vides the basis for our complexity bounds. If a given CNF formula F' is unsatisfiable,
clause learning terminates with a conflict at decision level zero. Since all clauses used
in this final conflict themselves follow directly or indirectly from F', this failure of
clause learning in finding a satisfying assignment constitutes a logical proof of un-
satisfiability of F'. We denote by CL the proof system consisting of all such proofs.
Our bounds compare the sizes of proofs in CL with the sizes of (possibly restricted)
resolution proofs. Recall that clause learning algorithms can use one of many learning
schemes, resulting in different proofs.

Definition 4.10. A clause learning (CL) proof m of an unsatisfiable CNF formula F
under learning scheme § and induced by branching sequence o is the result of applying
DPLL with unit propagation on F', branching according to o, and using scheme S to
learn conflict clauses such that at the end of this process, there is a conflict at decision
level zero. The size of the proof, size(r), is |o].

4.2.7 Fast Backtracking and Restarts

Most clause learning algorithms use fast backtracking or conflict-directed backjumping
introduced by Stallman and Sussman [103], where one uses the conflict graph to undo
not only the last branching decision but also all other recent decisions that did not
contribute to the current conflict. In particular, the SAT solver zChaff that we will
use for our experiments in Chapters 5 and 6 backtracks to decision level zero when it
learns a unit clause. This property influences the structure of a branching sequence
generation algorithm we will present in Section 5.2.1.

More precisely, the level that a clause learning algorithm employing this technique
backtracks to is one less than the maximum of the decision levels of all decision vari-
ables (i.e. the sources of the conflict) present in the underlying conflict graph. Note
that the current conflict might use clauses learned earlier as a result of branching on
the apparently redundant variables. This implies that fast backtracking in general
cannot be replaced by a “good” branching sequence that does not produce redun-
dant branches. For the same reason, fast backtracking cannot either be replaced by
simply learning the decision scheme clause. However, the results we present here are
independent of whether or not fast backtracking is used.

Restarts, introduced by Gomes et al. [58] and further developed by Baptista and
Marques-Silva [12], allow clause learning algorithms to arbitrarily restart their branch-
ing process from decision level zero. All clauses learned so far are retained and now
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treated as additional initial clauses. As we will show, unlimited restarts, performed
at the correct step, can make clause learning very powerful. In practice, this requires
extending the strategy employed by the solver to include when and how often to
restart. Unless otherwise stated, however, clause learning proofs in the rest of this
chapter will be assumed to allow no restarts.

4.3 Clause Learning and Proper Natural Refinements of RES

We prove that the proof system CL, even without restarts, is stronger than all proper
natural refinements of RES. We do this by first introducing a way of extending any
CNF formula based on a given RES proof of it. We then show that if a formula F'
f(n)-separates RES from a natural refinement S, its extension f(n)-separates CL from
S. The existence of such an F' is guaranteed for all f(n)-proper natural refinements
by definition.

4.3.1 The Proof Trace Ezxtension

Definition 4.11. Let F' be a CNF formula and 7 be a RES refutation of it. Let the
last step of 7 resolve v with —w. Let S = 7\ (FU{—wv,A}). The proof trace extension
PT(F,7) of F'is a CNF formula over variables of F' and new trace variables ¢ for
clauses C' € S. The clauses of PT(F, ) are all initial clauses of F' together with a
trace clause (—x V t¢) for each clause C' € S and each literal x € C.

We first show that if a formula has a short RES refutation, then the corresponding
proof trace extension has a short CL proof. Intuitively, the new trace variables allow us
to simulate every resolution step of the original proof individually, without worrying
about extra branches left over after learning a derived clause.

Lemma 4.1. Suppose a formula F has a RES refutation w. Let F' = PT(F, ). Then
CeL(F') < size(m) when CL uses the FirstNewCut scheme and no restarts.

Proof. Suppose 7 contains a derived clause C; whose strict subclause C! can be derived
by resolving two previously occurring clauses. We can replace C; with C}, do trivial
simplifications on further derivations that used C; and obtain a simpler proof 7’ of
F'. Doing this repeatedly will remove all such redundant clauses and leave us with
a simplified proof no larger in size. Hence we will assume without loss of generality
that 7 has no such clause.

Viewing 7 as a sequence of clauses, its last two elements must be a literal, say
v, and A. Let S = 7\ (FU{v,A}). Let (Cy,Cy,...,C) be the subsequence of 7
that has precisely the clauses in S. Note that C; = —w for some i,1 < i < k. We
claim that the branching sequence o = (t¢,,tcy, .- .,tc,) induces a CL proof of F
of size k using the FirstNewCut scheme. To prove this, we show by induction that
after ¢ branching steps, the clause learning procedure branching according to ¢ has
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learned clauses C, Cs, ..., C;, has trace variables t¢,,tc,, ..., tc, set to TRUE, and is
at decision level 3.

The base case for induction, ¢ = 0, is trivial. The clause learning procedure is
at decision level zero and no clauses have been learned. Suppose the inductive claim
holds after branching step i—1. Let C; = (z1VzyV...Va;). C; must have been derived
in 7 by resolving two clauses (AVy) and (BV—y) coming from FU{C},Cy,...,Ci_1},
where C; = (AV B). The i'" branching step sets to, = FALSE. Unit propagation using
trace clauses (—x; Vic,), 1 < j <1, sets each x; to FALSE, thereby falsifying all literals
of A and B. Further unit propagation using (A V y) and (B V —y) implies y as well
as -y, leading to a conflict. The cut in the conflict graph containing y and —y on
the conflict side and everything else on the reason side yields C; as the FirstNewCut
clause, which is learned from this conflict. The process now backtracks and flips the
branch on t¢, by setting it to TRUE. At this stage, the clause learning procedure has
learned clauses C, Cs, ..., C;, has trace variables t¢,, tc,, ..., tc, set to TRUE, and is
at decision level ¢. This completes the inductive step.

The inductive proof above shows that when the clause learning procedure has
finished branching on all % literals in o, it will have learned all clauses in S. Adding
to this the initial clauses F’ that are already known, the procedure will have as known
clauses —w as well as the two unit or binary clauses used to derive v in 7w. These
immediately generate A in the residual formula by unit propagation using variable v,
leading to a conflict at decision level k. Since this conflict does not use any decision
variable, fast backtracking retracts all k£ branches. The conflict, however, still exists
at decision level zero, thereby concluding the clause learning procedure and finishing
the CL proof. O

Lemma 4.2. Let S be an f(n)-proper natural refinement of RES whose weakness is
witnessed by a family {F,} of formulas. Let {m,} be the family of shortest RES proofs
of {F,}. Let {F!} = {PT(F,,m,.)}. For CL using the FirstNewCut scheme and no
restarts, Cs(F!) > f(n) - CcL(F)).

Proof. Let p, the restriction that sets every trace variable of F) to TRUE. We claim
that CS(F;J > CS(Fq;’pn> = CS(Fn> > f(n) . CRES<Fn) > f(n) : CCL(FZL) The first
inequality holds because S is a natural proof system. The following equality holds
because p, keeps the original clauses of F), intact and trivially satisfies all trace
clauses, thereby reducing the initial clauses of F to precisely F;,. The next inequality
holds because S is an f(n)-proper refinement of RES. The final inequality follows from
Lemma 4.1. 0

This gives our first main result and its corollaries using Proposition 4.2:

Theorem 4.1. For any f(n)-proper natural refinement S of RES and for CL using the
FirstNewCut scheme and no restarts, there exist formulas {F,} such that Cs(F,) >

f(n) - CeL(Fr).
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Corollary 4.1. CL can provide exponentially shorter proofs than tree-like, reqular,
and ordered resolution.

Corollary 4.2. FEither CL is not a natural proof system or it is equivalent in strength
to RES.

Proof. As clause learning yields resolution proofs of unsatisfiable formulas, CL is a
refinement of RES. Assume without loss of generality that it is an f(n)-proper re-
finement for some function f; this is true for instance when f(n) = 1 for all n. If
CL is a natural proof system, Theorem 4.1 implies that there exists a family {F,} of
formulas such that Cc (F,,) > f(n) - CcL(Fy). Since f: N — [1,00) by the definition
of f(n)-proper, f(n) must be 1 for all n, proving the result. O]

4.4 Clause Learning and General Resolution

We begin this section by showing that CL proofs, irrespective of the learning scheme,
branching strategy, or restarts used, can be efficiently simulated by RES. In the reverse
direction, we show that CL, with a slight variation and with unlimited restarts, can
efficiently simulate RES in its full generality. The variant relates to the variables one
is allowed to branch upon.

Lemma 4.3. For any formula F over n variables and CL using any learning scheme
and any number of restarts, Cres(F') < n - CeL(F).

Proof. Given a CL proof 7 of F', a RES proof can be constructed by sequentially de-
riving all clauses that 7 learns, which includes the empty clause A. From Proposition
4.4, all these derivations are trivial and hence require at most n steps each. Conse-
quently, the size of the resulting RES proof is at most n - size(m). Note that since we
derive clauses of 7 individually, restarts in 7 do not affect the construction. O]

Definition 4.12. Let CL-- denote the variant of CL where one is allowed to branch
on a literal whose value is already set explicitly or because of unit propagation.

Of course, such a relaxation is useless in ordinary DPLL; there is no benefit in
branching on a variable that doesn’t even appear in the residual formula. However,
with clause learning, such a branch can lead to an immediate conflict and allow one
to learn a key conflict clause that would otherwise have not been learned. We will
use this property to show that RES can be efficiently simulated by CL-- with enough
restarts.

We first state a generalization of Lemma 4.3. CL-- can, by definition, do all that
usual CL can, and is potentially stronger. The simulation of CL by RES can in fact be
extended to CL-- as well. The proof goes exactly as the proof of Lemma 4.3 and uses
the easy fact that Proposition 4.4 doesn’t change even when one is allowed to branch
on variables that are already set. This gives us:



75

Proposition 4.5. For any formula F over n variables and CL-- using any learning
scheme and any number of restarts, Cres(F') < n - CeL--(F).

Lemma 4.4. For any formula F over n variables and CL using any non-redundant
scheme and at most Cres(F') restarts, Ccp--(F) < n - Cres(F).

Proof. Let m be a RES proof of F' of size s. Assume without loss of generality as
in the proof of Lemma 4.1 that m does not contain a derived clause C; whose strict
subclause C] can be derived by resolving two clauses occurring previously in 7. The
proof of this Lemma is very similar to that of Lemma 4.1. However, since we do
not have trace variables to allow us to simulate each resolution step individually and
independently, we use explicit restarts.

Viewing 7 as a sequence of clauses, its last two elements must be a literal, say
v, and A. Let S = 7\ (FU{v,A}). Let (C1,Cy,...,Cy) be the subsequence of 7
that has precisely the clauses in S. Note that C; = —w for some 7,1 < ¢ < k. For
convenience, define an extended branching sequence to be a branching sequence in
which certain places, instead of being literals, can be marked as restart points. Let
o be the extended branching sequence consisting of all literals of (', followed by a
restart point, followed by all literals of C5, followed by a second restart point, and
so on up to Cy. We claim that o induces a CL-- proof of F' using any non-redundant
learning scheme. To prove this, we show by induction that after the i'* restart point
in o, the CL-- procedure has learned clauses C7,Cs,...,C; and is at decision level
zZero.

The base case for induction, ¢ = 0, is trivial. No clauses have been learned and
the clause learning procedure is at decision level zero. Suppose the inductive claim
holds after the (i — 1)** restart point in 0. Let C; = (1 Va2 V...V ;). C; must
have been derived in 7 by resolving two clauses (A V y) and (B V —y) coming from
FU{C},Cy,...,Ci_1}, where C; = (AV B). Continuing to branch according to o till
before the 7" restart point makes the CL-- procedure set all if 1, xs, ..., 2; to FALSE.
Note that when all literals appearing in A and B are distinct, the last branch on z;
here is on a variable that is already set because of unit propagation. CL--, however,
allows this. At this stage, unit propagation using (A V y) and (B V —y) implies y as
well as =y, leading to a conflict. The conflict graph consists of —z;’s, 1 < j <, as
the decision literals, y and —y as implied literals, and A. The only new conflict clause
that can learned from this very simple conflict graph is C;. Thus, C; is learned using
any non-redundant learning scheme and the i*" restart executed, as dictated by o.
At this stage, the CL-- procedure has learned clauses C,Cy, ..., C;, and is at decision
level zero. This completes the inductive step.

The inductive proof above shows that when the CL-- procedure has finished with
the k' restart in o, it will have learned all clauses in S. Adding to this the initial
clauses F' that are already known, the procedure will have as known clauses —v as well
as the two unit or binary clauses used to derive v in 7. These immediately generate A
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in the residual formula by unit propagation using variable v, leading to a conflict at
decision level zero, thereby concluding the clause learning procedure and finishing the
CL-- proof. The bounds on the size of this proof and the number of restarts needed
immediately follow from the definition of o. O

Combining Lemma 4.4 with Proposition 4.5, we get

Theorem 4.2. CL-- with any non-redundant scheme and unlimited restarts is poly-
nomially equivalent to RES.

Remark 4.2. Baptista and Marques-Silva [12] showed that by choosing the restart
points in a smart way, CL together with restarts can be converted into a complete
algorithm for satisfiability testing, i.e., for all unsatisfiable formulas given as input, it
will halt and provide a proof of unsatisfiability. Our theorem makes a much stronger
claim about a slight variant of CL, namely, with enough restarts, this variant can
always find proofs of unsatisfiability that are as short as those of RES.

4.5 Discussion

In this chapter, we developed a mathematical framework for studying the most widely
used class of complete SAT solvers, namely the one based on DPLL and clause learning.
We studied clause learning from a proof complexity perspective and obtained two
significant results for the proof system CL summarized in Figure 4.4. The first of
these is that CL can provide exponentially smaller proofs than any proper natural
refinement of RES. We derived from this as a corollary that CL is either not natural or
is as powerful as RES itself. This is an interesting and somewhat surprising statement.
The second noteworthy result is that a variant of clause learning with unrestricted
restarts has exactly the same strength as RES.

Our argument used the notion of a proof trace extension of a formula which allowed
one to convert a formula that is easy for RES to an extended formula that is easy for
CL, at the same time retaining the hardness with respect to any natural refinement
of RES. We also defined and made use of a new learning scheme, FirstNewCut.

Understanding where clause learning stands in relation to well studied proof sys-
tems should lead to better insights on why it works well on certain domains and
fails on others. For instance, we will see in Chapter 5 an example of a domain (peb-
bling problems) where our results say that learning is necessary and sufficient, given a
good branching order, to obtain sub-exponential solutions using clause learning based
methods.

On the other hand, the connection with resolution also implies that any problem
that contains as a sub-problem a formula that is inherently hard even for RES, such
as the pigeonhole principle to be described in detail in Chapter 6, must be hard for
any variant of clause learning. For such domains, theoretical results suggest practical
extensions such as symmetry breaking and counting techniques for obtaining efficient
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Figure 4.4: Results: Clause learning in relation to resolution

solutions. The first of these serves as a motivation for the work we will present in
Chapter 6.
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Chapter 5

USING PROBLEM STRUCTURE FOR
EFFICIENT CLAUSE LEARNING

Given the results about the strengths and limitations of clause learning in Chapter
4, it is natural to ask how the understanding we gain through this kind of analysis
may lead to practical improvement in SAT solvers. The theoretical bounds tell us
the potential power of clause learning; they don’t give us a way of finding short solu-
tions when they exist. In order to leverage their strength, clause learning algorithms
must follow the “right” variable order for their branching decisions for the underlying
DPLL procedure. While a good variable order may result in a polynomial time solu-
tion, a bad one can make the process as slow as basic DPLL without learning. The
present chapter addresses this problem of moving from analytical results to practical
improvement. The approach we take is the use of the problem structure for guiding
SAT solvers in their branch decisions.

Both random CNF formulas and those encoding various real-world problems are
quite hard for current SAT solvers. However, while DPLL based algorithms with
lookahead but no learning (such as satz by Li and Anbulagan [80]) and those that try
only one carefully chosen assignment without any backtracks (such as SurveyProp by
Mézard and Zecchina [87]) are our best tools for solving random formula instances,
formulas arising from various real applications seem to require clause learning as a
critical ingredient. The key thing that makes this second class of formulas different
is their inherent structure, such as dependence graphs in scheduling problems, causes
and effects in planning, and algebraic structure in group theory.

Most theoretical and practical problem instances of satisfiability problems orig-
inate, not surprisingly, from a higher level description, such as a Planning Domain
Description Language (PDDL) specification for planning [51], timed automata or
logic description for model checking, task dependency graph for scheduling, circuit
description for VLSI, algebraic structure for group theory, and processor specification
for hardware. Typically, this description contains more structure of the original prob-
lem than is visible in the flat CNF representation in DIMACS format [68] to which
it is converted before being fed into a SAT solver. This structure can potentially be
used to gain efficiency in the solution process.

Several ideas have been brought forward in the last decade for extracting structure
after conversion into a CNF formula. These include the works of Giunchiglia et al. [56]
and Ostrowski et al. [92] on exploiting variable dependency, Ostrowski et al. [92] on
using constraint redundancy, Aloul et al. [6] and others on using symmetry, Brafman



79

[30] on exploiting binary clauses, and Amir and Mcllraith [7] on using partitioning.

While all these approaches extract structure after conversion into a CNF formula,
we argue that using the original higher level description itself to generate structural
information is likely to be more effective. The latter approach, despite its intuitive
appeal, remains largely unexplored, except for suggested use in bounded model check-
ing by Shtrichman [101] and the separate consideration of cause variables and effect
variables in planning by Kautz and Selman [71].

We further open this line of research by proposing an effective method for ex-
ploiting problem structure to guide the branching decision process of clause learning
algorithms. Our approach uses the original high level problem description to generate
not only a CNF encoding but also a branching sequence (recall Definition 4.2) that
guides the SAT solver toward an efficient solution. This branching sequence serves as
auxiliary structural information that was possibly lost in the process of encoding the
problem as a CNF formula. It makes clause learning algorithms learn useful clauses
instead of wasting time learning those that may not be reused in future at all.

We consider two families of formulas called the pebbling formulas and the GT,,
formulas. The pebbling formulas, more commonly occurring in theoretical proof com-
plexity literature such as in the works of Ben-Sasson et al. [22] and Beame et al. [15],
can be thought of as representing precedence graphs in dependent task systems and
scheduling scenarios. They can also be viewed as restricted planning problems. The
GT, formulas were introduced by Krishnamurthy [76] and have also been used fre-
quently to obtain resolution lower bounds such as by Bonet and Galesi [28] and
Alekhnovich et al. [3]. They represent a straightforward ordering principle on n
elements. Although admitting a polynomial size solution, both pebbling and GT,
formulas are not so easy to solve in practice, as is indicated by our experimental
results for unmodified zChaff.

We give an exact sequence generation algorithm for pebbling formulas, using the
underlying pebbling graph as the high level description. We also give a much simpler
but approximate branching sequence generation algorithm for G'7;, formulas, utilizing
their underlying ordering structure. Our sequence generators as presented work for
the FirstUIP learning scheme (cf. Section 4.2.5), which is one of the best known. They
can also be extended to other schemes, including FirstNewCut. Our empirical results
are based on our extension of the SAT solver zChaff.

We show that the use of branching sequences produced by our generators leads to
exponential empirical speedups for the class of grid and randomized pebbling formulas.
We also report significant gains obtained for the class of GT;, formulas.

From a broader perspective, our results for pebbling and GT,, formulas serve as a
proof of concept that analysis of problem structure can be used to achieve dramatic
improvements even in the current best clause learning based SAT solvers.
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5.1 Two Interesting Families of Formulas

We begin by describing in detail the two families of CNF formulas from the proof
complexity literature mentioned above.

5.1.1 Pebbling Formulas

Pebbling formulas are unsatisfiable CNF formulas whose variations have been used
repeatedly in proof complexity to obtain theoretical separation results between differ-
ent proof systems such as by Ben-Sasson et al. [22] and Beame et al. [15]. The version
we will use in this chapter is known to be easy for regular resolution but hard for
tree-like resolution [22], and hence for DPLL without learning. We use these formulas
to show how one can utilize problem structure to allow clause learning algorithms to
handle much bigger problems than they otherwise can.

Pebbling formulas represent the constraints for sequencing a system of tasks that
need to be completed, where each task can be accomplished in a number of alternative
ways. The associated pebbling graph has a node for each task, labeled by a disjunction
of variables representing the different ways of completing the task. Placing a pebble on
a node in the graph represents accomplishing the corresponding task. Directed edges
between nodes denote task precedence; a node is pebbled when all of its predecessors
in the graph are pebbled. The pebbling process is initialized by placing pebbles on all
indegree zero nodes. This corresponds to completing those tasks that do not depend
on any other.

Formally, a Pebbling formula Pblg is an unsatisfiable CNF formula associated with
a directed, acyclic pebbling graph G (see Figure 5.1). Nodes of G are labeled with
disjunctions of variables, i.e. with clauses. A node labeled with clause C' is thought of
as pebbled under a (partial) variable assignment o if C'|, = TRUE. Pblg contains three
kinds of clauses — precedence clauses, source clauses and target clauses. For instance,
a node labeled (z7 V z5) with three predecessors labeled (p1 V2V p3), ¢1 and (11 V ra)
generates six precedence clauses (—p; V—g; V=1,V ag V), where i € {1,2,3},7 € {1}
and k € {1,2}. The precedence clauses imply that if all predecessors of a node are
pebbled, then the node itself must also be pebbled. For every indegree zero source
node s of G, Pblg contains the clause labeling s as a source clause. Thus, Pblg implies
that all source nodes are pebbled. For every outdegree zero target node of G labeled,
say, (t1 Vt3), Pblg has target clauses —t; and —ty. These imply that target nodes are
not pebbled, and provide a contradiction.

Grid pebbling formulas are based on simple pyramid-shaped layered pebbling
graphs with distinct variable labels, 2 predecessors per node, and disjunctions of size 2
(see Figure 5.1). Randomized pebbling formulas are more complicated and correspond
to random pebbling graphs. We only consider pebbling graphs where no variable
appears more than once in any node label. In general, random pebbling graphs allow
multiple target nodes. However, the more the targets, the easier it is to produce a
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Figure 5.1: A general pebbling graph with distinct node labels, and a 4-layer grid
pebbling graph

contradiction because we can focus only on the (relatively smaller) subgraph under
the lowest target. Hence, for our experiments, we add a simple grid structure at the
top of randomly generated pebbling formulas to make them have exactly one target.

All pebbling formulas with a single target are minimally unsatisfiable, i.e. any
strict subset of their clauses admits a satisfying assignment. For each formula Pblg
we use for our experiments, we also use a satisfiable version of it, called PblZAT,
obtained by randomly choosing a clause of Pblg; and deleting it. When G is viewed
as a task graph, PblZAT corresponds to a task system with a single fault, and finding
a satisfying assignment for it corresponds to locating the fault.

5.1.2 The GT,, Formulas

The GT,, formulas are unsatisfiable CNF formulas based on the ordering principle
that any partial order on the set {1,2,...,n} must have a maximal element. They
were first considered by Krishnamurthy [76] and later used by Bonet and Galesi [28]
to show the optimality of the size-width relationship of resolution proofs. Recently,
Alekhnovich et al. [3] used a variation, called GT, to show an exponential separation
between RES and regular resolution.

The variables of GT,, are x;; for i,j € [n],i # j, which should be thought of as
the binary predicate ¢ > j. Clauses (—x;; V —x;;) ensure that > is anti-symmetric
and (—z;; V =z, V x;y) ensure that > is transitive. This makes > a partial order
on [n]. Successor clauses (Vyz;xy ;) provide the contradiction by saying that every
element j has a successor in [n] \ {j}, which is clearly false for the maximal elements



82

of [n| under the ordering .

These formulas, although capturing a simple mathematical principle, are empir-
ically difficult for many SAT solvers including zChaff. We employ our techniques to
improve the performance of zChaff on these formulas. We use for our experiments
the unsatisfiable version GT;, described above as well as a satisfiable version GT54T
obtained by deleting a randomly chosen successor clause. The reason we consider
these ordering formulas in addition to seemingly harder pebbling formulas is that the
latter admit short tree-like proofs in certain extensions of RES whereas the former
seem to critically require reuse of derived or learned clauses for short refutations. We
elaborate on this in Section 5.2.2.

5.2 From Analysis to Practice

The complexity bounds established in the previous chapter indicate that clause learn-
ing is potentially quite powerful, especially when compared to ordinary DPLL. How-
ever, natural choices such as which conflict graph to choose, which cut in it to consider,
in what order to branch on variables, and when to restart, make the process highly
nondeterministic. These choices must be made deterministically (or randomly) when
implementing a clause learning algorithm. To harness its full potential on a given
problem domain, one must, in particular, implement a learning scheme and a branch
decision process suited to that domain.

5.2.1 Solving Pebbling Formulas

As a first step toward our grand goal of translating theoretical understanding into
effective implementations, we show, using pebbling problems as a concrete example,
how one can utilize high level problem descriptions to generate effective branching
strategies for clause learning algorithms. Specifically, we use insights from our the-
oretical analysis to give an efficient algorithm to generate an effective branching se-
quence for unsatisfiable as well as satisfiable pebbling formulas (see Section 5.1.1).
This algorithm takes as input the underlying pebbling graph (which is the high level
description of the pebbling problem), and not the CNF pebbling formula itself. As we
will see in Section 5.2.3, the generated branching sequence gives exponential empirical
speedup over zChaff for both grid and randomized pebbling formulas.

zChaff, despite being one of the current best clause learners, by default does not
perform very well on seemingly simple pebbling formulas, even on the uniform grid
version. Although clause learning should ideally need only polynomial time to solve
these problem instances (in fact, linear time in the size of the formula), choosing a
good branching order is critical for this to happen. Since nodes are intuitively pebbled
in a bottom up fashion, we must also learn the right clauses (i.e. clauses labeling the
nodes) in a bottom up order. However, branching on variables labeling lower nodes
before those labeling higher ones prevents any DPLL based learning algorithm from
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backtracking the right distance and proceeding further in an effective manner. To
make this clear, consider the general pebbling graph of Figure 5.1. Suppose we branch
on and set dy,ds,ds and a; to FALSE. This will lead to a contradiction through unit
propagation by implying as is TRUE and b; and by are both FALSE. We will learn
(dy V dy V d3 V —as) as the associated 1UIP conflict clause and backtrack. There will
still be a contradiction without any further branches, making us learn (d; V ds V d3)
and backtrack. At this stage, we will have learned the correct clause but will be stuck
with two branches on d; and ds. Unless we had branched on e; before branching on
the variables of node d, we will not be able to learn e; as the clause corresponding to
the next higher pebbling node.

Automatic Sequence Generation: PebSeqlUIP

Algorithm 5.1, PebSeq1UIP, describes a way of generating a good branching sequence
for pebbling formulas. It works on any pebbling graph G with distinct label variables
as input and produces a branching sequence linear in the size of the associated peb-
bling formula. In particular, the sequence size is linear in the number of variables as
well when the indegree as well as label size are bounded by a constant.

PebSeq1UIP starts off by handling the set U of all nodes labeled with unit clauses.
Their outgoing edges are deleted and they are treated as pseudo sources. The proce-
dure first generates a branching sequence for non-target nodes in U in increasing order
of height. The key here is that when zChaff learns a unit clause, it fast-backtracks to
decision level zero, effectively restarting at that point. We make use of this fact to
learn these unit clauses in a bottom up fashion, unlike the rest of the process which
proceeds top down in a depth-first way:.
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Input : Pebbling graph G with no repeated labels
Output : Branching sequence for Pblg for the 1UIP learning scheme
begin
foreach v in BottomUpTraversal(G) do
v.height < 1+ maxycy preds {u-height}
L Sort (v.preds, increasing order by height)

// first handle unit clause labeled nodes and generate their sequence
U «— {v € G.nodes : |v.labels| = 1}

G.edges — G.edges \ {(u,v) € G.edges : u € U}

Add to G.sources any new nodes with now 0 preds

Sort (U, increasing order by height)

foreach u € U \ G.targets do
Output u.label

PebSubseql1UIPWrapper (u)

// now add branching sequence for targets by increasing height
Sort (G.targets, increasing order by height)
foreach t € G.targets do PebSubseqlUIPWrapper (t)

end

PebSubseqlUIPWrapper (node v) begin
| if |v.preds| > 0 then PebSubseqlUIP (v, |v.preds|)
end

PebSubseqlUIP (node v, int 1) begin
u — v.predsli]
if i =1 then

// this is the lowest predecessor

if lu.visited and u ¢ G.sources then
u.visited «— TRUE
PebSubseqlUIPWrapper (u)

return

Output w.labels \ {u.last Label}
if lu.visitedAsHigh and u ¢ G.sources then
u.visitedAsHigh < TRUE
Output u.lastLabel
if lu.visited then
uw.visited «— TRUE
L PebSubseqlUIPWrapper (u)

PngubsequIP(v, 1—1)
for j «— (|u.labels| — 2) downto 1 do

Output w.labels[1], ..., u.labels[j]
| PebSubseqlUIP(v, ¢ — 1)
PebSubseqlUIP (v, i — 1)

end
Algorithm 5.1: PebSeq1UIP, generating branching sequence for pebbling formulas

PebSeq1UIP now adds branching sequences for the targets. Note that for an unsat-
isfiability proof, we only need the sequence corresponding to the first (lowest) target.
However, we process all targets so that this same sequence can also be used when the
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formula is made satisfiable by deleting enough clauses. The subroutine PebSubseq1UIP
runs on a node v, looking at its i predecessor u in increasing order by height. No
labels are output if u is the lowest predecessor; the negations of these variables will be
indirectly implied during clause learning. However, it is recursed upon if not previ-
ously visited. This recursive sequence results in learning something close to the clause
labeling this lowest node, but not quite that exact clause. If u is a higher predecessor
(it will be marked as visitedAsHigh), PebSubseqlUIP outputs all but one variables la-
beling u. If u is not a source and has not previously been visited as high, the last label
is output as well, and u recursed upon if necessary. This recursive sequence results in
learning the clause labeling u. Finally, PebSubseql1UIP generates a recursive pattern,
calling the subroutine with the next lower predecessor of v. The precise structure of
this pattern is dictated by the 1UIP learning scheme and fast backtracking used in
zChaff. Its size is exponential in the degree of v with label size as the base.

The Grid Case. It is insightful to look at the simplified version of the sequence gen-
eration algorithm that works only for grid pebbling formulas. This is described below
as Algorithm 5.2, GridPebSeq1UIP. Note that both predecessors of any node are at the
same level for grid pebbling graphs and need not be sorted by height. There are no
nodes labeled with unit clauses and there is exactly one target node ¢, simplifying the
whole algorithm to a single call to PebSubseql1UIP(t,2) in the notation of Algorithm
5.1. The last for loop of this procedure and the recursive call that follows it are now
redundant. We combine the original wrapper method and the calls to PebSubseq1UIP
with parameters (v,2) and (v, 1) into a single method GridPebSubseqlUIP with pa-
rameter v.

The resulting branching sequence can actually be generated by a simple depth
first traversal (DFS) of the grid pebbling graph, printing no labels for the nodes on
the rightmost path (including the target node), both labels for internal nodes, and
one arbitrarily chosen label for source nodes. However, this resemblance to DFS is a
somewhat misleading coincidence. The resulting sequence diverges substantially from
DFS order as soon as label size or indegree of some nodes is changed. For the 10 node
depth 4 grid pebbling graph shown in Figure 5.1, the branching sequence generated
by the algorithm is hq, hs,eq, €9, a1, b1, f1, f2,c1. Here, for instance, by is generated
after a; not because it labels the right (second) predecessor of node e but because
it labels the left (first) predecessor of node f. Similarly, f; and f, appear after the
subtree rooted at h as left predecessors of node ¢ rather than as right predecessors of
node h.

Example 5.1. To clarify the algorithm for the general case, we describe its execution
on a small example. Let G be the pebbling graph in Figure 5.2. Denote by ¢ the node
labeled (t; V t3), and likewise for other nodes. Nodes ¢, d, f and g are at height 1,
nodes a and e at height 2, node b at height 3, and node ¢ at height 4. U = {a, b}. The
edges (a,t) and (b,t) originating from these unit clause labeled nodes are removed,
and ¢, with no predecessors anymore, is added to the list of sources. We output the
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Input : Grid pebbling graph G with target node ¢
Output : Branching sequence for Pblg for the 1UIP learning scheme
begin
| GridPebSubseqlUIP(t)
end

GridPebSubseqlUIP(node v) begin
if v € G.sources then return

u «— v.preds.left
Output u. firstLabel

if lu.visitedAsLeft and u ¢ G.sources then
w.visitedAsLeft < TRUE
Output u.secondLabel
if lu.visited then
u.visited «— TRUE
L GridPebSubseqlUIP (u)

u «— v.preds.right

if lu.visited and u ¢ G.sources then
L u.vistted «— TRUE

GridPebSubseqlUIP (u)

end
Algorithm 5.2: GridPebSeq1UIP, generating branching sequence for grid pebbling
formulas

label of the non-target unit nodes in U in increasing order of height, and recurse on
each of them in order, i.e. we output ay, setting B = (a;), call PebSubseq1UIPWrapper
on a, and then repeat this process for b. This is followed by a recursive call to
PebSubseql1UIPWrapper on the target node ¢.

The call PebSubseq1UIPWrapper on a in turn invokes PebSubseqlUIP with parame-
ters (a,2). This sorts the predecessors of a in increasing order of height to, say, d, c,
with d being the lowest predecessor. v is set to a and u is set to the second predeces-
sor c. We output all but the last label of u, i.e. of ¢, making the current branching
sequence B = (ay,c1). Since u is a source, nothing more needs to be done for it and
we make a recursive call to PebSubseqlUIP with parameters (a,1). This sets u to d,
which is the lowest predecessor and requires nothing to be done because it is also a
source. This finishes the sequence generation for a, ending at B = (aj,¢;). After
processing this part of the sequence, zChaff will have a as a learned clause.

We now output by, the label of the unit clause b. The call, PebSubseq1UIPWrapper
on b, proceeds similarly, setting predecessor order as (d, f,e), with d as the lowest
predecessor. Procedure PebSubseqlUIP is called first with parameters (b,3), setting
u to e. This adds all but the last label of e to the branching sequence, making
it B = (ay,c1,b1,e1,e2). Since this is the first time e is being visited as high,
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Figure 5.2: A simple pebbling graph to illustrate branch sequence generation

its last label is also added, making B = (ay,c1,b1,€1,62,€3), and it is recursed
upon with PebSubseq1UIPWrapper(e). This recursion extends the sequence to B =
(ay,c1,b1,€1,€9,e3, f1). After processing this part of B, zChaff will have both a and
(e1 V ey Ve3) as learned clauses. Getting to the second highest predecessor f of b,
which happens to be a source, we simply add another f; to B. Finally, we get to the
third highest predecessor d of b, which happens to be the lowest as well as a source,
thus requiring nothing to be done. Coming out of the recursion, back to u = f, we
generate the pattern given by the last for loop, which is empty because the label
size of f is only 2. Coming out once more of the recursion to u = e, the for loop
pattern generates ey, f; and is followed by a call to PebSubseq1UIP with the next lower
predecessor f as the second parameter, which generates f;. This makes the current
sequence B = (ay,cy,by, ey, e, €3, f1, f1,€1, f1, f1). After processing this, zChaff will
also have b as a learned clause.

The final call to PebSubseqlUIPWrapper with parameter ¢t doesn’t do anything
because both predecessors of t were removed in the beginning. Since both a and b have
been learned, zChaff will have an immediate contradiction at decision level zero. This
gives us the complete branching sequence B = (ay, ¢1, by, €1, €2, €3, f1, f1, €1, f1, f1) for
the pebbling formula Pblg.

Complexity of Sequence Generation

Let graph G have n nodes, indegree of non-source nodes between d,,;, and dp,qq,
and label size between [,,;, and [,,,,. For simplicity of analysis, we will assume that
Lnin = lmaz = L and dyip, = dppar = d (I = d = 2 for a grid graph).

Let us first compute the size of the pebbling formula associated with G. The
running time of PebSeq1UIP and the size of the branching sequence generated will
be given in terms of this size. The number of clauses in the pebbling formula Pblg
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is roughly nl¢. Taking clause sizes into account, the size of the formula, |Pblg|, is
roughly n(l + d)I%. Note that the size of the CNF formula itself grows exponentially
with the indegree and gets worse as label size increases. The best case is when G is
the grid graph, where |Pblg| = ©(n). This explains the degradation in performance of
zChaff, both original and modified, as we move from grid graphs to random graphs (see
section 5.2.3). Since we construct Pbl2AT by deleting exactly one randomly chosen
clause from Pblg (see Section 5.1.1), the size |PbI2AT| of the satisfiable version is also
essentially the same.

Let us now compute the running time of PebSeq1UIP. Initial computation of heights
and predecessor sorting takes time ©(ndlogd). Assuming n,, unit clause labeled nodes
and n; target nodes, the remaining node sorting time is ©(n, logn, + n;logn;). Since
PebSubseql1UIPWrapper is called at most once for each node, the total running time of
PebSeq1UIP is ©(ndlog d+n, log n, +nilog ny +nTyrapper ), Where Tiypapper denotes the
running time of PebSubseqlUIP-Wrapper without taking into account recursive calls
to itself. When n, and n; are much smaller than n, which we will assume as the
typical case, this simplifies to ©(ndlog d + nTLyrapper). If T'(v, i) denotes the running
time of PebSubseqlUIP(v,i), again without including recursive calls to the wrapper
method, then Ty apper = T'(v,d). However, T'(v,d) = T (v,d — 1) + ©(l), which gives
Twrapper = T(v,d) = O(1%T1). Substituting this back, we get that the running time of
PebSeq1UIP is O(nl?*!), which is about the same as |Pblg|.

Finally, we consider the size of the branching sequence generated. Note that
for each node, most of its contribution to the sequence is from the recursive pat-
tern generated near the end of PebSubseqlUIP. Let Q)(v,i) denote this contribution.
Q(v,i) = (I —2)(Q(v,i — 1) + (1)), which gives Q(v,i) = ©(19"?). Hence, the size of
the sequence generated is ©(nl?*?), which again is about the same as |Pblg].

Theorem 5.1. Given a pebbling graph G with label size at most | and indegree of non-
source nodes at most d, Algorithm 5.1, PebSeqlUIP, produces a branching sequence o of
size at most S in time ©(dS), where S = |Pblg| ~ |PblZAT|. Moreover, the sequence
o is complete for Pblg as well as for PbI2AT under any clause learning algorithm
using fast backtracking and 1UIP learning scheme (such as zChaff).

Proof. The size and running time bounds follow from the previous discussion in this
section. That this sequence is complete can be verified by a simple hand calculation
simulating clause learning with fast backtracking and 1UIP learning scheme. 0

5.2.2  Solving GT,, Formulas

We now consider automatic sequence generation for the ordering formulas introduced
in Section 5.1.2. Since these formulas, like pebbling formulas, also originate in the
proof complexity literature and in fact represent a problem that is structurally simpler
to state and reason about than the pebbling problem, one may wonder what this
section adds to the chapter. The answer lies in two key motivations. First, as we
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will see, the automatically generated sequence for these formulas, unlike pebbling
formulas, is extremely simple in nature and incomplete as a branching sequence.
Nonetheless, it provides dramatic improvement in performance. Second, there is
reason to believe that pebbling formulas may be easier than the GT,, formulas for
resolution type proof systems. We formalize the intuition behind this in the next few
paragraphs.

While pebbling formulas are not so easy to solve by popular SAT solvers, they may
not inherently be too difficult for clause learning algorithms. In fact, even without
any learning, they admit tree-like proofs under a somewhat stronger related proof
system called RES(k) for large enough k as shown by Esteban et al. [50]:

Proposition 5.1 ([50]). Pblg has a tree-like RES(k) refutation of size O(|G|), where
k is the maximum width of a clause labeling a node of G. In particular, when G is a
grid graph with n nodes, Pblg has a tree-like RES(2) refutation of size O(n).

Here RES(k) denotes the extension of RES defined by Krajicek [75] that allows
resolving, instead of clauses, disjunctions of conjunctions of up to k literals. Recall
that clauses are disjunctions of literals, i.e., RES(1) is simply RES. Atserias and Bonet
[10] discuss how a tree-like RES(k) proof of a formula F' can be converted into a not-
too-large tree-like RES proof of a related formula F(k) over a few extra variables.
More precisely, their result and Proposition 5.1 together imply that the addition of
natural extension variables corresponding to k-conjunctions of variables of Pbls leads
to a tree-like RES proof of size O(|G| - k) of a related pebbling formulas Pblq(k).

For GT,, formulas, however, no such short tree-like proofs are known in RES(k)
for any k. Reusing derived clauses (equivalently, learning clauses with DPLL) seems
to be the key to finding short proofs of G7,. This makes them a good candidate
for testing clause learning based SAT solvers. Our experiments indicate that GT),
formulas, despite their simplicity, are quite hard for zChaff with its default parameter
settings. Using a good branching sequence based on the ordering structure underlying
these formulas leads to significant performance gains.

Automatic Sequence Generation: GTnSeqlUIP

Since there is exactly one, well defined, unsatisfiable GT formula for a fixed parameter
n, it is not surprising that the approximate branching sequence given in Figure 5.3 that
we use for it is straightforward. However, the fact that the same branching sequence
works well for the satisfiable version of the GT, formulas, obtained by deleting a
randomly chosen successor clause, is worth noting.

Recall that PebSeqlUIP was a fairly complex algorithm that generated a perfect
branching sequence for randomized pebbling graphs. In contrast, Algorithm 5.3,
GTnSeqlUIP, for generating the branching sequence in Figure 5.3 is nearly trivial.
As remarked earlier, it produces an incomplete sequence (see Definition 4.3) that
nonetheless boosts performance in practice.



90

- T21 31 T41 .- Tn-11
r12 — T32 X42 .. Tnp-12
1,3 T23 — T43 .. Tp—13

T4 T24 T34 — ... Tnolgd

Tinm T2n T3n Lan --- —
Tinm T2n T3n Lan --- Tp—1n

Figure 5.3: Approximate branching sequence for G7;, formulas. The sequence goes
top-down, and left to right within each row. ‘—’ corresponds to a non-existent variable
HR R

Input : A natural number n
Output : Branching sequence for GT,, for the 1UIP learning scheme
begin
forv=1ton do
L for j=1to(n—1)do
| if i #j then Output x;;

end
Algorithm 5.3: GTnSeqlUIP, generating branching sequence for G7T;, formulas

5.2.3  Fxperimental Results

We conducted experiments on a Linux machine with a 1600 MHz AMD Athelon
processor, 256 KB cache and 1024 MB RAM. Time limit was set to 6 hours and
memory limit to 512 MB; the program was set to abort as soon as either of these
was exceeded. We took the base code of zChaff [88], version 2001.6.15, and modified
it to incorporate a branching sequence given as part of the input, along with a CNF
formula. When an incomplete branching sequence is specified that gets exhausted
before a satisfying assignment is found or the formula is proved to be unsatisfiable,
the code reverts to the default variable selection scheme VSIDS of zChaff (cf. Section
2.3.2).

For consistency, we analyzed the performance with random restarts turned off. For
all other parameters, we used the default values of zChaff. For all formulas, results are
reported for DPLL (zChaff with clause learning disabled), for CL (unmodified zChaff),
and for CL with a specified branching sequence (modified zChaff).

Tables 5.1 and 5.2 show the performance on grid pebbling and randomized peb-
bling formulas, respectively, using the branching sequence generated by Algorithm
5.1, PebSeq1UIP. Table 5.3 shows the performance on the GT,, formulas using the
branching sequence generated by Algorithm 5.3, GTnSeq1UIP.
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Table 5.1: zChaff on grid pebbling formulas. I denotes out of memory.

Grid formula Runtime in seconds
Solver Layers Variables | Unsatisfiable Satisfiable
5 30 0.24 0.12
DPLL 6 42 110 0.02
7 56 > 6 hrs 0.07
8 72 > 6 hrs > 6 hrs
CL 20 420 0.12 0.05
(unmodified 40 1,640 59 36
zChaff) 65 4,290 i 47
70 4,970 I i
CL + 100 10,100 0.59 0.62
branching 500 250,500 254 288
sequence 1,000 1,001,000 4,251 5,335
1,500 2,551,500 21,097 I

Table 5.2: zChaff on randomized pebbling formulas with distinct labels, indegree < 5,
and disjunction label size < 6. I denotes out of memory.

Randomized pebbling formula Runtime in seconds
Solver Nodes  Variables Clauses | Unsatisfiable  Satisfiable
9 33 300 0.00 0.00
DPLL 10 29 228 0.58 0.00
10 48 604 > 6 hrs > 6 hrs
CL 50 154 3,266 0.91 0.03
(unmodified 87 296 9,850 I 65
zChaff) 109 354 11,106 584 0.78
110 354 18,467 I I
CL + 110 354 18,467 0.28 0.29
branching | 4,427 14,374 530,224 48 49
sequence 7,792 25,105 944,846 181 > 6 hrs
13,324 43,254 1,730,952 669 249

For both grid and randomized pebbling formulas, the size of problems that can
be solved increases substantially as we move down the respective tables. Note that
randomized pebbling graphs typically have a more complex structure than grid peb-
bling graphs. In addition, higher indegree and larger disjunction labels make both
the CNF formula size as well as the required branching sequence larger. This explains
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Table 5.3: zChaff on G7T,, formulas. I denotes out of memory.

GT, formula Runtime in seconds
Solver n Variables Clauses | Unsatisfiable Satisfiable
8 62 372 1.05 0.34
DPLL 9 79 549 48.2 0.82
10 98 775 3395 248
11 119 1,056 > 6 hrs 743
CL 10 98 775 0.20 0.00
(unmodified || 13 167 1,807 93.7 7.14
zChaff) 15 223 2,850 1492 0.01
18 322 5,067 I I
CL + 18 322 5,067 0.52 0.13
branching || 27 727 17,928 701 0.17
sequence 35 1,223 39,900 3.6 0.15
45 2,023 86,175 I 0.81

the difference between the performance of zChaff, both original and modified, on grid
and randomized pebbling instances. For all instances considered, the time taken to
generate the branching sequence from the input graph was significantly less than that
for generating the pebbling formula itself.

For the G'T,, formulas, since the branching used was incomplete, the solver had to
revert back to zChaff’s VSIDS heuristic to choose variables to branch on after using
the given branching sequence as a guide for the first few decisions. Nevertheless,
the sizes of problems that could be handled increased significantly. The satisfiable
versions proved to be relatively easier, with or without a specified branching sequence.

5.3 Discussion

This chapter has developed the idea of using a high level description of a satisfiability
problem for generating auxiliary information that can guide a SAT algorithm trying
to solve it. Our experimental results show a clear exponential improvement in per-
formance when such information is used to solve both grid and randomized pebbling
problems, as well as the GT,, ordering problems.

Although somewhat artificial, these problems are interesting in their own right
and provide hard instances for some of the best existing SAT solvers like zChaff.
Pebbling graphs are structurally similar to the layered graphs induced naturally by
problems involving unwinding of state space over time, such as CNF formulations of
planning by Kautz and Selman [70] and bounded model checking by Biere et al. [25].
This bolsters our belief that high level structure can be recovered and exploited to
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make clause learning more efficient.

In practice, a solver must employ good branching heuristics as well as implement
a powerful proof system. Our result that pebbling formulas have short CL proofs
depends critically upon the solver choosing a branching sequence that solves the
formula in a “bottom-up” fashion, so that the learned clauses have maximal reuse.
Nevertheless, we were able to automatically generate such sequences for grid and
randomized pebbling formulas. For the GT,, formulas, we used a different approach
and instead provided a very simple but imperfect automatically generated branching
sequence that boosted performance significantly in practice.

Our approach of exploiting high level problem description to generate auxiliary
information for SAT solvers, of course, requires the knowledge of this high level de-
scription to begin with. The standard CNF benchmarks such as those in the online
collection at SATLIB [63], unfortunately, do not come with such a description and
thus do not allow an extended evaluation of our technique on several interesting
formulas routinely used by researchers. We regard this not as a drawback of our
approach but instead as an easily avoidable limitation of the currently prevalent no-
tion of SAT solvers as blackboxes taking only a pure CNF formula as input. There
is no good reason for the high level problem description to be unavailable to gener-
ate auxiliary structural information since CNF formulas for practically all interesting
problems, from theory and practice, are created from a more abstract specification.
We continue to build upon this philosophy in the next chapter.
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Chapter 6
SYMMETRY IN SATISFIABILITY SOLVERS

As discussed earlier, we have seen tremendous improvement in the capabilities of
general purpose SAT solvers in the past decade. The state-of-the-art techniques make
them quite effective in solving challenging problems from various domains. Despite
the success, one aspect of many theoretical as well as real-world problems that we
argue has not been fully exploited is the presence of symmetry or equivalence amongst
the underlying objects.

The concept of symmetry in the context of SAT solvers is best explained through
some examples of the many application areas where it naturally occurs. For instance,
in FPGA (field programmable gate array) routing used in electronics design, all wires
or channels connecting two switch boxes are equivalent; in circuit modeling, all inputs
to a multiple fanin AND or OR gate are equivalent; in planning, all boxes that need
to be moved from city A to city B are equivalent; in multi-processor scheduling,
all available processors are equivalent; in cache coherency protocols in distributed
computing, all available caches are typically equivalent. When such problems are
translated into CNF formulas to be fed to a SAT solver, the underlying equivalence
or symmetry translates into a symmetry between the variables of the formula.

There has been work on using this symmetry in domain-specific algorithms and
techniques. However, our experimental results suggest that current general purpose
complete SAT solvers are unable to fully capitalize on symmetry. This chapter focuses
on developing a new general purpose technique towards this end and on empirically
evaluating its effectiveness in comparison with other known approaches.

Example 6.1. For concreteness, we give one simple but detailed example of symmetry
in SAT solvers. At the risk of appearing narrow in scope, we choose the pigeonhole
principle PHP: given n pigeons and m holes, there is no one-one mapping of the
pigeons to the holes when n > m. Translated into a CNF formula over variables z; ;
denoting that pigeon 7 is mapped to hole 7, this has two kinds of clauses. We use the
notation [p| to denote the set {1,2,... p}.

(a) Pigeon clauses: for i € [n], clause (z;1V ;2 V ...V x;,,) says that pigeon 7 is
mapped to some hole, and

(b) Hole clauses: for i # k € [n],j € [m], hole clauses (—z;; V =z ;) say that no
two pigeons are mapped to one hole.
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This formula, despite being extremely simple to state, is a cornerstone of proof
complexity research. Haken [60] used PHP) | to show the first ever exponential
lower bound for resolution. Since then several researchers have improved upon and
generalized his result to m < n, to other counting-based formulas, and to stronger
proof systems. Needless to say, the results from the 2005 SAT competition [78] testify
that the pigeonhole formulas provide a class of hard instances for most of the com-
plete SAT solvers which are based on the clause learning proof system, and hence on
resolution (cf. Chapter 4).

Returning to the context of symmetry, PH P)! contains two natural sets of equiv-
alent or symmetric objects, the n pigeons and the m holes. Accordingly, all variables
x;; in this formula are symmetric to each other. As we will see, it helps to distin-
guish between the “pigeon-symmetry” between z; ; and . ;, and the “hole-symmetry”
between z; ; and ;.

Remark 6.1. While we use PHP) as a motivation for the work presented in this
chapter, we would like to remind the reader that the techniques we develop are much
more general and capable of handling symmetry in more complex forms that we will
describe in due course. There are known techniques to handle the pigeonhole problem
in SAT solvers, such as the use of cardinality constraints by Chai and Kuehlmann
[32] and Dixon et al. [49]. However, such approaches either do not generalize or do
not perform as well in the presence of more complex forms of symmetry.

Previous Work

A technique due to Crawford et al. [41] that has worked quite well in handling sym-
metry is to add symmetry breaking predicates to the input specification to weed out
all but the lexically-first solutions. The idea is to identify the group of permutations
of variables that keep the CNF formula unchanged. For each such permutation 7,
clauses are added so that for every satisfying assignment o for the original problem,
whose permutation (o) is also a satisfying assignment, only the lexically-first of o
and (o) satisfies the added clauses. Tools such as Shatter by Aloul et al. [4] im-
prove upon this technique and use graph isomorphism detectors like Saucy by Darga
et al. [42] to generate symmetry breaking predicates. This latter problem of comput-
ing graph isomorphism is not known to have any polynomial time solution, and is
conjectured to be strictly between the complexity classes P and NP [cf. 73]. Hence,
one must resort to heuristic or approximate solutions. Further, the number of sym-
metry breaking predicates one needs to add in order to break all symmetries may
be prohibitively large. This is typically handled by discarding “large” symmetries.
This may, however, result in a much slower SAT solution as indicated by some of our
experiments.

Solvers such as PBS by Aloul et al. [5], pbChaff by Dixon et al. [49], and Galena
by Chai and Kuehlmann [32] utilize non-CNF formulations known as pseudo-Boolean
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inequalities. They are based on the cutting planes proof system which, as mentioned
in Section 3.2, is strictly stronger than resolution on which DPLL type CNF solvers
are based. Since this more powerful proof system is difficult to implement in its
full generality, pseudo-Boolean solvers often implement only a subset of it, typically
learning only CNF clauses or restricted pseudo-Boolean constraints upon a conflict.
Pseudo-Boolean solvers may lead to purely syntactic representational efficiency in
cases where a single constraint such as y; +y2+...4+y, < 1is equivalent to (g) binary
clauses. More importantly, they are relevant to symmetry because they sometimes
allow implicit encoding. For instance, the single constraint x1+zs+. ..+, < m over
n variables captures the essence of the pigeonhole formula PH P over nm variables
which is provably exponentially hard to solve using resolution-based methods without
symmetry considerations. This implicit representation, however, is not suitable in
certain applications such as clique coloring and planning that we discuss.

One could conceivably keep the CNF input unchanged but modify the solver to
detect and handle symmetries during the search phase as they occur. Although this
approach is quite natural, we are unaware of its implementation in a general purpose
SAT solver besides sEqSatz by Li et al. [81] whose technique appears to be somewhat
specific and whose results are not too impressive compared to zChaff itself. Related
work has been done in the specific areas of automatic test pattern generation by
Marques-Silva and Sakallah [85] and SAT-based model checking by Shtrichman [102].
In both cases, the solver utilizes global information obtained at a stage to make
subsequent stages faster.

In other domain-specific work, Fox and Long [52] presented a framework for plan-
ning problems that is very similar to ours in essence. However, their work has two
disadvantages. The obvious one is that they provide a planner, not a general purpose
reasoning engine. The second is that their approach does not guarantee plans of op-
timal length when multiple (non-conflicting) actions are allowed to be performed at
each time step.

Dixon et al. [48] give a generic method of representing and dynamically main-
taining symmetry using group theoretic techniques that guarantee polynomial size
proofs of many difficult formulas. The strength of their work lies in a strong group
theoretic foundation and comprehensiveness in handling all possible symmetries. The
computations involving group operations that underlie their current implementation
are, however, often quite expensive.

Our Contribution

We propose a new technique for representing and dynamically maintaining symmetry
information for DPLL-based satisfiability solvers. We present an evaluation of our ideas
through our tool SymChaff and demonstrate empirical exponential speedup in a variety
of problem domains from theory and practice. While our framework as presented
applies to both CNF and pseudo-Boolean formulations, the current implementation
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of SymChaff uses pure CNF representation.

A key difference between our approach and that based on symmetry breaking
predicates is that we use a high level description of a problem rather than its CNF
representation to obtain symmetry information. (We give concrete examples of this
later in this chapter.) This leads to several advantages. The high level description
of a problem is typically very concise and reveals its structure much better than a
relatively large set of clauses encoding the same problem. It is simple, in many cases
almost trivial, for the problem designer to specify global symmetries at this level using
straightforward “tagging.” If one prefers to compute these symmetries automatically,
off-the-shelf graph isomorphism tools can be used. Using these tools on the concise
high level description will, of course, be much faster than using the same tools on a
substantially larger CNF encoding.

While it is natural to choose a variable and branch two ways by setting it to TRUE
and FALSE, this is not necessarily the best option when k variables, z,xs,..., xg,
are known to be arbitrarily interchangeable. The same applies to more complex
symmetries where multiple classes of variables simultaneously depend on an index set
I ={1,2,...,k} and can be arbitrarily interchanged in parallel within their respective
classes. We formalize this as a k-complete multi-class symmetry and handle it using a
(k+ 1)-way branch based on I that maintains completeness of the search and shrinks
the search space by as much as O(k!). The index sets are implicitly determined
from the many-sorted first order logic representation of the problem at hand. We
extend the standard notions of conflict and clause learning to the multiway branch
setting, introducing symmetric learning. Our solver SymChaff integrates seamlessly
with most of the standard features of modern SAT solvers, extending them in the
context of symmetry wherever necessary. These include fast unit propagation, good
restart strategy, effective constraint database management, etc.

6.1 Preliminaries

The technique we present in this work can be applied to all DPLL based systematic
SAT solvers designed for CNF as well as pseudo-Boolean formulas.

Definition 6.1. A pseudo-Boolean formula is a conjunction of pseudo-Boolean con-
straints, where each pseudo-Boolean constraint is a weighted inequality over proposi-
tional variables with typically integer coefficients.

This generalizes the notion of a clause; (a V bV ¢) is equivalent to the pseudo-
Boolean inequality a + b+ ¢ > 1.

Recall that a CNF clause is called “unit” if all but one of its literals are set to
FALSE; the remaining literal must be set to TRUE to satisfy the clause. Similarly, a
pseudo-Boolean constraint is called “unit” if variables have been set in such a way that
all its unset literals must be set to TRUE to satisfy the constraint. Unit propagation
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is a technique common to SAT and pseudo-Boolean solvers that recursively simplifies
the formula by appropriately setting unset variables in unit constraints.

A DPLL-based systematic SAT or pseudo-Boolean solver implements the basic
branch-and-backtrack procedure described in Section 2.3. Various features and opti-
mizations, such as conflict clause learning, random restarts, watched literals, conflict-
directed backjumping, etc., are added to this simple DPLL process in order to increase
efficiency.

6.1.1 Constraint Satisfaction Problems and Symmetry

A constraint satisfaction problem (CSP) is a collection of constraints over a set V =
{z1,x9,...,x,} of variables. Although the following notions are generic, our focus in
this work will be on CNF and pseudo-Boolean constraints over propositional variables.

Symmetry may exist in various forms in a CSP. We define it in terms of per-
mutations of variables that preserve certain properties. Let o be a permutation of
[n]. Extend o by defining o(x;) = x4 for x; € V and o(V') = {o(x) | x € V'} for
V' C V. For a constraint C' over V, let o(C) be the constraint resulting from C
by applying o to each variable of C'. For a CSP I', define o(I") to be the new CSP
consisting of the constraints {o(C) | C € I'}.

Definition 6.2. A permutation o of the variables of a CSP I is a global symmetry
of 'if o(I") =T

Definition 6.3. Let V' be a the set of variables of a CSP I'. V! C V |V'| =k, is a
k-complete (global) symmetry of T' if every permutation o of V satisfying o(V') = V'
and o(z) =z for x ¢ V' is a global symmetry of T.

In other words, the k variables in V'’ can be arbitrarily interchanged without
changing the original problem. Such symmetries exist in simple problems such as
the pigeonhole principle where all pigeons (and holes) are symmetric. This can be
detected and exploited using various known techniques such as cardinality constraints
by Chai and Kuehlmann [32] and Dixon et al. [49].

6.1.2 Many-Sorted First Order Logic

In first order logic, one can express universally and existentially quantified logical
statements about variables and constants that range over a certain domain with some
inherent structure. For instance, the domain could be {1,2,...,n} with the successor
relationship of the first n natural numbers as its structure, and a (false) universally
quantified logical statement over it could be that every element in the domain has a
SUCCEessOor.

In many-sorted logic, the domain of variables and constants may be divided up into
various types or “sorts” of elements that are quantified over independently. In other
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words, many-sorted first order logic extends first order logic with type information.
The reader is referred to standard texts such as by Gallier [54] for further details. We
remark here that many-sorted first order logic is known to be exactly as expressive
as first order logic itself. In this sense, sorts or types add convenience but not power
to the logic.

As an example, consider again the pigeonhole principle where the domain consists
of a set P of pigeons and a set H of holes. The problem can be stated as the succinct
2-sorted first order formula [V(p € P) 3(h € H) . X(p,h)] N [V(h € H, p1 € P, ps €
P) . (p1 # pa — (=X(p1,h) V=X (pa, h)))], where X (p,h) is the predicate “pigeon
p maps to hole h.” We can alternatively write this 2-sorted first order logic formula
even more concisely as V7 375 . x; ) ANVHF VP k. (i £k — (mxi V o))

Recall on the other hand from Example 6.1 that the CNF formulation of same
problem requires | P|+|H | (“2D |) clauses. As we will see shortly, the sort-based quantified
representation of problems lies at the heart of our approach by providing us the base
“symmetry sets” to start with.

6.2 Symmetry Framework and SymChaff

We describe in this section our new symmetry framework in a generic way, briefly
referring to specific implementation aspects of SymChaff as appropriate.

The motivation and description of our techniques can be best understood with
a few concrete examples in mind. We use three relatively simple logistics planning
problems depicted in Figure 6.1. In all three of these problems, there are k trucks
T, Ty, ..., Ty initially at a location Lrp (truckbase). There are several locations as
well as a number of packages. Each package is initially at a certain location and needs
to be transported to a certain destination location. Actions that can be taken at any
step include driving a truck from one location to another, and loading or unloading
multiple boxes (in parallel) onto or from a truck. The task is to find a minimum
length plan such that all boxes arrive at their destined locations and all trucks return
to Lrp. Actions that do not conflict in their pre- or post-conditions can be taken in
parallel.

Let s(i) = (i mod n) 4+ 1 denote the cyclic successor of ¢ in [n].

Example 6.2 (PlanningA). Let k = [3n/4]. For 1 < i < n, there is a location L;
that has two packages P;; and F;,. The goal is to deliver package F;; to location
Ly and package P; o to location L))

The shortest plan for this problem is of length 7 for any n. The idea behind the
plan is to use 3 trucks to handle 4 locations. E.g., truck T} transports P; 1, P2, and
Py, truck Ty transports Py, P39, and Py, and truck 75 transports Pso and Pjo.
The 7 steps for T involve (i) driving to L, (ii) loading the two boxes there, (iii)
driving to Lo, (iv) unloading P, and loading P»;, (v) driving to Ls, (vi) unloading
the two boxes it is carrying, and (vii) driving back to Lyp.
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1

Figure 6.1: The setup for logistic planning examples

Example 6.3 (PlanningB). Let k = [n/2]. For 1 <i < n, there are 5 packages at
location L; that are all destined for location L. This problem has more symmetries
than PlanningA because all packages initially at the same location are symmetric.

The shortest plan for this problem is of length 7 and assigns one truck to two
consecutive locations. E.g., the 7 steps for truck 7 include (i) driving to Ly, (ii)
loading all boxes there, (iii) driving to Lo, (iv) unloading the boxes it is carrying and
loading all boxes originally present at Lo, (v) driving to Le, (vi) unloading all boxes
it is carrying, and (vii) driving back to Lyp.

Example 6.4 (PlanningC). Let k = n. For 1 < i < n, there are locations LST¢, 1.dest
and packages P, 1, P;o. Both these packages are initially at location L' and must be

delivered to location L?eSt. Here not only the two packages at each source location

are symmetric but all n tuples (LS, LAt P P, are symmetric as well.

It is easily seen that the shortest plan for this problem is of length 5 and assigns
one truck to each source-destination pair. E.g., the 5 steps for T} involve (i) driving
to L5, (ii) loading the two boxes there, (iii) driving to L4, (iv) unloading the two
boxes it is carrying, and (v) driving back to Lrp.

For a given plan length, such a planning problem can be converted into a CNF
formula using tools such as Blackbox by Kautz and Selman [72] and then solved using
standard SAT solvers. The variables in this formula are of the form load-P; ;-onto-
Tj-at-Ly-time-t, etc. We omit the details [see 70].

6.2.1 k-complete m-class Symmetries

Consider a CSP T" over a set V' = {xy,29,...,2,} of variables as before. We gen-
eralize the idea of complete symmetry for I' to complete multi-class symmetry. Let

Vi, Va, ..., Vi, be disjoint subsets of V' of cardinality k each. Let Vo = V'\ <Uie[m} V,-).

Order the variables in each V;,i € [m], arbitrarily and let 37, j € [k], denote the ;%
variable of V.
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Let o be a permutation of the set [k]. Define & to be the permutation of V
induced by o and V;,0 < i < m, as follows: &(x) =z for x € Vj and 7(z) = yf(j) for
T = yf € V;,i € [m]. In other words, ¢ maps variables in Vj to themselves and applies
o in parallel to the indices of the variables in each class V;,i € [m], simultaneously.

Definition 6.4. If 7 is a global symmetry of T for every permutation o of [k] then
the set {V1,Va,..., Vi, } is a k-complete m-class (global) symmetry of I'. The sets
Vi,i € |[m], are referred to as the wariable classes. Variables in V; are said to be
indexed by the symindez set [k].

Note that a k-complete 1-class symmetry is simply a k-complete symmetry. Com-
plete multi-class symmetries correspond to the case where variables from multiple
classes can be simultaneously and coherently changed in parallel without affecting
the problem. This happens naturally in many problem domains.

Example 6.5. Consider the logistics planning problem PlanningA (Example 6.2) for
n = 4 converted into a unsatisfiable CNF formula corresponding to plan length 6.
The problem has k = 3 trucks and is 3-complete m-class symmetric for appropriate
m. The variable classes V; of size 3 are indexed by the symindex set {1,2,3} and
correspond to sets of 3 variables that differ only in which truck they use. For ex-
ample, variables unload-P; ;-from-T}-at-Lo-time-5, unload-P; 1-from-T5-at-Lo-time-5,
and unload-P, ;-from-T3-at-Lo-time-5 comprise one variable class which is denoted
by unload-Ps ;-from-Tj-at-La-time-5. The many-sorted representation of the problem
has one universally quantified sort for the trucks. The problem PlanningA remains
unchanged, e.g., when T7 and T5 are swapped in all variable classes simultaneously.

In more complex scenarios, a variable class may be indexed by multiple symindex
sets and be part of more than one complete multi-class symmetry. This will happen,
for instance, in the PlanningB problem (Example 6.3) where variables load-Ps ,-onto-
T;-at-Ls-time-4 are indexed by two symindex sets, a € [5] and j € [3], each acting
independent of the other. This problem has a universally quantified 2-sorted first
order representation.

Alternatively, multiple object classes, even in the high level description, may be
indexed by the same symindex set. This happens, for example, in the PlanningC
problem (Example 6.4), where LZ-SrC,LZ»deSt,PM, and P, are all indexed by ¢. This
results in symmetries involving an even higher number of variable classes indexed by
the same symindex set than in the case of PlanningA type problems.

6.2.2  Symmetry Representation

SymChaff takes as input a CNF file in the standard DIMACS format [68] as well as a
.sym symmetry file S that encodes the complete multi-class symmetries of the input
formula. Lines in S that begin with c are treated as comments. S contains a header
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line p sym nsi ncl nsv declaring that it is a symmetry file with nsi symindex sets,
ncl variable classes, and nsv symmetric variables.

Symmetry is represented in the input file S and maintained inside SymChaff in
three phases. First, symindex sets are represented as consecutive, disjoint intervals
of positive integers. In the PlanningB example for n = 4, the three trucks would be
indexed by the set [1 .. 3] and the 5 packages at location L;, 1 < i < 4, by symindex sets
[3+5(i—1)+1 .. 34 5], respectively. Here [p .. ¢] denotes the set {p,p+1,...,q}.
Second, one wariable class is defined for each variable class V; and associated with
each symindex set that indexes variables in it. Finally, a symindexr map is created
that associates with each symmetric variable the variable class it belongs to and
the indices in the symindex sets it is indexed by. For instance, variable load-P; 4-
onto-T3-at-L4-time-4 in problem PlanningB will be associated with the variable class
load-P ,-onto-Tj-at-L-time-4 and with indices j =3 and a =3+5(2—1)+4 = 12.
The symmetry input file S is a straightforward encoding of symindex sets, variable
classes, and symindex map.

Example 6.6. As another example and as an illustration of the exact syntax of S, we
give the actual symmetry input file for the pigeonhole problem PH Py in Figure 6.2.
There are two symindex sets, one for the 4 pigeons and the other for the 3 holes. These
correspond to the consecutive, disjoint intervals [1 .. 4] and [5 .. 7], respectively, and
are associated with the right end-points of the intervals, 4 and 7. All 12 variables of
the problem are symmetric to each other and thus belong to the only variable class for
the problem (commented as “vartype” in the Figure). This variable class is indexed
by the two symindex sets associated with the right end-points 4 and 7. Finally, the
symindex map says, for example, that variable 5, which happens to correspond to the
variable x5, in PH Py, belongs to the first (and only) variable class and is indexed
by the index 2 from the first symindex set and the index 6 from the second symindex
set associated with its variable class.

Note that while the variable classes and the symindex map remain static, the sy-
mindex sets change dynamically as SymChaff proceeds assigning values to variables.
In fact, when sufficiently many variables have been assigned truth values, all com-
plete multi-class symmetries will be destroyed. For efficient access and manipulation,
SymChaff stores variable classes in a vector data structure from the Standard Tem-
plate Library (STL) of C++, the symindex map as a hash table, and symindex sets
together as a multiset containing only the right end-points of the consecutive, disjoint
intervals corresponding to the symindex sets. A symindex set split is achieved by
adding the corresponding new right end-point to the multiset, and symindex sets are
combined when backtracking by deleting the end-point.
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Figure 6.2: A sample symmetry file, php-004-003. sym

6.2.3 Multiway Indez-based Branching

103

A distinctive feature of SymChaff is multiway symindex-based branching. Suppose
at a certain stage the variable selection heuristic suggests that we branch by setting
variable x to FALSE. SymChaff checks to see whether x has any complete multi-class
symmetry left in the current stage. (Note that symmetry in our framework reduces
as variables are assigned truth values.) x, of course, may not be symmetric at all to
start with. If x doesn’t have any symmetry, SymChaff proceeds with the usual DPLL
style 2-way branch by setting x now to FALSE and later to TRUE. If it does have
symmetry, SymChaff arbitrarily chooses a symindex set I, |I| = k > 2, that indexes

x and creates a (k + 1)-way branch. Let xy,zo, ..

., oy be the variables indexed by
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I in the variable class V' to which = belongs (r = z; for some j). For 0 < ¢ < k,
the " branch sets 1,...,2; to FALSE and ;41,...,2; to TRUE. The idea behind
this multiway branching is that it only matters how many of the x; are set to FALSE
and not which exact ones. This reduces the search for a satisfying assignment from

up to 2% different partial assignments of z1, ...,z to only k + 1 different ones. This
clearly maintains completeness of the search and is the key to the good performance
of SymChaff.

When one branches and sets variables, the symindex sets must be updated to
reflect this change. When proceeding along the i** branch in the above setting, two
kinds of symindex splits happen. First, if z is also indexed by an index j in a symindex
set J = [a .. b] # I, we must split J into up to three symindex sets given by the
intervals [a .. j — 1], [§ .. j], and [j + 1 .. b] because j’s symmetry has been destroyed
by this assignment. To reduce the number of splits, SymChaff replaces x with another
variable in its variable class for which j = a and thus the split divides J into two new
symindex sets only, [a .. a] and [a 4+ 1 .. b]. This first kind of split is done once for
the multiway branch for x and is independent of the value of 7. The second kind of
split divides I = [c .. d] into up to two symindex sets given by [c .. i and [i + 1 .. d].
This, of course, captures the fact that both the first ¢ and the last & — ¢ indices of I
remain symmetric in the i'® branch of the multiway branching step.

Symindex sets that are split while branching must be restored when a backtrack
happens. When a backtrack moves the search from the ** branch of a multiway
branching step to the ¢ + 1% branch, SymChaff deletes the symindex set split of the
second type created for the i branch and creates a new one for the 7 + 1 branch.
When all k£ + 1 branches are finished, SymChaff also deletes the split of the first type
created for this multiway branch and backtracks.

6.2./ Symmetric Learning

We extend the notion of conflict-directed clause learning to our symmetry framework.
When all branches of a (k4 1)-way symmetric branch b have been explored, SymChaff
learns a symconflict clause C' such that when all literals of C are set to FALSE, unit
propagation falsifies every branch of b. This process clearly maintains soundness of
the search. The symconflict clause is learned even for 2-way branches and is computed
as follows.

Suppose a k-way branch b starts at decision level d. If the i** branch of b leads to a
conflict without any further branches, two things happen. First, SymChaff learns the
FirstUIP clause following the conflict analysis strategy of zChaff (see Section 4.2.5).
Second, it stores in a set Sj associated with b the decision literals at levels higher
than d that are involved in the conflict. On the other hand, if the i** branch of b
develops further into another branch &', SymChaff stores in Sy those literals of the
symconflict clause recursively learned for &' that have decision level higher than d.
When all branches at b have been explored, the symconflict clause learned for b is
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Vees,, L.

6.2.5 Static Ordering of Symmetry Classes and Indices

It is well known that the variable order chosen for branching in any DPLL-based solver
has tremendous impact on efficiency. Along similar lines, the order in which variable
classes and symindex sets are chosen for multiway branching can have significant
impact on the speed of SymChaff.

While we leave dynamic strategies for selecting variable classes and symindex sets
as ongoing and future work, SymChaff does support static ordering through a very
simple and optional .ord order file given as input. This file specifies an ordering of
variable classes as an initial guide to the VSIDS variable selection heuristic of zChaff
(cf. Section 2.3.2), treating asymmetric variables in a class of their own. Further,
for each variable class indexed by multiple symindex sets, it allows one to specify an
order of priority on symindex sets. The exact file structure is omitted due to lack of
space.

6.2.6 Integration of Standard Features

The efficiency of state-of-the-art SAT and pseudo-Boolean solvers relies heavily on
various features that have been developed, analyzed, and tested over the last decade.
SymChaff integrates well with most of these features, either using them without any
change or extending them in the context of multiway branching and symmetric learn-
ing. The only significant and relatively new feature that neither SymChaff nor the
version of zChaff on which it is based currently support is assignment stack shrinking
based on conflict clauses which was introduced by Nadel [91] in the solver Jerusat.

For completeness, we make a digression to give a flavor of how assignment stack
shrinking works. When a conflict occurs because a clause C’ is violated and the
resulting conflict clause C' to be learned exceeds a certain threshold length, the solver
backtracks to almost the highest decision level of the literals in C'. It then starts
assigning to FALSE the unassigned literals of the violated clause C’ until a new conflict
is encountered, which is expected to result in a smaller and more pertinent conflict
clause to be learned.

Returning to SymChaff, it supports fast unit propagation using watched literals,
good restart strategies, effective constraint database management, and smart branch-
ing heuristics in a very natural way (cf. Sections 2.3.2 and 4.2). In particular, it
uses zChaff’s watched literals scheme for unit propagation, deterministic and random-
ized restart strategies, and clause deletion mechanisms without any modification, and
thus gains by their use as any other SAT solver would. While performing multiway
branching for classes of variables that are known to be symmetric, SymChaff starts
every new multiway branch based on the variable that would have been chosen by
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VSIDS branch selection heuristic of zChaff, thereby retaining many advantages that
effective branch selection heuristics like VSIDS have to offer.

Conflict clause learning is extended to symmetric learning as described earlier.
Conflict-directed backjumping in the traditional context allows a solver to backtrack
directly to a decision level d if variables at levels d or higher are the only ones involved
in the conflicts in both branches at a point other than the branch variable itself.
SymChaff extends this to multiway branching by computing this level d for all branches
at a multiway branch point by looking at the symconflict clause for that branch,
discarding all intermediate branches and their respective partial symconflict clauses,
backtracking to level d, and updating the symindex sets.

While conflict-directed backjumping is always beneficial, fast backjumping may
not be so. This latter technique, relevant mostly to the firstUIP learning scheme of
zChaff, allows a solver to jump directly to a higher decision level d when even one
branch leads to a conflict involving variables at levels d or higher only (in addition
to the variable at the current branch). This discards intermediate decisions which
may actually be relevant and in the worst case will be made again unchanged after
fast backjumping. SymChaff provides this feature as an option which turns out to
be helpful in certain domains and detrimental in others. To maintain consistency
of symconflict clauses learned later, the level d’ to backjump to is computed as the
maximum of the level d as above and the maximum decision level d of any variable
in the partial symconflict clause associated with the current multiway branch.

6.3 Benchmark Problems and Experimental Results

SymChaff is implemented on top of zChaff version 2003.11.04. The input to SymChaff
is a .cnf formula file in the standard DIMACS format, a .sym symmetry file, and
an optional .ord static symmetry order file. It uses the default parameters of zChaff.
The program was compiled using g++ 3.3.3 for RedHat Linux 3.3.3-7. Experiments
were conducted on a cluster of 36 machines running Linux 2.6.11 with four 2.8 GHz
Intel Xeon processors on each machine, each with 1 GB memory and 512 KB cache.

Tables 6.1 and 6.2 report results for several parameterizations of two problems
from proof complexity theory, three planning problems, and a routing problem from
design automation. These problems are discussed below. Satisfiable instances of
some of these problems were easy for all solvers considered and are thus omitted
from the table. Except for the planning problems for which automatic “tags” were
used (described later), the .sym symmetry files were automatically generated by a
straightforward modification to the scripts used to create the .cnf files from the
problem descriptions. For all instances, the time required to generate the .sym file
was negligible compared to the .cnf file and is therefore not reported. The .sym files
were in addition extremely small compared to the corresponding .cnf files.

The solvers used were SymChaff, zChaff version 2003.11.04, and March-eq-100 by
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Huele et al. [64]. Symmetry breaking predicates were generated using Shatter version
0.3 that uses the graph isomorphism tool Saucy. Note that zChaff won the best solver
award for industrial benchmarks in the SAT 2004 competition [77] while March-eq-100
won the award for handmade benchmarks.

SymChaff outperformed the other two solvers without symmetry breaking predi-
cates in all but excessively easy instances. Generating symmetry breaking predicates
from the input CNF formula was typically quite slow compared to a complete solu-
tion by SymChaff. The effect of adding symmetry breaking predicates before feeding
the problem to zChaff was mixed, helping to various extents in some instances and
hurting in others. In either case, it was never any better than using SymChaff without
symmetry breaking predicates.

6.3.1 Problems from Proof Complexity

Pigeonhole Principle: php-n-m is the classic pigeonhole problem described in Example
6.1 for n pigeons and m holes. The corresponding formulas are satisfiable iff n < m.
They are known to be exponentially hard for resolution [60, 94] but easy when the
symmetry rule is added [76]. Symmetry breaking predicates can therefore be used for
fast CNF SAT solutions. The price to pay is symmetry detection in the CNF formula,
i.e., generation of symmetry breaking predicates using graph isomorphism tools. We
found this process to be significantly costly in terms of the overall runtime.

pbChaff and Galena, on the other hand, use an explicit pseudo-Boolean encoding
and rely on learning good pseudo-Boolean conflict constraints. They do overcome the
drawbacks of the symmetry breaking predicates technique but are nonetheless slower
than SymChaff.

SymChaff uses two symindex sets corresponding to the pigeons and the holes, and
one variable class containing all the variables. It solves this problem in time ©(m?).
Note that although it must read the entire input file containing ©(nm?) clauses, it does
not need to process all of these clauses given the symmetry information. Although
reading the input file is quite fast in practice, we do not include the time spent on it
when claiming the ©(m?) bound.

This contrasts well with one of the fastest current techniques for this problem
(other than the implicit pseudo-Boolean encoding) by Motter and Markov [89] which
is based on ZBDDs and requires a fairly involved analysis to prove that it runs in
time ©(m?) [90].

Clique Coloring Principle: The formula clgcolor-n-m-k encodes the clique coloring
problem whose solution is a set of edges that form an undirected graph G over n
nodes such that two conditions hold: G contains a clique of size m and G can be
colored using k colors so that no two adjacent nodes get the same color. The formula
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is satisfiable iff m < n and m < k.

At first glance, this problem might appear to be a simple generalization of the
pigeonhole problem. However, it evades fast solutions using SAT as well as pseudo-
Boolean techniques even when the clique part is encoded implicitly using pseudo-
Boolean methods. Indeed, Pudlak [93] has shown it to be exponentially hard for the
cutting planes proof system on which pseudo-Boolean solvers are based.

Our experiments indicate that not only finding symmetries from the corresponding
CNF formulas is time consuming, zChaff is extremely slow even after taking symmetry
breaking predicates into account. SymChaff, on the other hand, uses three symindex
sets corresponding to nodes, membership in clique, and colors, and three variable
classes corresponding to edge variables, clique variables, and coloring variables. It
solves the problem in time ©(k?), again ignoring the time spent on reading the input
file.

We note that this problem can also be solved in polynomial time using the group
theoretic technique of Dixon et al. [48]. However, the group operations that underlie
their implementation are polynomials of degree as high as 6 or 7, making the approach
significantly slower in practice.

6.3.2 Problems from Applications

All planning problems were encoded using the high level STRIPS formulation of Plan-
ning Domain Description Language (PDDL) introduced by Fikes and Nilsson [51].
These were then converted into CNF formulas using the tool Blackbox version 4.1 by
Kautz and Selman [72]. A PDDL description of a planning problem is a straight-
forward Lisp-style specification that declares the objects involved, their initial state,
and their goal state. In addition to this instance-specific description, it also uses a
domain-specific file that describes the available actions in terms of their preconditions
and effects.

We modified Blackbox to generate symmetry information as well by using a very
simple “tagged” PDDL description where an original PDDL declaration such as

(IOBJECTS T1 T2 T3
L?rc Lgre Lglest Lglest

Piw Py Pia Pao)

in the PlanningC example is replaced with

(:0BJECTS T Ty T3 - SYMTRUCKS
LS L5Y¢ - symLocs
rdest rdest _ symrocs
Py Py - SYMLOCS
PLQ P272 - SYMLOCS)
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The rest of the PDDL description remains unchanged and a . sym file is automatically
generated using these tags.

Example 6.7. For concreteness, we give the actual PDDL specification for our
PlanningA example with n = 3 locations and k = [3n/4] = 3 trucks in Figure
6.3. The “tag” in bold is the only change to the usual specification of the problem
needed to process symmetry information automatically.

(define (problem PlanningA-03) ...continued

(:domain logistics-strips-sym) (LOCATION truckbase)

(:objects (LOCATION locationl)
truckl (LOCATION location2)
truck?2 (LOCATION location3)
truck3 - SYMTRUCKS (CITY cityl)
packagel (at packagel locationl)
package?2 (at package2 locationl)
package3 (at package3 location2)
package4d (at package4 location2)
packageb (at packageb location3)
package6 (at package6 location3)
truckbase (at truckl truckbase)
locationl (at truck2 truckbase)
location?2 (at truck3 truckbase)
location3 (in-city truckbase cityl)
cityl (in-city locationl cityl)

) (in-city location2 cityl)

(:init (in-city location3 city1l)
(TRUCK truckl) )
(TRUCK truck2) (:goal (and
(TRUCK truck3) (at packagel location2)
(0BJ packagel) (at package2 location3)
(0BJ package2) (at package3 location3)
(0BJ package3) (at packaged4 locationl)
(0BJ package4) (at packageb locationl)
(0BJ package5b) (at package6 location2)
(0BJ package6) )

continued. .. )

Figure 6.3: A sample PDDL file for PlanningA with n = 3

We are now ready to present the four application-oriented problems for which we
have experimental results. Three of these are planning problems.
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Gripper Planning: The problem gripper-n-t is our simplest planning example. It
consists of 2n balls in a room that need to be moved to another room in ¢ steps using
a robot that has two grippers that it can use to pick up balls. The corresponding
formulas are satisfiable iff ¢ > 4n — 1.

SymChaff uses two symindex sets corresponding to the balls and the grippers.
The number of variable classes is relatively large and corresponds to each action
that can be performed without taking into account the specific ball or gripper used.
While SymChaff solves this problem easily in both unsatisfiable and satisfiable cases,
the other two solvers perform poorly. Further, detecting symmetries from CNF using
Shatter is not too difficult but does not speed up the solution process by any significant
amount.

Logistics Planning log-rotate: The problem log-rotate-n-t is the logistics planning
example PlanningA with n as the number of locations and ¢ as the maximum plan
length. As described earlier, it involves moving boxes in a cyclic rotation fashion
between the locations. The formula is satisfiable iff ¢ > 7.

SymChaff uses one symindex set corresponding to the trucks, and several variable
classes. Here again symmetry breaking predicates, although not too hard to compute,
provide less than a factor of two improvement. March-eq and zChaff were much slower
than SymChaff on large instances, both unsatisfiable and satisfiable.

Logistics Planning log-pairs: The problem log-pairs-n-t is the logistics planning
example PlanningC with n as the number of location pairs and ¢ as the maximum
plan length. As described earlier, it involves moving boxes between n disjoint location
pairs. The corresponding formula is satisfiable iff ¢ > 5.

SymChaff uses n + 1 symindex sets corresponding to the trucks and the location
pairs, and several variable classes. This problem provides an interesting scenario
where zChaff normally compares well with SymChaff but performs worse by a factor
of two when symmetry breaking predicates are added. We also note that computing
symmetry breaking predicates for this problem is quite expensive by itself.

Channel Routing: The problem chnl-t-n is from design automation and has been
considered in previous works on symmetry and pseudo-Boolean solvers [4, 6]. It
consists of two blocks of circuits with ¢ tracks connecting them. Each track can hold
one wire (or “net” as it is sometimes called). The task is to route n wires from
one block to the other using these tracks. The underlying problem is a disguised
pigeonhole principle. The formula is solvable iff ¢ > n.




Table 6.1: Experimental results on UNSAT formulas. I indicates > 6 hours.

Problem SymChaff | zChaff | March-eq | Shatter ALhail

+ parameters after Shatter
009-008 0.01 | 0.22 1.55 0.07 0.10

o, 013-012 0.01 | 1017 i 0.09 0.01
< 051-050 0.24 1 ] 13.71 0.50
091-090 0.84 I i 245 3.47
101-100 1.20 i i 466 6.48

. 05-03-04 0.02 | 0.01 0.21 0.09 0.01
S 12-07-08 0.03 I I 5.09 4929
g 20-15-16 0.26 I I 748 i
< 30-18-21 0.60 I | 20801 1
50-40-45 8.76 1 i i i

. 02t6 0.02 | 0.03 0.07 0.20 0.04
& 0414 0.84 | 2820 I 3.23 983
= 06622 3.37 i ] 2312 i
© 10138 47 i i 193 1
2 06t6 0.74 | 1.47 21.55 8.21 0.93
S 08t6 2.03 | 429 375 | 314 4.21
i 09t6 8.64 | 15.67 3835 74 28.9
& 11t6 51 | 12827 I 324 17968
- 05t5 0.46 | 0.38 3.65 | 25.19 0.65
S 07t5 1.83 | 1.87 80 243 3.05
0 09t5 6.20 | 6.23 582 1373 14.57
— 11t5 15.65 | 18.05 1807 | 6070 34.4
010-011 0.04 | 8.61 1 0.20 0.02

=3 011-020 0.06 135 i 0.28 0.03
S 020-030 0.05 i ] 4.60 0.10
050-100 1.75 I i 810 1.81
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SymChaff uses two symindex sets corresponding to the end-points of the tracks in
the two blocks, and 2n variable classes corresponding to the two end-points for each
net. While March-eq was unable to solve any instance of this problem considered,
zChaff performed as well as SymChaff after symmetry breaking predicates were added.
The generation of symmetry breaking predicates was, however, orders of magnitude

slower.

6.4 Discussion

SymChaff sheds new light into ways that high level symmetry, which is typically obvi-
ous to the problem designer, can be used to solve problems more efficiently. It handles
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Table 6.2: Experimental results on SAT formulas. { indicates > 6 hours.

n Ilj;f:rlrfé?ers SymChaff | zChaff | March-eq | Shatter after Szhi:j::
y 02t7 0.02 | 0.03 0.34 0.17 0.03
& 04t15 2.03 | 1061 t 0.23 1411
= 0623 7.27 t | 19.03 t
© 10t39 92 t t 193 t
3 06t7 2.87 | 2.09 11| 16.92 3.03
£ 07t7 7.64 |  6.85 27 55 47
5 08t7 9.13 182 14805 62 358
& 09t7 139 | 1284 814 186 1356

frequently occurring complete multi-class symmetries and is empirically exponentially
faster on several problems from theory and practice, both unsatisfiable and satisfiable.
The time and memory overhead it needs for maintaining data structures related to
symmetry is fairly low and on problems with very few or no symmetries, it works as

well as zChaff.

Our framework for symmetry is, of course, not tied to SymChaff. It can extend any
state of the art DPLL-based CNF or pseudo-Boolean solver. Two key places where we
differ from earlier approaches are in using high level problem description to obtain
symmetry information (instead of trying to recover it from the CNF formula) and
in maintaining this information dynamically without using complicated group theo-
retic machinery. This allows us to overcome many drawbacks of previously proposed
solutions.

We show, in particular, that straightforward tagging in the specification of plan-
ning problems is enough to automatically generate relevant symmetry information
which in turn makes the search for an optimal plan much faster. SymChaff incorpo-
rates several new ideas that allow this to happen. These include simple but effective
symmetry representation, multiway branching based on variable classes and symmetry
sets, and symmetric learning as an extension of clause learning to multiway branches.

One limitation of our approach is that it does not support symmetries that are ini-
tially absent but arise after some literals are set. Our symmetry sets only get refined
from their initial value as decisions are made. Consider, for instance, a planning prob-
lem where two packages P, and P, are initially at locations L; and Lo, respectively,
(and hence asymmetric) but are both destined for location Ldest 1t at some point
they both reach a common location, they should ideally be treated as equivalent with
respect to the remaining portion of the plan. The airlock domain introduced by Fox
and Long [53] is a creative example where such dynamically created symmetries are
the norm rather than the exception. While they do describe a planner that is able to
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exploit these symmetries, it is unclear how to incorporate such reasoning in a general
purpose SAT solver besides resorting to on-the-fly computations involving the group
of symmetries which, as observed in the work of Dixon et al. [48], can sometimes be
quite expensive.
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Chapter 7
CONCLUSION

We conclude with some general as well as concrete directions for extending the
work presented in this thesis.

Our results in Chapter 3 imply exponential lower bounds on the running time
of a class of backtracking algorithms for finding a maximum independent set (or,
equivalently, a maximum clique or a minimum vertex cover) in a given graph, or
approximating it. Analysis of the complexity of the independent set and other related
problems under stronger proof systems, such as Cutting Planes [65, 29], bounded-
depth Frege systems [2], or an extension of resolution that allows “without loss of
generality” reasoning as mentioned in Section 3.11, will broaden our understanding
in this respect.

The DPLL upper bounds that we give are based on a rather simple enumeration,
with natural search space pruning, of all potential independent sets. As Theorem 3.5
points out, this is the best one can do using any exhaustive backtracking algorithm.
Considering more complex techniques may let us close the gap of a factor of nearly
O(A%) in the exponent that currently exists between our lower and upper bounds for
general resolution. It appears that we have not taken advantage of the full power of
resolution, specifically the reuse of derived clauses.

The work presented in Chapter 4 inspires but leaves open several interesting ques-
tions of proof complexity. We showed that there are formulas on which CL is much
more efficient than any proper natural refinement of RES. In general, can every short
refutation in any such refinement be converted into a short CL proof? Or are these re-
finements and CL incomparable? We have shown that with arbitrary restarts, a slight
variant of CL is as powerful as RES. However, judging when to restart and deciding
what branching sequence to use after restarting adds more nondeterminism to the
process, making it harder for practical implementations. Can CL with limited restarts
also simulate RES efficiently?

We also introduced in that chapter FirstNewCut as a new learning scheme and
used it to derive our theoretical results. A characterization of the real-world domains
on which it performs better than other schemes is still open. In the process of deriving
theoretical results, we gave a formal description of concepts such as implication and
conflict graphs, and how they relate to learned clauses and trivial resolution deriva-
tions. This framework, we hope, will be useful in answering the complexity questions
left open by this work.

In Chapter 5, the form in which we extract and use problem structure is a branch-
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ing sequence. Although capable of capturing more information than a static variable
order and avoiding the overhead of dynamic branching schemes, the exactness and
detail branching sequences seem to require for pebbling formulas might pose prob-
lems when we move to harder domains where a polynomial size sequence is unlikely to
exist. We may still be able to obtain substantial (but not exponential) improvements
as long as an incomplete or approximate branching sequence made correct decisions
most of the time, especially near the top of the underlying DPLL tree. The perfor-
mance gains reported for GT,, formulas indicate that even a very simple and partial
branching sequence can make a big difference in practice. Along these lines, variable
orders in general have been studied in other scenarios, such as for algorithms based on
BDDs [see e.g., 11, 61]. Reda et al. [96] have shown how to use BDD variable orders
for DPLL algorithms without learning [96]. The ideas here can potentially provide
new ways of capturing structural information.

From Chapter 6, the symmetry representation and maintenance techniques de-
veloped for SymChaff may be exploited in several other ways. The variable selection
heuristic of the DPLL process is the most noticeable example. This framework can
perhaps be applied even to local search-based satisfiability tools such as Walksat by
McAllester et al. [86] to make better choices and reduce the search space. As for the
framework itself, it can be easily extended to handle k-ring multi-class symmetries,
where the £ underlying indices can be rotated cyclically without changing the prob-
lem (e.g. as in the PlanningB problem, Example 6.3). However, the best-case gain of
a factor of £ may not offset the overhead involved.

SymChaff is the first cut at implementing our generic framework and can be ex-
tended in several directions. Learning strategies for symconflict clauses other than
the “decision variable scheme” that it currently uses may lead to better performance,
and so may dynamic strategies for selecting the order in which various branches of
a multiway branch are traversed, as well as a dynamic equivalent of the static .ord
file that SymChaff supports. Extending it to handle pseudo-Boolean constraints is
a relatively straightforward but promising direction. Creating a PDDL preprocessor
for planning problems that uses graph isomorphism tools to tag symmetries in the
PDDL description would fully automate the planning-through-satisfiability process
in the context of symmetry.

On the theoretical side, how does the technique of SymChaff compare in strength
to proof systems such as RES with symmetry? It is unclear whether it is as powerful
as the latter or can even efficiently simulate all of RES without symmetry. Answering
this in the presence of symmetry may also help resolve an open question from Chapter
4 of whether clause learning (without symmetry) can efficiently simulate all of RES.
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