
18

Chapter 3

THE RESOLUTION COMPLEXITY OF GRAPH
PROBLEMS

We are now ready to describe the technical contributions of this thesis in detail.
We begin in this chapter with our main proof complexity results. These are for the
resolution proof system and apply to the CNF formulations of three graph problems,
namely, (the existence of) independent sets, vertex covers, and cliques.

An independent set in an undirected graph is a set of vertices no two of which
share an edge. The problem of determining whether or not a given graph contains
an independent set of a certain size is NP-complete as shown by Karp [69]1. Con-
sequently, the complementary problem of determining non-existence of independent
sets of that size in the graph is co-NP-complete. This chapter studies the problem of
providing a resolution proof of the non-existence of independent sets.

Any result that holds for nearly all graphs can be alternatively formalized as a
result that holds with very high probability when a graph is chosen at random from
a “fair” distribution. We use this approach and study the resolution complexity of
the independent set problem in random graphs chosen from a standard distribution.
Independent sets and many other combinatorial structures in random graphs have
very interesting mathematical properties as discussed at length in the texts by Bol-
lobás [26] and Janson, Luczak, and Ruciński [66]. In particular, the size of the largest
independent set can be described with high certainty and accuracy in terms of simple
graph parameters.

This work proves that given almost any graph G and a number k, exponential-size
resolution proofs are required to show that G does not contain an independent set of
size k. In fact, when G has no independent set of size k, exponential-size resolution
proofs are required to show that independent sets of even a much larger size k ′ � k do
not exist in G. This yields running time lower bounds for certain classes of algorithms
for approximating the size of the largest independent sets in random graphs.

Closely related to the independent set problem are the problems of proving the
non-existence of cliques or vertex covers of a given size. Our results for the indepen-
dent set problem also lead to bounds for these problems. As the approximations for
the vertex cover problem act differently from those for independent sets, we state the
results in terms of vertex covers as well as independent sets. (Clique approximations
are essentially identical to independent set approximations.)

1Karp actually proved the related problem of clique to be NP-complete.

19

Many algorithms for finding a maximum-size independent set have been proposed.
Influenced by algorithms of Tarjan [105] and Tarjan and Trojanowski [106], Chvátal
[34] devised a specialized proof system for the independent set problem. In this
system he showed that with probability approaching 1, proofs of non-existence of
large independent sets in random graphs with a linear number of edges must be
exponential in size. Chvátal’s system captures many backtracking algorithms for
finding a maximum independent set, including those of Tarjan [105], Tarjan and
Trojanowski [106], Jian [67], and Shindo and Tomita [100]. In general, the transcript
of any f -driven algorithm [34] for independent sets running on a given graph can be
translated into a proof in Chvátal’s system.

Our results use the well-known resolution proof system for propositional logic
rather than Chvátal’s specialized proof system. Given a graph G and an integer k,
we consider encoding the existence of an independent set of size k in G as a CNF
formula and examine the proof complexity of such formulas in resolution. Resolution
on one of the encodings we present captures the behavior of Chvátal’s proofs on the
corresponding graphs. For all our encodings, we show that given a randomly chosen
graph G of moderate edge density, almost surely, the size of any resolution proof of
the statement that G does not have an independent set of a certain size must be
exponential in the number of vertices in G. This implies an exponential lower bound
on the running time of many algorithms for searching for, or even approximating, the
size of a maximum independent set or minimum vertex cover in G.

Although resolution is a relatively simple and well-studied proof system, one may
find the concept of resolution proofs of graph theoretic problems somewhat unnatural.
The tediousness of propositional encodings and arguments related to them contributes
even more to this. Chvátal’s proof system, on the other hand, is completely graph
theoretic in nature and relates well to many known algorithms for the independent set
problem. By proving that resolution can efficiently simulate Chvátal’s proof system,
we provide another justification for studying the complexity of resolution proofs of
graph problems.

In the proof complexity realm, exponential bounds for specialized structured for-
mulas and for unstructured random k-CNF formulas have previously been shown by
several researchers including Haken [60], Urquhart [110], Razborov [95], Chvátal and
Szemerédi [35], Beame et al. [17], and Ben-Sasson and Wigderson [23]. However,
much less is known for large classes of structured formulas. Our results significantly
extend the families of structured random formulas for which exponential resolution
lower bounds are known beyond the graph coloring example recently shown by Beame
et al. [14]. (Note that our results neither imply nor follow from those in [14]. Although
the non-existence of an independent set of size n/K implies in a graph of n vertices
implies that the graph is not K-colorable, the argument requires an application of
the pigeonhole principle which is not efficiently provable in resolution [60].)

For obtaining our lower bounds, instead of looking at the general problem of dis-

20

proving the existence of any large independent set in a graph, we focus on a restricted
class of independent sets that we call block-respecting independent sets. We show
that even ruling out this smaller class of independent sets requires exponential-size
resolution proofs. These restricted independent sets are simply the ones obtained by
dividing the n vertices of the given graph into k blocks of equal size (assuming k
divides n) and choosing one vertex from each block. Since it is easier to rule out a
smaller class of independent sets, the lower bounds we obtain for the restricted ver-
sion are stronger in the sense that they imply lower bounds for the general problem.
While block-respecting independent sets are a helpful tool in analyzing general reso-
lution proofs, we are able to give better lower bounds for DPLL proofs by applying a
counting argument directly to the general problem.

We show that our results extend the known lower bounds for Chvátal’s system [34]
to resolution and also extend them to graphs with many more than a linear number of
edges, yielding bounds for approximation algorithms as well as for exact computation.
More precisely, we show that no resolution-based technique can achieve polynomial-
time approximations of independent set size within a factor of ∆/(6 log ∆). For the
vertex cover problem, we show an analogous result for approximation factors better
than 3/2.

Recently, by computing a property related to the Lovász number of a random
graph, more precisely its vector chromatic number, Coja-Oghlan [37] gave an expected
polynomial time O(

√
∆/ log ∆)-approximation algorithm for the size of the maximum

independent set in random graphs of density ∆. Thus our results show that this new
approach is provably stronger than that obtainable using resolution-based algorithms.

The proof our of main lower bound is based on the size-width relationship of
resolution proofs discussed in Section 2.2.3. It uses the property that any proof of
non-existence of an independent set of a certain size in a random graph is very likely
to refer to a relatively large fraction of the vertices of the input graph, and that any
clause capturing the properties of this large fraction of vertices must have large width.

More precisely, the proof can be broadly divided into two parts, both of which use
the fact that random graphs are almost surely locally sparse. We first show that the
minimum number s of input clauses that are needed for any refutation of the problem
is large for most graphs. We then use combinatorial properties of independent sets in
random graphs to say that any clause minimally implied by a relatively large subset
of these s clauses has to be large. Here minimally implied means that implied by the
size-s set of clauses under consideration but not by any proper subset of it. These
two arguments together allow us to deduce that the width of any such refutation has
to be large. The size-width relationship translates this into a lower bound on the
refutation size.

We begin with basic properties of independent sets in Section 3.1. In Section 3.2
we describe three natural encodings of the independent set problem as CNF formulas
and compare the proof sizes of the different encodings. In Sections 3.3 and 3.4 we com-

21

pare these to proofs in Chvátal’s proof system for independent sets and to the proof
complexity of related graph theory problems, namely, vertex cover and clique. After
giving some simple proof complexity upper bounds based on exhaustive backtracking
algorithms in Section 3.5, we prove the main resolution lower bounds in Sections 3.6
to 3.8. Note that Sections 3.2 to 3.5 contain somewhat tedious details that the reader
may want to skip during the first read. Finally, in Section 3.10 we prove a somewhat
stronger lower bound that applies to exhaustive backtracking algorithms (as well as
the DPLL procedure) and qualitatively matches our upper bounds for the same.

Remark 3.1. Although we described DPLL algorithms in Section 2.3 as working on
propositional CNF formulas, they capture a much more general class of algorithms
that are based on branching and backtracking. For instance, basic algorithms for
finding a maximum independent set, such as that of Tarjan [105], branch on each
vertex v by either including v in the current independent set and deleting it and all
its neighbors from further consideration, or excluding v from the current independent
set and recursively finding a maximum independent set in the remaining graph. This
can be formulated as branching and backtracking on appropriate variables of a CNF
formulation of the problem. In fact, more complicated algorithms, such as that of
Tarjan and Trojanowski [106], branch in a similar manner not only on single vertices
but on small subsets of vertices, reusing subproblems already solved. Such algorithms
also fall under the category of resolution-based (not necessarily tree-like) algorithms
and our lower bounds apply to them as well because of the following reasoning. The
computation history of these algorithms can be translated into a proof in Chvátal’s
system by replacing each original branch in the computation with a small tree of
single-vertex branches. We then resort to our result that resolution can efficiently
simulate Chvátal’s proof system.

3.1 Independent Sets in Random Graphs

For any undirected graph G = (V,E), let n = |V | and m = |E|. A k-independent set
in G is a set of k vertices no two of which share an edge. We will describe several
natural ways of encoding in clausal form the statement that G has a k-independent
set. Their refutations will be proofs that G does not contain any k-independent set.
We will be interested in size bounds for such proofs.

Combinatorial properties of random graphs have been studied extensively (see, for
instance, [26, 66]). We use the standard model G(n, p) for graphs with n vertices where
each of the

(
n
2

)
edges is chosen independently at random with probability p ∈ [0, 1].

G ∼ G(n, p) denotes a graph G chosen at random from this distribution. We will

state most of our results in terms of parameters n and ∆, where ∆
def
= np is (roughly)

the average degree of G.
We will need both worst case and almost certain bounds on the size of the largest

independent set in graphs of density ∆.

22

Proposition 3.1 (Turan’s Theorem). Every graph G with n vertices and average
degree ∆ has an independent set of size b n

∆+1
c. In general, for any integer k satisfying

∆ < n
k−1
− 1, G has an independent set of size k.

For ε > 0, let k±ε be defined as follows2:

k±ε = b2n

∆
(log ∆− log log ∆ + 1− log 2± ε)c

Proposition 3.2 ([66], Theorem 7.4). For every ε > 0 there is a constant Cε such
that the following holds. Let ∆ = np, Cε ≤ ∆ ≤ n/ log2 n, and G ∼ G(n, p). With
probability 1 − o(1) in n, the largest independent set in G is of size between k−ε and
k+ε.

This shows that while random graphs are very likely to have an independent set of
size k−ε, they are very unlikely to have one of size k+ε +1. The number of independent
sets of a certain size also shows a similar threshold behavior. While there are almost
surely no independent sets of size (2n/∆) log ∆, the following lemma, which follows
by a straightforward extension of the analysis in [66, Lemma 7.3], shows that there
are exponentially many of size (n/∆) log ∆. We use this bound later to put a limit
on the best one can do with exhaustive backtracking algorithms that systematically
consider all potential independent sets of a certain size.

Lemma 3.1. There is a constant C > 0 such that the following holds. Let ∆ = np,
∆ ≤ n/ log2 n, and G ∼ G(n, p). With probability 1 − o(1) in n, G contains at least
2C(n/∆) log2 ∆ independent sets of size b(n/∆) log ∆c.

Proof. Let Xk be a random variable whose value is the number of independent sets
of size k in G = (V,E). The expected value of Xk is given by:

E [Xk] =
∑

S⊆V,|S|=k

Pr [S is an independent set in G]

=

(
n

k

)
(1− p)(

k
2)

≥
(n

k

)k

e−cpk2

for c > 1/2, p = o(1) in n, and large enough n

=
(n

k
e−c∆k/n

)k

2Throughout this thesis, logarithms denoted by log will have the natural base e and those denoted
by log

2
will have base 2.

23

Let c = 0.55 and C = 0.05/ log 2 so that ∆1−c/ log ∆ ≥ 2C log ∆. Setting k =

b(n/∆) log ∆c and observing that
(
(n/k)e−c∆k/n

)k
decreases with k,

E
[
Xb(n/∆) log ∆c

]
≥

(
∆

log ∆
e−c log ∆

)(n/∆) log ∆

≥ 2C(n/∆) log2 ∆.

We now use the standard second moment method to prove that Xk for k =
b(n/∆) log ∆c asymptotically almost surely lies very close to its expected value. We
begin by computing the expected value of X2

k and deduce from it that the variance
of Xk is small.

E
[
X2

k

]
=

∑

S⊆V, |S|=k

Pr [S is independent]
k∑

i=0

∑

T⊆V, |T |=k, |S∩T |=i

Pr [T is independent]

=

(
n

k

)
(1− p)(

k
2)

k∑

i=0

(
k

i

)(
n− k

k − i

)
(1− p)(

k
2)−(i

2)

Therefore
var [Xk]

E ([Xk])2 =
E [X2

k]

(E [Xk])2 − 1

=

(
n
k

)
(1− p)(

k
2)
∑k

i=0

(
k
i

)(
n−k
k−i

)
(1− p)(

k
2)−(i

2)

[(
n
k

)
(1− p)(

k
2)
]2 − 1

This is the same expression as equation (7.8) of [66, page 181]. Following the calcula-
tion of Lemma 7.3 of [66], we obtain that var[Xk]/(E[X2

k])2 → 0 for k = b(n/∆) log ∆c
as n→∞ when ∆ ≥ √n log2 n. When ∆ ≤ √n log2 n, an argument along the lines of
Theorem 7.4 of [66] provides the same result. Applying the second moment method,
this leads to the desired bound.

3.2 Encoding Independent Sets as Formulas

In order to use a propositional proof system to prove that a graph does not have
an independent set of a particular size, we first need to formulate the problem as a
propositional formula. This is complicated by the difficulty of counting set sizes using
CNF formulas.

One natural way to encode the independent set problem is to have indicator vari-
ables that say which vertices are in the independent set and auxiliary variables that
count the number of vertices in the independent set. This encoding is discussed in
Section 3.2.1. The clauses in this encoding, although capturing the simple concept of

24

counting, are somewhat involved. Moreover, the existence of two different types of
variables makes this encoding difficult to reason about directly.

A second encoding, derived from the counting-based encoding, is described in
Section 3.2.2. It is based on a mapping from the vertices of the graph to k additional
nodes as an alternative to straightforward counting, and uses variables of only one
type. This is essentially the same encoding as the one used by Bonet, Pitassi, and
Raz [29] for the clique problem, except that in our case we need to add an extra set
of clauses, called ordering clauses, to make the lower bounds non-trivial. (Otherwise,
lower bounds trivially follow from known lower bounds for the pigeonhole principle [60]
which have nothing to do with the independent set problem; in [29] this problem did
not arise because the proof system considered was cutting planes where, as shown by
Cook et al. [40], the pigeonhole principle has short proofs.)

Section 3.2.3 finally describes a much simpler encoding which is the one we analyze
directly for our lower bounds. This encoding considers only a restricted class of
independent sets that we call block-respecting independent sets, for which the problem
of counting the set size is trivial. Hence, the encoding uses only one type of variable
that indicates whether or not a given vertex is in the independent set. Refutation
of this third encoding rules out the existence of the smaller class of block-respecting
independent sets only. Intuitively, this should be easier to do than ruling out all
possible independent sets. In fact, we show that the resolution and DPLL refutations
of this encoding are bounded above in size by those of the mapping encoding and are
at worst a small amount larger than those of the counting encoding. As a result, we
can translate our lower bounds for this third encoding to each of the other encodings.
Further, we give upper bounds for the two general encodings which also apply to the
simpler block-respecting independent set encoding.

For the rest of this chapter, identify the vertex set of the input graph with
{1, 2, . . . , n}. Each encoding will be defined over variables from one or more of the
following three categories:

• xv, 1 ≤ v ≤ n, which is true iff vertex v is chosen by the truth assignment to
be in the independent set,

• yv,i, 0 ≤ i ≤ v ≤ n, 0 ≤ i ≤ k, which is true iff precisely i of the first v vertices
are chosen in the independent set, and

• zv,i, 1 ≤ v ≤ n, 1 ≤ i ≤ k, which is true iff vertex v is chosen as the ith node of
the independent set.

A desirable property of all independent set encodings is their monotonicity, i.e.,
for k′ > k, proving the non-existence of an independent set of size k′ in that encoding
must not be any harder than doing so for size k, up to a polynomial factor. This
property indeed holds for each of the three encodings we consider below.

25

3.2.1 Encoding Based on Counting

The counting encoding, αcount(G, k), of the independent set problem is defined over
variables xv and yv,i. As mentioned previously, this encoding is somewhat tedious in
nature. It has the following three kinds of clauses:

(a) Edge Clauses: For each edge (u, v), αcount(G, k) has one clause saying that at
most one of u and v is selected; ∀(u, v) ∈ E, u < v : (¬xu∨¬xv) ∈ αcount(G, k)

(b) Size-k Clause: There is a clause saying that the independent set chosen is of
size k; yn,k ∈ αcount(G, k)

(c) Counting Clauses: There are clauses saying that variables yv,i correctly count
the number of vertices chosen. For simplicity, we first write this condition not
as a set of clauses but as more general propositional formulas. For the base
case, αcount(G, k) contains y0,0 and the clausal form of (yv,0 ↔ (yv−1,0 ∧ ¬xv))
for v ∈ {1, . . . n}. Further, ∀i, v, 1 ≤ i ≤ v ≤ n, 1 ≤ i ≤ k, αcount(G, k)
contains the clausal form of (yv,i ↔ ((yv−1,i ∧ ¬xv) ∨ (yv−1,i−1 ∧ xv))), unless
i = v, in which case αcount(G, k) contains the clausal form of the simplified
formula (yv,v ↔ (yv−1,v−1 ∧ xv)).

Translated into clauses, these conditions take the following form. Formulas
defining yv,0 for v ≥ 1 translate into {(¬yv,0 ∨ yv−1,0), (¬yv,0 ∨ ¬xv), (yv,0 ∨
¬yv−1,0 ∨ xv)}. Further, formulas defining yv,i for v > i ≥ 1 translate into
{(yv,i ∨¬yv−1,i ∨ xv), (yv,i ∨¬yv−1,i−1 ∨¬xv), (¬yv,i ∨ yv−1,i ∨ yv−1,i−1), (¬yv,i ∨
yv−1,i ∨ xv), (¬yv,i ∨ yv−1,i−1 ∨ ¬xv)}, whereas in the case i = v they translate
into {(¬yv,v ∨ yv−1,v−1), (¬yv,v ∨ xv), (¬xv ∨ ¬yv−1,v−1 ∨ yv,v)}.

Lemma 3.2. For any graph G over n vertices and k′ > k,

RES(αcount(G, k′)) < n RES(αcount(G, k)) + 2n2 and

DPLL(αcount(G, k′)) < n DPLL(αcount(G, k)) + 2n2.

Proof. If G contains an independent set of size k, then there are no resolution refuta-
tions of αcount(G, k). By our convention, Res(αcount(G, k)) = DPLL(αcount(G, k)) =
∞, and the result holds. Otherwise consider a refutation π of αcount(G, k). Using π,
we construct a refutation π′ of αcount(G, k′) such that size(π′) ≤ (n−k +1) size(π)+
2(k′ − k)(n − k), which is less than n size(π) + 2n2. Further, if π is a tree-like
refutation, then so is π′.

αcount(G, k′) contains all clauses of αcount(G, k) except the size-k clause, yn,k.
Therefore, starting with αcount(G, k′) as initial clauses and using π modified not to
use the clause yn,k, we derive a subclause of ¬yn,k. This clause, however, cannot be
a strict subclause of ¬yn,k because αcount(G, k) \ {yn,k} is satisfiable. Hence, we must

26

obtain ¬yn,k. Call this derivation Dn. By construction, size(Dn) ≤ size(π). Making
a copy of Dn, we restrict it by setting xn ← false, yn,k ← yn−1.k to obtain a deriva-
tion Dn−1 of ¬yn−1,k. Continuing this process, construct derivations Dp of ¬yp,k for
p ∈ {n − 1, n − 2, . . . , k} by further setting xp+1 ← false, yp+1,k ← yp,k. Again, by
construction, size(Dp) ≤ size(π). Combining derivations Dn, Dn−1, . . . , Dk into π′

gives a derivation of size at most (n−k + 1)size(π) of clauses ¬yp,k, k ≤ p ≤ n, which
is tree-like if π is.

Continuing to construct π′, resolve the above derived clause ¬yk,k with the count-
ing clause (¬yk+1,k+1 ∨ yk,k) of αcount(G, k′) to obtain ¬yk+1,k+1. Now for v going
from k + 2 to n, resolve the already derived clauses ¬yv−1,k+1 and ¬yv−1,k with the
counting clause (¬yv,k+1 ∨ yv−1,k+1 ∨ yv−1,k) of αcount(G, k′) to obtain ¬yv,k+1. This
gives a tree-like derivation of size less than 2(n− k) of clauses ¬yp,k+1, k + 1 ≤ p ≤ n,
starting from clauses ¬yq,k, k ≤ q ≤ n. Repeating this process (k′ − k) times gives
a tree-like derivation of size less than 2(k′ − k)(n − k) of clauses ¬yp,k′ , k′ ≤ p ≤ n,
starting from clauses ¬yq,k, k ≤ q ≤ n, derived previously. In particular, ¬yn,k′ is now
a derived clause. Resolving it with the size-k′ clause yn,k′ of αcount(G, k′) completes
refutation π′.

3.2.2 Encoding Based on Mapping

This encoding, denoted αmap(G, k), uses a mapping from n vertices of G to k nodes
of the independent set as an indirect way of counting the number of vertices chosen
by a truth assignment to be in the independent set. It can be viewed as a set of
constraints restricting the mapping (see Figure 3.1). The idea is to map the nodes
of the independent set to the sequence (1, 2, . . . , k) in the increasing order of their
index as vertices in the graph. This encoding is defined over variables zv,i and has
the following five kinds of clauses:

(a) Edge Clauses: For each edge (u, v), there are clauses saying that at most one
of u and v is chosen in the independent set; ∀(u, v) ∈ E, i, j, 1 ≤ i < j ≤ k :
(¬zu,i ∨ ¬zv,j) ∈ αmap(G, k)

(b) Surjective Clauses: For each node i, there is a clause saying that some vertex

is chosen as the ith node of the independent set; ∀i, 1 ≤ i ≤ k : (z1,i ∨ z2,i ∨
. . . ∨ zn,i) ∈ αmap(G, k)

(c) Function Clauses: For each vertex v, there are clauses saying that v is not
mapped to two nodes, i.e. it is not counted twice in the independent set;
∀v, i, j, 1 ≤ v ≤ n, 1 ≤ i < j ≤ k : (¬zv,i ∨ ¬zv,j) ∈ αmap(G, k)

(d) 1-1 Clauses: For each node i, there are clauses saying no two vertices map
to the ith node of the independent set; ∀i, u, v, 1 ≤ i ≤ k, 1 ≤ u < v ≤ n :
(¬zu,i ∨ ¬zv,i) ∈ αmap(G, k)

27

(e) Ordering Clauses: For every pair of consecutive nodes, there are clauses saying
that vertices are not mapped to these in the reverse order. This, by transi-
tivity, implies that there is a unique mapping to k nodes once we have chosen
k vertices to be in the independent set. ∀u, v, i, 1 ≤ u < v ≤ n, 1 ≤ i < k :
(¬zu,i+1 ∨ ¬zv,i) ∈ αmap(G, k).

k nodes of the
independent set

n vertices
of the graph

a k-independent set

n

4

3

2

1

1

2

3

k

n

4

3

2

1

2

1

3

k

k-independent set
an ordered

Figure 3.1: Viewing independent sets as a mapping from n vertices to k nodes

Lemma 3.3. For any graph G and k′ ≥ k,

RES(αmap(G, k′)) ≤ RES(αmap(G, k)) and

DPLL(αmap(G, k′)) ≤ DPLL(αmap(G, k)).

Proof. If G contains an independent set of size k, then there are no resolution refuta-
tions of αmap(G, k). By our convention, Res(αmap(G, k)) = DPLL(αmap(G, k)) =∞,
and the result holds. Otherwise consider a refutation π of αmap(G, k). Observe that
all clauses of αmap(G, k) are also clauses of αmap(G, k′). Hence π is also a refutation
of αmap(G, k′), proving the desired bounds.

3.2.3 Encoding Using Block-respecting Independent Sets

Fix b = n/k for the rest of the chapter and assume for simplicity that k divides n
(denoted k |n). Arbitrarily partition the vertices of G into k subsets, called blocks, of
size b each. A block-respecting independent set of size k in G under this partitioning
is an independent set in G with precisely one vertex in each of the k blocks. Clearly,
if a graph does not contain any k-independent set, then it certainly does not contain

28

any block-respecting independent set of size k either. Note that the restriction k |n
is only to make the presentation simple. We can extend our arguments to all k < n
by letting each block have either b or b + 1 vertices for b = bn/kc. The calculations
are nearly identical to what we present here.

We now define a CNF formula αblock(G, k) over variables xv that says that G con-
tains a block-respecting independent set of size k. Assume without loss of generality
that the first b vertices of G form the first block, the second b vertices form the second
block, and so on. Henceforth, in all references to G, we will implicitly assume this
fixed order of vertices and partition into k blocks. Since this order and partition are
chosen arbitrarily, the bounds we derive hold for any partitioning of G into blocks.

The encoding αblock(G, k) contains the following three kinds of clauses:

(a) Edge Clauses: For each edge (u, v), there is one clause saying that not both
u and v are selected; ∀(u, v) ∈ E, u < v : (¬xu ∨ ¬xv) ∈ αblock(G, k)

(b) Block Clauses: For each block, there is one clause saying that at least one of
the vertices in it is selected; ∀ i, 0 ≤ i < k : (xbi+1 ∨ xbi+2 ∨ . . . ∨ xbi+b) ∈
αblock(G, k)

(c) 1-1 Clauses: For each block, there are clauses saying that at most one of the
vertices in it is selected; ∀ i, p, q, 0 ≤ i < k, 1 ≤ p < q ≤ b : (¬xbi+p∨¬xbi+q) ∈
αblock(G, k)

αblock(G, k) is satisfiable iff G has a block-respecting independent set of size k
under the fixed order and partition of vertices implicitly assumed. Note that there
is no exact analog of Lemmas 3.2 and 3.3 for the block encoding. In fact, if one
fixes the order of vertices and division into blocks is based on this order, then the
non-existence of a block-respecting independent set of size k doesn’t even logically
imply the non-existence of one of size k′ for all k′ > k. This monotonicity, however,
holds when k | k′.

Lemma 3.4. For any graph G, k′ ≥ k, k | k′, and k′ |n,

RES(αblock(G, k′)) ≤ RES(αblock(G, k)) and

DPLL(αblock(G, k′)) ≤ DPLL(αblock(G, k)).

The result holds even when the 1-1 clauses are omitted from both encodings.

Proof. If G contains a block-respecting independent set of size k, then there is
no resolution refutation of αblock(G, k). By our convention, Res(αblock(G, k)) =
DPLL(αblock(G, k)) = ∞, and the result holds. Otherwise consider a refutation π
of αblock(G, k). The two encodings, αblock(G, k) and αblock(G, k′), are defined over the
same set of variables and have identical edge clauses. We will apply a transformation

29

σ to the variables so that the block and 1-1 clauses of αblock(G, k) become a subset of
the block and 1-1 clauses of αblock(G, k′), respectively.

σ works as follows. Each block of vertices in αblock(G, k) consists exactly of k′/k
blocks of vertices in αblock(G, k′) because k | k′. σ sets all but the first n/k′ vertices
of each block of αblock(G, k) to false. This shrinks all block clauses of αblock(G, k) to
block clauses of αblock(G, k′). Further, it trivially satisfies all 1-1 clauses of αblock(G, k)
that are not 1-1 clauses of αblock(G, k′). Hence π|σ is a refutation of αblock(G, k′) which
in fact uses only a subset of the original block and 1-1 clauses of the formula.

3.2.4 Relationships Among Encodings

For reasonable bounds on the block size, resolution refutations of the block encoding
are essentially as efficient as those of the other two encodings. We state the precise
relationship in the following lemmas.

Lemma 3.5. For any graph G over n vertices, k |n, and b = n/k,

RES(αblock(G, k)) ≤ b2 RES(αcount(G, k)) and

DPLL(αblock(G, k)) ≤ (2 DPLL(αcount(G, k)))log2 2b.

Proof. Fix a resolution proof π of αcount(G, k). We describe a transformation ρ on the
underlying variables such that for each initial clause C ∈ αcount(G, k), C|ρ is either
true or an initial clause of αblock(G, k). This lets us generate a resolution proof of
αblock(G, k) from π|ρ of size not much larger than size(π). ρ is defined as follows: for
each i ∈ {0, 1, . . . , k}, set ybi,i = true and ybi,j = false for j 6= i; set all yv,i = false

if vertex v does not belong to either block i + 1 or block i; finally, for 1 ≤ j ≤ b,
replace all occurrences of ybi+j,i+1 and ¬ybi+j,i with (xbi+1 ∨ xbi+2 ∨ . . . ∨ xbi+j), and
all occurrences of ¬ybi+j,i+1 and ybi+j,i with (xbi+j+1 ∨ xbi+j+2 ∨ . . .∨ xbi+b). Note that
setting ybi,i = true for each i logically implies the rest of the transformations stated
above.

We first prove that ρ transforms initial clauses of αcount(G, k) as claimed. The
edge clauses are the same in both encodings. The size-k clause yn,k and the counting
clause y0,0 of αcount(G, k) transform to true. The following can also be easily verified
by plugging in the substitutions for the y variables. The counting clauses that define
yv,0 for v ≥ 1 are either satisfied or translate into the first block clause (x1 ∨ . . .∨xb).
Further, the counting clauses that define yv,i for v ≥ 1, i ≥ 1 are either satisfied or
transform into the ith or the (i + 1)st block clause, i.e., into (xb(i−1)+1 ∨ . . .∨xb(i−1)+b)
or (xbi+1 ∨ . . . ∨ xbi+b). Hence, all initial clauses of αcount(G, k) are either satisfied or
transform into initial clauses of αblock(G, k).

We now describe how to generate a valid resolution proof of αblock(G, k) from
this transformation. Note that the substitutions for ybi+j,i+1 and ybi+j,i replace these
variables by a disjunction of at most b positive literals. Any resolution step performed

30

on these y’s in the original proof must now be converted into a set of equivalent
resolution steps, which will lengthen the transformed refutation. More specifically, a
step resolving clauses (y∨A) and (¬y∨B) on the literal y (where y is either ybi+j,i+1 or
ybi+j,i) will now be replaced by a set of resolution steps deriving (A′∨B′) from clauses
(xu1 ∨ . . . ∨ xup

∨A′) and (xv1 ∨ . . . ∨ xvq
∨B′) and any initial clauses of αblock(G, k),

where all x’s mentioned belong to the same block of G, {u1, . . . , up} is disjoint from
{v1, . . . , vq}, p + q = b, and A′ and B′ correspond to the translated versions of A and
B, respectively.

The obvious way of doing this is to resolve the clause (xu1 ∨ . . . ∨ xup
∨ A′) with

all 1-1 clauses (¬xui
∨ ¬xv1) obtaining (¬xv1 ∨ A′). Repeating this for all xvj

’s gives
us clauses (¬xvj

∨ A′). Note that this reuses (xu1 ∨ . . . ∨ xup
∨ A′) q times and is

therefore not tree-like. Resolving all (¬xvj
∨ A′) in turn with (xv1 ∨ . . . ∨ xvq

∨ B′)
gives us (A′ ∨B′). This takes pq + q < b2 steps. Hence the blow-up in size for general
resolution is at most a factor of b2. Note that this procedure is symmetric in A′ and
B′; we could also have chosen the clause (¬y ∨ B) to start with, in which case we
would need qp + p < b2 steps.

The tree-like case is somewhat trickier because we need to replicate clauses that
are reused by the above procedure. We handle this using an idea similar to the one
used by Clegg et al. [36] for deriving the size-width relationship for tree-like resolution
proofs. Let newSize(s) denote the maximum over the sizes of all transformed tree-like
proofs obtained from original tree-like proofs of size s by applying the above procedure
and creating enough duplicates to take care of reuse. We prove by induction that
newSize(s) ≤ (2s)log2 2b. For the base case, newSize(1) = 1 ≤ 2b = 2log2 2b. For
the inductive step, consider the subtree of the original proof that derives (A ∨B) by
resolving (y∨A) and (¬y∨B) on the literal y as above. Let this subtree be of size s ≥ 2
and assume without loss of generality that the subtree deriving (y∨A) is of size sA ≤
s/2. By induction, the transformed version of this subtree deriving (xu1∨. . .∨xup

∨A′)
is of size at most newSize(sA) and that of the other subtree deriving (xv1∨. . .∨xvq

∨B′)
is of size at most newSize(s−sA−1). Choose (xu1∨ . . . xup

∨A′) as the clause to start
the new derivation of (A′∨B′) as described in the previous paragraph. The size of this
refutation is at most b·newSize(sA)+newSize(s−sA−1)+b2. Since this can be done
for any original proof of size s, newSize(s) ≤ b·newSize(sA)+newSize(s−sA−1)+b2

for s ≥ 2 and sA ≤ s/2. It can be easily verified that newSize(s) = 2bs blog2 s =
(2s)log2 2b is a solution to this. This proves the bound for the DPLL case.

Lemma 3.6. For any graph G over n vertices and k |n,

RES(αblock(G, k)) ≤ RES(αmap(G, k)) and

DPLL(αblock(G, k)) ≤ DPLL(αmap(G, k)).

Proof. In the general encoding αmap(G, k), a vertex v can potentially be chosen as the
ith node of the k-independent set for any i ∈ {1, 2, . . . , k}. In the restricted encoding,

31

however, vertex v belonging to block j can be thought of as either being selected as
the jth node of the independent set or not being selected at all. Hence, if we start with
a resolution (or DPLL) refutation of αmap(G, k) and set zv,i = false for i 6= j, we get
a simplified refutation where the only variables are of the form zv,j, where vertex v
belongs to block j. Renaming these zv,j’s as xv’s, we get a refutation in the variables
of αblock(G, k) that is no larger in size than the original refutation of αmap(G, k).

All we now need to do is verify that for every initial clause of αmap(G, k), this
transformation either converts it into an initial clause of αblock(G, k) or satisfies it. The
transformed refutation will then be a refutation of αblock(G, k) itself. This reasoning
is straightforward:

(a) Edge clauses (¬zu,i ∨ ¬zv,j) of αmap(G, k) that represented edge (u, v) ∈ E
with u in block i and v in block j transform into the corresponding edge
clause (¬xu ∨ ¬xv) of αblock(G, k). If vertex u (or v) is not in block i (or j,
resp.), then the transformation sets zu,i (or zv,j, resp.) to false and the clause
is trivially satisfied.

(b) Surjective clauses of αmap(G, k) clearly transform to the corresponding block
clauses of αblock(G, k) – for the ith such clause, variables corresponding to
vertices that do not belong to block i are set to false and simply vanish, and
we are left with the ith block clause of αblock(G, k).

(c) It is easy to see that all function clauses and ordering clauses are trivially
satisfied by the transformation.

(d) 1-1 clauses (¬zu,i∨¬zv,i) of αmap(G, k) that involved vertices u and v both from
block i transform into the corresponding 1-1 clause (¬xu∨¬xv) of αblock(G, k).
If vertex u (or v) is not in block i, then the transformation sets zu,i (or zv,i,
resp.) to false and the clause is trivially satisfied.

Thus, this transformed proof is a refutation of αblock(G, k) and the desired bounds
follow.

3.3 Simulating Chvátal’s Proof System

In this section, we show that resolution on αblock(G, k) can efficiently simulate Chvátal’s
proofs [34] of non-existence of k-independent sets in G. This indirectly provides
bounds on the running time of various algorithms for finding a maximum indepen-
dent set in a given graph. We begin with a brief description of Chvátal’s proof system.
Let (S, t) for t ≥ 1 be the statement that the subgraph of G induced by a vertex subset
S does not have an independent set of size t. (φ, 1) is given as an axiom and the goal
is to derive, using a series of applications of one of two rules, the statement (V, k),
where V is the vertex set of G and k is given as input. The two inference rules are

32

Branching Rule: for any vertex v ∈ S, from statements (S \ N(v), t − 1) and
(S \ {v} , t) one can infer (S, t), where N(v) is the set containing v and all
its neighbors in G;

Monotone Rule: from statement (S, t) one can infer any (S ′, t′) that (S, t) domi-
nates, i.e., S ⊇ S ′ and t ≤ t′.

For a graph G with vertex set V (G), let Chv(G, k) denote the size of the smallest
proof in Chvátal’s system of the statement (V (G), k). Following our convention,
Chv(G, k) =∞ if no such proof exists. As an immediate application of the monotone
rule, we have:

Proposition 3.3. For k′ > k, Chv(G, k′) ≤ Chv(G, k) + 1.

Proposition 3.4. Let G and G′ be graphs with V (G) = V (G′) and E(G) ⊆ E(G′).
For any k, Chv(G′, k) ≤ 2·Chv(G, k) and the number of applications of the branching
rule in the two shortest proofs is the same.

Proof. Let π be a proof of (V (G), k) in G. We convert π into a proof π ′ of (V (G′), k)
in G′ by translating proof statements in the order in which they appear in π. The
axiom statement translates directly without any change. For the derived statements,
any application of a monotone inference can be applied equally for both graphs. For
an application of the branching rule in π, some (S, t) is derived from (S \N(v), t− 1)
and (S \ {v} , t). To derive (S, t) for G′, the only difference is the replacement of
(S \N(v), t− 1) by (S \N ′(v), t− 1), where N ′(v) is the set containing v and all its
neighbors in G′. If these two statements are different then since N ′(v) ⊇ N(v), the
latter follows from the former by a single application of the monotone rule. In total,
at most size(π) additional inferences are added, implying size(π ′) ≤ 2size(π).

The following lemma shows that by traversing the proof graph beginning with the
axioms one can locally replace each inference in Chvátal’s system by a small number
of resolution inferences.

Lemma 3.7. For any graph G over n vertices and k |n,

RES(αblock(G, k)) ≤ 4n Chv(G, k).

Proof. Let V denote the vertex set of G. Arbitrarily partition V into k blocks of
equal size. Let Gblock be the graph obtained by adding to G all edges (u, v) such that
vertices u and v belong to the same block of G. In other words, Gblock is G modified
to contain a clique on each block so that every independent set of size k in Gblock is
block-respecting with respect to G. By Proposition 3.4, the shortest proof in Chvátal’s
system, say πChv, of (V, k) in Gblock is at most twice in size as the shortest proof of

33

(V, k) in G. We will use πChv to guide the construction of a resolution refutation πRES

of αblock(G, k) such that size(πRES) ≤ 2n size(πChv), proving the desired bound.

Observe that without loss of generality, for any statement (S, t) in πChv, t is at
least the number of blocks of G containing vertices in S. This is so because it is true
for the final statement (V, k), and if it is true for (S, t), then it is also true for both
(S \ {v} , t) and (S \ N(v), t − 1) from which (S, t) is derived. Call (S, t) a trivial
statement if t is strictly bigger than the number of blocks of G containing vertices
in S. The initial statement (φ, 1) of the proof is trivial, whereas the final statement
(V, k) is not. Furthermore, all statements derived by applying the monotone rule are
trivial.

πRES will have a clause associated with each non-trivial statement (S, t) occurring

in πChv. This clause will be a subclause of the clause CS
def
= (
∨

u∈NS
xu), where NS is

the set of all vertices in V \ S that are in blocks of G containing at least one vertex
of S. πRES will be constructed inductively, using the non-trivial statements of πChv.
Note that the clause associated in this manner with (V, k) will be the empty clause,
making πRES a refutation.

Suppose (S, t) is non-trivial and is derived in πChv by applying the branching rule
to vertex v ∈ S. Write the target clause CS as (Cb

S ∨Cr
S), where Cb

S is the disjunction
of all variables corresponding to vertices of NS that are in the same block as v, and
Cr

S is the disjunction of all variables corresponding to vertices of NS that are in the
remaining blocks. Before deriving the desired subclause of CS, derive two clauses Cl1
and Cl2 as follows depending on the properties of the inference that produced (S, t):

Case 1: Both (S \ {v} , t) and (S \ N(v), t − 1) are trivial. It is easy to see that
since (S, t) is non-trivial, if (S \ {v} , t) is trivial then v is the only vertex of S in its
block. Let Cl1 be the initial block clause for the block containing v, which is precisely
(xv ∨Cb

S). The fact that (S \N(v), t− 1) is also trivial implies that the neighbors of
v include not only every vertex of S appearing in the block containing v but also all
vertices in S ∩ B, where B is some other block that does not contain v. Resolving
the block clause for block B with all edge clauses (¬xv ∨ ¬xu) for u ∈ S ∩ B gives a
subclause Cl2 of (¬xv ∨ Cr

S).

Case 2: (S \ {v} , t) is trivial but (S \N(v), t− 1) is non-trivial. Set Cl1 exactly
as in case 1. Given that (S \N(v), t− 1) is non-trivial, by the inductive assumption
the prefix of πRES constructed so far contains a subclause of CS\N(v). Since the given
proof applies to Gblock, N(v) ∪ v contains every vertex in the block containing v as
well as all neighbors of v in G that are not in v’s block. Therefore, the subclause
of CS\N(v) we have by induction is a subclause of (Cr

S ∨ xu1 ∨ . . . ∨ xup
), where each

ui is a neighbor of v in S in blocks other than v’s block. Derive a new clause Cl2
by resolving this clause with all edge clauses (¬xv ∨ ¬xui

). Observe that Cl2 is a
subclause of (¬xv ∨ Cr

S).

Case 3: (S \ {v} , t) is non-trivial but (S \N(v), t− 1) is trivial. Set Cl2 as in case
1. Since (S \ {v} , t) is non-trivial, by the inductive assumption the prefix of πRES

34

constructed so far contains a subclause Cl2 of CS\{v}, i.e., a subclause of (xv ∨ CS).
Case 4: Both (S \ {v} , t) and (S \N(v), t− 1) are non-trivial. In this case, derive

Cl1 as in case 3 and Cl2 as in case 2.
It is easy to verify that Cl1 is a subclause of (xv ∨ CS) and Cl2 is a subclause of

(¬xv ∨Cr
S). If either Cl1 or Cl2 does not mention xv at all, then we already have the

desired subclause of CS. Otherwise resolve Cl1 with Cl2 to get a subclause of CS.
This completes the construction. Given any non-trivial statement in πChv, it takes at
most 2n steps to derive the subclause associated with it in the resolution proof, given
that we have already derived the corresponding subclauses for the two branches of
that statement. Hence, size(πRES) ≤ 2n size(πChv).

It follows that lower bounds on the complexity of αblock apply to Chvátal’s system
and hence also to many algorithms for finding a maximum independent set in a given
graph that are captured by his proof system, such as those of Tarjan [105], Tarjan
and Trojanowski [106], Jian [67], and Shindo and Tomita [100].

3.4 Relation to Vertex Cover and Coloring

This section discusses how the independent set problem relates to vertex covers and
colorings of random graphs in terms of resolution complexity.

3.4.1 Vertex Cover

As for independent sets, for any undirected graph G = (V,E), let n = |V |, m = |E|,
and ∆ = m/n. A t-vertex cover in G is a set of t vertices that contains at least one
endpoint of every edge in G. I is an independent set in G if and only if V \ I is a
vertex cover of G. Hence, the problem of determining whether or not G has a t-vertex
cover is the same as that of determining whether or not it has a k-independent set
for k = n− t. We use this correspondence to translate our bounds on the resolution
complexity of independent sets to those on the resolution complexity of vertex covers.

Consider encoding in clausal form the statement that G has a t-vertex cover. The
only defining difference between an independent set and a vertex cover is that the
former requires at most one of the endpoints of every edge to be included, where as
the latter requires at least one. Natural methods to count remain the same, that
is, explicit counting variables, implicit mapping variables, or blocks. Similar to the
independent set encoding variables, let x′

v, 1 ≤ v ≤ n, be a set of variables such that
x′

v = true iff vertex v is chosen to be in the vertex cover. Let y ′
v,i, 1 ≤ v ≤ n, 1 ≤ i ≤

t, denote the fact that exactly i of the first v vertices are chosen in the vertex cover.
Let z′

v,i, 1 ≤ v ≤ n, 1 ≤ i ≤ t, represent that vertex v is mapped to the ith node of the
vertex cover.

The counting encoding of vertex cover, V Ccount(G, t), is defined analogous to
αcount(G, k) except for the change that for an edge (u, v) ∈ E, the edge clause

35

for vertex cover is (x′
u ∨ x′

v) and not (¬x′
u ∨ ¬x′

v). The rest of the encoding is
obtained by setting k ← t, xv ← x′

v, yv,i ← y′
v,i. The mapping encoding of ver-

tex cover, V Cmapping(G, t) is similarly defined analogous to αmapping(G, k) by setting
k ← t, zv,i ← z′v,i, except for the change in edge clauses for edges (u, v) ∈ E from
(¬zu,i∨¬zv,i) to (z′

u,i∨ z′
v,i). For b = n/(n− t), the block encoding of vertex cover over

(n− t) blocks of size b each, V Cblock(G, t), is also defined analogous to αblock(G, k) by
setting k ← (n−t), xv ← ¬x′

v. It says that each edge is covered, and exactly b−1 ver-
tices from each block are selected in the vertex cover, for a total of (n− t)(b− 1) = t
vertices. Note that the 1-1 clauses of αblock translate into “all-but-one” clauses of
V Cblock.

It is not surprising that the resolution complexity of various encodings of the
vertex cover problem is intimately related to that of the corresponding encodings of
the independent set problem. We formalize this in the following lemmas.

Lemma 3.8. For any graph G over n vertices,

RES(V Ccount(G, t)) ≤ RES(αcount(G, n− t)) + 6nt2.

Proof. If G has an independent set of size n−t, then there is no resolution refutation of
αcount(G, n− t). Consequently, Res(αcount(G, n− t)) = DPLL(αcount(G, n− t)) =∞,
trivially satisfying the claimed inequalities. Otherwise, consider a refutation π of
αcount(G, n− t). We use π to construct a refutation π′ of V Ccount(G, t) that is not too
big.

Recall that the variables of π are xu, 1 ≤ u ≤ n, and yv,i, 0 ≤ i ≤ v ≤ n, 0 ≤ i ≤
n − t. The variables of π′ will be x′

u, 1 ≤ u ≤ n, and y′
v,i, 0 ≤ i ≤ v ≤ n, 0 ≤ i ≤ t.

Notice that the number of independent set counting variables yv,i is not the same as
the number of vertex cover counting variables y′

v,i. We handle this by adding dummy
counting variables, transforming π, and removing extra variables. To obtain π ′, apply
transforms σ1, σ2 and σ3 defined below to π.

σ1 simply creates new counting variables yv,i, 0 ≤ v ≤ n, (n− t + 1) ≤ i ≤ v, and
adds counting clauses corresponding to these variables as unused initial clauses of π.
σ2 sets xu ← ¬x′

u, yv,i ← y′
v,v−i. Intuitively, σ2 says that i of the first v vertices being

in the independent set is equivalent to exactly v− i of the first v vertices being in the
vertex cover. σ3 sets y′

v,i ← false for 0 ≤ v ≤ n, (t + 1) ≤ i ≤ v. Since σ1, σ2 and σ3

only add new clauses, rename literals or set variables, their application transforms π
into another, potentially simpler, refutation on a different set of variables and initial
clauses. Call the resulting refutation π′′.

The initial edge clauses (¬xu ∨ ¬xv) of π transform into edge clauses (x′
u ∨ x′

v) of
V Ccount(G, t). The initial size-(n−t) clause of π transforms into the initial size-t clause
of V Ccount(G, t). Finally, the initial counting clauses of π, including those correspond-
ing to the variables added by σ1, transform into counting clauses of V Ccount(G, t)
and n extra clauses. To see this, note that σ2 transforms counting formulas y0,0

36

into y′
0,0, (yv,0 ↔ (yv−1,0 ∧ ¬xv)) into (y′

v,v ↔ (y′
v−1,v−1 ∧ x′

v)), for i ≥ 1 : (yv,i ↔
((yv−1,i ∧¬xv)∨ (yv−1,i−1 ∧ xv))) into (y′

v,v−i ↔ ((y′
v−1,v−i−1 ∧ x′

v)∨ (y′
v−1,v−i ∧¬x′

v))),
and (yv,v ↔ (yv−1,v−1 ∧ xv)) into (y′

v,0 ↔ (yv−1,0 ∧ ¬x′
v)). Applying σ3 to set y′

v,i ←
false for (t + 1) ≤ i ≤ v removes all but the initial counting clauses of V Ccount(G, t)
and the counting formulas corresponding to the variables y ′

v,t+1, t + 1 ≤ v ≤ n, that
simplify to (¬y′

v−1,t∨¬x′
v). Call this extra set of n− t clauses Bdry(G, t), or boundary

clauses for (G, t).

At this stage, we have a refutation π′′ of size at most size(π) starting from clauses
V Ccount(G, t) ∪ Bdry(G, t). The boundary clauses together say that no more than t
vertices are chosen in the vertex cover. This, however, is implied by the rest of the
initial clauses. Using this fact, we first give a derivation πBdry of every boundary clause
starting from the clauses of V Ccount(G, t). Appending π′′ to πBdry gives a refutation
π′ of V Ccount(G, t).

Let Si =
∨min{i,t}

i′=0 y′
n−i,t−i′ for 0 ≤ i ≤ n − t. Let Rv,i,j = (¬y′

v,i ∨ ¬y′
v,j) for

0 ≤ i < j ≤ v ≤ n and j ≤ t. We first give a derivation of these S and R clauses,
and then say how to derive the boundary clauses from these. S0 = y′

n,t is an initial
clause, and Si, i ≥ 1, is obtained by sequentially resolving Si−1 with the counting
clauses (¬y′

n−i+1,t−i′ ∨ y′
n−i,t−i′ ∨ y′

n−i,t−i′−1) for 0 ≤ i′ < min{i, t}. Similarly, when
i = 0, Rv,0,v is derived by resolving counting clauses (¬y′

v,0 ∨ ¬x′
v) and (¬y′

v,v ∨ x′
v)

on x′
v, clauses Rv,0,j for 0 < j < v are derived by sequentially resolving Rv−1,0,j with

the counting clauses (¬y′
v,j ∨ y′

v−1,j ∨ x′
v) and (¬y′

v,0 ∨ ¬x′
v). Note that Rv,0,v and

Rv,0,j are defined and derived only when j ≤ t. When i > 0, Rv,i,v is derived by
sequentially resolving Rv−1,i−1,v−1 with the counting clauses (¬y′

v,i ∨ y′
v−1,i−1 ∨ ¬x′

v)
and (¬y′

v,v ∨ y′
v−1,v−1 ∨ ¬x′

v), and resolving the result on x′
v with the counting clause

(¬y′
v,v ∨ x′

v). Finally, Rv,i,j for j < v is derived by resolving Rv−1,i,j with the counting
clauses (¬y′

v,i ∨ y′
v−1,i ∨ x′

v) and (¬y′
v,j ∨ y′

v−1,j ∨ x′
v), resolving Rv−1.i−1.j−1 with the

counting clauses (¬y′
v,i∨y′

v−1,i−1∨¬x′
v) and (¬y′

v,j ∨y′
v−1,j−1∨¬x′

v), and resolving the
result of the two on x′

v.

To derive the boundary clause (¬y′
v−1,t∨¬x′

v) for any v, resolve each pair of clauses
(¬y′

v,t−i′ ∨y′
v−1,t−i′−1∨¬x′

v) and Rv−1,t−i′−1,t for 0 ≤ i′ ≤ min{n−v, t}, and resolve all
resulting clauses with Sn−v. Note that when min{n−v, t} = t, there is no Rv−1,t−i′−1,t,
but the corresponding counting clause itself is of the desired form, (¬y ′

v,0∨¬x′
v). This

finishes the derivation πBdry of all clauses in Bdry(G, t). As stated before, appending
π′′ to πBdry gives a refutation π′ of V Ccount(G, t).

For general resolution, size(π′) = size(π′′) + size(πBdry) ≤ size(π) + size(πBdry).
Each Si in πBdry, starting with i = 0, is derived in min{i, t} resolution steps from
previous clauses, and each Rv,i,j , starting with i = 0, v = j = 1, requires at most 5
resolution steps from previous clauses. Hence, size(πBdry) ≤ nt+5nt2 ≤ 6nt2 for large
enough n, implying that size(π′) ≤ size(π) + 6nt2. Note that this approach doesn’t
quite work for tree-like resolution proofs because πBdry itself becomes exponential in
size due to the heavy reuse of clauses involved in the derivation of the Rv,i,j ’s.

37

Given that the encodings αcount(G, n−t) and V Ccount(G, t) are duals of each other,
the argument made for the Lemma above can also be made the other way, immediately
giving us the following reverse result:

Lemma 3.9. For any graph G over n vertices,

RES(αcount(G, k)) ≤ RES(V Ccount(G, n− k)) + 6nk2.

Lemma 3.10. For any graph G over n vertices and (n− t) |n,

RES(V Cblock(G, t)) = RES(αblock(G, n− t)) and

DPLL(V Cblock(G, t)) = DPLL(αblock(G, n− t)).

This result also holds without the 1-1 clauses of αblock and the corresponding all-but-
one clauses of V Cblock.

Proof. If G has an independent set of size n− t, then it also has a vertex cover of size
t. In this case, there are no resolution refutations of V Cblock(G, t) or αblock(G, n− t),
making the resolution complexity of both infinite and trivially satisfying the claim.

Otherwise, consider a refutation π of αblock(G, n − t). We use π to construct a
refutation π′ of V Cblock(G, t), which is of the same size and is tree-like if π is. π ′ is
obtained from π by simply applying the transformation xv ← ¬x′

v, 1 ≤ v ≤ n. Since
this is only a 1-1 mapping between literals, π′ is a legal refutation of size exactly
size(π). All that remains to argue is that the initial clauses of π ′ are the clauses of
V Cblock(G, t). This, however, follows immediately from the definition of V Cblock(G, t).

Given the duality of the encodings V Cblock(G, t) and αblock(G, n−t), we can repeat
the argument above to translate any refutation of the former into one of the latter.
Combining this with the above, the resolution complexity of the two formulas is
exactly the same.

3.4.2 Coloring

A K-coloring of a graph G = (V,E) is a function col : V → {1, 2, . . . , K} such
that for every edge (u, v) ∈ E, col(u) 6= col(v). For a random graph G chosen from
a distribution similar to G(n, p), the resolution complexity of the formula χ(G,K)
saying that G is K-colorable has been addressed by Beame et al. [14].

Suppose G is K-colorable. Fix a K-coloring col of G and partition the vertices
into color classes Vi, 1 ≤ i ≤ K, where Vi = {v ∈ V : col(v) = i}. Each color class, by
definition, must be an independent set, with the largest of size at least n/K. Thus,

non-existence of a k
def
= n/K size independent set in G implies the non-existence of a

K-coloring of G.
Let α(G, k) be an encoding of the k-independent set problem on graph G. The

correspondence above can be used to translate properly encoded resolution proofs of

38

α(G, k) into those of χ(G,K). A lower bound on RES(χ(G,K)), such as the one in
[14], would then imply a lower bound on RES(α(G, k)). However, such a translation
between proofs must involve a resolution counting argument showing that K sets of
vertices, each of size less than n/K, cannot cover all n vertices. This argument itself is
at least as hard as PHP n

n−K , the (weak) pigeonhole principle on n pigeons and n−K
holes, for which exponential lower bound has been shown by Raz [94]. This makes
any translation of a proof of α(G, k) into one of χ(G,K) necessarily large, ruling out
any interesting lower bound for independent sets as a consequence of [14].

On the other hand, non-existence of a K-coloring does not imply the non-existence
of a k-independent set. In fact, there are very simple graphs with no K-coloring but
with an independent set as large as n − K (e.g. a clique of size K + 1 along with
n − K − 1 nodes of degree zero). Consequently, our lower bounds for independent
sets do not give any interesting lower bounds for K-coloring.

3.5 Upper Bounds

Based on a very simple exhaustive backtracking strategy, we give upper bounds on
the DPLL (and hence resolution) complexity of the independent set and vertex cover
encodings we have considered.

Lemma 3.11. There is a constant C0 such that if G is a graph over n vertices with
no independent set of size k, then

DPLL(αmap(G, k)) ≤ 2C0k log(ne/k).

This bound also holds when αmap(G, k) does not include 1-1 clauses.

Proof. A straightforward way to disprove the existence of a k-independent set is to
go through all

(
n
k

)
subsets of vertices of size k and use as evidence an edge from each

subset. We use this strategy to construct a refutation of αmap(G, k).
To begin with, apply transitivity to derive all ordering clauses of the form (¬zu,j ∨

¬zv,i) for u < v and i < j. If j = i + 1, this is simply one of the original ordering
clauses. For j = i + 2, derive the new clause (¬zu,i+2∨¬zv,i) as follows. Consider any
w ∈ {1, 2, . . . , n}. If u < w, we have the ordering clause (¬zw,i+1 ∨ ¬zu,i+2), and if
u ≥ w, then v > w and we have the ordering clause (¬zv,i ∨¬zw,i+1). Resolving these
n ordering clauses (one for each w) with the surjective clause (z1,i+1 ∨ . . . ∨ zn,i+1)
gives the new ordering clause (¬zu,i+2 ∨ ¬zv,i) associated with u and v. This clearly
requires only n steps and can be done for all u < v and j = i + 2. Continue to apply
this argument for j = i + 3, i + 4, . . . , k and derive all new ordering clauses in n steps
each.

We now construct a tree-like refutation starting with the initial clauses and the
new ordering clauses we derived above. We claim that for any i ∈ {1, 2, . . . , k} and
for any 1 ≤ vi < vi+1 < . . . < vk ≤ n, a subclause of (¬zvi,i ∨ ¬zvi+1,i+1 ∨ . . . ∨ ¬zvk,k)

39

can be derived. We first argue why this claim is sufficient to obtain a refutation. For
i = k, the claim says that a subclause of ¬zvk,k can be derived for all 1 ≤ vk ≤ n. If
any one of these n subclauses is a strict subclause of ¬zvk,k, it has to be the empty
clause, resulting in a refutation. Otherwise, we have ¬zvk,k for every vk. Resolving
all these with the surjective clause (z1,k ∨ . . . ∨ zn,k) results in the empty clause.

We now prove the claim by induction on i. For the base case, fix i = 1. For any
given k vertices v1 < v2 < . . . < vk, choose an edge (vp, vq) that witnesses the fact
that these k vertices do not form an independent set. The corresponding edge clause
(¬zvp,p ∨ ¬zvq ,q) works as the required subclause.

For the inductive step, fix vi+1 < vi+2 < . . . < vk. We will derive a subclause
of (¬zvi+1,i+1 ∨ ¬zvi+2,i+2 ∨ . . .¬zvk,k). By induction, derive a subclause of (¬zvi,i ∨
¬zvi+1,i+1 ∨ . . . ∨ zvk,k) for any choice of vi < vi+1. If for some such vi, ¬zvi,i does not
appear in the corresponding subclause, then the same subclause works here for the
inductive step and we are done. Otherwise, for every vi < vi+1, we have a subclause
of (¬zvi,i∨¬zvi+1,i+1∨ . . .∨¬zvk,k) that contains ¬zvi,i. Resolving all these subclauses
with the surjective clause (z1,i ∨ z2,i ∨ . . . ∨ zn,i) results in the clause (zvi+1,i ∨ . . . ∨
zvk,i ∨ ¬zu1,j1 ∨ . . . ∨ ¬zup,jp

), where each zuc,jc
lies in {zvi+1,i+1, . . . , zvk,k}. Observe

that for each positive literal zvq ,i, i + 1 ≤ q ≤ k, in this clause, (¬zvq ,i ∨ ¬zvi+1,i+1)
is either a 1-1 clause or an ordering clause. Resolving with all these clauses finally
gives (¬zvi+1,i+1 ∨¬zu1,j1 ∨ . . .∨¬zup,jp

), which is the kind of subclause we wanted to
derive. This proves the claim.

Associate each subclause obtained using the iterative procedure above with the
tuple (vi, vi+1, . . . , vk) for which it was derived, giving a total of

∑k
i=1

(
n
i

)
≤ (ne/k)k

subclauses. Each of these subclauses is used at most once in the proof. Further, the
derivation of each such subclause uses at most n new ordering clauses, each of which
can be derived in at most n2 steps. Thus, with enough copies to make the refutation
tree-like, the size of the proof is O(n3(ne/k)k), which is at most 2C0k log(ne/k) for a
large enough constant C0.

Lemma 3.12. There is a constant C ′
0 such that if G is graph over n vertices with no

independent set of size k, then

DPLL(αcount(G, k)) ≤ 2C′

0k log(ne/k).

Proof. As in the proof of Lemma 3.11, we construct a refutation by looking at each
size k subset of vertices and using as evidence an edge from that subset.

For every i, v such that 0 ≤ i ≤ v < n, first derive a new counting clause
(¬yv+1,i+1 ∨ yv,i ∨ yv−1,i ∨ . . .∨ yi,i) by resolving original counting clauses (¬yu+1,i+1 ∨
yu,i+1 ∨ yu,i) for u = v, v − 1, . . . , i + 1 together, and resolving the result with the
counting clause (¬yi+1,i+1 ∨ yi,i). Next, for any edge (i, j), i > j, resolve the edge
clause (¬xi ∨ ¬xj) with the counting clauses (¬yi,i ∨ xi) and (¬yj,j ∨ xj) to get the
clause (¬yi,i∨¬yj,j). Call this new clause Ei,j. We now construct a tree-like refutation
using the initial clauses, these new counting clauses, and the new Ei,j clauses.

40

We claim that for any i ∈ {1, 2, . . . , k} and for any 1 ≤ vi < vi+1 < . . . < vk ≤ n
with vj ≥ j for i ≤ j ≤ k, we can derive a subclause of (¬yvi,i ∨ yvi−1,i ∨ ¬yvi+1,i+1 ∨
yvi+1−1,i+1∨ . . .∨¬yvk,k∨yvk−1,k) such that if yvj−1,j occurs in the subclause for some j,
then so does ¬yvj ,j. Note that for vj = j, the variable yvj−1,j does not even exist and
will certainly not appear in the subclause. Given this claim, we can derive for i = k
a subclause Bj of (¬yj,k ∨ yj−1,k) for each j ∈ {k + 1, . . . , n} and a subclause Bk of
¬yk,k. If any of these Bj’s is the empty clause, the refutation is complete. Otherwise
every Bj contains ¬yj,k. Let j ′ be the largest index such that Bj′ does not contain
yj′−1,k. Since Bk has to be the clause ¬yk,k, such a j ′ must exist. Resolving all Bj’s
for j ∈ {j ′, . . . , k} with each other gives the clause yn,k. Resolving this with the size-k
clause yn,k gives the empty clause.

We now prove that the claim holds by induction on i. For the base case i = 1,
fix 1 ≤ v1 < v2 < . . . < vk ≤ n. Choose an edge (vp, vq) that witnesses the fact that
these vi’s do not form an independent set. Resolve the corresponding edge clause
(¬xvp

∨¬xvq
) with the counting clauses (¬yvp,p∨yvp−1,p∨xp) and (¬yvq ,q∨yvq−1,q∨xq)

to get (¬yvp,p ∨ yvp−1,p ∨ ¬yvq ,q ∨ yvq−1,q), which is a subclause of the desired form.

For the inductive step, fix vi+1 < vi+2 < . . . < vk. By induction, derive a subclause
Cj of (¬yj,i ∨ yj−1,i ∨ ¬yvi+1,i+1 ∨ yvi+1−1,i+1 ∨ . . . ∨ ¬yvk,k ∨ yvk−1,k) for any j in {i, i +
1, . . . , vi+1 − 1}. If for some such j, neither ¬yj,i nor yj−1,i appears in Cj, then this
subclause also works here for the inductive step and we are done. Otherwise for
every j, Cj definitely contains ¬yj,i, possibly yj−1,i, and other positive or negative
occurrences of variables of the form yv′,i′ where i′ > i. Now use these Cj’s to derive
clauses C ′

j’s such that C ′
j contains ¬yj,i but not yj−1,i. The other variables appearing

in C ′
j will all be of the form yv′,i′ for i′ > i.

If {vi+1, . . . , vk} is not an independent set, then there is an edge (vp, vq) witnessing
this. In this case, simply use Ep,q as the desired subclause and the inductive step is
over. Otherwise there must be an edge (i, vq) from vertex i touching this set. Let
C ′

i be the clause Ei,vq
. For j going from i + 1 to k, do the following iteratively.

If yj−1,i does not appear in Cj, then set C ′
j = Cj. Otherwise set C ′

j to be the
clause obtained by resolving Cj with C ′

j−1. If C ′
j−1 does not contain ¬yj,i, then

it can be used as the desired subclause for this inductive step and the iteration is
stopped here, otherwise it continues onto the next value of j. If desired subclause
is not derived somewhere along this iterative process, then we end up with all C ′

j’s
containing ¬yj,i but not yj−1,i. Resolving all these with the new counting clause
(¬yvi+1,i+1∨yvi+1−1,i∨yvi+1−2,i∨ . . .∨yi,i) finally gives a subclause of the desired form.
This proves the claim.

Associate each subclause obtained using the iterative procedure above with the
tuple (vi, vi+1, . . . , vk) for which it was derived, giving a total of

∑k
i=1

(
n
i

)
≤ (ne/k)k

subclauses. Each of these subclauses is used at most once in the proof. Further, the
derivation of each such subclause uses one new counting clause and one new clause
Ei,j , each of which can be derived in at most n steps. Thus, with enough copies to

41

make the refutation tree-like, the size of the proof is O(n(ne/k)k), which is at most
2C′

0k log(ne/k) for a large enough constant C ′
0.

Theorem 3.1 (Independent Set Upper Bounds). There are constants c0, c
′
0 such

that the following holds. Let ∆ = np, ∆ ≤ n/ log2 n, and G ∼ G(n, p). Let k be such
that G has no independent set of size k. With probability 1− o(1) in n,

DPLL(αmap(G, k)) ≤ 2c0(n/∆) log2 ∆,

DPLL(αcount(G, k)) ≤ 2c′0(n/∆) log2 ∆, and

DPLL(αblock(G, k)) ≤ 2c0(n/∆) log2 ∆.

The bounds also holds when 1-1 clauses are removed from αmap(G, k) or αblock(G, k).
The block encoding bound holds when k |n.

Proof. By Proposition 3.1, n/(∆ + 1) < k ≤ n. Hence k log(ne/k) ≤ n log(e(∆ + 1)).
We will use this fact when ∆ is a relatively small constant.

Fix any ε > 0 and let Cε be the corresponding constant from Proposition 3.2.
When ∆ < Cε, the desired upper bounds in this theorem are of the form 2O(n).
Moreover, the upper bounds provided by Lemmas 3.11 and 3.12 for the mapping and
counting encodings, respectively, are exponential in k log(ne/k) ≤ n log(e(∆ + 1)),
and thus also of the form 2O(n) when ∆ < Cε. Hence, for large enough constants c0

and c′0, the claimed bounds hold with probability 1 for the mapping and counting
encodings when ∆ < Cε. Lemma 3.6 extends this to the block encoding as well.

Assume for the rest of this proof that Cε ≤ ∆ ≤ n/ log2 n. Let kmin ≤ k be
the smallest integer such that G does not have an independent set of size kmin. By
Proposition 3.2, with probability 1− o(1) in n, kmin ≤ k+ε + 1.

For the mapping-based encoding,

DPLL(αmap(G, k)) ≤ DPLL(αmap(G, kmin)) by Lemma 3.3

≤ 2C0kmin log(n/kmin) by Lemma 3.11

≤ 2C0(k+ε+1) log(n/(k+ε+1)) almost surely

≤ 2(c0n/∆) log2 ∆ for large enough c0.

The bound for αblock(G, k) follows immediately from this bound for αmap(G, k)
and Lemma 3.6. Further, Lemma 3.11 implies that these bounds hold even when the
corresponding 1-1 clauses are removed from the mapping and block encodings. For

42

the counting-based encoding,

DPLL(αcount(G, k) ≤ n DPLL(αcount(G, kmin) + 2n2 by Lemma 3.2

≤ n2C′

0kmin log(n/kmin) + 2n2 by Lemma 3.12

≤ n2C′

0kmin log(n/kmin) + 2n2

≤ n2C′

0(k+ε+1) log(n/(k+ε+1)) + 2n2 almost surely

≤ 2(c′0n/∆) log2 ∆ for a large enough constant c′0.

This finishes the proof.

Corollary 3.1 (Vertex Cover Upper Bounds). There are constants c0, c
′′
0 such

that the following holds. Let ∆ = np, ∆ ≤ n/ log2 n, and G ∼ G(n, p). Let t be such
that G has no vertex cover of size t. With probability 1− o(1) in n,

RES(V Ccount(G, t)) ≤ 2c′′0 (n/∆) log2 ∆, and

DPLL(V Cblock(G, t)) ≤ 2c0(n/∆) log2 ∆.

The bounds also holds when all-but-one clauses are removed from V Cblock(G, t). The
block encoding bound holds when (n− t) |n.

Proof. Apply Theorem 3.1 with k set to n−t and use Lemmas 3.8 and 3.10 to translate
the result of the Theorem to encodings of vertex cover. Note that RES(αcount(G, n−
t)) ≤ DPLL(αcount(G, n− t)).

3.6 Key Concepts for Lower Bounds

This section defines key concepts that will be used in the lower bound argument given
in the next section. Fix a graph G and a partition of its n vertices into k subsets of
size b each. For any edge (u, v) in G, call it an inter-block edge if u and v belong to
different blocks of G, and an intra-block edge otherwise.

Definition 3.1. A truth assignment to variables of αblock(G, k) is critical if it sets
exactly one variable in each block to true.

Critical truth assignments satisfy all block, 1-1 and intra-block edge clauses but
may leave some inter-block edge clauses unsatisfied.

Definition 3.2. The block multi-graph of G, denoted B(G), is the multi-graph ob-
tained from G by identifying all vertices that belong to the same block and removing
any self-loops that are thus generated.

43

B(G) contains exactly k nodes and possibly multiple edges between pairs of nodes.
The degree of a node in B(G) is the number of inter-block edges touching the corre-
sponding block of G. Given the natural correspondence between G and B(G), we will
write nodes of B(G) and blocks of G interchangeably. For a subgraph H of G, B(H)
is obtained analogously by identifying all vertices of H that are in the same block of
G and removing self-loops.

Definition 3.3. Let S be a set of blocks of G. H is block induced by S if it is the
subgraph of G induced by all vertices present in the blocks S. H is a block induced
subgraph of G if there exists a subset S of blocks such that H is block induced by S.

If H is block induced by S, then B(H) is induced by S in B(G). The reverse,
however, may not be true. If H is a block induced subgraph, then there is a unique
minimal block set S such that H is block induced by S. This S contains exactly
those blocks that have non-zero degree in B(H). With each block induced subgraph,
associate such a minimal S and say that the subgraph is induced by |S| blocks. Note
that every block in any such minimal S must have non-zero degree.

Definition 3.4. The block width of a clause C with respect to G, denoted wG
block(C),

is the number of different blocks of G the variables appearing in C come from.

Clearly, w(C) ≥ wG
block(C). For a block induced subgraph H of G, let E(H) denote

the conjunction of the edge clauses of αblock(G, k) that correspond to the edges of H.
Let H be induced by the block set S.

Definition 3.5. H critically implies a clause C, denoted H
c→ C, if E(H) → C

evaluates to true for all critical truth assignments to the variables of αblock(G, k).

Definition 3.6. H minimally implies C, denoted H
m→ C, if H

c→ C and for every

subgraph H ′ of G induced by a proper subset of S, H ′
c

6→ C.

Note that “minimally implies” should really be called “minimally critically im-
plies,” but we use the former phrase for brevity. Note further that if H

m→ C, then
every block of H has non-zero degree.

Definition 3.7. The complexity of a clause C, denoted µG(C), is the minimum over
the sizes of subsets S of blocks of G such that the subgraph of G induced by S
critically implies C.

Proposition 3.5. Let G be a graph and Λ denote the empty clause.

(a) For C ∈ αblock(G, k), µG(C) ≤ 2.

(b) µG(Λ) is the number of blocks in the smallest block induced subgraph of G that
has no block-respecting independent set.

44

(c) Subadditive property: If clause C is a resolvent of clauses C1 and C2, then
µG(C) ≤ µG(C1) + µG(C2).

Proof. Each initial clause is either an edge clause, a block clause or a 1-1 clause.
Any critical truth assignment, by definition, satisfies all block, 1-1 and intra-block
edge clauses. Further, an edge clause corresponding to an inter-block edge (u, v) is
implied by the subgraph induced by the two blocks to which u and v belong. Hence,
complexity of an initial clause is at most 2, proving part (a).

Part (b) follows from the definition of µG. Part (c) follows from the simple obser-
vation that if G1 critically implies C1, G2 critically implies C2, and both G1 and G2

are block induced subgraphs, then G1∪2, defined as the block graph induced by the
union of the blocks G1 and G2 are induced by, critically implies both C1 and C2, and
hence critically implies C.

3.7 Proof Sizes and Graph Expansion

This section contains the main ingredients of our lower bound results and is tech-
nically the most interesting and challenging part at the core of this chapter. We
use combinatorial properties of block graphs and independent sets to obtain a lower
bound on the size of resolution refutations for a given graph in terms of its expansion
properties. Next, we argue that random graphs almost surely have good expansion
properties. Section 3.8 combines these two to obtain an almost certain lower bound
for random graphs.

The overall argument in a little more details is as follows. We define the notion of
“boundary” for block induced subgraphs as a measure of the number of blocks in it
that have an isolated vertex and thus contribute trivially to any block-respecting in-
dependent set. Lemmas 3.13 and 3.14 relate this graph-theoretic concept to resolution
refutations. The main lower bound follows in three steps from here. First, Lemma
3.16 argues that one must almost surely consider a large fraction of the blocks of a
graph to prove the non-existence of a block-respecting independent set in it. Second,
Lemma 3.17 shows that almost all subgraphs induced by large fractions of blocks must
have large boundary. Finally, Lemma 3.18 combines these two to obtain an almost
certain lower bound on the width of any refutation.

We begin by defining the notion of boundary.

Definition 3.8. The boundary of a block induced subgraph H, denoted β(H), is the
set of blocks of H that have at least one isolated vertex.

3.7.1 Relating Proof Size to Graph Expansion

We first derive a relationship between the width of clauses and the boundary size of
block-induced subgraphs that minimally imply them.

45

Lemma 3.13. Let C be a clause in the variables of αblock(G, k) and H be a block
induced subgraph of G. If H

m→ C, then wG
block(C) ≥ |β(H)|.

Proof. We use a toggling property of block-respecting independent sets (Figure 3.2)
to show that each boundary block of H contributes at least one literal to C.

Let H be induced by the set of blocks S. Fix a boundary block B ∈ S. Let HB

be the subgraph induced by S \{B}. By minimality of H, HB

c

6→ C. Therefore, there
exists a critical truth assignment γ such that γ(E(HB)) = true but γ(C) = false.
Since γ(C) = false and H

c→ C, it follows that γ(E(H)) = false. Further, since
γ(E(HB)) = true, γ(E(H) \ E(HB)) must be false, implying that γ violates the
edge clause corresponding to an inter-block edge (v, w), v ∈ B,w 6∈ B. In particular,
γ(v) = true.

v

w

u

v

w

u

Block B with v selected

Conflicting edge

Block B with u selected

Figure 3.2: Toggling property of block-respecting independent sets; selected vertices
are shown in bold

Fix an isolated vertex u ∈ B. Create a new critical truth assignment γ̄ as follows:
γ̄(v) = false, γ̄(u) = true, and γ̄(x) = γ(x) for every other vertex x in H. By
construction, γ̄(E(HB)) = γ(E(HB)) = true. Further, since u does not have any
inter-block edges and γ is critical, even γ̄(E(H)) is true. It follows from H

c→ C

46

that γ̄(C) = true. Recall that γ(C) = false. This is what we earlier referred to
as the toggling property. Since γ and γ̄ differ only in their assignment to variables in
block B, clause C must contain at least one literal from B.

The subgraph of G induced by the empty set of blocks clearly has a block-
respecting independent set while the subgraph induced by all blocks does not. This
motivates the following definition. Let s + 1 denote the minimum number of blocks
such that some subgraph of G induced by s+1 blocks does not have a block respecting
independent set.

Definition 3.9. The sub-critical expansion, e(G), of G is the maximum over all
t, 2 ≤ t ≤ s, of the minimum boundary size of any subgraph H of G induced by t′

blocks, where t/2 < t′ ≤ t.

Lemma 3.14. Any resolution refutation of αblock(G, k) must contain a clause of width
at least e(G).

Proof. Let t be chosen as in the definition of e(G) and π be a resolution refutation
of αblock(G, k). By Proposition 3.5 (b), µG(Λ) = s + 1. Further, Proposition 3.5 (a)
says that any initial clause has complexity at most 2. Therefore for 2 < t ≤ s there
exists a clause C in π such that µG(C) > t ≥ 2 and no ancestor of C has complexity
greater than t.

Since µG(C) > 2, C cannot be an initial clause. It must then be a resolvent of
two parent clauses C1 and C2. By Proposition 3.5 (c) and the fact that no ancestor
of C has complexity greater than t, one of these clauses, say C1, must have µG(C1)
between (t + 1)/2 and t. If H is a block induced subgraph that witnesses the value
of µG(C1), then by Lemma 3.13, wG

width(C1) ≥ |β(H)|. Hence, w(C1) ≥ |β(H)|. By
definition of e(G), |β(H)| ≥ e(G). Thus w(C1) ≥ e(G) as required.

Corollary 3.2. Let c = 1/(9 log 2) and k |n. For any graph G with its n vertices
partitioned into k blocks of size b = n/k each,

RES(αblock(G, k)) ≥ 2c(e(G)−b)2/n and

DPLL(αblock(G, k)) ≥ 2e(G)−b.

Proof. This follows immediately from Lemma 3.14 and Propositions 2.2 and 2.1 by
observing that the initial width of αblock(G, k) is b.

3.7.2 Lower Bounding Sub-critical Expansion

Throughout this section, the probabilities are with respect to the random choice of a
graph G from the distribution G(n, p) for some fixed parameters n and p. Let B(G)
be a block graph corresponding to G with block size b. For the rest of this chapter,
we will fix b to be 3, which corresponds to the largest independent set size (k = n/3)
for which the results in this section hold. Although the results can be generalized to
any b ≥ 3, our best bounds are obtained for the simpler case of b = 3 that we present.

47

Definition 3.10. B(G) is (r, q)-dense if some subgraph of G induced by r blocks
(i.e., some subgraph of B(G) with r nodes) contains at least q edges.

The following lemma shows that for almost all random graphs G, the correspond-
ing block graph B(G) is locally sparse.

Lemma 3.15. Let G ∼ G(n, p) and B(G) be a corresponding block graph with block
size 3. For r, q ≥ 1,

Pr[B(G) is (r, q)-dense] <
(ne

3r

)r
(

9er2p

2q

)q

.

Proof. Let H be a subgraph of G induced by r blocks. H contains 3r vertices. For
G ∼ G(n, p), the number of edges contained in H has the binomial distribution with
parameters

(
3r
2

)
and p. Therefore,

Pr [H has at least q edges] ≤
((3r

2

)

q

)
pq <

(
9r2

2

q

)
pq ≤

(
9er2p

2q

)q

.

Summing this over all
(

n/3
r

)
≤ (ne/3r)r subgraphs H induced by r blocks gives the

desired bound.

We use this local sparseness property of the block graphs of almost all random
graphs to prove that the smallest pair-induced subgraph one needs to consider for
proving that G does not have a paired vertex cover is almost surely large.

Lemma 3.16. There is a constant C such that the following holds. Let ∆ = np and
s < Cn/∆3. The probability that G ∼ G(n, p) contains a subgraph induced by at most
s blocks that has no block-respecting independent set is o(1) in s.

Proof. The probability that G contains a subgraph induced by at most s blocks that
has no block-respecting independent set is the same as the probability that there is
some minimal subgraph H of G induced by r ≤ s blocks that has no block-respecting
independent set. By minimality, H has no isolated vertices and hence no boundary
blocks. Consequently, each of the r blocks that induce H must have at least 3 inter-
block edges. Hence, the subgraph of B(G) with the r nodes corresponding to the r
blocks that induce H must have at least 3r/2 edges.

Thus, the probability that G contains such a block induced subgraph H is at most

s∑

r=1

Pr[B(G) is (r, 3r/2)-dense].

48

By Lemma 3.15, we have Pr[B(G) is (r, 3r/2)-dense] < D(r) where

D(r) =
(ne

3r

)r

(3erp)3r/2

=
(ne

3
(3ep)3/2 r1/2

)r

=
(
Q(n, p) r1/2

)r

for Q(n, p) = (ne/3)(3ep)3/2. Now

D(r + 1)

D(r)
=

(
Q(n, p) (r + 1)1/2

)r+1

(Q(n, p) r1/2)
r

= Q(n, p) (r + 1)1/2

(
r + 1

r

)r/2

≤ Q(n, p) (r + 1)1/2 e1/2

≤ ne

3

(
3e∆

n

)3/2

e1/2(r + 1)1/2

=

(
3e6∆3(r + 1)

n

)1/2

This quantity, and hence D(r + 1)/D(r), is at most 1/2 for 1 ≤ r < Cn/∆3, where

C
def
= 1/(12e6) is a constant. Let s + 1 = Cn/∆3. It follows that the probability that

G contains such a block induced subgraph H is bounded above by a geometric series
in r with common ratio 1/2. It is therefore at most twice the largest term of the series
which is less than D(1). Now

D(1) = Q(n, p) =
ne

3

(
3e∆

n

)3/2

=

(
3e5∆3

n

)1/2

=

(
3e5C

s + 1

)1/2

.

Therefore, D(1) is o(1) in s as claimed.

We again use the local sparseness property to prove that any subgraph induced
by not too many blocks has large boundary for almost all random graphs G. The
intuition is that for sparse subgraphs, most blocks have degree less than 3 and thus
belong to the boundary.

Lemma 3.17. There is a constant c such that the following holds. Let ∆ = np,

0 < ε ≤ 1/6, b′ = 3(1− ε), t ≤ cn/∆
b′

b′−2 , and G ∼ G(n, p). The probability that there
exists r ∈ (t/2, t] such that G has a subgraph H induced by r blocks with β(H) ≤ εr
is o(1) in t.

49

Proof. Fix b′, ε, and t satisfying the conditions of the Lemma. Let H be a subgraph
of G induced by r blocks. By definition, all r blocks inducing H must have non-zero
degree in B(H). Moreover, if H has at most εr boundary blocks, the other (1 − ε)r
blocks of non-zero degree inducing it must have degree at least 3. Hence, the r nodes
of B(G) that induce H form a subgraph with at least (1 − ε)r3/2 = b′r/2 edges.
Therefore, H has at most εr boundary blocks only if B(G) is (r, b′r/2)-dense. Thus,
by Lemma 3.15, the probability that such an H exists is at most

Pr[B(G) is (r, b′r)-dense] <
(ne

3r

)r
(

9erp

b′

)b′r/2

=

(
e

3

(
3e∆

1− ε

)b′/2 (r

n

)(b′−2)/2
)r

For r > t/2, it suffices to obtain an upper bound on this probability that is expo-
nentially small in r. Rearranging the terms in the expression above, Pr[B(G) is (r, b′r)-dense] ≤
2−r when

r

n
≤

(
3

2e

)2/(b′−2)(
1− ε

3e∆

)b′/(b′−2)

=

(
1− ε

2e2

)2/(b′−2)
1− ε

3e∆b′/(b′−2)
.

Note that ε ≤ 1/6 and b′ = 3(1 − ε) ≥ 5/2. Hence (1 − ε)/(2e2)2/(b′−2) is at least
(5/(12e2))4 and it suffices to have

r

n
≤
(

5

12e2

)4
5

18e∆b′/(b′−2)
=

c

∆b′/(b′−2)

for a constant c
def
= 55/(12418e9). Therefore, the probability that B(G) is (r, b′r)-dense

is at most 2−r for r ≤ cn/∆b′/(b′−2). It follows that the probability that there exists
such an H with r ∈ (t/2, t] is at most

∑t
r=d(t+1)/2e 2−r. This sum is o(1) in t as

required.

Lemmas 3.16 and 3.17 combine to give the following lower bound on sub-critical
expansion:

Lemma 3.18. For each ε ∈ (0, 1/6] there is a constant cε such that the following
holds. Let ∆ = np, b′ = 3(1− ε), W = n/∆b′/(b′−2), and G ∼ G(n, p). The probability
that e(G) < cεW is o(1) in W .

Proof. Let C be the constant from Lemma 3.16 and c be the one from Lemma 3.17.
Let s + 1 be the minimum number of blocks such that some subgraph of G induced

50

by s + 1 blocks does not have a block induced independent set. By Lemma 3.16,
s ≤ Cn/∆3 with probability o(1) in n. Now let t = min(C, c)W . Conditioned on
s > Cn/∆3 and because b′ < 3, we have that t ≤ s as in the definition of e(G).
By Lemma 3.17, the probability that some subgraph of G induced by r blocks with
t/2 < r ≤ t ≤ s has less than εr > εt/2 = cεW boundary blocks is o(1) in n, where
cε = (ε/2) min(C, c). It follows from a union bound on the two bad events (s is small
or some subgraph has small boundary) that e(G) < cεW with probability o(1) in
n.

3.8 Lower Bounds for Resolution and Associated Algorithms

We now use the ideas developed in Sections 3.6 and 3.7, and bring the pieces of the
argument together in a general technical result from which our resolution complexity
lower bounds follow.

Lemma 3.19. For each δ > 0 there are constants Cδ, C
′
δ > 0 such that the following

holds. Let ∆ = np and G ∼ G(n, p). With probability 1− o(1) in n,

RES(αblock(G, n/3)) ≥ 2Cδn/∆6+2δ

and

DPLL(αblock(G, n/3)) ≥ 2C′

δ
n/∆3+δ

.

Proof. Observe that the expressions n/∆6+2δ and n/∆3+δ in the desired bounds de-
crease as δ increases. Hence, it suffices to prove the bounds for δ ∈ (0, 2], and for
δ > 2, simply let Cδ = C2 and C ′

δ = C ′
2.

Let ε = δ/(6 + 3δ), b′ = 3(1 − ε), and W = n/∆b′/(b′−2). For δ ∈ (0, 2], we have
that ε ∈ (0, 1/6]. From Lemma 3.18, there is a constant cε such that with probability
1− o(1) in n, e(G) ≥ cεW . It follows from Corollary 3.2 that for c = 1/(9 log 2) and
with probability 1− o(1) in n,

RES(αblock(G, n/3)) ≥ 2c(cεW−3)2/n and

DPLL(αblock(G, n/3)) ≥ 2cεW−3.

Given the relationship between ε and δ, there are constants Cδ, C
′
δ > 0 depending

only on δ such that c(cεW − 3)2 ≥ CδW
2 and cεW − 3 ≥ C ′

δW . Note also that
b′/(b′ − 2) = (3− 3ε)/(1− 3ε) = 3 + δ. Hence,

log2(RES(αblock(G, n/3))) ≥ CδW
2/n = Cδn/∆

2b′

b′−2 = Cδn/∆6+2δ and

log2(DPLL(αblock(G, n/3))) ≥ C ′
δW = C ′

δn/∆
b′

b′−2 = C ′
δn/∆3+δ.

This finishes the proof.

51

Theorem 3.2 (Independent Set Lower Bounds). For each δ > 0 there are
constants Cδ, C ′

δ, C ′′
δ , C ′′′

δ , C ′′′′
δ > 0 such that the following holds. Let ∆ = np,

k ≤ n/3, k |n, and G ∼ G(n, p). With probability 1− o(1) in n,

RES(αmap(G, k)) ≥ 2Cδn/∆6+2δ

,

DPLL(αmap(G, k)) ≥ 2C′

δ
n/∆3+δ

,

RES(αcount(G, k)) ≥ 2C′′

δ
n/∆6+2δ

,

DPLL(αcount(G, k)) ≥ 2C′′′

δ
n/∆3+δ

,

RES(αblock(G, k)) ≥ 2Cδn/∆6+2δ

,

DPLL(αblock(G, k)) ≥ 2C′

δ
n/∆3+δ

, and

Chv(G, k) ≥ 2C′′′′

δ
n/∆6+2δ

.

The bounds for the block encoding require k | (n/3).

Proof. All of the claimed bounds follow by applying monotonicity of the encoding at
hand, using its relationship with the block encoding, and applying Lemma 3.19. Let
Cδ and C ′

δ be the constants from Lemma 3.19. For the mapping-based encoding,

RES(αmap(G, k)) ≥ RES(αmap(G, n/3)) by Lemma 3.3

≥ RES(αblock(G, n/3)) by Lemma 3.6

≥ 2Cδn/∆6+2δ

by Lemma 3.19,

DPLL(αmap(G, k)) ≥ DPLL(αmap(G, n/3)) by Lemma 3.3

≥ DPLL(αblock(G, n/3)) by Lemma 3.6

≥ 2C′

δ
n/∆3+δ

by Lemma 3.19.

For the counting-based encoding,

RES(αcount(G, k) ≥ 1

n

(
RES(αcount(G, n/3))− 2n2

)
by Lemma 3.2

≥ 1

n

(
1

2
RES(αblock(G, n/3))− 2n2

)
by Lemma 3.5

≥ 2C′′

δ
n/∆6+2δ

by Lemma 3.19

for a large enough constant C ′′
δ . Similarly,

DPLL(αcount(G, k) ≥ 1

n

(
DPLL(αcount(G, n/3))− 2n2

)
by Lemma 3.2

≥ 1

n

(
1

2
DPLL(αblock(G, n/3))1/ log2 6 − 2n2

)
by Lemma 3.5

≥ 2C′′′

δ
n/∆3+δ

by Lemma 3.19

52

for a large enough constant C ′′′
δ .

The bounds for the block encoding follow immediately from Lemmas 3.4 and 3.19.
Finally, for the bound on the proof size in Chvátal’s system,

Chv(G, k) ≥ Chv(G, n/3)− 1 by Proposition 3.3

≥ 1

4n
RES(αblock(G, n/3))− 1 by Lemma 3.7

≥ 2C′′′′

δ
n/∆6+2δ

by Lemma 3.19

for a large enough constant c′′′′δ .

Corollary 3.3 (Vertex Cover Lower Bounds). For each δ > 0 there are constants

C̃δ, Cδ, C
′
δ > 0 such that the following holds. Let ∆ = np, t ≥ 2n/3, (n − t) |n, and

G ∼ G(n, p). With probability 1− o(1) in n,

RES(V Ccount(G, t)) ≥ 2
eCδn/∆6+2δ

,

RES(V Cblock(G, t)) ≥ 2Cδn/∆6+2δ), and

DPLL(V Cblock(G, t)) ≥ 2C′

δ
n/∆3+δ).

The bounds for the block encoding require (n− t) | (n/3).

Proof. Let Cδ, C
′
δ, and C ′′

δ be the constants from Theorem 3.2 and let C̃δ be any
constant less than C ′′

δ . For the counting encoding bound, apply Theorem 3.2 with
k set to n − t and use Lemma 3.9 to translate the results to the encoding of vertex
cover. For the block encoding bounds, apply Theorem 3.2 in conjunction with Lemma
3.10.

3.9 Hardness of Approximation

Instead of considering the decision problem of whether a given graph G has an in-
dependent set of a given size k, one may consider the related optimization problem:
given G, find an independent set in it of the largest possible size. We call this opti-
mization problem the maximum independent set problem. One may similarly define
the optimization problem minimum vertex cover problem.

Since the decision versions of these problems are NP-complete, the optimization
versions are NP-hard and do not have any known polynomial time solutions. From
the perspective of algorithm design, it is then natural to ask whether there is an
efficient algorithm that finds an independent set of size “close” to the largest possible
or a vertex cover of size close to the smallest possible. That is, is there an efficient
algorithm that finds an “approximate” solution to the optimization problem? In this
section, we rule out the existence of any such efficient “resolution-based” algorithm
for the independent set and vertex cover problems.

53

Remark 3.2. The results we prove in this section contrast well with the known
approximation hardness results for the two problems which are both based on the
PCP (probabilistically checkable proofs) characterization of NP [9, 8]. H̊astad [62]
showed that unless P = NP, there is no polynomial time n1−ε-approximation algorithm
for the clique (and hence the independent set) problem for any ε > 0. For graphs with
maximum degree ∆max, Trevisan [108] improved this to a factor of ∆max/2O(

√
log ∆max).

More recently, Dinur and Safra [47] proved that unless P = NP, there is no polynomial
time 10

√
5− 21 ≈ 1.36 factor approximation algorithm for the vertex cover problem.

Our results, on the other hand, hold irrespective of the relationship between P and
NP but apply only to the class of resolution-based algorithms defined shortly.

3.9.1 Maximum Independent Set Approximation

We begin by making several of the above notions precise. Let A be an algorithm for
finding a maximum independent set in a given graph.

Definition 3.11. Let γ ≥ 1. A is a γ-approximation algorithm for the maximum
independent set problem if on input G with maximum independent set size k̂, A
produces an independent set of size at least k̂/γ.

In other words, if A produces an independent set of size k̄ on input G, it proves that
G does not have one of size k̄γ + 1. This reasoning allows us to use our lower bounds
from the previous section to prove that even approximating a maximum independent
set is exponentially hard for certain resolution-based algorithms.

Definition 3.12. A γ-approximation algorithm A for the maximum independent set
problem is resolution-based if it has the following property: if A outputs an inde-
pendent set of size k̄ on input G, then its computation history along with a proof of
correctness within a factor of γ yields a resolution proof of αmap(G, k), αcount(G, k), or
αblock(G, k) for k ≤ k̄γ+1, k |n. (For the block encoding, we further require k | (n/3).)

The manner in which the computation history and the proof of correctness are
translated into a resolution refutation of an appropriate encoding depends on specific
details and varies with the context. We will see a concrete example of this for the
vertex cover problem when discussing Proposition 3.7 later in this section.

Let ARES−ind
γ denote the class of all resolution-based γ-approximation algorithms

for the maximum independent set problem. We show that while there is a trivial
algorithm in this class for γ ≥ ∆ + 1, there isn’t an efficient one for γ ≤ ∆/(6 log ∆).

Proposition 3.6. For γ ≥ ∆ + 1, there is a polynomial-time algorithm in ARES−ind
γ .

Proof. Let A be the polynomial-time algorithm that underlies the bound in Turan’s
theorem (Proposition 3.1), that is, on a graph G with n nodes and average degree ∆
as input, A produces an independent set of size k̄ ≥ n/(∆ + 1). Since the size of a

54

maximum independent set in G is at most n, A is a (∆ + 1)-approximation. We will
argue that A is also resolution-based.

To be a resolution-based, the computation history of A on G along with a proof
of correctness within a factor of (∆ + 1) must yield a resolution proof of a suitable
encoding α(G, k) for some k ≤ k∗ = k̄(∆ + 1) + 1, k |n. When G has no edges, ∆ = 0
and A produces an independent set of size k̄ = n. In this case, there is nothing to
prove. When G has at least one edge (u, v), k∗ ≥ n + 1 and we can choose k = n. In
this case, A indeed yields a straightforward resolution proof of α(G, k) for both the
mapping and the counting encodings by utilizing the edge clause(s) corresponding to
(u, v). Therefore, A is resolution-based as a (∆ + 1)-approximation algorithm.

While Proposition 3.2 guarantees that there is almost never an independent set
of size larger than (2n/∆) log ∆, Theorem 3.2 shows that there is no efficient way to
prove this fact using resolution. Indeed, there exist efficient resolution proofs only for
the non-existence of independent sets of size larger than n/3. We use this reasoning
to prove the following hardness of approximation result.

Theorem 3.3 (Independent Set Approximation). There is a constant c such that
the following holds. Let δ > 0, ∆ = np, ∆ ≥ c, γ ≤ ∆/(6 log ∆), and G ∼ G(n, p).
With probability 1− o(1) in n, every algorithm A ∈ ARES−ind

γ takes time exponential
in n/∆6+2δ.

Proof. Recall the definitions of k+ε and Cε from Proposition 3.2. Fix ε > 0 such that
k+ε < (2n/∆) log ∆ and let c ≥ Cε. The claimed bound holds trivially for ∆ ≥ n1/6.
We will assume for the rest of the proof that Cε ≤ ∆ ≤ n/ log2 n.

From Proposition 3.2, with probability 1− o(1) in n, a maximum independent set
in G is of size kmax ≤ k+ε < (2n/∆) log ∆. If A approximates this within a factor
of γ, then, in particular, it proves that G does not have an independent set of size
k = kmaxγ + 1 ≤ n/3. Convert the transcript of the computation of A on G along
with an argument of its correctness within a factor of γ into a resolution proof π of
an appropriate encoding α(G, k). From Theorem 3.2, size(π) must be exponential in
n/∆6+2δ.

3.9.2 Minimum Vertex Cover Approximation

A similar reasoning can be applied to approximation algorithms for finding a minimum
vertex cover.

Definition 3.13. Let γ ≥ 1. A is a γ-approximation algorithm for the minimum
vertex cover problem if on input G with minimum vertex cover size t̂, A produces a
vertex cover of size at most t̂γ.

Definition 3.14. A γ-approximation algorithm A for the minimum vertex cover
problem is resolution-based if it has the following property: if A outputs a vertex cover

55

of size t̄ on input G, then its computation history along with a proof of correctness
within a factor of γ yields a resolution proof of V Ccount(G, t) or V Cblock(G, t) for
t ≥ t̄/γ − 1, (n− t) |n. (For the block encoding, we further require (n− t) | (n/3).)

Let ARES−V C
γ denote the class of all resolution-based γ-approximation algorithms

for the minimum vertex cover problem.
As the following proposition shows, the usual greedy 2-approximation algorithm

for vertex cover, for instance, is in ARES−V C
2 . It works by choosing an arbitrary edge,

say (u, v), including both u and v in the vertex cover, throwing away all edges incident
on u and v, and repeating this process until all edges have been removed from the
graph. This gives a 2-approximation because any optimal vertex cover will also have
to choose at least one of u and v. For concreteness, we describe this algorithm below
as Algorithm 3.1 and denote it by VC-greedy. We use E(G) for the set of edges in G
and E(w) for the set of edges incident on a vertex w.

Input : An undirected graph G with minimum vertex cover size t + 1
Output : A vertex cover for G of size at most 2(t + 1)
begin

cover ← φ
while E(G) 6= φ do

Choose an edge (u, v) ∈ E(G) arbitrarily
cover ← cover ∪ {u, v}
E(G)← E(G) \ (E(u) ∪ E(v))

Output cover
end

Algorithm 3.1: VC-greedy, a greedy 2-approximation algorithm for the minimum
vertex cover problem

Proposition 3.7. Let t = t̄/2−1 and (n− t) |n. If VC-greedy outputs a vertex cover
of size t̄ on input G, then RES(V Ccount(G, t)) ≤ 8t2.

Proof. Consider a run of VC-greedy on G that produces a vertex cover of size t̄ =
2(t + 1). This yields a sequence of t̄/2 = t + 1 vertex disjoint edges of G that are
processed sequentially till G has no edges left. Without loss of generality, assume
that these t + 1 edges are (v1, v2), (v3, v4), . . . , (v2t+1, v2t+2). Extend this ordering of
the vertices of G to the remaining n − 2t − 2 vertices. Under this ordering, we will
construct a refutation of αcount(G, t) of size at most 8t2. Note that αcount(G, t) includes
(x2p−1 ∨ x2p), 1 ≤ p ≤ t + 1, among its edge clauses.

In order to construct this derivation, it will be helpful to keep in mind that one
can resolve any clause (yq,i ∨ B), 1 ≤ q < n, 1 ≤ i ≤ t, with the initial clause
(yq+1,i ∨ ¬yq,i ∨ xq+1) to derive (yq+1,i ∨ xq+1 ∨ B). For convenience, we will refer to
this as a Z1 derivation. Similarly, for i < t, (yq,i ∨B) can be resolved with the initial

56

clause (yq+1,i+1 ∨¬yq,i ∨¬xq+1) to derive (yq+1,i+1 ∨¬xq+1 ∨B). We will refer to this
as a Z2 derivation.

Using the above derivations as building blocks, we show that for 0 ≤ p < t, 0 ≤ i <
t−1, and any clause (y2p,i∨A), we can derive the clause (y2p+2,i+1∨y2p+2,i+2∨A) in 8
resolution steps. First, apply a Z1 derivation to (y2p,i∨A) to obtain (y2p+1,i∨x2p+1∨A).
Apply a Z2 derivation to this to get (y2p+2,i+1∨x2p+1∨¬x2p+2∨A). Resolve this with
the edge clause (x2p+1∨x2p+2) to finally obtain the clause C1 = (y2p+2,i+1∨x2p+1∨A).
Starting again from (y2p,i∨A), apply a Z2 derivation to obtain (y2p+1,i+1∨¬x2p+1∨A).
Apply Z1 and Z2 derivations separately to this clause and resolve the results together
on the variable x2p+2 to obtain the clause C2 = (y2p+2,i+1 ∨ y2p+2,i+2 ∨ ¬x2p+1 ∨ A).
Resolving clauses C1 and C2 on the variable x2p+1 finishes the 8 step derivation of
(y2p+2,i+1 ∨ y2p+2,i+2 ∨ A). We will refer to this derivation as Z3.

A similar argument shows that for the boundary case i = t − 1, one can derive
from (y2p,t−1 ∨ A) in at most 8 steps the clause (y2p+2,t ∨ A).

We are ready to describe the overall construction of the refutation. Starting from
the initial clause y0,0, apply Z3 to derive (y2,1 ∨ y2,2). Now apply Z3 successively to
the two literals of this clause to obtain (y4,2 ∨ y4,3 ∨ y4,4). Applying Z3 repeatedly to
the literals of the clause obtained in this manner results in the derivation of (y2p,p ∨
y2p,p+1 ∨ . . . ∨ y2p,r) in at most 8p2 steps, where 1 ≤ p ≤ t and r = min(2p, t). For
p = t, this gives a derivation of y2t,t in a total of 8t2 steps.

Resolving y2t,t with the initial clauses (¬y2t,t ∨ ¬x2t+1) and (¬y2t,t ∨ ¬x2t+2), and
resolving the two resulting clauses with the edge clause (x2t+1 ∨ x2t+2) derives the
empty clause Λ and finishes the refutation.

Theorem 3.4 (Vertex Cover Approximation). There is a constant c such that
the following holds. Let δ > 0, ∆ = np, ∆ ≥ c, γ < 3/2, and G ∼ G(n, p). With
probability 1 − o(1) in n, every algorithm A ∈ ARES−V C

γ takes time exponential in
n/∆6+2δ.

Proof. This proof is very similar to that of Theorem 3.3. Recall the definitions of k+ε

and Cε from Proposition 3.2. Fix ε > 0 such that k+ε < (2n/∆) log ∆ and let c ≥ Cε.
The claimed bound holds trivially for ∆ ≥ n1/6. We will assume for the rest of the
proof that Cε ≤ ∆ ≤ n/ log2 n.

From Proposition 3.2 and the relation between independent sets and vertex covers,
with probability 1−o(1) in n, a minimum vertex cover in G is of size tmin ≥ n−k+ε >
n− (2n/∆) log ∆. If A approximates this within a factor of γ, then, in particular, it
proves that G does not have a vertex cover of size t = tmin/γ−1 ≥ 2n/3. Convert the
transcript of A’s computation on G along with an argument of its correctness within
a factor of γ into a resolution proof π of an appropriate encoding V C(G, t). From
Corollary 3.3, size(π) must be exponential in n/∆6+2δ.

57

3.10 Stronger Lower Bounds for Exhaustive Backtracking Algorithms

and DPLL

We conclude this chapter with a stronger lower bound for a natural class of back-
tracking algorithms for the independent set and vertex cover problems, namely the
class of exhaustive backtracking search algorithms. The key difference between the
algorithms captured by resolution that we have considered so far and the ones in this
class is that the latter do not reuse computation performed for previous branches;
instead, they systematically rule out all potential independent sets or vertex covers
of the desired size by a possibly smart but nonetheless exhaustive search. As an illus-
tration, we will give an example of a non-trivial exhaustive backtracking algorithm
for the independent set problem shortly.

The argument for our lower bound is based on the density of independent sets and
vertex covers in random graphs and is quite straightforward in the light of Lemma
3.1. We derive as a consequence a tighter lower bound for the DPLL complexity of the
mapping and counting encodings of the two problems that allows the edge density in
the underlying graph to be much higher than in Theorem 3.2 and Corollary 3.3.

Returning to the class of exhaustive backtracking algorithms, recall that the ap-
proach we used for our upper bounds (cf. Section 3.5) was to systematically rule out
all potential independent sets of a certain size k′ = kmin. This is the simplest algo-
rithm in the class. Of course, instead of simply considering all

(
n
k′

)
subsets of vertices

of size k′ as we did, one can imagine more complex techniques for exhaustive search.
For instance, an idea similar to the one used by Beame et al. [14] for the graph col-
oring problem would be to consider all subsets of size u < k′ in the first stage. For
a random graph, most of these subsets are very likely to already contain an edge
and need not be processed further. For any remaining subset S, one can recursively
refute the existence of an independent set of size k′ − u in the residual graph with
|n−k−N(S)| vertices, where N(S) denotes all neighbors of S outside S. This is also
an exhaustive backtracking algorithm.

Such algorithms may require a more complex analysis than we gave in our upper
bound proofs and could potentially be more efficient. However, as the following result
shows, any technique that systematically rules out all possible k ′-independent sets by
an exhaustive backtracking search cannot improve the relatively simple upper bounds
in Theorem 3.1 and Corollary 3.1 by more than a constant factor in the exponent.

Let Aind
exhaustive (or AV C

exhaustive) denote the class of backtracking algorithms for prov-
ing non-existence of independent sets (vertex covers, resp.) of a given size in a given
graph, that work by recursively subdividing the problem based on whether or not a
set of vertices is included in the independent set (vertex cover, resp.) and that do
not reuse computation performed in previous branches. For example, our approach
in Section 3.5 as well as the algorithm based on [14] sketched above, both belong to
Aind

exhaustive.

58

Theorem 3.5 (Exhaustive Backtracking Algorithms). There are constants C
and c such that the following holds. Let ∆ = np, c ≤ ∆ ≤ n/ log2 n, and G ∼ G(n, p).
With probability 1−o(1) in n, every algorithm A ∈ Aind

exhaustive (or AV C
exhaustive) running

on input (G, k) must branch at least 2C(n/∆) log2 ∆ times when G does not have an
independent set (vertex cover, resp.) of size k.

Proof. Let C be the constant from Lemma 3.1. Recall the definitions of k+ε and Cε

from Proposition 3.2. Fix ε > 0 such that k+ε + 1 > (2n/∆) log ∆ and let c ≥ Cε.
With probability 1−o(1) in n, algorithm A ∈ Aind

exhaustive succeeds in proving the non-
existence of a k-independent set in G only when k ≥ k+ε + 1. However, Lemma 3.1
says that G almost surely contains at least 2C(n/∆) log2 ∆ independent sets of size k∗ =
b(n/∆) log ∆c, which is less than (k+ε + 1)/2. Hence, while recursively subdividing
the problem based on whether or not to include a vertex in the k-independent set,
A must explore at least 2C(n/∆) log2 ∆ distinct k∗-independent sets before finding a
contradictory edge for each and backtracking.

For the vertex cover case, note that the algorithms in AV C
exhaustive are the duals of

the algorithms in Aind
exhaustive; including a vertex in a vertex cover to create a smaller

subproblem is equivalent to not including it in an independent set. Further, the
number of vertex covers of size n− k in G is exactly the same as the number of inde-
pendent sets of size k in G. Hence, the above lower bound applies to the algorithms
in AV C

exhaustive as well.

Theorem 3.6 (Stronger DPLL Lower Bounds). There are constants C and c such
that the following holds. Let ∆ = np, c ≤ ∆ ≤ n/(2 log2 n), and G ∼ G(n, p). With
probability 1− o(1) in n,

DPLL(αmap(G, k)) ≥ 2C(n/∆) log2 ∆,

DPLL(αcount(G, k)) ≥ 2C(n/∆) log2 ∆,

DPLL(V Cmap(G, t)) ≥ 2C(n/∆) log2 ∆, and

DPLL(V Ccount(G, t)) ≥ 2C(n/∆) log2 ∆.

Proof. The DPLL complexity of the encodings, by our convention, is∞ if G does have
an independent set of size k. If it does not, the tree T associated with any DPLL

refutation of αmap(G, k) or αcount(G, k) can be viewed as the trace of an exhaustive
backtracking algorithm A ∈ Aind

exhaustive on input (G, k) as follows. An internal node
in T with variable xv as its secondary label corresponds to the decision of A to branch
based on whether or not to include vertex v in the independent set it is creating. Nodes
in T with counting variables as secondary labels represent the counting process of A.

Given this correspondence, Theorem 3.5 immediately implies the desired lower
bounds for the independent set problem. The results for the vertex cover problem
can be derived in an analogous manner. Note that refuting the block encoding may
be easier than ruling out all independent sets (vertex covers, resp.) of size k. Hence,
Theorem 3.5 does not translate into a bound for this encoding.

59

3.11 Discussion

In this chapter, we used a combination of combinatorial and probabilistic arguments
to obtain lower and upper bounds on the resolution complexity of several natural CNF
encodings of the independent set, vertex cover, and clique problems. Our results hold
almost surely when the underlying graph is chosen at random from the G(n, p) model.
Consequently, they hold (deterministically) for nearly all graphs. A key step in the
main lower bound arguments was to simplify the task by considering the induced
block graph in place of the original graph. The expansion properties of the block
graph then allowed us to relate refutation width with structural properties of the
graph.

Our results imply exponential lower bounds on the running time of resolution-
based backtracking algorithms for finding a maximum independent set (or, equiv-
alently, a maximum clique or a minimum vertex cover) in a given graph. Such
algorithms include some of the best known ones for these combinatorial problems
[105, 106, 67, 100].

A noteworthy contribution of this work is the hardness of approximation result.
We showed unconditionally that there is no polynomial time resolution-based approx-
imation algorithm that guarantees a solution within a factor less than ∆/(6 log ∆) for
the maximum independent set problem or within a factor less than 3/2 for the mini-
mum vertex cover problem. This complements the hardness results conditioned on P
6= NP that rule out efficient approximations within factors of ∆max/2O(

√
log ∆max) [108]

and 10
√

5 − 21 ≈ 1.36 [47] for the two problems, respectively. (Here ∆max denotes
the maximum degree of the underlying graph rather than the average degree.)

On the flip side, some algorithms, such as those of Robson [97], Beigel [21], Chen
et al. [33], and Tomita and Seki [107], employ techniques that do not seem to be
captured by resolution. The techniques they use, such as unrestricted without loss
of generality arguments [97], vertex folding [33], creation of new vertices [21], and
pruning of search space using approximate coloring [107], represent global properties
of graphs or global changes therein that appear hard to argue locally using a bounded
number of resolution inferences. For instance, the algorithm of Robson [97] involves
the reasoning that if an independent set contains only one element of N(v), then
without loss of generality, that element can be taken to be the vertex v itself. It is
unclear how to model this behavior efficiently in resolution.

Restricted versions of these general properties, however, can indeed be simulated
by resolution. This applies when one restricts, for instance, to vertices of small,
bounded degree, as is done in many case-by-case algorithms cited at the beginning of
this chapter [105, 106, 67, 100].

Finally, as we mentioned in the introduction, the spectral algorithm of Coja-
Oghlan [37] achieves an O(

√
∆/ log ∆) approximation and, in the light of our lower

bounds, cannot be simulated by resolution.

