
8

Chapter 2

PRELIMINARIES

Throughout this thesis, we work with propositional or Boolean variables, that
is, variables that take value in the set {true, false}. A propositional formula F
representing a Boolean function is formed by combining these variables using various
Boolean operators. We use the two binary operators conjunction (and, ∧) and dis-
junction (or, ∨), and the unary operator negation (not, ¬). These three operators
are sufficient to express all Boolean functions and, at the same time, provide enough
expressiveness to encode many interesting functions in a fairly compact way.

Definition 2.1. A propositional formula F is satisfiable if there exists an assignment
ρ to its variables such that F evaluates to true under ρ. If no such ρ exists, F is
unsatisfiable. F is a tautology if ¬F is unsatisfiable.

We often use the abbreviations SAT and UNSAT for satisfiable and unsatisfiable,
respectively. A variable assignment ρ under which F evaluates to true is referred to
as a satisfying assignment for F .

Definition 2.2. A propositional formula F is in conjunctive normal form (CNF) if
it is a conjunction of clauses, where each clause is a disjunction of literals and each
literal is either a variable or its negation. The size of F is the number of clauses in
F .

It is natural to think of F as a set of clauses and each clause as a set of literals.
We use the symbol Λ to denote the empty clause which is always unsatisfiable. A
clause with only one literal is referred to as a unit clause. A clause that is a subset
of another is called its subclause. Let ρ be a partial assignment to the variables of F .

Definition 2.3. The restricted formula F ρ is obtained from F by replacing variables
in ρ with their assigned values. F is said to be simplified if all clauses with at least
one true literal are deleted and all occurrences of false literals are removed from
clauses. F |ρ denotes the result of simplifying the restricted formula F ρ.

The construction of Tseitin [109] can be used to efficiently convert any given
propositional formula to one in CNF form by adding new variables corresponding
to its subformulas. For instance, given an arbitrary propositional formula G, one
would first locally re-write each of its operators in terms of ∧,∨, and ¬ to obtain,
say, G = (((a ∧ b) ∨ (¬a ∧ ¬b)) ∧ ¬c) ∨ d. To convert this to CNF, one would add
four auxiliary variables w, x, y, and z, construct clauses that encode the four relations

9

w ↔ (a ∧ b), x ↔ (¬a ∧ ¬b), y ↔ (w ∨ x), and z ↔ (y ∧ ¬c), and add to that the
clause (z∨d). Given this efficient conversion mechanism, we restrict ourselves to CNF
formulas.

2.1 The Propositional Satisfiability Problem

The combinatorial problem that lies at the heart of this work is the satisfiability
problem that asks whether a given propositional formula has a satisfying assignment.
More precisely,

Definition 2.4. The propositional satisfiability problem is the following: Given a
CNF formula F as input, determine whether F is satisfiable or not. If it is satisfiable,
output a satisfying assignment for it.

The decision version of this problem, where one is only asked to report SAT
or UNSAT, is also referred to as CNF-SAT in the literature. In their well-known
work, Cook [38] and Levin [79] proved the problem to be NP-complete, setting the
foundation for a vast amount of research in complexity theory.

In this thesis, we will look at this problem from various perspectives. When a
formula F is unsatisfiable, we will be interested in analyzing the size of the shortest
proof of this fact. The formal machinery using which such proofs are presented and
verified is discussed in the following section. From the practical perspective, we will
also be interested in designing algorithms to find such proofs efficiently. When F
is satisfiable, the task will be to design algorithms that efficiently find a satisfying
assignment for it. Although some applications may require one to output several
satisfying assignments, we will focus on finding one.

An algorithm that solves the propositional satisfiability problem is called a sat-
isfiability algorithm. Practical implementations of such algorithms typically involve
smart data structures and carefully chosen parameters in addition to an efficient top-
level algorithm. These implementations are referred to as SAT solvers. Note the use
of SAT here as referring to the propositional satisfiability problem in contrast to being
an abbreviation of satisfiable. Henceforth, we leave it up to the context to make the
meaning of “SAT” unambiguous.

2.2 Proof Systems

The notion of a propositional proof system was first defined in the seminal work of
Cook and Reckhow [39]. It is an efficient (in the size of the proof) procedure to check
the correctness of proofs presented in a certain format. More formally,

Definition 2.5. A propositional proof system is a polynomial time computable pred-
icate S such that a propositional formula F is unsatisfiable iff there exists a proof (or
refutation) π for which S(F, π) holds.

10

We refer to such systems simply as proof systems and omit the word propositional.
Note that proof systems can alternatively be defined for tautologies because of the
fact that F is an unsatisfiable formula iff ¬F is a tautology. In this manuscript,
however, we use the phrase proof system in the context of unsatisfiable formulas only.

The strength of a proof system is characterized by the sizes of proofs it admits
for various unsatisfiable formulas: a stronger proof system can verify the correctness
of shorter proofs presented in a more complex format. This motivates the following
definition.

Definition 2.6. The complexity of a formula F under a proof system S, denoted
CS(F), is the length of the shortest refutation of F in S.

Let {Fn} be a family of formulas over an increasing number of variables n. The
asymptotic complexity of {Fn} in S with respect to n is given by the function f(n) =
CS(Fn) and is denoted CS(Fn), with abuse of notation. We will be interested in
characterizing families of formulas as having polynomial or exponential asymptotic
complexity under specific proof systems.

2.2.1 Resolution

Resolution (RES) is a widely studied simple proof system that can be used to prove
unsatisfiability of CNF formulas. It forms the basis of many popular systems for
practical theorem proving. Lower bounds on resolution proof sizes thus have a bearing
on the running time of these systems.

The resolution rule states that given clauses C1 = (A∨x) and C2 = (B∨¬x), one
can derive the clause C = (A∨B) by resolving on x. C1 and C2 are called the parent
clauses and C is called their resolvent. The resolution rule has the property that a
derived clause is satisfied by any assignment that satisfies both the parent clauses.

Definition 2.7. A resolution derivation of C from a CNF formula F is a sequence
π = (C1, C2, . . . , Cs = C) with the following property: each clause Ci in π is either a
clause of F (an initial clause) or is derived by applying the resolution rule to Cj and
Ck, 1 ≤ j, k < i (a derived clause). The size of π is s, the number of clauses occurring
in it.

We assume that the clauses in π are non-redundant, i.e., each Cj 6= C in π is used
to derive at least one other clause Ci, i > j. Any derivation of the empty clause Λ
from F , also called a refutation or proof of F , shows that F is unsatisfiable.

Definition 2.8. Let F be a CNF formula and π a resolution proof of its unsatisfia-
bility.

(a) The size of π, size(π), is the number of clauses appearing in π.

11

(b) The resolution complexity of F , RES(F), is the minimum of size(π) over all
resolution proofs π of F ; if no such proofs exist, RES(F) =∞.

(c) The width of a clause is the number of literals occurring in it. The width w(F)
of F and the width w(π) of π are the maximum of the widths of all clauses in
F and π, respectively.

(d) The refutation width of F , w(F ` Λ), is the minimum of w(π) over all proofs
π of F .

As we shall see in Section 2.2.3, to prove a lower bound on RES(F), it is sufficient
to prove a lower bound on the refutation width of F . It also typically turns out to
be easier to analyze the width rather than the size of the smallest refutation. This
makes the concept of width quite useful in proof complexity.

It is often insightful to think of the structure of a resolution refutation (or deriva-
tion) π in terms of a directed acyclic graph Gπ defined as follows. Gπ has a vertex
for each clause in π, labeled with that clause. If the clause Ck labeling a vertex v
in Gπ is derived by resolving clauses Ci and Cj upon a variable x, then (a) v has a
secondary label x, and (b) v has two outgoing edges directed to the vertices labeled
Ci and Cj. All vertices labeled with initial clauses of π do not have a secondary label
and have outdegree zero.

2.2.2 Refinements of Resolution

Despite its simplicity, unrestricted resolution as defined above (also called general
resolution) is hard to implement efficiently due to the difficulty of finding good choices
of clauses to resolve; natural choices typically yield huge storage requirements. Various
restrictions on the structure of resolution proofs lead to less powerful but easier to
implement refinements that have been studied extensively in proof complexity.

Definition 2.9. Let π = (C1, C2, . . . , Cs = C) be a resolution derivation, Gπ be the
graph associated with it, α be an assignment to the variables in π, αF be the all
false assignment, and αT be the all true assignment.

(a) π is tree-like if each vertex in Gπ corresponding to a derived clause has indegree
1.

(b) π is regular if no secondary vertex label appears twice in any directed path in
Gπ.

(c) π is ordered or Davis-Putnam if the sequence of secondary vertex labels along
every directed path in Gπ respects a fixed total ordering of the variables.

12

(d) π is linear if each Ci in π is either an initial clause or is derived by resolving
Ci−1 with Cj, j < i− 1.

(e) π is an α-derivation if at least one parent clause involved in each resolution
step in it is falsified by α.

(f) π is positive if it is an α-derivation for α = αF .

(g) π is negative if it is an α-derivation for α = αT .

(h) π is semantic if it is an α-derivation for some α.

While all these refinements are sound and complete as proof systems, they differ
vastly in efficiency. For instance, in a series of results, Bonet et al. [27], Bonet and
Galesi [28], and Buresh-Oppenheim and Pitassi [31] have shown that regular, ordered,
linear, positive, negative, and semantic resolution are all exponentially stronger than
tree-like resolution. On the other hand, Bonet et al. [27] and Alekhnovich et al. [3]
have proved that tree-like, regular, and ordered resolution are exponentially weaker
than RES.

2.2.3 The Size-Width Relationship

Most known resolution complexity lower bounds, including our results in subsequent
chapters, can be proved using a general result of Ben-Sasson and Wigderson [23] that
is derived from earlier arguments by Haken [60] and Clegg, Edmonds, and Impagliazzo
[36]. It provides a relationship between the size of resolution proofs and their width
(recall Definition 2.8), namely, any short proof of unsatisfiability of a CNF formula
can be converted to one of small width. Therefore, a lower bound on the width of a
resolution proof implies a lower bound on its size.

For a reason that will become clear in Section 2.3.1, we will use DPLL(F) to denote
the tree-like resolution complexity of a formula F .

Proposition 2.1 ([23]). For any CNF formula F , DPLL(F) ≥ 2w(F`Λ)−w(F).

Proposition 2.2 ([23]). For any CNF formula F over n variables and c = 1/(9 ln 2),
RES(F) ≥ 2c(w(F`Λ)−w(F))2/n.

For completeness, we sketch the proof of this result for the case of tree-like res-
olution. Suppose we have a refutation π of F (over n variables) with size(π) ≤ 2b.
The idea is to use induction on n and b to construct a refutation π ′ of F such that
width(π′) ≤ b. Let the last variable resolved upon in π be x. Assume without loss of
generality that x is derived in π by a tree-like derivation of size at most 2b−1. This
gives a refutation of F |¬x of the same size by simply removing x from all clauses. By

13

induction on b, this can be converted into a refutation of F |¬x of width at most b− 1,
which immediately gives a derivation π′′ of x from F of width at most b by adding x
back to the initial clauses from which it was removed and propagating the change.

On the other hand, π contains a derivation of ¬x of size at most 2b which can be
converted to a refutation of F |x of the same size. By induction on n, this refutation,
and hence the original derivation of ¬x, can be converted to one of width at most
b. Now resolve, wherever possible, each of the initial clauses of this small width
derivation of ¬x with the result x of the derivation π ′′ and propagate the resulting
simplification. This gives a refutation π′ of F of width at most b.

2.3 The DPLL Procedure and Clause Learning

The Davis-Putnam-Logemann-Loveland or DPLL procedure is both a proof system as
well as a collection of algorithms for finding proofs of unsatisfiable formulas. It can
equally well be thought of as a collection of complete algorithms for finding a satisfying
assignment for a given formula; its failure to find such an assignment constitutes a
proof of unsatisfiability of the formula. While the former view is more suited to proof
complexity theory, the latter is the norm when designing satisfiability algorithms.
Davis and Putnam [44] came up with the basic idea behind this procedure. However,
it was only a couple of years later that Davis, Logemann, and Loveland [43] presented
it in the efficient top-down form in which it is widely used today.

Algorithm 1, DPLL-recursive(F, ρ), sketches the basic DPLL procedure on CNF
formulas. The idea is to repeatedly select an unassigned literal ` in the input formula
F and recursively search for a satisfying assignment for F |` and F¬`. The step where
such an ` is chosen is commonly referred to as the branching step. Setting ` to true

or false when making a recursive call is called a decision. The end of each recursive
call, which takes F back to fewer assigned variables, is called the backtracking step.

A partial assignment ρ is maintained during the search and output if the formula
turns out to be satisfiable. If F |ρ contains the empty clause, the corresponding clause
of F from which it came is said to be violated by ρ. To increase efficiency, unit clauses
are immediately set to true as outlined in Algorithm 1. Pure literals (those whose
negation does not appear) are also set to true as a preprocessing step and, in some
implementations, in the simplification process after every branch.

At any point during the execution of the algorithm, a variable that has been
assigned a value at a branching step is called a decision variable while one that
has been assigned a value by unit propagation is called an implied variable. The
decision level of an assigned variable is the recursive depth (starting at 0) of the call
to DPLL-recursive that assigns it a value.

Variants of this algorithm form the most widely used family of complete algorithms
for formula satisfiability. They are frequently implemented in an iterative rather than
recursive manner, resulting in significantly reduced memory usage. The key difference

14

Input : A CNF formula F and an initially empty partial assignment ρ
Output : UNSAT, or an assignment satisfying F
begin

(F, ρ)← UnitPropagate(F, ρ)
if F contains the empty clause then return UNSAT
if F has no clauses left then

Output ρ
return SAT

`← a literal not assigned by ρ // the branching
step
if DPLL-recursive(F |`, ρ ∪ {`}) = SAT then return SAT
return DPLL-recursive(F |¬`, ρ ∪ {¬`})

end

UnitPropagate(F)

begin

while F contains no empty clause but has a unit clause x do
F ← F |x
ρ← ρ ∪ {x}

return (F, ρ)
end

Algorithm 2.1: DPLL-recursive(F, ρ)

in the iterative version is the extra step of unassigning variables when one backtracks.
The naive way of unassigning variables in a CNF formula is computationally expen-
sive, requiring one to examine every clause in which the unassigned variable appears.
However, the watched literals scheme of Moskewicz et al. [88] provides an excellent
way around this and merits a brief digression.

The Watched Literals Scheme

The key idea behind the watched literals scheme, as the name suggests, is to maintain
and “watch” two special literals for each active (i.e., not yet satisfied) clause that are
not false under the current partial assignment. Recall that empty clauses halt the
DPLL process and unit clauses are immediately satisfied. Hence, one can always find
such watched literals in all active clauses. Further, as long as a clause has two such
literals, it cannot be involved in unit propagation. These literals are maintained as
follows. When a literal ` is set to false, we must find another watched literal for
the clause that had ` as a watched literal. We must also let ¬` be a watched literal
for previously active clauses that are now satisfied because of this assignment to `.
By doing this, positive literals are given priority over unassigned literals for being the
watched literals.

15

With this setup, one can test a clause for satisfiability by simply checking whether
at least one of its two watched literals is true. Moreover, the relatively small amount
of extra book-keeping involved in maintaining watched literals is well paid off when one
unassigns a literal ` by backtracking – in fact, one needs to do absolutely nothing! The
invariant about watched literals is maintained as such, saving a substantial amount
of computation that would have been done otherwise.

2.3.1 Relation to Tree-like Resolution

When a formula F is unsatisfiable, the transcript of the execution of DPLL on F
forms a proof of its unsatisfiability. This proof is referred to as a DPLL refutation
of F . The size of a DPLL refutation is the number of branching steps in it. As the
following Proposition shows, the structure of DPLL refutations is intimately related
to the structure of tree-like resolution refutations.

Proposition 2.3. A CNF formula F has a DPLL refutation of size at most s iff it
has a tree-like resolution refutation of size at most s.

Proof. The idea is to associate with every DPLL refutation τ a tree T τ and show
how T τ can be viewed as or simplified to the graph Gπ associated with a tree-like
resolution refutation π of F . Given a DPLL refutation τ , the tree T τ is constructed
recursively by invoking the construction for DPLL-recursive(F, φ). We describe below
the construction in general for DPLL-recursive(H, ρ) for any sub-formula H of F and
partial assignment ρ to the variable of F .

Start by creating the root node v for the tree corresponding to the procedure
call DPLL-recursive(H, ρ). If the procedure terminates because there is an empty
clause after unit propagation, label v with an initial clause of F that has become
empty and stop. If not, let ` be the literal chosen in the branching step of the
call. Recursively create the two subtrees T` and T¬` associated with the recursive
calls to DPLL-recursive(H|`, {`}) and DPLL-recursive(H|¬`, {¬`}), respectively. If
either of T` or T¬` is labeled by a clause that does not contain ¬` or `, respectively,
then discard v and the other subtree, associate this one with the procedure call
DPLL-recursive(H, ρ), and stop. Otherwise, add edges from v to the roots of T` and
T¬`. Let x be the variable corresponding to `. Label v with the clause obtained by
resolving on x the clauses labeling T` and T¬`. Finally, assign x as the secondary label
for v.

It can be verified that the label of the root node of the final tree T τ corresponding
to the call to DPLL-recursive(F, φ) is the empty clause Λ and that T τ is precisely the
graph Gπ associated with a legal tree-like resolution refutation π of F .

On the other hand, if one starts with a graph G|π associated with a tree-like
resolution refutation π of F , the graph can be viewed unchanged as the tree T τ

associated with a DPLL refutation τ of F . This finishes the proof.

16

Corollary 2.1. For a CNF formula F , the size of the smallest DPLL refutation of F
is equal to the size of the smallest tree-like resolution refutation of F .

This explains why we used DPLL(F) to denote the tree-like resolution complexity
of F in Section 2.2.3.

2.3.2 Clause Learning

The technique of clause learning was first introduced in the context of the DPLL-based
SAT solvers by Marques-Silva and Sakallah [84]. It can be thought of as an extension
of the DPLL procedure that caches causes of assignment failures in the form of learned
clauses. It proceeds by following the normal branching process of DPLL until there is a
“conflict,” i.e., a variable is implied to be true as well as false by unit propagation.
We give here a brief sketch of how conflicts are handled, deferring more precise details
to Section 4.2.

If a conflict occurs when no variable is currently branched upon, the formula is
declared UNSAT. Otherwise, the algorithm looks at the graphical structure of variable
assignment implications (caused by unit propagation). From this, it infers a possible
“cause” of the conflict, i.e., a relatively small subset of the currently assigned variables
that, by unit propagation, results in the conflict. This cause is learned in the form
of a “conflict clause.” The idea is to avoid any future conflicts that may result from
a careless assignment to the subset of variables already known to potentially cause a
conflict. The algorithm now backtracks and continues as in ordinary DPLL, treating
the learned clause just like the initial ones. A clause is said to be known at a stage if
it is either an initial clause or has previously been learned.

Algorithm 2.2 gives the basic structure of the clause learning algorithm by Moskewicz
et al. [88] used in the popular SAT solver zChaff. This algorithm forms the basis of
our implementations and experiments in subsequent chapters. We present it here as
the top-level iterative process that lies at the heart of zChaff.

The procedure DecideNextBranch chooses the next variable to branch on. In
zChaff, this is done using the Variable State Independent Decaying Sum (VSIDS)
heuristic which assigns a slowly decaying weight to each literal that is boosted when-
ever the literal is involved in a conflict. Note that there is no explicit variable flip
in the entire algorithm. The conflict clause learning strategy used by zChaff auto-
matically (by unit propagation) flips the assignment of the current variable before
backtracking. The procedure Deduce applies unit propagation, keeping track of any
clauses that may become empty, causing what is known as a conflict. If all clauses
have been satisfied, it declares the formula to be SAT. The procedure AnalyzeConflict
looks at the structure of implications and computes from it a conflict clause to learn.
It also computes and returns the decision level that one needs to backtrack.

In general, the learning process is expected to save us from redoing the same
computation when we later have an assignment that causes conflict due in part to

17

Input : A CNF formula
Output : UNSAT, or SAT along with a satisfying assignment
begin

while true do
DecideNextBranch

while true do
status ← Deduce

if status = CONFLICT then
blevel ← AnalyzeConflict

if blevel = 0 then return UNSAT
Backtrack(blevel)

else if status = SAT then
Output current assignment stack
return SAT

else break

end

Algorithm 2.2: DPLL-ClauseLearning

the same reason. Variations of such conflict-driven learning include different ways of
choosing the clause to learn (different learning schemes) and possibly allowing multiple
clauses to be learned from a single conflict. In the last decade, many algorithms based
on this idea have been proposed and demonstrated to be empirically successful on large
problems that could not be handled using other methodologies. These include Relsat

by Bayardo Jr. and Schrag [13], Grasp by Marques-Silva and Sakallah [84], SATO by
Zhang [113], and, as mentioned before, zChaff. We leave a more detailed discussion of
the concepts involved in clause learning as well as its formulation as a proof system
CL to Section 4.2.

Remark 2.1. Throughout this thesis, we will use the term DPLL to denote the basic
branching and backtracking procedure given in Algorithm 1, and possibly the iterative
version of it. It will not include learning conflict clauses when backtracking, but
will allow intelligent branching heuristics as well as common extensions such as fast
backtracking and restarts discussed in Section 4.2. Note that this is in contrast
with the occasional use of the term DPLL to encompass practically all branching and
backtracking approaches to SAT, including those involving learning.

