
60

Chapter 4

CLAUSE LEARNING AS A PROOF SYSTEM

We now move on to satisfiability algorithms and present in this chapter a new (and
first-ever) proof theoretic framework for formally analyzing the core of the numerous
practical implementations of such algorithms being developed today.

As discussed in Chapter 1, in recent years the task of deciding whether or not
a given CNF formula is satisfiable has gone from a problem of theoretical interest
to a practical approach for solving real-world problems. SAT procedures are now a
standard tool for tasks such as hardware and software verification, circuit diagnosis,
experiment design, planning, scheduling, etc.

The most surprising aspect of such relatively recent practical progress is that the
best complete satisfiability testing algorithms remain variants of the DPLL procedure
for backtrack search in the space of partial truth assignments (cf. Section 2.3). The
key idea behind its efficacy is the pruning of the search space based on falsified clauses.
Since its introduction in the early 1960’s, the main improvements to DPLL have been
smart branch selection heuristics such as by Li and Anbulagan [80], extensions like
randomized restarts by Gomes et al. [58] and clause learning (cf. Section 2.3.2),
and well-crafted data structures such as watched literals for fast unit propagation
by Moskewicz et al. [88]. One can argue that of these, clause learning has been
the most significant in scaling DPLL to realistic problems. This chapter attempts to
understand the potential of clause learning and leads on to the next chapter which
suggests practical ways of harnessing its power.

Clause learning grew out of work in artificial intelligence on explanation-based
learning (EBL), which sought to improve the performance of backtrack search algo-
rithms by generating explanations for failure (backtrack) points, and then adding the
explanations as new constraints on the original problem. The results of de Kleer and
Williams [46], Stallman and Sussman [103], Genesereth [55], and Davis [45] proved
this approach to be quite effective. For general constraint satisfaction problems the
explanations are called “conflicts” or “no goods”; in the case of Boolean CNF satisfi-
ability, the technique becomes clause learning – the reason for failure is learned in the
form of a “conflict clause” which is added to the set of given clauses. Through a series
of papers and accompanying solvers, Bayardo Jr. and Schrag [13], Marques-Silva and
Sakallah [84], Zhang [113], Moskewicz et al. [88], and Zhang et al. [115] showed that
clause learning can be efficiently implemented and used to solve hard problems that
cannot be approached by any other technique.

Despite its importance there has been little work on formal properties of clause

61

learning, with the goal of understanding its fundamental strengths and limitations.
A likely reason for such inattention is that clause learning is a rather complex rule
of inference – in fact, as we describe below, a complex family of rules of inference. A
contribution of this work is a precise mathematical specification of various concepts
used in describing clause learning.

Another problem in characterizing clause learning is defining a formal notion of
the strength or power of a reasoning method. We address this issue by defining a new
proof system called CL that captures the complexity of a clause learning algorithm
on various classes of formulas. From the basic proof complexity point of view, only
families of unsatisfiable formulas are of interest because only proofs of unsatisfiability
can be large; minimum proofs of satisfiability are linear in the number of variables of
the formula. In practice, however, many interesting formulas are satisfiable. To justify
our approach of using a proof system CL, we refer to the work of Achlioptas, Beame,
and Molloy [1] who have shown how negative proof complexity results for unsatisfiable
formulas can be used to derive time lower bounds for specific inference algorithms,
especially DPLL, running on satisfiable formulas as well. The key observation in their
work is that before hitting a satisfying assignment, an algorithm is very likely to
explore a large unsatisfiable part of the search space that corresponds to the first bad
variable assignment.

Proof complexity does not capture everything we intuitively mean by the power
of a reasoning system because it says nothing about how difficult it is to find shortest
proofs. However, it is a good notion with which to begin our analysis because the size
of proofs provides a lower bound on the running time of any implementation of the
system. In the systems we consider, a branching function, which determines which
variable to split upon or which pair of clauses to resolve, guides the search. A negative
proof complexity result for a system tells us that a family of formulas is intractable
even with a perfect branching function; likewise, a positive result gives us hope of
finding a good branching function.

Recall from Chapter 2 that general resolution or RES is exponentially stronger
than the DPLL procedure, the latter being exactly as powerful as tree-like resolution.
Although RES can yield shorter proofs, in practice DPLL is better because it provides
a more efficient way to search for proofs. The weakness of the tree-like proofs that
DPLL generates is that they do not reuse derived clauses. The conflict clauses found
when DPLL is augmented by clause learning correspond to reuse of derived clauses in
the associated resolution proofs and thus to more general forms of resolution proofs.
As a theoretical upper bound, all DPLL based approaches, including those involving
clause learning, are captured by RES. An intuition behind the results we present is
that the addition of clause learning moves DPLL closer to RES while retaining its
practical efficiency.

It has been previously observed by Lynce and Marques-Silva [82] that clause learn-
ing can be viewed as adding resolvents to a tree-like resolution proof. However, we

62

provide the first mathematical proof that clause learning, viewed as a propositional
proof system CL, is exponentially stronger than tree-like resolution. This explains,
formally, the performance gains observed empirically when clause learning is added to
DPLL based solvers. Further, we describe a generic way of extending families of formu-
las to obtain ones that exponentially separate CL from many refinements of resolution
(see Section 2.2.2) known to be intermediate in strength between RES and tree-like
resolution. These include regular and ordered resolution, and any other proper re-
finement of RES that behaves naturally under restrictions of variables, i.e., for any
formula F and restriction ρ on its variables, the shortest proof of F |ρ in the system
is not any larger than a proof of F itself.

The argument used in our result above involves a new clause learning scheme called
FirstNewCut that we introduce specifically for this purpose. Our second technical
result shows that combining a slight variant of CL, denoted CL--, with unlimited
restarts results in a proof system as strong as RES itself. This intuitively explains the
speed-ups obtained empirically when randomized restarts are added to DPLL based
solvers, with or without clause learning.

Remark 4.1. MacKenzie [83] has recently used arguments similar to those of Beame
et al. [15] to prove that a variant of clause learning can simulate all of regular resolu-
tion.

4.1 Natural Proper Refinements of a Proof System

We discussed various refinements of resolution in Section 2.2.2. The concept of re-
finement applies to proof systems in general. We formalize below what it means for
a refinement of a proof system to be natural and proper. Recall that the complexity
CS(F) of a formula F under a proof system S is the length of the shortest refutation
of F in S.

Definition 4.1. For proof systems S and T , and a function f : N→ [1,∞),

• S is natural if for any formula F and restriction ρ on its variables, CS(F |ρ) ≤
CS(F).

• S is a refinement of T if proofs in S are also (restricted) proofs in T .

• A refinement S of T is f(n)-proper if there exists a witnessing family {Fn} of
formulas such that CS(Fn) ≥ f(n) · CT (Fn). The refinement is exponentially-

proper if f(n) = 2nΩ(1)
and super-polynomially-proper if f(n) = nω(1).

Proposition 4.1. Tree-like, regular, linear, positive, negative, semantic, and ordered
resolution are natural refinements of RES.

63

The following proposition follows from the separation results of Bonet et al. [27]
and Alekhnovich et al. [3].

Proposition 4.2 ([27, 3]). Tree-like, regular, and ordered resolution are exponentially-
proper natural refinements of RES.

4.2 A Formal Framework for Studying Clause Learning

Although many SAT solvers based on clause learning have been proposed and demon-
strated to be empirically successful, a theoretical discussion of the underlying concepts
and structures needed for our analysis is lacking. This section focuses on this formal
framework.

For concreteness, we will use Algorithm 2.2 on page 17 as the basic clause
learning algorithm. We state it again below for ease of reference. Recall that
DecideNextBranch implements the variable selection process, Deduce apply unit propa-
gation, AnalyzeConflict does clause learning upon reaching a conflict, and Backtrack

unassigns variables up to the appropriate decision level computed during conflict anal-
ysis.

Input : A CNF formula
Output : UNSAT, or SAT along with a satisfying assignment
begin

while true do
DecideNextBranch

while true do
status ← Deduce

if status = CONFLICT then
blevel ← AnalyzeConflict

if blevel = 0 then return UNSAT
Backtrack(blevel)

else if status = SAT then
Output current assignment stack
return SAT

else break

end

Algorithm 4.1: DPLL-ClauseLearning

4.2.1 Decision Levels and Implications

Although we have already defined concepts such as decision level and implied variable
in the context of the DPLL procedure, we did so with the simpler-to-understand re-

64

cursive version of the algorithm in mind. We re-define these concepts for the iterative
version with clause learning given above.

Variables assigned values through the actual branching process are called decision
variables and those assigned values as a result of unit propagation are called implied
variables. Decision and implied literals are analogously defined. Upon backtracking,
the last decision variable no longer remains a decision variable and might instead
become an implied variable depending on the clauses learned so far. The decision level
of a decision variable x is one more than the number of current decision variables at
the time of branching on x. The decision level of an implied variable is the maximum
of the decision levels of decision variables used to imply it. The decision level at any
step of the underlying DPLL procedure is the maximum of the decision levels of all
current decision variables. Thus, for instance, if the clause learning algorithm starts
off by branching on x, the decision level of x is 1 and the algorithm at this stage is
at decision level 1.

A clause learning algorithm stops and declares the given formula to be UNSAT
whenever unit propagation leads to a conflict at decision level zero, i.e., when no
variable is currently branched upon. This condition will be referred to as a conflict
at decision level zero.

4.2.2 Branching Sequence

We use the notion of branching sequence to prove an exponential separation between
DPLL and clause learning. It generalizes the idea of a static variable order by letting
the order differ from branch to branch in the underlying DPLL procedure. In addition,
it also specifies which branch (true or false) to explore first. This can clearly be
useful for satisfiable formulas, and can also help on unsatisfiable ones by making the
algorithm learn useful clauses earlier in the process.

Definition 4.2. A branching sequence for a CNF formula F is a sequence σ =
(l1, l2, . . . , lk) of literals of F , possibly with repetitions. A DPLL based algorithm
A on F branches according to σ if it always selects the next variable v to branch on
in the literal order given by σ, skips v if v is currently assigned a value, and otherwise
branches further by setting the chosen literal to false and deleting it from σ. When
σ becomes empty, A reverts back to its default branching scheme.

Definition 4.3. A branching sequence σ is complete for a formula F under a DPLL

based algorithm A if A branching according to σ terminates before or as soon as σ
becomes empty. Otherwise it is incomplete or approximate.

Clearly, how well a branching sequence works for a formula depends on the specifics
of the clause learning algorithm used, such as its learning scheme and backtracking
process. One needs to keep these in mind when generating the sequence. It is also
important to note that while the size of a variable order is always the same as the

65

number of variables in the formula, that of an effective branching sequence is typically
much more. In fact, the size of a branching sequence complete for an unsatisfiable for-
mula F is equal to the size of an unsatisfiability proof of F , and when F is satisfiable,
it is proportional to the time needed to find a satisfying assignment.

4.2.3 Implication Graph and Conflicts

Unit propagation can be naturally associated with an implication graph that captures
all possible ways of deriving all implied literals from decision literals.

Definition 4.4. The implication graph G at a given stage of DPLL is a directed acyclic
graph with edges labeled with sets of clauses. It is constructed as follows:

Step 1: Create a node for each decision literal, labeled with that literal. These
will be the indegree zero source nodes of G.

Step 2: While there exists a known clause C = (l1∨. . . lk∨l) such that ¬l1, . . . ,¬lk
label nodes in G,

i. Add a node labeled l if not already present in G.

ii. Add edges (li, l), 1 ≤ i ≤ k, if not already present.

iii. Add C to the label set of these edges. These edges are thought of as
grouped together and associated with clause C.

Step 3: Add to G a special “conflict” node Λ̄. For any variable x that occurs both
positively and negatively in G, add directed edges from x and ¬x to Λ̄.

Since all node labels in G are distinct, we identify nodes with the literals labeling
them. Any variable x occurring both positively and negatively in G is a conflict
variable, and x as well as ¬x are conflict literals. G contains a conflict if it has at
least one conflict variable. DPLL at a given stage has a conflict if the implication
graph at that stage contains a conflict. A conflict can equivalently be thought of as
occurring when the residual formula contains the empty clause Λ.

By definition, an implication graph may not contain a conflict at all, or it may
contain many conflict variables and several ways of deriving any single literal. To
better understand and analyze a conflict when it occurs, we work with a subgraph
of an implication graph, called the conflict graph (see Figure 4.1), that captures only
one among possibly many ways of reaching a conflict from the decision variables using
unit propagation.

Definition 4.5. A conflict graph H is any subgraph of an implication graph with the
following properties:

66

a cut corresponding
to clause (¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬¬¬¬ y

Λ

reason side conflict side

conflict
variable

Figure 4.1: A conflict graph

(a) H contains Λ̄ and exactly one conflict variable.

(b) All nodes in H have a path to Λ̄.

(c) Every node l in H other than Λ̄ either corresponds to a decision literal or has
precisely the nodes ¬l1,¬l2, . . . ,¬lk as predecessors where (l1∨ l2∨ . . .∨ lk ∨ l)
is a known clause.

While an implication graph may or may not contain conflicts, a conflict graph
always contains exactly one. The choice of the conflict graph is part of the strategy
of the solver. A typical strategy will maintain one subgraph of an implication graph
that has properties (b) and (c) from Definition 4.5, but not property (a). This can be
thought of as a unique inference subgraph of the implication graph. When a conflict
is reached, this unique inference subgraph is extended to satisfy property (a) as well,
resulting in a conflict graph, which is then used to analyze the conflict.

Conflict clauses

Recall that for a subset U of the vertices of a graph, the edge-cut (henceforth called
a cut) corresponding to U is the set of all edges going from vertices in U to vertices
not in U .

Consider the implication graph at a stage where there is a conflict and fix a conflict
graph contained in that implication graph. Choose any cut in the conflict graph that
has all decision variables on one side, called the reason side, and Λ̄ as well as at least

67

one conflict literal on the other side, called the conflict side. All nodes on the reason
side that have at least one edge going to the conflict side form a cause of the conflict.
The negations of the corresponding literals forms the conflict clause associated with
this cut.

4.2.4 Trivial Resolution and Learned Clauses

Definition 4.6. A resolution derivation (C1, C2, . . . , Ck) is trivial iff all variables
resolved upon are distinct and each Ci, i ≥ 3, is either an initial clause or is derived
by resolving Ci−1 with an initial clause.

A trivial derivation is tree-like, regular, linear, as well as ordered. As the follow-
ing propositions show, trivial derivations correspond to conflicts in clause learning
algorithms.

Proposition 4.3. Let F be a CNF formula. If there is a trivial resolution derivation
of a clause C /∈ F from F then setting all literals of C to false leads to a conflict by
unit propagation.

Proof. Let π = (C1, C2, . . . , Ck = C) be a trivial resolution derivation of C from F .
Let Ck = (l1 ∨ l2 ∨ . . . ∨ lq) and ρ be the partial assignment that sets all li, 1 ≤ i ≤ q,
to false. Assume without loss of generality that clauses in π are ordered so that
all initial clauses precede any derived clause. We give a proof by induction on the
number of derived clauses in π.

For the base case, π has only one derived clause, C = Ck. Assume without loss
of generality that Ck = (A ∨ B) and Ck is derived by resolving two initial clauses
(A ∨ x) and (B ∨ ¬x) on variable x. Since ρ falsifies Ck, it falsifies all literals of A,
implying x = true by unit propagation. Similarly, ρ falsifies B, implying x = false

and resulting in a conflict.
When π has at least two derived clauses, Ck, by triviality of π, must be derived

by resolving Ck−1 /∈ F with a clause in F . Assume without loss of generality that
Ck−1 = (A∨ x) and the clause from F used in this resolution step is (B ∨¬x), where
Ck = (A∨B). Since ρ falsifies C = Ck, it falsifies all literals of B, implying x = false

by unit propagation. This in turn results in falsifying all literals of Ck−1 because all
literals of A are also set to false by ρ. Now (C1, . . . , Ck−1) is a trivial resolution
derivation of Ck−1 /∈ F from F with one less derived clause than π, and all literals of
Ck−1 are falsified. By induction, this must lead to a conflict by unit propagation.

Proposition 4.4. Any conflict clause can be derived from initial and previously de-
rived clauses using a trivial resolution derivation.

Proof. Let σ be the cut in a fixed conflict graph associated with the given conflict
clause. Let Vconflict(σ) denote the set of variables on the conflict side of σ, but
including the conflict variable only if it occurs both positively and negatively on the

68

conflict side. We will prove by induction on |Vconflict(σ)| the stronger statement that
the conflict clause associated with a cut σ has a trivial derivation from known (i.e.
initial or previously derived) clauses resolving precisely on the variables in Vconflict(σ).

For the base case, Vconflict(σ) = φ and the conflict side contains only Λ̄ and a
conflict literal, say x. Informally, this cut corresponds to the immediate cause of
the conflict, namely, the single unit propagation step that led to the derivation of
¬x. More concretely, the clause associated with this cut consists of the node ¬x
which has an edge to Λ̄, and nodes ¬l1,¬l2, . . . ,¬lk, corresponding to a known clause
Cx = (l1 ∨ l2 ∨ . . . ∨ lk ∨ x), that each have an edge to x. The conflict clause for this
cut is simply the known clause Cx itself, having a length zero trivial derivation.

¬ l1

¬ l2
y

…
…

¬ lk

¬ lp

¬ x

x

Λ

Cut σ
C = (l1 ∨ l2 ∨ … ∨ lp)

¬ l1

¬ l2
y

…
…

¬ lk

¬ lp

¬ x

x

Λ

Cut σ’
C’ = (¬ y ∨ l2 ∨ lk+1 ∨ … ∨ lp)

Cy = (l1 ∨ … ∨ lk ∨ y)

Figure 4.2: Deriving a conflict clause using trivial resolution. Resolving C ′ with Cy

on variable y gives the conflict clause C.

When Vconflict(σ) 6= φ, choose a node y on the conflict side all whose predecessors
are on the reason side (see Figure. 4.2). Let the conflict clause be C = (l1∨l2∨ . . .∨lp)
and assume without loss of generality that the predecessors of y are ¬l1,¬l2, . . . ,¬lk
for some k ≤ p. By definition of unit propagation, Cy = (l1 ∨ l2 ∨ . . . ∨ lk ∨ y)
must be a known clause. Obtain a new cut σ′ from σ by moving node y from the
conflict side to the reason side. The new associated conflict clause must be of the
form C ′ = (¬y ∨ D), where D is a subclause of C. Now Vconflict(σ

′) ⊂ Vconflict(σ).
Consequently, by induction, C ′ must have a trivial resolution derivation from known
clauses resolving precisely upon the variables in Vconflict(σ

′). Recall that no variable
occurs twice in a conflict graph except the conflict variable. Hence Vconflict(σ

′) has
precisely the variables of Vconflict(σ) except y. Using this trivial derivation of C ′ and
finally resolving C ′ with the known clause Cy on variable y gives us a trivial derivation
of C from known clauses. This completes the inductive step.

69

4.2.5 Learning Schemes

The essence of clause learning is captured by the learning scheme used to analyze
and learn the “cause” of a failure. More concretely, different cuts in a conflict graph
separating decision variables from a set of nodes containing Λ̄ and a conflict literal
correspond to different learning schemes (see Figure 4.3). One may also define learning
schemes based on cuts not involving conflict literals at all such as a scheme suggested
by Zhang et al. [115], but the effectiveness of such schemes is not clear. These will
not be considered here.

FirstNewCut clause
(x1 ∨ x2 ∨ x3)

Decision clause
(p ∨ q ∨ ¬ b)

1UIP clause
t

rel-sat clause
(¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬¬¬¬ y

Λ

Figure 4.3: Various learning schemes

It is insightful to think of the nondeterministic scheme as the most general learning
scheme. Here we select the cut nondeterministically, choosing, whenever possible, one
whose associated clause is not already known. Since we can repeatedly branch on the
same last variable, nondeterministic learning subsumes learning multiple clauses from
a single conflict as long as the sets of nodes on the reason side of the corresponding
cuts form a (set-wise) decreasing sequence. For simplicity, we will assume that only
one clause is learned from any conflict.

In practice, however, we employ deterministic schemes. The decision scheme [115],
for example, uses the cut whose reason side comprises all decision variables. rel-sat [13]
uses the cut whose conflict side consists of all implied variables at the current decision
level. This scheme allows the conflict clause to have exactly one variable from the
current decision level, causing an automatic flip in its assignment upon backtracking.

This nice flipping property holds in general for all unique implication points (UIPs)
[84]. A UIP of an implication graph is a node at the current decision level d such
that any path from the decision variable at level d to the conflict variable as well as
its negation must go through it. Intuitively, it is a single reason at level d that causes
the conflict. Whereas rel-sat uses the decision variable as the obvious UIP, Grasp [84]

70

and zChaff [88] use FirstUIP, the one that is “closest” to the conflict variable. Grasp

also learns multiple clauses when faced with a conflict. This makes it typically require
fewer branching steps but possibly slower because of the time lost in learning and unit
propagation.

The concept of UIP can be generalized to decision levels other than the current
one. The 1UIP scheme corresponds to learning the FirstUIP clause of the current
decision level, the 2UIP scheme to learning the FirstUIP clauses of both the current
level and the one before, and so on. Zhang et al. [115] present a comparison of all these
and other learning schemes and conclude that 1UIP is quite robust and outperforms
all other schemes they consider on most of the benchmarks.

The FirstNewCut Scheme

We propose a new learning scheme called FirstNewCut whose ease of analysis helps
us demonstrate the power of clause learning. We would like to point out that we
use this scheme here only to prove our theoretical bounds using specific formulas. Its
effectiveness on other formulas has not been studied yet. We would also like to point
out that the experimental results that we present are for the 1UIP learning scheme,
but can also be extended to certain other schemes, including FirstNewCut.

The key idea behind FirstNewCut is to make the conflict clause as relevant to
the current conflict as possible by choosing a cut close to the conflict literals. This is
what the FirstUIP scheme also tries to achieve in a slightly different manner. For the
following definitions, fix a cut in a conflict graph and let S be the set of nodes on the
reason side that have an edge to some node on the conflict side. S is the reason side
frontier of the cut. Let CS be the conflict clause associated with this cut.

Definition 4.7. Minimization of conflict clause CS is the following process: while
there exists a node v ∈ S all of whose predecessors are also in S, move v to the conflict
side, remove it from S, and repeat.

Definition 4.8. FirstNewCut scheme: Start with a cut whose conflict side consists
of Λ̄ and a conflict literal. If necessary, repeat the following until the associated
conflict clause, after minimization, is not already known: choose a node on the conflict
side, and move all its predecessors that lie on the reason side, other than those that
correspond to decision variables, to the conflict side. Finally, learn the resulting new
minimized conflict clause.

This scheme starts with the cut that is closest to the conflict literals and iteratively
moves it back toward the decision variables until a new associated conflict clause is
found. This backward search always halts because the cut with all decision variables
on the reason side is certainly a new cut. Note that there are potentially several ways
of choosing a literal to move the cut back, leading to different conflict clauses. The
FirstNewCut scheme, by definition, always learns a clause not already known. This
motivates the following:

71

Definition 4.9. A clause learning scheme is non-redundant if on a conflict, it always
learns a clause not already known.

4.2.6 Clause Learning Proofs

The notion of clause learning proofs connects clause learning with resolution and pro-
vides the basis for our complexity bounds. If a given CNF formula F is unsatisfiable,
clause learning terminates with a conflict at decision level zero. Since all clauses used
in this final conflict themselves follow directly or indirectly from F , this failure of
clause learning in finding a satisfying assignment constitutes a logical proof of un-
satisfiability of F . We denote by CL the proof system consisting of all such proofs.
Our bounds compare the sizes of proofs in CL with the sizes of (possibly restricted)
resolution proofs. Recall that clause learning algorithms can use one of many learning
schemes, resulting in different proofs.

Definition 4.10. A clause learning (CL) proof π of an unsatisfiable CNF formula F
under learning scheme S and induced by branching sequence σ is the result of applying
DPLL with unit propagation on F , branching according to σ, and using scheme S to
learn conflict clauses such that at the end of this process, there is a conflict at decision
level zero. The size of the proof, size(π), is |σ|.

4.2.7 Fast Backtracking and Restarts

Most clause learning algorithms use fast backtracking or conflict-directed backjumping
introduced by Stallman and Sussman [103], where one uses the conflict graph to undo
not only the last branching decision but also all other recent decisions that did not
contribute to the current conflict. In particular, the SAT solver zChaff that we will
use for our experiments in Chapters 5 and 6 backtracks to decision level zero when it
learns a unit clause. This property influences the structure of a branching sequence
generation algorithm we will present in Section 5.2.1.

More precisely, the level that a clause learning algorithm employing this technique
backtracks to is one less than the maximum of the decision levels of all decision vari-
ables (i.e. the sources of the conflict) present in the underlying conflict graph. Note
that the current conflict might use clauses learned earlier as a result of branching on
the apparently redundant variables. This implies that fast backtracking in general
cannot be replaced by a “good” branching sequence that does not produce redun-
dant branches. For the same reason, fast backtracking cannot either be replaced by
simply learning the decision scheme clause. However, the results we present here are
independent of whether or not fast backtracking is used.

Restarts, introduced by Gomes et al. [58] and further developed by Baptista and
Marques-Silva [12], allow clause learning algorithms to arbitrarily restart their branch-
ing process from decision level zero. All clauses learned so far are retained and now

72

treated as additional initial clauses. As we will show, unlimited restarts, performed
at the correct step, can make clause learning very powerful. In practice, this requires
extending the strategy employed by the solver to include when and how often to
restart. Unless otherwise stated, however, clause learning proofs in the rest of this
chapter will be assumed to allow no restarts.

4.3 Clause Learning and Proper Natural Refinements of RES

We prove that the proof system CL, even without restarts, is stronger than all proper
natural refinements of RES. We do this by first introducing a way of extending any
CNF formula based on a given RES proof of it. We then show that if a formula F
f(n)-separates RES from a natural refinement S, its extension f(n)-separates CL from
S. The existence of such an F is guaranteed for all f(n)-proper natural refinements
by definition.

4.3.1 The Proof Trace Extension

Definition 4.11. Let F be a CNF formula and π be a RES refutation of it. Let the
last step of π resolve v with ¬v. Let S = π \ (F ∪{¬v, Λ}). The proof trace extension
PT (F, π) of F is a CNF formula over variables of F and new trace variables tC for
clauses C ∈ S. The clauses of PT (F, π) are all initial clauses of F together with a
trace clause (¬x ∨ tC) for each clause C ∈ S and each literal x ∈ C.

We first show that if a formula has a short RES refutation, then the corresponding
proof trace extension has a short CL proof. Intuitively, the new trace variables allow us
to simulate every resolution step of the original proof individually, without worrying
about extra branches left over after learning a derived clause.

Lemma 4.1. Suppose a formula F has a RES refutation π. Let F ′ = PT (F, π). Then
CCL(F ′) < size(π) when CL uses the FirstNewCut scheme and no restarts.

Proof. Suppose π contains a derived clause Ci whose strict subclause C ′
i can be derived

by resolving two previously occurring clauses. We can replace Ci with C ′
i, do trivial

simplifications on further derivations that used Ci and obtain a simpler proof π′ of
F . Doing this repeatedly will remove all such redundant clauses and leave us with
a simplified proof no larger in size. Hence we will assume without loss of generality
that π has no such clause.

Viewing π as a sequence of clauses, its last two elements must be a literal, say
v, and Λ. Let S = π \ (F ∪ {v, Λ}). Let (C1, C2, . . . , Ck) be the subsequence of π
that has precisely the clauses in S. Note that Ci = ¬v for some i, 1 ≤ i ≤ k. We
claim that the branching sequence σ = (tC1 , tC2 , . . . , tCk

) induces a CL proof of F
of size k using the FirstNewCut scheme. To prove this, we show by induction that
after i branching steps, the clause learning procedure branching according to σ has

73

learned clauses C1, C2, . . . , Ci, has trace variables tC1 , tC2 , . . . , tCi
set to true, and is

at decision level i.
The base case for induction, i = 0, is trivial. The clause learning procedure is

at decision level zero and no clauses have been learned. Suppose the inductive claim
holds after branching step i−1. Let Ci = (x1∨x2∨. . .∨xl). Ci must have been derived
in π by resolving two clauses (A∨y) and (B∨¬y) coming from F ∪{C1, C2, . . . , Ci−1},
where Ci = (A∨B). The ith branching step sets tCi

= false. Unit propagation using
trace clauses (¬xj∨tCi

), 1 ≤ j ≤ l, sets each xj to false, thereby falsifying all literals
of A and B. Further unit propagation using (A ∨ y) and (B ∨ ¬y) implies y as well
as ¬y, leading to a conflict. The cut in the conflict graph containing y and ¬y on
the conflict side and everything else on the reason side yields Ci as the FirstNewCut
clause, which is learned from this conflict. The process now backtracks and flips the
branch on tCi

by setting it to true. At this stage, the clause learning procedure has
learned clauses C1, C2, . . . , Ci, has trace variables tC1 , tC2 , . . . , tCi

set to true, and is
at decision level i. This completes the inductive step.

The inductive proof above shows that when the clause learning procedure has
finished branching on all k literals in σ, it will have learned all clauses in S. Adding
to this the initial clauses F that are already known, the procedure will have as known
clauses ¬v as well as the two unit or binary clauses used to derive v in π. These
immediately generate Λ in the residual formula by unit propagation using variable v,
leading to a conflict at decision level k. Since this conflict does not use any decision
variable, fast backtracking retracts all k branches. The conflict, however, still exists
at decision level zero, thereby concluding the clause learning procedure and finishing
the CL proof.

Lemma 4.2. Let S be an f(n)-proper natural refinement of RES whose weakness is
witnessed by a family {Fn} of formulas. Let {πn} be the family of shortest RES proofs
of {Fn}. Let {F ′

n} = {PT (Fn, πn)}. For CL using the FirstNewCut scheme and no
restarts, CS(F ′

n) ≥ f(n) · CCL(F ′
n).

Proof. Let ρn the restriction that sets every trace variable of F ′
n to true. We claim

that CS(F ′
n) ≥ CS(F ′

n|ρn
) = CS(Fn) ≥ f(n) · CRES(Fn) > f(n) · CCL(F ′

n). The first
inequality holds because S is a natural proof system. The following equality holds
because ρn keeps the original clauses of Fn intact and trivially satisfies all trace
clauses, thereby reducing the initial clauses of F ′

n to precisely Fn. The next inequality
holds because S is an f(n)-proper refinement of RES. The final inequality follows from
Lemma 4.1.

This gives our first main result and its corollaries using Proposition 4.2:

Theorem 4.1. For any f(n)-proper natural refinement S of RES and for CL using the
FirstNewCut scheme and no restarts, there exist formulas {Fn} such that CS(Fn) ≥
f(n) · CCL(Fn).

74

Corollary 4.1. CL can provide exponentially shorter proofs than tree-like, regular,
and ordered resolution.

Corollary 4.2. Either CL is not a natural proof system or it is equivalent in strength
to RES.

Proof. As clause learning yields resolution proofs of unsatisfiable formulas, CL is a
refinement of RES. Assume without loss of generality that it is an f(n)-proper re-
finement for some function f ; this is true for instance when f(n) = 1 for all n. If
CL is a natural proof system, Theorem 4.1 implies that there exists a family {Fn} of
formulas such that CCL(Fn) ≥ f(n) · CCL(Fn). Since f : N → [1,∞) by the definition
of f(n)-proper, f(n) must be 1 for all n, proving the result.

4.4 Clause Learning and General Resolution

We begin this section by showing that CL proofs, irrespective of the learning scheme,
branching strategy, or restarts used, can be efficiently simulated by RES. In the reverse
direction, we show that CL, with a slight variation and with unlimited restarts, can
efficiently simulate RES in its full generality. The variant relates to the variables one
is allowed to branch upon.

Lemma 4.3. For any formula F over n variables and CL using any learning scheme
and any number of restarts, CRES(F) ≤ n · CCL(F).

Proof. Given a CL proof π of F , a RES proof can be constructed by sequentially de-
riving all clauses that π learns, which includes the empty clause Λ. From Proposition
4.4, all these derivations are trivial and hence require at most n steps each. Conse-
quently, the size of the resulting RES proof is at most n · size(π). Note that since we
derive clauses of π individually, restarts in π do not affect the construction.

Definition 4.12. Let CL-- denote the variant of CL where one is allowed to branch
on a literal whose value is already set explicitly or because of unit propagation.

Of course, such a relaxation is useless in ordinary DPLL; there is no benefit in
branching on a variable that doesn’t even appear in the residual formula. However,
with clause learning, such a branch can lead to an immediate conflict and allow one
to learn a key conflict clause that would otherwise have not been learned. We will
use this property to show that RES can be efficiently simulated by CL-- with enough
restarts.

We first state a generalization of Lemma 4.3. CL-- can, by definition, do all that
usual CL can, and is potentially stronger. The simulation of CL by RES can in fact be
extended to CL-- as well. The proof goes exactly as the proof of Lemma 4.3 and uses
the easy fact that Proposition 4.4 doesn’t change even when one is allowed to branch
on variables that are already set. This gives us:

75

Proposition 4.5. For any formula F over n variables and CL-- using any learning
scheme and any number of restarts, CRES(F) ≤ n · CCL--(F).

Lemma 4.4. For any formula F over n variables and CL using any non-redundant
scheme and at most CRES(F) restarts, CCL--(F) ≤ n · CRES(F).

Proof. Let π be a RES proof of F of size s. Assume without loss of generality as
in the proof of Lemma 4.1 that π does not contain a derived clause Ci whose strict
subclause C ′

i can be derived by resolving two clauses occurring previously in π. The
proof of this Lemma is very similar to that of Lemma 4.1. However, since we do
not have trace variables to allow us to simulate each resolution step individually and
independently, we use explicit restarts.

Viewing π as a sequence of clauses, its last two elements must be a literal, say
v, and Λ. Let S = π \ (F ∪ {v, Λ}). Let (C1, C2, . . . , Ck) be the subsequence of π
that has precisely the clauses in S. Note that Ci = ¬v for some i, 1 ≤ i ≤ k. For
convenience, define an extended branching sequence to be a branching sequence in
which certain places, instead of being literals, can be marked as restart points. Let
σ be the extended branching sequence consisting of all literals of C1, followed by a
restart point, followed by all literals of C2, followed by a second restart point, and
so on up to Ck. We claim that σ induces a CL-- proof of F using any non-redundant
learning scheme. To prove this, we show by induction that after the ith restart point
in σ, the CL-- procedure has learned clauses C1, C2, . . . , Ci and is at decision level
zero.

The base case for induction, i = 0, is trivial. No clauses have been learned and
the clause learning procedure is at decision level zero. Suppose the inductive claim
holds after the (i − 1)st restart point in σ. Let Ci = (x1 ∨ x2 ∨ . . . ∨ xl). Ci must
have been derived in π by resolving two clauses (A ∨ y) and (B ∨ ¬y) coming from
F ∪{C1, C2, . . . , Ci−1}, where Ci = (A∨B). Continuing to branch according to σ till
before the ith restart point makes the CL-- procedure set all if x1, x2, . . . , xl to false.
Note that when all literals appearing in A and B are distinct, the last branch on xl

here is on a variable that is already set because of unit propagation. CL--, however,
allows this. At this stage, unit propagation using (A ∨ y) and (B ∨ ¬y) implies y as
well as ¬y, leading to a conflict. The conflict graph consists of ¬xj’s, 1 ≤ j ≤ l, as
the decision literals, y and ¬y as implied literals, and Λ̄. The only new conflict clause
that can learned from this very simple conflict graph is Ci. Thus, Ci is learned using
any non-redundant learning scheme and the ith restart executed, as dictated by σ.
At this stage, the CL-- procedure has learned clauses C1, C2, . . . , Ci, and is at decision
level zero. This completes the inductive step.

The inductive proof above shows that when the CL-- procedure has finished with
the kth restart in σ, it will have learned all clauses in S. Adding to this the initial
clauses F that are already known, the procedure will have as known clauses ¬v as well
as the two unit or binary clauses used to derive v in π. These immediately generate Λ

76

in the residual formula by unit propagation using variable v, leading to a conflict at
decision level zero, thereby concluding the clause learning procedure and finishing the
CL-- proof. The bounds on the size of this proof and the number of restarts needed
immediately follow from the definition of σ.

Combining Lemma 4.4 with Proposition 4.5, we get

Theorem 4.2. CL-- with any non-redundant scheme and unlimited restarts is poly-
nomially equivalent to RES.

Remark 4.2. Baptista and Marques-Silva [12] showed that by choosing the restart
points in a smart way, CL together with restarts can be converted into a complete
algorithm for satisfiability testing, i.e., for all unsatisfiable formulas given as input, it
will halt and provide a proof of unsatisfiability. Our theorem makes a much stronger
claim about a slight variant of CL, namely, with enough restarts, this variant can
always find proofs of unsatisfiability that are as short as those of RES.

4.5 Discussion

In this chapter, we developed a mathematical framework for studying the most widely
used class of complete SAT solvers, namely the one based on DPLL and clause learning.
We studied clause learning from a proof complexity perspective and obtained two
significant results for the proof system CL summarized in Figure 4.4. The first of
these is that CL can provide exponentially smaller proofs than any proper natural
refinement of RES. We derived from this as a corollary that CL is either not natural or
is as powerful as RES itself. This is an interesting and somewhat surprising statement.
The second noteworthy result is that a variant of clause learning with unrestricted
restarts has exactly the same strength as RES.

Our argument used the notion of a proof trace extension of a formula which allowed
one to convert a formula that is easy for RES to an extended formula that is easy for
CL, at the same time retaining the hardness with respect to any natural refinement
of RES. We also defined and made use of a new learning scheme, FirstNewCut.

Understanding where clause learning stands in relation to well studied proof sys-
tems should lead to better insights on why it works well on certain domains and
fails on others. For instance, we will see in Chapter 5 an example of a domain (peb-
bling problems) where our results say that learning is necessary and sufficient, given a
good branching order, to obtain sub-exponential solutions using clause learning based
methods.

On the other hand, the connection with resolution also implies that any problem
that contains as a sub-problem a formula that is inherently hard even for RES, such
as the pigeonhole principle to be described in detail in Chapter 6, must be hard for
any variant of clause learning. For such domains, theoretical results suggest practical
extensions such as symmetry breaking and counting techniques for obtaining efficient

77

DPLL =
Tree-like

Regular
RES

CL w/o
restarts

Trivial RES =
Clauses learned
from one conflict

DPLL =
Tree-like

Regular
RES

General RES

��������	
��	�
���������
����������
�����������
����������������	��
����

General RES
= CL-- + restarts

Figure 4.4: Results: Clause learning in relation to resolution

solutions. The first of these serves as a motivation for the work we will present in
Chapter 6.

