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Abstract

We present a novel low-overhead framework for encoding
and utilizing structural symmetry in propositional satisfiabil-
ity algorithms (SAT solvers). We use the notion of com-
plete multi-class symmetry and demonstrate the efficacy of
our technique through a solverSymChaff that achieves ex-
ponential speedup by using simple tags in the specification of
problems from both theory and practice.
Efficient implementations of DPLL-based SAT solvers are
routinely used in areas as diverse as planning, scheduling,
design automation, model checking, verification, testing, and
algebra. A natural feature of many application domains is the
presence of symmetry, such as that amongst all trucks at a
certain location in logistics planning and all wires connecting
two switch boxes in an FPGA circuit. Many of these prob-
lems turn out to have a concise description in many-sorted
first order logic. This description can be easily specified by
the problem designer and almost as easily inferred automat-
ically. SymChaff, an extension of the popular SAT solver
zChaff, uses information obtained from the “sorts” in the first
order logic constraints to create symmetry sets that are used
to partition variables into classes and to maintain and utilize
symmetry information dynamically.
Current approaches designed to handle symmetry include:
(A) symmetry breaking predicates (SBPs), (B) pseudo-
Boolean solvers with implicit representation for counting, (C)
modifications of DPLL that handle symmetry dynamically,
and (D) techniques based on ZBDDs. SBPs are prohibitively
many, often large, and expensive to compute for problems
such as the ones we report experimental results for. Pseudo-
Boolean solvers are provably exponentially slow in certain
symmetric situations and their implicit counting representa-
tion is not always appropriate. Suggested modifications of
DPLL either work on limited global symmetry and are dif-
ficult to extend, or involve expensive algebraic group com-
putations. Finally, techniques based on ZBDDs often do not
compare well even with ordinary DPLL-based solvers.Sym-
Chaff addresses and overcomes most of these limitations.

Introduction
In recent years, general purpose propositional satisfia-
bility algorithms (SAT solvers) have been designed and
shown to be very successful in handling and even out-
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performing specific solvers on problems from many real-
world domains including hardware verification (Biere et
al. 1999; Velev & Bryant 2001), automatic test pattern
generation (Konuk & Larrabee 1993; Stephan, Brayton, &
Sangiovanni-Vincentelli 1996), planning (Kautz & Selman
1992), and scheduling (Gomeset al. 1998). With a large
community of researchers working towards a better under-
standing of SAT, it is not surprising that many competing
general purpose systematic SAT solvers have come into light
in the past decade such asGrasp (Marques-Silva & Sakallah
1996), Relsat (Bayardo Jr. & Schrag 1997), SATO (Zhang
1997), zChaff (Moskewiczet al. 2001), Berkmin (Gold-
berg & Novikov 2002), andMarch-eq by Marijn Heule and
Hans van Maaren. All of these solvers fall into the cate-
gory of systematic DPLL-based solvers, and build upon a
basic branch and backtrack technique (Davis, Logemann, &
Loveland 1962). With the addition of features such as smart
branch selection heuristics, conflict clause learning, random
restarts, conflict-directed backjumping, fast unit propagation
using watched literals, etc., these have been quite effective
in solving challenging problems from various domains.

Despite the success, one aspect of many theoretical as
well as real-world problems that we believe has not been
fully exploited is the presence of symmetry. Symmetry oc-
curs naturally in many application areas. For example, in
FPGA routing, all wires or channels connecting two switch
boxes are equivalent; in circuit modeling, all inputs to a mul-
tiple fanin AND gate are equivalent; in planning, all boxes
that need to be moved from city A to city B are equivalent; in
multi-processor scheduling (or cache coherency protocols),
all available processors (or caches, respectively) are typi-
cally equivalent. While there has been work on using this
equivalence or symmetry in domain-specific algorithms and
techniques, current general purpose complete SAT solvers
are unable to fully capitalize on symmetry as suggested by
our experimental results.

Previous Work

A technique that has worked quite well in handling sym-
metry is to add symmetry breaking predicates (SBPs) to the
input specification to weed out all but the lexically-first solu-
tions (Crawfordet al. 1996). Tools such asShatter (Aloul,
Markov, & Sakallah 2003) use graph isomorphism detectors
like Saucy to generate SBPs. This latter problem of com-



puting graph isomorphism is not known to have any polyno-
mial time solution, and is conjectured to be strictly between
the complexity classes P and NP (see e.g.Köbler, Scḧoning,
& Torán 1993). Further, the number of SBPs one needs to
add in order to break all symmetries may be prohibitively
large. This is typically handled by discarding “large” sym-
metries. This may, however, result in a much slower SAT
solution as indicated by some of our experiments.

Solvers such asPBS (Aloul et al. 2002a), pbChaff
(Dixon, Ginsberg, & Parkes 2004), and Galena (Chai &
Kuehlmann 2003) utilize non-CNF formulations known as
pseudo-Boolean (PB) inequalities. They are based on the
Cutting Planes proof system which is known to be strictly
stronger than the resolution proof system on which DPLL
type CNF solvers are based (Cook, Coullard, & Turan 1987).
Since this more powerful proof system is difficult to imple-
ment in its full generality, PB solvers often implement only
a subset of it, typically learning only CNF clauses or re-
stricted PB constraints upon a conflict. PB solvers may lead
to purely syntactic representational efficiency in cases where
a single constraint such asy1+y2+. . .+yk ≤ 1 is equivalent
to

(
k
2

)
binary clauses. More importantly, they are relevant to

symmetry because they sometimes allow implicit encoding.
For instance, the single constraintx1 + x2 + . . . + xn ≤ m
overn variables captures the essence of the pigeonhole for-
mula overnm variables (described in detail later) which is
provably exponentially hard to solve using resolution-based
methods without symmetry considerations. This implicit
representation, however, is not suitable in certain applica-
tions such as clique coloring and planning that we discuss.

One could conceivably keep the CNF input unchanged but
modify the solver to detect and handle symmetries during
the search phase as they occur. Although this approach is
quite natural, we are unaware of its implementation in a gen-
eral purpose SAT solver besidessEqSatz (Li, Jurkowiak,
& Purdom 2002) whose technique appears to be somewhat
specific and whose results are not too impressive compared
to zChaff itself. Related work has been done in specific ar-
eas of automatic test pattern generation (Marques-Silva &
Sakallah 1997) and SAT-based model checking (Shtrichman
2004), where the solver utilizes global information obtained
at a stage to make subsequent stages faster.

Dixon et al. (2004) give a generic method of represent-
ing and dynamically maintaining symmetry using group the-
oretic techniques that guarantee polynomial size proofs of
many difficult formulas. The underlying group computa-
tions, however, are often quite expensive.

Our Contribution
We propose a new technique for representing and dynam-
ically maintaining symmetry information for DPLL-based
satisfiability solvers. We present an evaluation of our ideas
through our toolSymChaff and demonstrate empirical ex-
ponential speedup in a variety of problem domains from the-
ory and practice. While our framework as presented applies
to both CNF and PB formulations, the current implementa-
tion of SymChaff uses pure CNF representation.

A key difference between our approach and that based on
SBPs is that we use a high level description of a problem

rather than its CNF representation to obtain symmetry in-
formation. (We give concrete examples of this later in the
paper.) This leads to several advantages. The high level de-
scription of a problem is typically very concise and reveals
its structure much better than a relatively large set of clauses
encoding the same problem. It is simple, in many cases al-
most trivial, for the problem designer to specify global sym-
metries at this level using straightforward “tagging.” If one
prefers to compute these symmetries automatically, off-the-
shelf graph isomorphism tools can be used. Using these
tools on the concise high level description will, of course,
be much faster than using the same tools on a substantially
larger CNF encoding.

While it is natural to pick a variable and branch two ways
by setting it toTRUE andFALSE, this is not necessarily the
best option whenk variables,x1, x2, . . . , xk, are known to
be arbitrarily interchangeable. The same applies to more
complex symmetries where multiple classes of variablessi-
multaneouslydepend on an index setI = {1, 2, . . . , k} and
can be arbitrarily interchanged in parallel within their re-
spective classes. We formalize this as ak-complete multi-
class symmetry and handle it using a(k + 1)-way branch
based onI that maintains completeness of the search and
shrinks the search space by as much asO(k!). The index
sets are implicitly determined from the many-sorted first or-
der logic representation of the problem at hand. We ex-
tend the standard notions of conflict and clause learning to
the multiway branch setting, introducingsymmetric learn-
ing. Our solverSymChaff integrates seamlessly with most
of the standard features of modern SAT solvers, extending
them in the context of symmetry wherever necessary. These
include fast unit propagation, good restart strategy, effective
constraint database management, etc.

Preliminaries
A propositional formula in conjunctive normal form (CNF)
is a conjunction (AND) of clauses, where each clause is a
disjunction (OR) of literals and a literal is a propositional
(Boolean) variable or its negation. A pseudo-Boolean (PB)
formula is a conjunction of PB constraints, where each PB
constraint is a weighted inequality over propositional vari-
ables with typically integer coefficients. A clause is called
“unit” if all but one of its literals are set toFALSE; the re-
maining literal must be set toTRUE to satisfy the clause.
Similarly, a PB constraint is called “unit” if variables have
been set in such a way that all its unset literals must be set
to TRUE to satisfy the constraint. Unit propagation is a tech-
nique common to SAT and PB solvers that recursively sim-
plifies the formula by appropriately setting unset variables
in unit constraints.

DPLL-based SAT Solvers

The technique we present in this paper can be applied to
all DPLL based systematic SAT solvers designed for CNF
as well as PB constraints. At each step these solvers use
some heuristic to select a literal to branch on (a “decision”).
This literal is set toTRUE at the current decision level and
the formula is simplified using unit propagation. If there



is a conflict at this point, i.e. a variable is implied to be both
TRUE andFALSE, the branch is declared as a failure and, typ-
ically, a conflict clause is learned which prevents the solver
from unnecessarily exploring similar unsatisfiable branches
in subsequent steps. At this point the solver backtracks and
flips the assignment of the decision literal toFALSE. If on
the other hand there is no conflict, the solver proceeds by
branching on another literal. If all variables are set without
a conflict, one has obtained a satisfying assignment and the
search terminates successfully. On the other hand, when all
branches have been unsuccessfully explored, the formula is
declared unsatisfiable.

This process is sound and complete. Various other fea-
tures and optimizations, such as random restarts, watched
literals, conflict-directed backjumping, etc., are added to this
basic structure to increase efficiency.

Constraint Problems and Symmetry

A constraint satisfaction problem (CSP) is a collection of
constraints over a setV = {x1, x2, . . . , xn} of variables.
Although the following notions are generic, our focus in
this paper will be on CNF and PB constraints over propo-
sitional variables. We will use the notation[n] to denote
the set{1, 2, . . . , n}. Let σ be a permutation of[n]. Define
σ(xi) = xσ(i) andσ(V ′ ⊆ V ) = {σ(x) | x ∈ V ′}. For
a constraintC overV , let σ(C) be the constraint resulting
from C by applyingσ to each variable ofC. For a CSPΓ,
defineσ(Γ) to be the new CSP consisting of the constraints
{σ(C) | C ∈ Γ}.

Symmetry may exist in various forms inΓ. Permuta-
tion σ will be called aglobal symmetryof Γ if σ(Γ) = Γ.
Suppose there existsV ′ ⊆ V, |V ′| = k, such thatevery
permutationσ satisfyingσ(V ′) = V ′ and σ(x) = x for
x 6∈ V ′ is a global symmetry ofΓ, then V ′ is called a
k-complete (global) symmetryof Γ. In other words, the
k variables inV ′ can be arbitrarily interchanged without
changing the original problem. Such symmetries exist in
simple problems such as the pigeonhole principle where
all pigeons (and holes) are symmetric. This can be de-
tected and exploited using various known techniques such
as cardinality constraints (Dixon, Ginsberg, & Parkes 2004;
Chai & Kuehlmann 2003).

Many-Sorted First Order Logic

In first order logic1, one can express universally and existen-
tially quantified logical statements about variables and con-
stants that range over a domain with some structure. The
domain may be divided up into various types or “sorts” of el-
ements that are quantified over independently. Consider the
pigeonhole problem where the domain consists of a setP of
pigeons and a setH of holes. The problem can be stated as
the succinct2-sorted first order formula[∀(p ∈ P ) ∃(h ∈
H) . X(p, h)] ∧ [∀(h ∈ H, p1 ∈ P, p2 ∈ P ) . (p1 6= p2 →
(¬X(p1, h) ∨ ¬X(p2, h)))], whereX(p, h) is the predicate

1A comprehensive introduction to many-sorted first order logic
is beyond the scope of this paper. The reader is referred to standard
texts (e.g.Gallier1986) for details.

“pigeonp maps to holeh.” The CNF formulation of same
problem requires|P |+ |H|

(|P |
2

)
clauses.

Symmetry Framework and SymChaff
We describe in this section our new symmetry framework in
a generic way, briefly referring to specific implementation
aspects ofSymChaff as appropriate.

The motivation and description of our techniques can be
best understood with a few concrete examples in mind. Con-
sider the following relatively simple logistics planning prob-
lem. There arek trucksT1, T2, . . . , Tk at a locationLTB

(truckbase). For1 ≤ i ≤ n, there is a locationLi that has
two packagesPi,1 andPi,2. Let s(i) = (i mod n) + 1 de-
note the cyclic successor ofi in [n]. The goal is to deliver
packagePi,1 to locationLs(i) and packagePi,2 to location
Ls(s(i)). Actions that can be taken at any step include driving
a truck from one location to another, and loading or unload-
ing multiple boxes (in parallel) onto or from a truck. The
task is to find a minimum length plan such that all boxes ar-
rive at their destined locations and all trucks return toLTB .
Actions that do not conflict in their pre- or post-conditions
can be taken in parallel.

Call this problemPlanningA and letk = d3n/4e. In
this case it, the shortest plan is of length7 for any n. The
idea behind the plan is to use3 trucks to handle4 locations.
E.g., truckT1 transportsP1,1, P1,2, andP2,1, truckT2 trans-
portsP3,1, P3,2, andP4,1, and truckT3 transportsP2,2 and
P4,2. For a given plan length, such a planning problem can
be converted into a CNF formula using tools such asBlack-
box (Kautz & Selman 1998) and then solved using standard
SAT solvers. The variables in this formula are of the form
load- Pi,1-onto- Tj-at- Lk-time- t, etc. We omit the
details (seeKautz & Selman1992).

We will also refer to the following two variants of the
above problem. InPlanningB , for 1 ≤ i ≤ n, there are
5 packages at locationLi that are all destined for location
Ls(i). This problem has more symmetries thanPlanningA
because all packages initially at the same location are sym-
metric. Letk = dn/2e. It can again be verified that the
shortest plan for this problem is of length7 and assigns one
truck to two consecutive locations. InPlanningC , for
1 ≤ i ≤ n, there are locationsLsrc

i , Ldest
i and packages

Pi,1, Pi,2. Both these packages are initially at locationLsrc
i

and must be delivered to locationLdest
i . Letk = n. It is eas-

ily seen that the shortest plan for this problem is of length5
and assigns one truck to each location. Here not only the
two packages at each source location are symmetric but all
n tuples(Lsrc

i , Ldest
i , Pi,1, Pi,2) are symmetric as well.

k-completem-class Symmetries
Consider a CSPΓ over a setV = {x1, x2, . . . , xn} of
variables as before. We generalize the idea of complete
symmetry forΓ to complete multi-class symmetry. Let
V1, V2, . . . , Vm be disjoint subsets ofV of cardinality k

each. LetV0 = V \
(⋃

i∈[m] Vi

)
. Order the variables

in eachVi, i ∈ [m], arbitrarily and letyj
i , j ∈ [k], denote

the j-th variable ofVi. Let σ be a permutation of the set



[k]. Define σ̄ to be the permutation ofV induced byσ

as follows: σ̄(x) = x for x ∈ V0 and σ̄(x) = y
σ(j)
i for

x = yj
i ∈ Vi, i ∈ [m]. In other words,̄σ maps variables in

V0 to themselves and appliesσ in parallel to the indices of
variables in each classVi, i ∈ [m], simultaneously.

If σ̄ is a global symmetry ofΓ for everypermutationσ of
[k] then the set{V1, V2, . . . , Vm}will be called ak-complete
m-class (global) symmetryof Γ. Note that ak-complete1-
class symmetry is simply ak-complete symmetry. We refer
to Vi, i ∈ [m], asvariable classesand say that variables in
Vi areindexed bythesymindex set[k].

Such symmetries correspond to the case where variables
from multiple classes can be simultaneously and coherently
changed in parallel without affecting the problem. This
happens naturally in many problem domains. For instance,
consider the logistics planning examplePlanningA
described above forn = 4 converted into a unsatisfiable
CNF formula corresponding to plan length6. The problem
has k = 3 trucks and is3-completem-class symmetric
for appropriatem. The variable classesVi of size 3 are
indexed by the symindex set[3] and correspond to sets of
3 variables that differ only in which truck they use. E,g,,
variables unload- P2,1-from- T1-at- L2-time- 5,
unload- P2,1-from- T2-at- L2-time- 5, and
unload- P2,1-from- T3-at- L2-time- 5 com-
prise one variable class which is denoted by
unload- P2,1-from- Tj-at- L2-time- 5. The many-
sorted representation of the problem has one universally
quantified sort for the trucks. The problemPlanningA
remains unchanged, e.g., whenT1 andT2 are swapped in
all variable classes simultaneously.

In more complex scenarios, a variable class may be in-
dexed by multiple symindex sets and be part of more than
one complete multi-class symmetry. This will happen,
for instance, in thePlanningB problem described above
where variablesload- P2,a-onto- Tj-at- L4-time- 4
are indexed by two symindex sets,a ∈ [5] and j ∈ [3],
each acting independent of the other. This problem has a
universally quantified2-sorted first order representation.

Alternatively, multiple object classes, even in the high
level description, may be indexed by the same symindex set.
This happens, for example, in thePlanningC problem,
whereLsrc

i , Ldest
i , Pi,1, andPi,2 are all indexed byi. This

results in symmetries involving an even higher number of
variable classes indexed by the same symindex set than in
the case ofPlanningA type problems.

Symmetry Representation

SymChaff takes as input a CNF file in the standard DI-
MACS format as well as a.sym symmetry fileS that en-
codes complete multi-class symmetries of the input formula.
Lines inS that begin withc are treated as comments.S con-
tains a header linep sym nsi ncl nsv declaring that
it is a symmetry file withnsi symindex sets,ncl variable
classes, andnsv symmetric variables.

Symmetry is represented in the input fileS and main-
tained insideSymChaff in three phases. First,symindex sets
are represented as consecutive, disjoint intervals of positive

integers. In thePlanningB example forn = 4, the three
trucks would be indexed by the set[1 .. 3] and the5 packages
at locationLi, 1 ≤ i ≤ 4, by symindex sets[3 + 5(i− 1) +
1 .. 3+5i], respectively. Here[p .. q] denotes the set{p, p+
1, . . . , q}. Second, onevarclassis defined for each variable
classVi and associated with each symindex set that indexes
variables in it. Finally, asymindex mapis created that asso-
ciates with each symmetric variable the varclass it belongs to
and the indices in the symindex sets it is indexed by. For in-
stance, variableload- P2,4-onto- T3-at- L4-time- 4
in problemPlanningB will be associated with the varclass
load- P2,a-onto- Tj-at- L4-time- 4 and with indices
j = 3 anda = 3 + 5(2 − 1) + 4 = 12. We omit the exact
syntax of the symmetry input fileS in the interest of sav-
ing space. It is a straightforward encoding of symindex sets,
varclasses, and symindex map.

Note that while the varclasses and the symindex map
remain static, the symindex sets will dynamically change
as SymChaff proceeds assigning values to variables. In
fact, when sufficiently many variables have been assigned
truth values, all complete multi-class symmetries will be de-
stroyed. For efficient access and manipulation,SymChaff
stores varclasses in a vector data structure from the Stan-
dard Template Library (STL) of C++, the symindex map as
a hashmap, and symindex sets together as a multiset con-
taining only the right end-points of the consecutive, disjoint
intervals corresponding to the symindex sets. A symindex
set split is achieved by adding the corresponding new right
end-point to the multiset, and symindex sets are combined
when backtracking by deleting the end-point.

Multiway Index-based Branching

A distinctive feature ofSymChaff is multiway symindex-
based branching. Suppose at a certain stage the variable
selection heuristic suggests that we branch by setting vari-
ablex to FALSE. SymChaff checks to see whetherx has
any complete multi-class symmetry left in the current stage.
(Note that symmetry in our framework reduces as variables
are assigned truth values.)x, of course, may not be sym-
metric at all to start with. Ifx doesn’t have any symme-
try, SymChaff proceeds with the usual DPLL style 2-way
branch by settingx now to FALSE and later toTRUE. If
it does have symmetry,SymChaff arbitrarily chooses a sy-
mindex setI, |I| = k ≥ 2, that indexesx and creates a
(k + 1)-way branch. Letx1, x2, . . . , xk be the variables in-
dexed byI in the varclassV ′ to whichx belongs (x ≡ xj

for somej). For0 ≤ i ≤ k, thei-th branch setsx1, . . . , xi

to FALSE andxi+1, . . . , xk to TRUE. The idea behind this
multiway branching is that it only mattershow manyof the
xi are set toFALSE and not which exact ones. This reduces
the search for a satisfying assignment from up to2k differ-
ent partial assignments ofx1, . . . , xk to onlyk + 1 different
ones. This clearly maintains completeness of the search and
is the key to the good performance ofSymChaff.

When one branches and sets variables, the symindex sets
must be updated to reflect this change. When proceeding
along thei-th branch in the above setting, two kinds ofsy-
mindex splitshappen. First, ifx is also indexed by an index
j in a symindex setJ ≡ [a .. b] 6= I, we must splitJ into



up to three symindex sets given by the intervals[a .. j − 1],
[j .. j], and[j + 1 .. b] becausej’s symmetry has been de-
stroyed by this assignment. To reduce the number of splits,
SymChaff replacesx with another variable in its varclass
for which j = a and thus the split dividesJ into two new
symindex sets only,[a .. a] and[a + 1 .. b]. This first kind
of split is done once for the multiway branch forx and is in-
dependent of the value ofi. The second kind of split divides
I ≡ [c .. d] into up to two symindex sets given by[c .. i] and
[i + 1 .. d]. This, of course, captures the fact that both the
first i and the lastk− i indices ofI remain symmetric in the
i-th branch of the multiway branching step.

Symindex sets that are split while branching must be re-
stored when a backtrack happens. When a backtrack moves
the search from thei-th branch of a multiway branching step
to thei + 1-st branch,SymChaff deletes the symindex set
split of the second type created for thei-th branch and cre-
ates a new one for thei + 1-st branch. When allk + 1
branches are finished,SymChaff also deletes the split of the
first type created for this multiway branch and backtracks.

Symmetric Learning
We extend the notion of conflict-directed clause learning to
our symmetry framework. When all branches of a(k + 1)-
way symmetric branchb have been explored,SymChaff
learns asymconflict clauseC such that when all literals of
C are set toFALSE, unit propagation falsifieseverybranch
of b. This process clearly maintains soundness of the search.
The symconflict clause is learned even for 2-way branches
and is computed as follows.

Suppose ak-way branchb starts at decision leveld. If
the i-th branch ofb leads to a conflict without any further
branches, two things happen. First,SymChaff learns the
“firstUIP” clause following the conflict analysis strategy of
zChaff (seeMoskewiczet al. 2001for details). Second, it
stores in a setSb associated withb the decision literals at
levels higher thand that are involved in the conflict. On the
other hand, if thei-th branch ofb develops further into an-
other branchb′, SymChaff stores inSb those literals of the
symconflict clause recursively learned forb′ that have deci-
sion level higher thand. When all branches atb have been
explored, the symconflict clause learned forb is

∨
`∈Sb

¬`.

Static Ordering of Symmetry Classes and Indices
It is well known that the variable order chosen for branch-
ing in any DPLL-based solver has tremendous impact on
efficiency. Along similar lines, the order in which variable
classes and symindex sets are chosen for multiway branch-
ing can have significant impact on the speed ofSymChaff.

While we leave dynamic strategies for selecting variable
classes and symindex sets as ongoing and future work,Sym-
Chaff does support static ordering through a very simple and
optional.ord order file given as input. This file specifies an
ordering of variable classes as an initial guide to the VSIDS
variable selection heuristic ofzChaff, treating asymmetric
variables in a class of their own. Further, for each variable
class indexed by multiple symindex sets, it allows one to
specify an order of priority on symindex sets. The exact file
structure is omitted due to lack of space.

Integration of Standard Features

The efficiency of state of the art SAT and PB solvers relies
heavily on various features that have been developed, ana-
lyzed, and tested over the last decade.SymChaff integrates
well with most of these features, either using them without
any change or extending them in the context of multiway
branching and symmetric learning. The only significant and
relatively new feature that neitherSymChaff nor the version
of zChaff on which it is based currently support is assign-
ment stack shrinking based on conflict clauses which was
introduced inJerusat (Nadel 2002).

SymChaff supports fast unit propagation, good restart
strategies, effective constraint database management, and
smart branching heuristics in a very natural way. In par-
ticular, it useszChaff’s watched literals scheme for unit
propagation, deterministic and randomized restart strategies,
and clause deletion mechanisms without any modification,
and thus gains by their use as any other SAT solver would.
While performing multiway branching for classes of vari-
ables that are known to be symmetric,SymChaff starts ev-
ery new multiway branch based on the variable that would
have been chosen by VSIDS branch selection heuristic of
zChaff, thereby retaining many advantages that effective
branch selection heuristics like VSIDS have to offer.

Conflict clause learning is extended into symmetric learn-
ing as described earlier. Conflict-directed backjumping in
the traditional context allows a solver to backtrack directly
to a decision leveld if variables at levelsd or higher are
the only ones involved in the conflicts in both branches at
a point other than the branch variable itself.SymChaff ex-
tends this to multiway branching by computing this leveld
for all branches at a multiway branch point by looking at the
symconflict clause for that branch, discarding all intermedi-
ate branches and their respective partial symconflict clauses,
backtracking to leveld, and updating the symindex sets.

While conflict-directed backjumping is always beneficial,
fast backjumping may not be so. This latter technique, rel-
evant mostly to the firstUIP learning scheme ofzChaff, al-
lows a solver to jump directly to a higher decision leveld
when even one branch leads to a conflict involving variables
at levelsd or higher only and the variable of the current
branch. This discards intermediate decisions which may ac-
tually be relevant and in the worst case will be made again
unchanged after fast backjumping.SymChaff provides this
feature as an option. To maintain consistency of symconflict
clauses learned later, the leveld′ to backjump to is computed
as the maximum of the leveld as above and the maximum
decision leveld̄ of any variable in the partial symconflict
clause associated with the current multiway branch.

Experimental Results
SymChaff is implemented on top ofzChaff version
2003.11.04. The input toSymChaff is a .cnf formula file
in the standard DIMACS format, a.sym symmetry file, and
an optional.ord static symmetry order file. It uses the de-
fault parameters ofzChaff. The program was compiled us-
ing g++ 3.3.3 for RedHat Linux 3.3.3-7.Experiments were
conducted on a cluster of 36 machines running Linux 2.6.11



with four 2.8 GHz Intel Xeon processors on each machine,
each with 1 GB memory and 512 KB cache.

Table 1 reports results for several parameterizations of
two problems from proof complexity theory, three planning
problems, and a routing problem from design automation.
These problems are discussed below. Satisfiable instances of
some of these problems were easy for all solvers considered
and are thus omitted from the table. Except for the planning
problems for which automatic “tags” were used (described
later), the.sym symmetry files were automatically gener-
ated by a straightforward modification to the scripts used to
create the.cnf files from the problem descriptions. For all
instances, the time required to generate the.sym file was
negligible compared to the.cnf file and is therefore not
reported. The.sym files were in addition extremely small
compared to the corresponding.cnf files.

The solvers used wereSymChaff, zChaff version
2003.11.04, andMarch-eq-100. SBPs were generated us-
ing Shatter version 0.3 that uses the graph isomorphism
tool Saucy. Note thatzChaff won the best solver award
for industrial benchmarks in the SAT ’04 competition while
March-eq-100 won the award for handmade benchmarks.

SymChaff outperformed the other two solvers without
SBPs in all but excessively easy instances. Generating SBPs
from the input CNF formula was typically quite slow com-
pared to a complete solution bySymChaff. The effect
of adding SBPs before feeding the problem tozChaff was
mixed, helping to various extents in some instances and hurt-
ing in others. In either case, it was never any better than
usingSymChaff without SBPs.

Problems from Proof Complexity

Pigeonhole Principle: php- n- m is the classic pigeonhole
problem where the task is to mapn pigeons intom holes
without any overlaps. These formulas are satisfiable iff
n ≤ m. They are known to be exponentially hard for reso-
lution (Haken 1985; Raz 2004) but easy when the symmetry
rule is added (Krishnamurthy 1985). SBPs can therefore be
used for fast CNF SAT solutions. The price to pay is symme-
try detection which we found to be significant.pbChaff and
Galena use an explicit PB encoding and rely on learning
good PB conflict constraints. They are slower thanSym-
Chaff (execution times are not reported here for lack of
space). SymChaff uses two symindex sets corresponding
to pigeons and holes, and one variable class to solve this
problem in timeΘ(m2). This contrasts well with one of the
fastest current techniques for this problem (other than the
implicit PB encoding) which is based on ZBDDs (Motter &
Markov 2002) and requires fairly involved analysis to prove
that it runs in timeΘ(m4) (Motter, Roy, & Markov 2005).

Clique Coloring Principle: clqcolor- n- m- k encodes
the clique coloring problem where the task is to find a graph
over n nodes that contains a clique of sizem and can be
colored usingk colors so that no two adjacent nodes get the
same color. These formulas are satisfiable iffm ≤ n and
m ≤ k. At first glance, this problem might appear to be
a simple generalization of the pigeonhole problem. How-
ever, it evades fast solutions using SAT as well as PB tech-

niques even when the clique part is encoded implicitly using
PB methods. Indeed, it has been shown to be exponentially
hard for the Cutting Planes proof system (Pudĺak 1997).
Our experiments indicate that not only finding symmetries
from the corresponding CNF formulas is time consuming,
zChaff is extremely slow even after taking SBPs into ac-
count. SymChaff uses three symindex sets corresponding
to nodes, membership in clique, and colors, and three vari-
able classes to solve the problem in timeΘ(k2). We note
that this problem can also be solved in polynomial time (al-
beit with high polynomial degree) using the group theoreic
technique ofDixon et al. (2004).

Problems from Applications

All planning problems were encoded using the high level
STRIPS formulation of Planning Domain Description Lan-
guage (PDDL) (Fikes & Nilsson 1971) and converted into
CNF formulas using the toolBlackbox version 4.1. We
modified Blackbox to generate symmetry information as
well by using a very simple “tagged” PDDL description
where an original PDDL declaration such as

(:OBJECTS T1 T2 T3

Lsrc
1 Lsrc

2 Ldest
1 Ldest

2
P1,1 P2,1 P1,2 P2,2)

in thePlanningC example is replaced with

(:OBJECTS T1 T2 T3 - SYMTRUCKS
Lsrc

1 Lsrc
2 - SYMLOCS

Ldest
1 Ldest

2 - SYMLOCS
P1,1 P2,1 - SYMLOCS
P1,2 P2,2 - SYMLOCS)

The rest of the PDDL description remains unchanged and a
.sym file is automatically generated using these tags.

Gripper Planning: The problemgripper- n- t is our sim-
plest planning example. It consists of2n balls in a room that
need to be moved to another room int steps using a robot
that has two grippers that it can use to pick up balls. The
corresponding formulas are satisfiable ifft ≥ 4n− 1. Sym-
Chaff uses two symindex sets corresponding to the balls and
the grippers. The number of varclasses is relatively large and
corresponds to each action that can be performed without
taking into account the specific ball or gripper used. While
SymChaff solves this problem easily in both unsatisfiable
and satisfiable cases, the other two solvers perform poorly.
Detecting symmetries from CNF usingShatter is not too
difficult but does not speed up the solution process by any
significant amount.

Logistics Planning A: This is the examplePlanningA de-
noted now bylog-rotate- n- t wheren is the number of
locations andt is the maximum plan length. The formula
is satisfiable ifft ≥ 7. SymChaff uses one symindex set
corresponding to the trucks, and several varclasses. Here
again SBPs, although not too hard to compute, provide less
than a factor of two improvement.March-eq andzChaff
were much slower thanSymChaff on large instances, both
unsatisfiable and satisfiable.



Table 1: Experimental results.‡ indicates> 6 hours. The
second column shows problem parameters. The last two
problem sets are satisfiable while the rest are not.

Problem S
ym

C
ha

ff

zC
ha

ff

M
ar

ch
-e

q

S
ha

tte
r

zC
ha

ff
on

S
ha

tte
r

009-008 0.01 0.22 1.55 0.07 0.10
013-012 0.01 1017 ‡ 0.09 0.01
051-050 0.24 ‡ ‡ 13.71 0.50
091-090 0.84 ‡ ‡ 245 3.47

ph
p

101-100 1.20 ‡ ‡ 466 6.48
05-03-04 0.02 0.01 0.21 0.09 0.01
12-07-08 0.03 ‡ ‡ 5.09 4929
20-15-16 0.26 ‡ ‡ 748 ‡
30-18-21 0.60 ‡ ‡ 20801 ‡cl

qc
ol

or

50-40-45 8.76 ‡ ‡ ‡ ‡
02t6 0.02 0.03 0.07 0.20 0.04
04t14 0.84 2820 ‡ 3.23 983
06t22 3.37 ‡ ‡ 23.12 ‡gr

ip
pe

r

10t38 47 ‡ ‡ 193 ‡
06t6 0.74 1.47 21.55 8.21 0.93
08t6 2.03 4.29 375 31.4 4.21
09t6 8.64 15.67 3835 74 28.9

lo
g-

ro
ta

te

11t6 51 12827 ‡ 324 17968
05t5 0.46 0.38 3.65 25.19 0.65
07t5 1.83 1.87 80 243 3.05
09t5 6.29 6.23 582 1373 14.57

lo
g-

pa
ir

11t5 15.65 18.05 1807 6070 34.4
010-011 0.04 8.61 ‡ 0.20 0.02
011-020 0.06 135 ‡ 0.28 0.03
020-030 0.05 ‡ ‡ 4.60 0.10ch

nl

050-100 1.75 ‡ ‡ 810 1.81

02t7 0.02 0.03 0.34 0.17 0.03
04t15 2.03 1061 ‡ 0.23 1411
06t23 7.27 ‡ ‡ 19.03 ‡gr

ip
pe

r

10t39 92 ‡ ‡ 193 ‡
06t7 2.87 2.09 11 16.92 3.03
07t7 7.64 6.85 27 55 47
08t7 9.13 182 14805 62 358

lo
g-

ro
ta

te

09t7 139 1284 814 186 1356

Logistics Planning C: This is the examplePlanningC de-
noted now bylog-pairs- n- t wheren is the number of
location pairs andt is the maximum plan length. The for-
mula is satisfiable ifft ≥ 5. SymChaff usesn + 1 symin-
dex sets corresponding to the trucks and the location pairs,
and several varclasses. This problem provides an interesting
scenario wherezChaff normally compares well withSym-
Chaff but performs worse by a factor of two when SBPs are
added. We also note that computing SBPs for this problem
is quite expensive by itself.

Channel Routing: The problemchnl- t- n is from design
automation and has been considered in previous works on
symmetry and pseudo-Boolean solvers (Aloul, Markov, &
Sakallah 2003; Aloul et al. 2002b). It consists of two blocks
of circuits witht tracks connecting them. The task is to route

n nets from one block to the other using these tracks. The
underlying problem is a disguised pigeonhole principle. The
formula is solvable ifft ≥ n. SymChaff uses two symin-
dex sets corresponding to the end-points of the tracks in the
two blocks, and2n varclasses corresponding to the two end-
points for each net. WhileMarch-eq was unable to solve
any instance of this problem considered,zChaff performed
as well asSymChaff after SBPs were added. The genera-
tion of SBPs was, however, orders of magnitude slower.

Discussion and Future Work
SymChaff sheds new light into ways that high level sym-
metry, which is typically obvious to the problem designer,
can be used to solve problems more efficiently. It handles
frequently occurring complete multi-class symmetries and
is empirically exponentially faster on several problems from
theory and practice, both unsatisfiable and satisfiable. The
time and memory overhead it needs for maintaining data
structures related to symmetry is fairly low and on problems
with very few or no symmetries, it works as well aszChaff.

Our framework for symmetry is, of course, not tied to
SymChaff. It can extend any state of the art DPLL-based
SAT or PB solver. Two key places where we differ from
earlier approaches are in using high level problem descrip-
tion to obtain symmetry information and in maintaining this
information dynamically without using complicated group
theoretic machinery. This allows us to overcome many
drawbacks of previously proposed solutions.

The symmetry representation and maintenance tech-
niques ofSymChaff may be exploited in several other ways.
The variable selection heuristic of the DPLL process is the
most noticeable example. This framework can perhaps be
applied even to local search-based satisfiability tools such as
Walksat (McAllester, Selman, & Kautz 1997) to make bet-
ter choices and reduce the search space. As for the frame-
work itself, it can be easily extended to handlek-ring multi-
class symmetries, where thek underlying indices can be
rotated cyclically without changing the problem (e.g. as in
PlanningB ). However, the best-case gain of a factor ofk
may not offset the overhead involved.

On the theoretical side, how the technique ofSymChaff
compares in strength to proof systems such as resolution
with symmetry? It is unclear whether it is as powerful as the
latter or can even efficiently simulate all of resolution with-
out symmetry. Answering this in the presence of symmetry
may also help resolve an open question (Beame, Kautz, &
Sabharwal 2004) of whether DPLL-based solvers (without
symmetry) can efficiently simulate all of resolution.

SymChaff is the first cut at implementing our generic
framework and can be extended in several directions. Learn-
ing strategies for symconflict clauses other than the “deci-
sion variable scheme” that it currently uses may lead to bet-
ter performance, and so may dynamic strategies for selecting
the order in which various branches of a multiway branch
are traversed, as well as a dynamic equivalent of the static
.ord file thatSymChaff supports. Extending it to handle
PB constraints is a relatively straightforward but promising
direction. Creating a PDDL preprocessor for planning prob-
lems that uses graph isomorphism tools to tag symmetries



in the PDDL description would fully automate the planning-
through-satisfiability process in the context of symmetry.

One limitation of our framework is that it does not support
symmetries that are initially absent but ariseafter some lit-
erals are set. Our symmetry sets only get refined from their
initial value as decisions are made. Detecting such dynam-
ically created symmetries, however, appears to require on-
the-fly computations involving the symmetry group which
are generally quite expensive (Dixon et al. 2004).
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[Pudĺak 1997] Pudĺak, P. 1997. Lower bounds for resolution and
cutting plane proofs and monotone computations.J. Symb. Logic
62(3):981–998.

[Raz 2004] Raz, R. 2004. Resolution lower bounds for the weak
pigeonhole principle.J. Assoc. Comput. Mach.51(2):115–138.

[Shtrichman 2004]Shtrichman, O. 2004. Accelerating bounded
model checking of safety properties.Form. Meth. in Sys. Des.
1:5–24.

[Stephan, Brayton, & Sangiovanni-Vincentelli 1996]Stephan,
P. R.; Brayton, R. K.; and Sangiovanni-Vincentelli, A. L. 1996.
Combinatorial test generation using satisfiability.IEEE Trans.
Comput.-Aided Design Integr. Circ.15(9):1167–1176.

[Velev & Bryant 2001] Velev, M., and Bryant, R. 2001. Effective
use of boolean satisfiability procedures in the formal verification
of superscalar and vliw microprocessors. In38th DAC, 226–231.

[Zhang 1997] Zhang, H. 1997. SATO: An efficient propositional
prover. In14th CADE, volume 1249 ofLNCS, 272–275.


	Introduction
	Previous Work
	Our Contribution

	Preliminaries
	DPLL-based SAT Solvers
	Constraint Problems and Symmetry
	Many-Sorted First Order Logic

	Symmetry Framework and SymChaff
	k-complete m-class Symmetries
	Symmetry Representation
	Multiway Index-based Branching
	Symmetric Learning
	Static Ordering of Symmetry Classes and Indices
	Integration of Standard Features

	Experimental Results
	Problems from Proof Complexity
	Problems from Applications

	Discussion and Future Work
	Acknowledgments

