
Survey Propagation Revisited

Lukas Kroc Ashish Sabharwal Bart Selman

Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, U.S.A.∗

{kroc,sabhar,selman}@cs.cornell.edu

Abstract

Survey propagation (SP) is an exciting new
technique that has been remarkably success-
ful at solving very large hard combinatorial
problems, such as determining the satisfia-
bility of Boolean formulas. In a promising
attempt at understanding the success of SP,
it was recently shown that SP can be viewed
as a form of belief propagation, computing
marginal probabilities over certain objects
called covers of a formula. This explana-
tion was, however, shortly dismissed by ex-
periments suggesting that non-trivial covers
simply do not exist for large formulas. In
this paper, we show that these experiments
were misleading: not only do covers exist for
large hard random formulas, SP is surpris-
ingly accurate at computing marginals over
these covers despite the existence of many
cycles in the formulas. This re-opens a po-
tentially simpler line of reasoning for under-
standing SP, in contrast to some alternative
lines of explanation that have been proposed
assuming covers do not exist.

1 INTRODUCTION

Survey Propagation (SP) is a new exciting algorithm
for solving hard combinatorial problems. It was dis-
covered by Mezard, Parisi, and Zecchina (2002), and
is so far the only known method successful at solving
random Boolean satisfiability (SAT) problems with 1
million variables and beyond in near-linear time in the
hardest region. The SP method is quite radical in that
it tries to approximate certain marginal probabilities
related to the set of satisfying assignments. It then
iteratively assigns values to variables with the most

∗Research supported by Intelligent Info. Systems Instt.
(IISI), Cornell Univ., AFOSR grant FA9550-04-1-0151.

extreme probabilities. In effect, the algorithm be-
haves like the usual backtrack search methods for SAT
(DPLL-based), which also assign variable values incre-
mentally in an attempt to find a satisfying assignment.
However, quite surprisingly, SP almost never has to
backtrack. In other words, the “heuristic guidance”
from SP is almost always correct. Note that, interest-
ingly, computing marginals on satisfying assignments
is actually believed to be much harder than finding
a single satisfying assignment (#P-complete vs. NP-
complete). Nonetheless, SP is able to efficiently ap-
proximate certain marginals and uses this information
to successfully find a satisfying assignment.

SP was derived from rather complex statistical physics
methods, specifically, the so-called cavity method de-
veloped for the study of spin glasses. Close connections
to belief propagation (BP) methods were subsequently
discovered. In particular, it was discovered by Braun-
stein and Zecchina (2004) (later extended by Maneva,
Mossel, and Wainwright (2005)) that SP equations are
equivalent to BP equations for obtaining marginals
over a special class of combinatorial objects, called
covers. Intuitively, a cover provides a representative
generalization of a cluster of satisfying assignments.
The discovery of a close connection between SP and
BP via the use of covers laid an exciting foundation
for explaining the success of SP. Unfortunately, subse-
quent experimental evidence suggested that hard ran-
dom 3-SAT formulas have, with high probability, only
one (trivial) cover (Maneva et al., 2005). This would
leave all variables effectively in an undecided state, and
would mean that marginals on covers cannot provide
any useful information on how to set variables. Since
SP clearly sets variables in a non-trivial manner, it
was conjectured that there must be another explana-
tion for the good behavior of SP; in particular, one
that is not based on the use of marginal probabilities
of variables in the covers.

In this paper, we revisit the claim that hard random 3-
SAT formulas do not have interesting non-trivial cov-



ers. In fact, we show that such formulas have large
numbers of non-trivial covers. The main contribution
of the paper is the first clear empirical evidence show-
ing that in random 3-SAT problems near the satisfi-
ability and hardness threshold, (1) a significant num-
ber of non-trivial covers exist; (2) SP is remarkably
good at computing variable marginals based on cov-
ers; and (3) these cover marginals closely relate to so-
lution marginals at least in the extreme values, where
it matters the most for survey inspired decimation. As
a consequence, we strongly suspect that explaining SP
in terms of covers may be the correct path after all.

Note that (2) above is quite surprising for random
3-SAT formulas because such formulas have many
loops. The known formal proof that SP computes
cover marginals only applies to tree-structured formu-
las, which in fact have only a single (trivial) cover.
Further, it’s amazing that while SP computes such
marginals in a fraction of a second, the next best meth-
ods of computing these marginals that we know of (via
exact enumeration, or sampling followed by “peeling”)
require over 100 CPU hours.

Our experiments also indicate that cover marginals
are more “conservative” than solution marginals in the
sense that variables that are extreme with respect to
cover marginals are almost certainly also extreme with
respect to solution marginals, but not vice versa. This
sheds light on why it is safe to set variables with ex-
treme cover marginals in an iterative manner, as is
done in the survey inspired decimation process for find-
ing a solution using the marginals computed by SP.

In addition to these empirical results, we also revisit
the derivation of the SP equations themselves, with the
goal of presenting the derivation in an insightful form
purely within the realm of combinatorial constraint
satisfaction problems (CSPs). We describe how one
can reformulate in a natural step-by-step manner the
problem of finding a satisfying assignment into one of
finding a cover, by considering related factor graphs
on larger state spaces. The BP equations for this re-
formulated problem are exactly the SP equations for
the original problem, as shown in the Appendix.

2 COVERS OF CNF FORMULAS

We start by introducing the notation and the ba-
sic concepts that we use throughout the paper. We
are concerned with Boolean formulas in Conjunctive
Normal Form or CNF, that is, formulas of the form
F ≡ (l11 ∨ . . . ∨ l1k1

) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm
), where

each lik (called a literal) is a Boolean variable xj or
its negation ¬xj . Each conjunct of F , which itself is
a disjunction of literals, is called a clause. In 3-CNF
or 3-SAT formulas, every clause has 3 literals. Ran-

dom 3-SAT formulas over n variables are generated by
uniformly randomly choosing a pre-specified number
of clauses over these n variables. The Boolean satis-
fiability problem is the following: Given a CNF for-
mula F over n variables, find a truth assignment σ for
the variables such that every clause in F evaluates to
true; σ is called a satisfying assignment or a solution

of F . We identify true with 1 and false with 0.

A truth assignment to n variables can be viewed as a
string of length n over the alphabet {0, 1}, and extend-
ing this alphabet to include a third letter “∗” leads to
a generalized assignment. A variable with the value ∗
can be interpreted as being “undecided,” while vari-
ables with values 0 or 1 can be interpreted as being
“decided” on what they want to be. We will be inter-
ested in certain generalized assignments called covers.
Our formal definition of covers follows the one given by
Achlioptas and Ricci-Tersenghi (2006). Let variable x
be called a supported variable under a generalized as-
signment σ if there is a clause C such that x is the
only variable that satisfies C and all other literals of
C are false. Otherwise, x is called unsupported.

Definition 1. A generalized assignment σ ∈ {0, 1, ∗}n

is a cover of a CNF formula F iff

1. every clause of F has at least one satisfying literal
or at least two literals with value ∗ under σ, and

2. σ has no unsupported variables assigned 0 or 1.

The first condition ensures that each clause of F is
either already satisfied by σ or has enough undecided
variables to not cause any undecided variable to be
forced to decide on a value (no “unit propagation”).
The second condition says that each variable that is
assigned 0 or 1 is set that way for a reason: there
exists a clause that relies on this setting in order to
be satisfied. For example, consider the formula F ≡
(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z). F has
exactly two covers: 111 and ∗ ∗ ∗. This can be verified
by observing that whenever some variable is 0 or ∗,
then all non-∗ variables are unsupported. Notice that
the string of all ∗’s always satisfies the conditions in
Definition 1; we refer to this string as the trivial cover.

Covers were introduced by Maneva et al. (2005) as
a useful concept to analyze the behavior of SP, but
their combinatorial properties are much less known
than those of solutions. A cover can be thought of as
a partial assignment to variables, where the variables
assigned ∗ are considered unspecified. In this sense,
each cover is a representative of a potentially large set
of complete truth assignments, satisfying as well as not
satisfying. This motivates further differentiation:

Definition 2. A cover σ ∈ {0, 1, ∗}n of F is a true

cover iff there exists a satisfying assignment τ ∈
{0, 1}n of F such that σ and τ agree on all values where



σ is not a ∗, i.e., ∀i ∈ {1, . . . , n}(σi 6= ∗ =⇒ σi = τi).
Otherwise, σ is a false cover.

A true cover thus generalizes at least one satisfying
assignment. True covers are interesting to study when
trying to satisfy a formula, because if there exists a
true cover with variable x assigned 0 or 1, then there
must also exist a satisfying assignment with the same
setting of x.

One can construct a true cover σ ∈ {0, 1, ∗}n of F by
starting with any satisfying assignment τ ∈ {0, 1}n of
F and generalizing it using a simple procedure called
∗-propagation.1 The procedure starts by initially
setting σ = τ . It then repeatedly chooses an arbitrary
variable unsupported under σ and turns it into a ∗,
until there are no more unsupported variables. The re-
sulting string σ is a true cover, which can be verified as
follows. The satisfying assignment τ already satisfies
the first condition in Definition 1, and ∗-propagation
does not destroy this property. In particular, a vari-
able on which some clause relies is never turned into a
∗. The second condition in Definition 1 is also clearly
satisfied when ∗-propagation halts, so that σ must be
a cover. Moreover, since σ generalizes τ , it is a true
cover. Note that ∗-propagation can, in principle, be
applied to an arbitrary generalized assignment. How-
ever, unless we start with one that satisfies the first
condition in the cover definition, ∗-propagation may
not lead to a cover.

We end with a discussion of two insightful properties
of covers. The first relates to “self-reducibility” and
the second to covers for tree-structured formulas.

No self-reducibility. Consider the relation between
the decision and search versions of the problem of find-
ing a solution of a CNF formula F . In the decision ver-
sion, one needs an algorithm that determines whether
or not F has a solution, while in the search version,
one needs an algorithm that explicitly finds a solu-
tion. The problem of finding a solution for F is self-

reducible, i.e., given an oracle for the decision version,
one can efficiently solve the search version by itera-
tively fixing variables to 1 or 0, testing whether there
is still a solution, and continuing in this way. Some-
what surprisingly, this strategy does not work for the
problem of finding a cover. In other words, an oracle
for the decision version of this problem does not im-
mediately provide an efficient algorithm for finding a
cover. (The lack of self-reducibility makes it very hard
to find covers as we will see below.) As a concrete
example, consider the formula F described right after
Definition 1. To construct a cover of F , we could ask

1This was introduced under different names as the peel-
ing procedure or coarsening, e.g., by Maneva et al. (2005).

whether there exists a cover with x set to 1. Since
111 is a cover (yet unknown to us), the decision oracle
would say yes. We could then fix x to 1, simplify the
formula to (y∨¬z)∧(¬y∧z), and ask whether there is
a cover with y set to 0. This residual formula indeed
has 00 as a cover, and the oracle would say yes. With
one more query, we will end up with 100 as the values
of x, y, z, which is in fact not a cover of F .

Tree-structured formulas. For tree-structured
formulas without unit clauses, i.e., formulas whose fac-
tor graph does not have a cycle, the only cover is the
trivial all-∗ cover. We argue this using the connec-
tion between covers and SP shown by Braunstein and
Zecchina (2004), which says that when generalized as-
signments have a uniform prior, SP on a tree formula F
provably computes probability marginals of variables
being 0, 1, and ∗ in covers of F . Moreover, it can be
verified from the iterative equations for SP that with
no unit clauses, zero marginals for any variable being
0 or 1, and full marginals for any variable being a ∗ is
a fixed point of SP. Since SP provably has exactly one
fixed point on tree formulas, it follows that the only
cover of such formulas is the trivial all-∗ cover.

3 PROBLEM REFORMULATION:

FROM SOLUTIONS TO COVERS

We now show that the concept of covers can be quite
naturally arrived at when trying to find solutions of
a CNF formula, thus motivating the study of covers
from a purely generative perspective. Starting with
a CNF formula F , we describe how F is transformed
step-by-step into the problem of finding covers of F ,
motivating each step.

Although our discussion applies to any CNF formula
F , we will be using the following example formula with
3 variables and 4 clauses to illustrate the steps:

(x ∨ y ∨ ¬z)
︸ ︷︷ ︸

a

∧ (¬x ∨ y)
︸ ︷︷ ︸

b

∧ (¬y ∨ z)
︸ ︷︷ ︸

c

∧ (x ∨ ¬z)
︸ ︷︷ ︸

d

Let N denote the number of variables, M the number
of clauses, and L the number of literals of F .

Original problem. The problem is to find an as-
signment in the space {0, 1}

N
that satisfies F . The fac-

tor graph for F has N variable nodes and M function
nodes, corresponding directly to the variables x, y, . . .
and clauses a, b, . . . in F (see e.g. Kschischang et al.
(2001)). The factor graph for the example formula
is depicted below. Here factors Fa, Fb, . . . represent
predicates ensuring that the corresponding clause has
at least one satisfying literal.



FdFcFbFa

x y z

Variable occurrences. The first step in the trans-
formation is to start treating every variable occurrence

xa, xb, ya, yb, . . . in F as a separate unit that can be ei-
ther 0 or 1. This allows for more flexibility in the pro-
cess of finding a solution, since a variable can decide
what value to assume in each clause separately. Of
course, we need to add constraints to ensure that the
occurrence values are eventually consistent: for every
variable x in F , we add a constraint Fx that all occur-
rences of x have the same value. Now the search space
is {0, 1}L, and the corresponding factor graph contains
L variable nodes and M +N function nodes (the orig-
inal clause factors Fa, Fb, . . . and the new constraints
Fx, Fy, . . .).

Fx Fa Fb Fy Fc Fd Fz

zdzczaycybyaxdxbxa

At this point, we have not relaxed solutions to the
original problem F : solutions to the modified problem
correspond precisely to the original solutions, because
variable occurrences are forced to be consistent. How-
ever, we moved this consistency check from the syn-
tactic level (variables could not be inconsistent simply
by the problem definition) to the semantic level (we
have special constraints to guarantee consistency).

Relaxing assignments. The next step is to relax
the problem by allowing variable nodes to assume the
special value “∗”. The semantics of ∗ is “undecided,”
meaning that the variable node is set neither to 0
nor to 1. The new search space is {0, 1, ∗}

L
, and we

must specify how our constraints handle the value ∗.
Variable constraints Fx, . . . have the same meaning as
before, namely, all variable nodes xa, xb, . . . have the
same value for every variable x. Clause constraints
Fa, . . . now have a modified meaning: a clause is sat-
isfied if it contains at least one satisfying literal or at
least two literals with the value ∗. The motivation here
is to either satisfy a clause or leave enough “freedom”
in the form of at least two undecided variables. (A
single undecided variable would be forced to take on a
particular value if all other literals in the clause were
falsified.) With this transformation, the factor graph
remains structurally the same, while the set of possible

values for variable nodes changes.

The solutions to this modified problem do not neces-
sarily correspond directly to solutions of the original
one. In particular, if there are no unit clauses and all
variables are set to ∗, the problem is already “solved”
without providing any useful information.

Reducing freedom of choice. To distinguish vari-
ables that could assume the value ∗ from those that
truly need to be fixed to either 0 or 1, we require that
every non-∗ variable has a clause that needs the vari-
able to be 0 or 1 in order to be satisfied. The search
space does not change, but we need to add constraints
to implement the reduction in the freedom of choice.

Notice that this requirement is equivalent to “no un-
supported variables” in the definition of a cover, and
that the first requirement in that definition is ful-
filled by the clause constraints. Therefore, we are now
searching for covers of F . A natural way to represent
the “no unsupported variable” constraint in the fac-
tor graph is to add for each variable x a new function
node F ′

x, connected to the variable nodes for x as well
as for all other variables sharing a clause with x. This,
of course, creates many new links and introduces ad-
ditional short cycles, even if the original factor graph
was acyclic. The following transformation step allevi-
ates this issue.

Reinterpreting variable nodes. As the final step,
we change the semantics of the variable nodes’ val-
ues and of the constraints so that the “no unsup-
ported variable” condition can be enforced without ad-
ditional function nodes. The reasoning is that the sim-
ple {0, 1, ∗} domain creates a bottleneck for how much
information can be communicated between nodes in
the factor graph. By altering the semantics of the
variable nodes’ values, we can improve on this.

The new value of a variable node xa will be a pair
(ra→x, wx→a) ∈ {(0, 0), (0, 1), (1, 0)}, so that the size
of the search space is still 3L. We interpret the value
ra→x as a request from clause a to variable x with the
meaning that a relies on x to satisfy it, and the value
wx→a as a warning from variable x to clause a that x is
set such that it does not satisfy a. The values 1 and 0
indicate presence and absence, resp., of the request or
warning. We can recover the original {0, 1, ∗} values
from these new values as follows: if ra→x = 1 for some
a, then x is set to satisfy clause a; if there is no request
from any clause where x appears, then x is undecided
(a value of ∗ in the previous interpretation). The vari-
able constraints Fx, . . . not only ensure consistency of
the values of xa, xb, . . . as before, but also ensure the
second cover condition as described below. The clause
constraints Fa, . . . remain unchanged.



The variable constraint Fx is a predicate ensuring that
the following two conditions are met:

1. if ra→x = 1 for any clause a where x appears,
then wx→b = 0 for all clauses b where x appears
with the same sign as in a, and wx→b = 1 for all
b where x appears with the opposite sign. Since x
must be set to satisfy a, this ensures that clauses
that are unsatisfied by x do receive a warning.

2. if ra→x = 0 for all clauses a where x appears, then
wx→a = 0 for all of them, i.e., no clause receives
a warning from x.

To evaluate Fx, values (ra→x, wx→a) are needed only
for clauses a in which x appears, which is exactly the
set of variable nodes the factor Fx is connected to. No-
tice that the case (ra→x, wx→a) = (1, 1) cannot happen
due to condition 1 above. The conditions also imply
that the variable occurrences of x are consistent, and in
particular that two clauses where x appears with oppo-
site signs (say a and b) cannot simultaneously request
to be satisfied by x. This is because either ra→x = 0
or rb→x = 0 must hold due to condition 1.

The clause constraint Fa is a predicate stating that
clause a issues a request to its variable x if and only if it
receives warnings from all its other variables: ra→x = 1
iff wy→a = 1 for all variables y 6= x in a. Again, Fa

can be evaluated using exactly values from the variable
nodes it is connected to.

When clause a issues a request to variable x (i.e.,
ra→x = 1), x must be set to satisfy a, thus providing a
satisfying literal for a. If a does not issue any request,
then according to the condition of Fa, at least two of
a’s variables, say x and y, must not have sent a warn-
ing. In this case, Fx and Fy state that each of x and
y is either undecided or satisfies a. Thus the first con-
dition in the cover definition holds in any solution of
this new constraint satisfaction problem. The second
condition also holds, because every variable x that is
not undecided must have received a request from some
clause a, so that x is the only literal in a that is not
false. Therefore x is supported.

Let us denote this final constraint satisfaction problem
by P (F ). (It is a function of the original formula F .)
Notice that the factor graph of P (F ) has the same
topology as the factor graph of F . In particular, if
F has a tree factor graph, so does P (F ). Further, by
the construction of P (F ) described above, its solutions
correspond precisely to the covers of F .

3.1 INFERENCE OVER COVERS

This section discusses an approach for solving the
problem P (F ) with probabilistic inference using belief
propagation (BP). It arrives at the survey propagation

equations for F by applying BP equations to P (F ).

Since the factor graph of P (F ) can be easily viewed
as a Bayesian Network (cf. Pearl, 1988), one can com-
pute marginal probabilities over the set of satisfying
assignments of the problem, defined as

Pr[xa = v | all constraints of P (F ) are satisfied]

for each variable node xa and v ∈ {(0, 0), (0, 1), (1, 0)}.
The probability space here is over all assignments to
variable nodes with uniform prior.

Once these solution marginals are known, we know
which variables are most likely to assume a particular
value, and setting these variables simplifies the prob-
lem. A new set of marginals can be computed on this
simplified formula, and the whole process repeated.
This method of searching for a satisfying assignment
is called the decimation procedure. The problem,
of course, is to compute the marginals (which, in gen-
eral, is much harder than finding a satisfying assign-
ment). One possibility for computing marginals is to
use the belief propagation algorithm (cf. Pearl, 1988).
Although provably correct essentially only for formulas
with a tree factor graph, BP provides a good approxi-
mation of the true marginals in many problem domains
in practice (Murphy et al., 1999). Moreover, as shown
by Maneva et al. (2005), applying the BP algorithm to
the problem of searching for covers of F results in the
SP algorithm. Thus, on formulas with a tree factor
graph, the SP algorithm provably computes marginal
probabilities over covers of F , which are equivalent to
marginals over satisfying assignments of P (F ). When
the formula contains loops, SP computes a loopy ap-
proximation to the cover marginals. Specific details of
the derivation of SP equations from the problem P (F )
are deferred to the Appendix.

4 EXPERIMENTAL RESULTS

This section presents our main contributions. We be-
gin by demonstrating that non-trivial covers do ex-
ist in large numbers in random 3-SAT formula, and
then explore connections between SP, BP, and vari-
able marginals computed from covers as well as so-
lutions, showing in particular that SP approximates
cover marginals surprisingly well.

4.1 EXISTENCE OF COVERS

Motivated by theoretical results connecting SP to cov-
ers of formulas, Maneva et al. (2005) suggested an
experimental study to test whether non-trivial covers
even exist in random 3-SAT formulas. They proposed
a seemingly good way to do this (the “peeling experi-
ment”), namely, start with a uniformly random satisfy-



ing assignment of a formula F and, while it has unsup-
ported variables, ∗-propagate the assignment. When
the process terminates, one obtains a (true) cover of
F . Unfortunately, what they observed is that this pro-
cess repeatedly hits the trivial all-∗ cover, from which
they concluded that non-trivial covers most likely do
not exist for such formulas. However, it is known that
near-uniformly sampling solutions of such formulas to
start with is a hard problem in itself and that most
sampling methods obtain solutions in a highly non-
uniform manner (Wei et al., 2004). Consequently, one
must be careful in drawing conclusions from relatively
few and possibly biased samples.

0 1000 2000 3000 4000 5000

0
20

0
40

0
60

0
80

0
10

00

Number of stars

N
um

be
r o

f u
ns

up
po

rte
d 

va
ria

bl
es Solutions leading to the trivial cover

Solutions leading to non−trivial covers

Figure 1: The peeling experiment, showing the evolu-
tion of the number of stars as ∗-propagation proceeds.

To understand this issue better, we ran the same peel-
ing experiment on a 5000 variable random 3-SAT for-
mula at clause-to-variable ratio 4.2 (which is close to
the hardness threshold for random 3-SAT problems),
but used SampleSat (Wei et al., 2004) to obtain sam-
ples, which is expected to produce fairly uniform sam-
ples. Figure 1 shows the evolution of the number of
unsupported variables at each stage as ∗-propagation
is performed starting from a solution. Here, the
x-axis shows the number of stars, which monotoni-
cally increases by ∗-propagation. The y-axis shows
the number of unsupported variables present at each
stage. As one moves from left to right following the
∗-propagation process, one hits a cover if the num-
ber of unsupported variables drops to zero (so that
∗-propagation terminates). The two curves in the plot
correspond to solutions that ∗-propagated to the triv-
ial cover and those that did not. In our experiment,
out of 500 satisfying assignments used, nearly 74% led
to the trivial cover; their average is represented by the
top curve. The remaining 26% of the sampled solu-
tions actually led to non-trivial covers; their average
is represented by the bottom curve. Thus, when so-
lutions are sampled near-uniformly, a substantial frac-
tion of them lead to non-trivial covers.2

2 That this was not observed by Maneva et al. (2005)
can be attributed to the fact that SP was used to find
satisfying assignments (Mossel, 2007), resulting in highly
non-uniform samples.

2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clause−to−variable ratio

P[
no

n−
tri

vi
al

 c
ov

er
]

90 vars
70 vars
50 vars

2.0 2.5 3.0 3.5 4.0 4.5

0
20

40
60

80
10

0

Clause−to−variable ratio

N
um

be
r o

f n
on

−t
riv

ia
l c

ov
er

s

90 vars
70 vars
50 vars

Figure 2: Non-trivial covers in random formulas. Left:
existence probability. Right: average number.

An alternative method of finding covers is to create a
new Boolean formula G whose solutions correspond go
the covers of F . It turned out to be extremely hard
to solve G to find any non-trivial cover using state-of-
the-art SAT solvers for number of variables as low as
150. So we confined our experiments to small formu-
las, with 50, 70 and 90 variables. We found all covers
for such formulas with varying clause-to-variable ra-
tios α. The results are shown in Figure 2, where each
data point corresponds to statistics obtained from 500
formulas. The left pane shows the probability that a
random formula, for a given clause-to-variable ratio,
has at least one non-trivial cover (either true or false).
The figure shows a nice phase transition where cov-
ers appear, at around α = 2.5, which is surprisingly
sharp given the small formula sizes. Also, the region
where covers surely exist is widening on both sides
as the number of variables increases, supporting the
claim that non-trivial covers exist even in large for-
mulas. The right pane of Figure 2 shows the actual
number of non-trivial covers, with a clear trend that
the number increases with the size of the formula, for
all values of the clause-to-variable ratio. It is worth
noting that the number of covers is very small com-
pared to the number of satisfying assignments; e.g.
for 90 variables and α = 4.2, the expected number of
satisfying assignments is 150, 000, while there are only
8 covers on average. Somewhat surprisingly, the num-
ber of false covers is almost negligible, around 2 at the
peak, and does not seem to be growing nearly as fast
as the total number of covers. This might explain why
SP, although approximating marginals over all covers,
is successful in finding satisfying assignments.

We also consider how the number of solutions that lead
to non-trivial covers changes for larger formulas, as
the number of variables N increases from 200 to 4000.
The left pane of Figure 3 shows that an estimate of
this number, in fact, grows exponentially with N . For
each N , the estimate is obtained by averaging over
200 formulas at ratio 4.2 the following quantity: the
fraction p(N) of 20,000 sampled solutions that lead to
a non-trivial cover, scaled up by the expected number



of solutions for N -variable formulas at this ratio, which
is (2 × (7/8)4.2)N ≈ 1.1414N .3 The resulting number,
p(N) × 1.1414N , is plotted on the y-axis of the left
pane, with N on the x-axis. The right pane of Figure 3
shows the data used to estimate p(N) along with its
fit on the y-axis, with N on the x-axis again.

200 500 1000 2000

1e
+1

2
1e

+5
6

1e
+1

44

Number of Vars. (log scale)

E[
#s

ol
s w

/ n
on

tr.
 c

ov
er

]
(lo

g 
sc

al
e)

1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Variables

P[
no

n 
tri

vi
al

 c
ov

er
]

Figure 3: Left: Expected number of solutions leading
to non-trivial covers (log-log scale). Right: Probability
of a solution leading to a non-trivial cover.

Notice that the left pane is in log-scale for both axes,
and clearly increases faster than a linear function.
Thus, the estimated number of solutions that lead to
non-trivial covers grows super-polynomially. In fact,
performing a best fit for this curve suggests that this
number grows exponentially, roughly as 1.1407N . This
number is indeed a vanishingly small fraction of the ex-
pected number of solutions (1.1414N ) as observed by
Maneva et al. (2005), but nonetheless exponentially
increasing. The existence of covers for random 3-SAT
also aligns with what Achlioptas and Ricci-Tersenghi
(2006) recently proved for k-SAT with k ≥ 9.

4.2 SP, BP, AND MARGINALS

We now study the behavior of SP and BP on a ran-
dom formula in relation to solutions and covers of
that formula. While theoretical work has shown that
SP, viewed as BP on a related combinatorial problem,
provably computes cover marginals on tree-structured
formulas, we demonstrate that even on random 3-SAT
instances, which are far from tree-like, SP approxi-
mates cover marginals surprisingly well. We also show
that cover marginals, especially in the extreme range,
are closely related to solution marginals in an intrigu-
ing “conservative” fashion. The combination of these

two effects, we believe, plays a crucial role in the suc-

cess of SP. Our experiments also reveal that BP per-
forms poorly at computing any marginals of interest.

Given marginal probabilities, we define the magneti-

zation of a variable to be the difference between the

3 The version of the paper published in UAI-07 incor-
rectly stated, as pointed out by Lenka Zdeborova, that the
number of solutions of such formulas is known to be highly
concentrated around its expectation.

marginals of the variable being positive and it being
negative. For the rest of our experiments, we start
with a random 3-SAT formula F with 5000 variables
and 21000 clauses (clause-to-variable ratio of 4.2), and
plot the magnetization of the variables of F in the
range [−1,+1].4 The marginals for magnetization are
obtained from four different sources, which are com-
pared and contrasted against each other: (1) by run-
ning SP on F till the iterations converge; (2) by run-
ning BP on F but terminating it after 10,000 itera-
tions because the equations do not converge; (3) by
sampling solutions of F using SampleSat and comput-
ing an estimate of the positive and negative marginals
from the sampled solutions (the solution marginals);
and (4) by sampling solutions of F using SampleSat,
∗-propagating them to covers, and computing an esti-
mate of the positive and negative marginals from these
covers (the cover marginals). Note that in (4), we are
sampling true covers and obtaining an estimate. An
alternative approach is to use SP itself on F to try to
sample covers of F , but the issue here is that the prob-
lem of finding (non-trivial) covers is not self-reducible
to the decision problem of whether covers exist, as
shown in Section 2. Therefore, it is not clear whether
SP can be used to actually find a cover, despite it ap-
proximating the cover marginals very well.

Recall that the SP-based decimation process works by
identifying variables with extreme magnetization, fix-
ing them, and iterating. We will therefore be inter-
ested mostly in what happens in the extreme magne-
tization regions in these plots, namely, the lower left
corner (−1,−1) and the upper right corner (+1,+1).

In the left pane of Figure 4 we plot the magnetization
computed by SP on the x-axis and the magnetization
obtained from cover marginals on the y-axis. The scat-
ter plot has exactly 5000 data points, with one point
for each variable of the formula F . If the magneti-
zations on the two axes matched perfectly, all points
would fall on a single diagonal line from the bottom-
left corner to the top-right corner. The plot shows that
SP is highly accurate at computing cover marginals, es-

pecially in the extreme regions at the bottom-left and
top-right.

The middle pane of Figure 4 compares the magneti-
zation based on cover marginals with the magnetiza-
tion based on solutions marginals. This will provide
an intuition for why it might be better to follow cover
marginals rather than solution marginals when looking
for a satisfying assignment.5 We see an interesting “s-

4 For clarity, the plots show magnetizations for one such
formula, although the trend is generic.

5 Of course, if solution marginals could be computed
perfectly, this would not be an issue. In practice, how-
ever, the best we can hope is to approximately estimate



−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

SP Magnetization

Co
ve

r M
ag

ne
tiz

at
io

n

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Cover Magnetization

So
lu

tio
n 

M
ag

ne
tiz

at
io

n

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

BP Magnetization

So
lu

tio
n 

M
ag

ne
tiz

at
io

n

Figure 4: Magnetization plots. Left: SP vs. covers. Middle: covers vs. solutions. Right: BP vs. solutions.

shape” in this plot, which can be interpreted as follows:
fixing variables with extreme cover magnetizations is
more conservative compared to fixing variables with
extreme solution magnetizations. Which means that
variables that are extreme w.r.t. cover-based magne-
tization are also extreme w.r.t. solution-based magne-
tization (but not necessarily vice-versa). Recall that
the extreme region is exactly where decimation-based
algorithms, that often fix a small set of extreme vari-
ables per iteration, need to be correct. Thus, etimates
of cover marginals provide a safer heuristic for fixing
variables than estimates of solution marginals.

As a comparison with BP, the right pane of Figure 4
shows BP magnetization vs. magnetization based on
solution marginals for the same 5000 variable, 21000
clause formula. Since BP almost never converges on
such formulas, we terminated BP after 10,000 itera-
tions (SP took roughly 50 iterations to converge) and
used the partially converged marginals obtained so far
for computing magnetization. The plot shows that BP
provides very poor estimates for the magnetizations
based on solution marginals. (The points are equally
scattered when BP magnetization is plotted against
cover magnetization.) In fact, BP appears to identify
as extreme many variables that have the opposite so-
lution magnetization. Thus, when magnetization ob-
tained from BP is used as a heuristic for identifying
variables to fix, mistakes are often made that eventu-
ally lead to a contradiction, i.e. unsatisfiable reduced
formula.

5 DISCUSSION

A comparison between left and right panes of Figure 4
suggests that approximating statistics over covers (as
done by SP) is much more accurate than approximat-
ing statistics over solutions (as done by BP). This
appears to be because covers are much more coarse

marginals.

grained than solutions; indeed, even an exponentially
large cluster of solutions will have only a single cover
as its representative. This cover still captures critical
properties of the cluster necessary for finding solutions,
such as backbone variables, which is what SP appears
to exploit.

We also saw that the extreme magnetization based on
cover marginals is more conservative than that based
on solution marginals (as seen in the “s-shape” of
the plot in the middle pane of Figure 4). This sug-
gests that while SP, based on approximating cover
marginals, may miss some variables with extreme mag-
netization, when it does find a variable to have ex-
treme magnetization, it is quite likely to be correct.
This provides an intuitive explanation of why the dec-
imation process based on extreme SP magnetization
succeeds with high probability on random 3-SAT prob-
lems without having to backtrack, while the decima-
tion process based on BP magnetizations more often
fails to find a satisfying assignment in practice.

We also note that BP and SP have been proven to com-
pute exact marginals on solutions and covers, respec-
tively, only for tree-structured formulas (with some
simple exceptional cases like formulas with a single cy-
cle). For BP, solution marginals on tree formulas are
already non-trivial, and it is reasonable to expect it to
compute a fair approximation of marginals on loopy
networks (formulas). However, for SP, cover marginals
on tree formulas are trivial: the only cover here is the
all-∗ cover. Cover marginals become interesting only
when one goes to loopy formulas, such as random 3-
SAT. In this case, as seen in our experiments, it is re-

markable that the SP computes a good approximation

of non-trivial cover marginals for non-tree formulas.

We hope that our results have convincingly demon-
strated that the study of the covers of formulas is very
fruitful and may well lead to a correct explanation of
the success of SP.



References

D. Achlioptas and F. Ricci-Tersenghi. On the solution-
space geometry of random constraint satisfaction prob-
lems. In 38th STOC, pages 130–139, Seattle, WA, 2006.

A. Braunstein and R. Zecchina. Survey propagation as lo-
cal equilibrium equations. J. Stat. Mech., P06007, 2004.
URL http://lanl.arXiv.org/cond-mat/0312483.

A. Braunstein, M. Mezard, and R. Zecchina. Survey prop-
agation: an algorithm for satisfiability. Random Struc-
tures and Algorithms, 27:201, 2005.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Fac-
tor graphs and the sum-product algorithm. Information
Theory, IEEE Transactions on, 47(2):498–519, 2001.

E. N. Maneva, E. Mossel, and M. J. Wainwright. A new
look at survey propagation and its generalizations. In
16th SODA, pages 1089–1098, Vancouver, Canada, 2005.

M. Mezard, G. Parisi, and R. Zecchina. Analytic and Al-
gorithmic Solution of Random Satisfiability Problems.
Science, 297(5582):812–815, 2002. doi: 10.1126/science.
1073287.

E. Mossel. Personal communication, April 2007.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study.
In 15th UAI, pages 467–475, Sweden, July 1999.

R. E. Neapolitan. Learning Bayesian Networks. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2004. ISBN
0130125342.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kauf., 1988.

R Development Core Team. R: A language and envi-
ronment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, 2005. URL
http://www.R-project.org. ISBN 3-900051-07-0.

W. Wei, J. Erenrich, and B. Selman. Towards efficient
sampling: Exploiting random walk strategies. In 19th
AAAI, pages 670–676, San Jose, CA, July 2004.

APPENDIX: DERIVATION OF THE
SP EQUATIONS

Section 3 shows how to formulate a constraint satisfac-
tion problem P (F ) such that its solutions are exactly
the covers of a formula F . Here we proceed to show
how the belief propagation formalism applied to P (F )
(as described in Section 3.1) results in the survey prop-
agation equations.

Review of BP. We assume familiarity with the
general form of BP equations, as used for example
by Neapolitan (2004) in Theorem 3.2. In short, BP
uses messages to communicate information between
nodes of the factor graph (between variable nodes
xa, . . . and function nodes Fx, Fa, . . .). Each message
is a function of one argument, which takes on the
same values as the variable node end-point of the mes-
sage. There are two kinds of messages: from vari-
able nodes to function nodes (denoted by πx→F (.)),
and from function nodes to variable nodes (denoted
by λF→x(.)). In a two-level Bayesian Network, π

messages are computed by (piecewise) multiplying to-
gether the λ messages received on all other links.
The λ messages are more complicated: they are sums
across all possible worlds (values for arguments of re-
ceived π messages) of products of all-but-one π mes-
sages with the chosen arguments. In case of a deter-
ministic system (which is our case: every world has
probability of either 1 or 0), this is equivalent to sum
of products of π messages with arguments that are
compatible with each other as judged by the corre-
sponding function node, Fx or Fa. Moreover, if a vari-
able node only has two neighboring function nodes,
then it merely passes received λ messages from one
neighbor to the other. Since all variable nodes in
P (F ) have degree two, we can safely ignore the ex-
istence of π messages and only focus on λ messages.
Thus, every Fx node receives messages from Fa nodes
(which we will denote by λa→x) and and every Fa

node receives messages from Fx nodes (denoted by
λx→a), both of which are functions of one argument,
(ra→x, wx→a) ∈ {(0, 0), (0, 1), (1, 0)}. The BP equa-
tions are constructed by considering the set of com-
patible variable node values given the one fixed value
in the argument.

Let C(x) be the set of all clauses containing variable
x, and V (a) the set of all variables appearing in clause
a. Further, let Cs

a(x) be the set of all clauses other
than a where x occurs with the same sign as in a.
Similarly define Cu

a (x) to be the set of clauses where
x occurs with the opposite sign as in a. Note that
Cs

a(x) ∪ Cu
a (x) ∪ {a} = C(x).

Equations for Fx. The equations for messages sent
from a factor node Fx are given in Figure 5. For the
argument value of (1, 0) the set of compatible values,
as judged by Fx when xa = (1, 0), is one where there
can be requests from clauses where x appears with the
same sign as in a (and no warnings sent to them), but
there must be no requests from opposite clauses (and
warning must be sent). Similarly for (0, 1), but here
the roles of Cs

a(x) and Cu
a (x) are exchanged, plus the

fact that x sends a warning to a means that it must be
receiving a request from some opposite clause (which is
accounted for by the “−” term). Finally, for the value
(0, 0), there are two possibilities: either at least one
request is received from Cs

a(x) (the first term in the
sum, analogous to the expression for (0, 1)), or there
are no requests at all (the second term in the sum).

Equations for Fa. Figure 6 shows equations for
messages sent from a factor node Fa. The argument
value of (1, 0) is the easiest: a sends out a request if
and only if all other variables send it a warning, so that
the only compatible values are all (0, 1). The case of
(0, 0) is the complement: a cannot receive a warning

http://lanl.arXiv.org/cond-mat/0312483
http://www.R-project.org


λx→a(1, 0) =
Y

b∈Cs

a
(x)

(λb→x(0, 0) + λb→x(1, 0))
Y

b∈Cu

a
(x)

λb→x(0, 1)

λx→a(0, 1) =
Y

b∈Cs

a
(x)

λb→x(0, 1)

2

4

Y

b∈Cu

a
(x)

(λb→x(0, 0) + λb→x(1, 0)) −
Y

b∈Cu

a
(x)

λb→x(0, 0)

3

5

λx→a(0, 0) =

2

4

Y

b∈Cs

a
(x)

(λb→x(0, 0) + λb→x(1, 0)) −
Y

b∈Cs

a
(x)

λb→x(0, 0)

3

5

Y

b∈Cu

a
(x)

λb→x(0, 1) +
Y

b∈C(x)\a

λb→x(0, 0)

Figure 5: BP equations for Fx

λa→x(1, 0) =
Y

y∈V (a)\x

λy→a(0, 1)

λa→x(0, 0) =
Y

y∈V (a)\x

(λy→a(0, 0) + λy→a(0, 1)) −
Y

y∈V (a)\x

λy→a(0, 1)

λa→x(0, 1) =
Y

y∈V (a)\x

(λy→a(0, 0) + λy→a(0, 1)) −
Y

y∈V (a)\x

λy→a(0, 1)

+
X

y∈V (a)\x

(λy→a(1, 0) − λy→a(0, 0))
Y

y′∈V (a)\{x,y}

λy′→a(0, 1)

Figure 6: BP equations for Fa

from all other variables, and since x does not send a
warning, a does not send a request anywhere. The last
case, (0, 1), is a little more complicated. The first part
is the same as before, but there needs to be a correc-
tion term to account for two extra possibilities: first
it is now possible that a issues a request to some y
if all other variables also send a warning (the positive
term in the sum), and second it is not possible that
all-but-one variable send a a warning and yet a does
not issue a request to the last one (the negative term
in the sum).

Deriving the SP equations. The expression
for λa→x(0, 1) can be simplified by assuming that
λy→a(1, 0) = λy→a(0, 0) for all y, in which case it
reduces to the expression for λa→x(0, 0). This as-
sumption is crucial, but not very restrictive. Notice
that it then follows that λx→a(1, 0) = λx→a(0, 0) (by
inspecting the appropriate expressions in Figure 5),
and therefore the assumption keeps holding when iter-
atively solving the BP equations, provided it was true
at the beginning.

The last step in the derivation is to rename and nor-
malize the terms appropriately so as to “recognize” the
SP equations in Figures 5 and 6. Let us define

ηa→x
4
=

Y

y∈V (a)\x

λy→a(0, 1)

λy→a(0, 0) + λy→a(0, 1)

and

Πu
x→a

4
= λx→a(0, 1)

Π0
x→a

4
=

Y

b∈C(x)\a

λb→x(0, 0)

Πs
x→a

4
= λx→a(0, 0) − Π0

x→a

Notice that ηa→x is just a rescaled λa→x(1, 0), and
that the scaling factor λy→a(0, 0) + λy→a(0, 1) equals
Πu

y→a + Πs
y→a + Π0

y→a. Rescaling λa→x(0, 0) and
λa→x(0, 1) in the same way (and using the assumption
that they are equal) yields λa→x(0, 0) = λa→x(0, 1) =
1 − ηa→x. Finally, writing down the BP equations for
λx→a(0, 1) and λx→a(0, 0) in terms of these new vari-
ables results in the familiar SP equations established
in Braunstein et al. (2005):

ηa→x =
Y

y∈V (a)\x

Πu
y→a

Πu
y→a + Πs

y→a + Π0
y→a

Πu
x→a =

Y

b∈Cs

a
(x)

(1 − ηb→x)

2

41 −

Y

b∈Cu

a
(x)

(1 − ηb→x)

3

5

Πs
x→a =

Y

b∈Cu

a
(x)

(1 − ηb→x)

2

41 −

Y

b∈Cs

a
(x)

(1 − ηb→x)

3

5

Π0
x→a =

Y

b∈C(x)\a

(1 − ηb→x)

In addition, the expressions for marginal probabilities
computed by BP from a fixed point of the above equa-
tions can be shown, in a similar way, to be equivalent
to the SP “bias” expressions.


	INTRODUCTION
	COVERS OF CNF FORMULAS
	PROBLEM REFORMULATION: FROM SOLUTIONS TO COVERS
	INFERENCE OVER COVERS

	EXPERIMENTAL RESULTS
	EXISTENCE OF COVERS
	SP, BP, AND MARGINALS

	DISCUSSION

