QBF Modeling: Exploiting Player Symmetry
for Simplicity and Efficiency

Ashish Sabharwal!, Carlos Ansotegui?,
Carla P. Gomes', Justin W. Hart!, and Bart Selman'

! Dept. of Computer Science, Cornell University, Ithaca, NY 14853-7501, U.S.A.
sabhar,gomes, jwh38,selman @cs.cornell.edu
2 Dept. of Computer Science, Universitat de Lleida, E-25001 Lleida, Spain
carlos@diei.udl.es

Abstract. Quantified Boolean Formulas (QBFs) present the next big
challenge for automated propositional reasoning. Not surprisingly, most
of the present day QBF solvers are extensions of successful proposi-
tional satisfiability algorithms (SAT solvers). They directly integrate the
lessons learned from SAT research, thus avoiding re-inventing the wheel.
In particular, they use the standard conjunctive normal form (CNF)
augmented with layers of variable quantification for modeling tasks as
QBF. We argue that while CNF is well suited to “existential reasoning”
as demonstrated by the success of modern SAT solvers, it is far from
ideal for “universal reasoning” needed by QBF. The CNF restriction im-
poses an inherent asymmetry in QBF and artificially creates issues that
have led to complex solutions, which, in retrospect, were unnecessary
and sub-optimal. We take a step back and propose a new approach to
QBF modeling based on a game-theoretic view of problems and on a
dual CNF-DNF (disjunctive normal form) representation that treats the
existential and universal parts of a problem symmetrically. It has several
advantages: (1) it is generic, compact, and simpler, (2) unlike fully non-
clausal encodings, it preserves the benefits of pure CNF and leverages the
support for DNF already present in many QBF solvers, (3) it doesn’t use
the so-called indicator variables for conversion into CNF, thus circum-
venting the associated illegal search space issue, and (4) our QBF solver
based on the dual encoding (Duaffle) consistently outperforms the best
solvers by two orders of magnitude on a hard class of benchmarks, even
without using standard learning techniques.

1 Introduction

The automated propositional reasoning community has come a long way since
the development of the first practical propositional satisfiability algorithms (SAT
solvers) nearly a decade ago. SAT solvers have been successfully used on real-
world problems from a variety of areas like hardware and software verification,
planning, and scheduling. Quantified Boolean Formula (QBF) reasoning extends
the scope of SAT to domains requiring adversarial analysis, like conditional plan-
ning [17], unbounded model checking [16, 3], and discrete games [7]. In the sim-
plest case, consider a two-player game. Here a winning strategy is a partial game

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 383

tree that, for every possible game play of the opponent, indicates how to proceed
so as to guarantee a win. This is more complex than the single-agent reasoning
SAT solvers offer, and requires modeling and analyzing adversarial actions of an-
other agent with competing interests. The QBF approach thus supports a much
richer setting. However, it also poses new and sometimes unforeseen challenges.
In terms of worst-case complexity, deciding the truth of a QBF is PSPACE-
complete [18] whereas SAT is “only” NP-complete.! Even with very few quan-
tification levels, the explosion in the search space is tremendous in practice.
Further, as the winning strategy example indicates, even a solution to a QBF
may require exponential space to describe, causing practical difficulties [2].

Nonetheless, several tools for deciding the truth of a given QBF (QBF solvers)
have been developed, such as Quaffle [20], sKizzo [3]|, Quantor [4], QuBE [8],
Semprop [10], Evaluate [5], Decide [15], and QRSat [13]. Most of these tools
extend the concepts underlying many successful SAT solvers, which use the
DPLL procedure [6] as their backbone. As a result, they inherit conjunctive
normal form (CNF) as the input representation, which has been the standard
for SAT solvers for over a decade. Internally, many solvers also employ disjunctive
normal form (DNF) in order to cache partial solutions for efficiency [21].

While the performance of QBF solvers has been promising, translating a
QBF into a (much larger) SAT specification and using a good SAT solver is often
faster in practice — a fact well-recognized and occasionally exploited [4, 3]. This
motivates the need for further investigation into the design of QBF solvers and
possible fundamental weaknesses in the modeling methods used.

The main contribution of this paper is a new generic QBF modeling technique
that uses a dual CNF-DNF representation and, with a fairly straightforward
adaptation of a modern QBF solver, improves the state of the art by two orders
of magnitude on a set of computationally challenging benchmarks. The dual
representation splits problem constraints into a CNF and a DNF part in a natural
manner based on a game-theoretic view. Note that we do not go to fully non-
clauses encodings, which also have promise but are unable to directly exploit
rapid advances in CNF-based SAT solvers. We also differ from an independent
dual CNF-DNF approach recently proposed [19] in that we do not convert a full
CNF encoding into a logically equivalent full DNF encoding and provide both to
the solver. Our approach exploits the representational power of DNF to simplify
the model while addressing the issues associated with pure CNF representations.

We think of a problem P as a two-player game G with a bounded number
of turns. This is different from the standard interpretation of a QBF as a game
[14]; in our approach, one must formulate the higher level problem P as a game
G before modeling it as a QBF. The sets of “rules” to which the players of G are
bound may differ from one player to the other. In general, any QBF reasoning
task has a natural game playing interpretation at a high level, which we exploit.
We illustrate this correspondence with a circuit minimization problem [cf. 14]

! Assuming P # NP, PSPACE-complete problems are significantly harder than NP-
complete problems; cf. [14].

384 A. Sabharwal et al.

that underlies practical QBF benchmarks involving adder circuits and sorting
networks [12], a graph coloring problem, and a chess-like problem [11, 1].

The key idea underlying our approach is to exploit a dichotomy between the
players: we model rules for the existential player as CNF clauses, (the negations
of) rules for the universal player as DNF terms, and split game state informa-
tion equally into clauses and terms. This symmetric dual format places “equal
responsibility” on the two players, in stark contrast with current QBF encodings
which tend to leave most work for the existential player. We are able to avoid
many pitfalls of current techniques while increasing the reasoning efficiency. In
particular, we bring to QBF solvers unit propagation across quantifiers which
has been a stumbling block so far. We are also able to completely avoid the use of
the so-called auxiliary indicator variables and the associated illegal search space
issue inherent in the translation of QBF problems into pure CNF form [1].2

We evaluate our approach with Duaffle (short for dual-Quaffle), our QBF
solver for the dual encoding. It is an adaptation of the solver Quaffle, which
already supports DNF terms for solution learning. Our empirical evaluation on
computationally difficult chess-based instances shows that Duaffle consistently
outperforms the best solvers by several orders of magnitude. More generally, this
paper demonstrates that by taking a step back and re-thinking basic modeling
techniques, one can significantly extend the reach of QBF reasoning systems.

2 Preliminaries

We begin by discussing how adversarial tasks can be treated as games, and then
describe our QBF notation and a systematic way of encoding games as QBF.

2.1 Treating Adversarial Tasks as Games

Most discrete adversarial tasks have a natural albeit somewhat non-traditional
game playing interpretation with an existential and a universal player. Interest-
ingly, the rules for the existential player are often different from those of the
universal player. We illustrate this with two simple but concrete examples.

Ezample 1. The Circuit Minimization Problem: Given a Boolean circuit C,
is there a smaller circuit that computes the same function as C'? Observe that
the answer is yes iff there exists a circuit Cg such that size(Cg) < size(C) and
for all inputs p, Cg(p) = C(p). This problem lies in the complexity class X¥,
which is believed to be beyond NP and is characterized by QBFs with exactly
two levels of quantification beginning with the existential [cf. 14].

We can think of circuit minimization as a game with two turns. First, the
existential player E' commits to a circuit Cg by specifying the type its gates,
their connections, and the output line. The rules for E are that Cg must be a

2 While this can also be handled by providing semantic information about auxiliary
variables as additional input [1], this has the undesirable effect of mixing the declara-
tive nature of problem specification with the procedural nature of solution technique.

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 385

legal circuit with size(Cg) < size(C). Second, the universal player U produces
an input p and the polynomial-size computations of C'r and C' on p. The rule
for U is that it must correctly compute Cg(p) and C(p). The goal of E is to
ensure that Cg(p) = C(p) no matter how p is chosen. ad

Ezxample 2. The Chromatic Number Problem: Given a graph H and a pos-
itive integer k, does H have chromatic number k? The chromatic number of a
graph is the minimum number of colors needed to color its vertices so that no
two adjacent vertices have the same color [cf. 14]. Observe that the answer is yes
iff H has a legal coloring with k colors but no legal coloring with & — 1 colors.
We can again think of this as a game between E and U. First, E produces a
coloring o of the vertices of H. The rule for E is that ¢ must be a legal k-coloring
respecting the edges of H. Second, U produces a second coloring 7 of the vertices
of H. The rule for U is that 7 must be a legal (k — 1)-coloring of H. E wins iff
she is able to produce a valid ¢ and U is not able to produce a valid . O

2.2 Quantified Boolean Formulas

Let V = {z1,...,z,} be a set of n propositional (Boolean, TRUE-FALSE, 1-0)
variables. A conjunctive normal form or CNF formula over V is a conjunction of
clauses, where each clause is a disjunction of literals, and a literal is a variable
or its negation. A disjunctive normal form or DNF formula is a disjunction of
terms (sometimes called cubes), where each term is a conjunction of literals.

A Quantified Boolean Formula (QBF) is a Boolean formula in which variables
are quantified as existential (3) or universal (V). We will use the term QBF for
totally quantified Boolean formulas in prenex form beginning with 3:

F = 3af... Elmi(l) Vad .. .Vxé(z) o Qg Q:zzz_(k) M

where M is a Boolean formula referred to as the matriz of F, z’ above are
distinct and include all variables appearing in M, and @ is 3 if £ is odd and V if
1ol
of quantification, we can simplify the notation to F = 3V; VvV, 3dVs ... QVp M. A
QBF solver is an algorithm that determines the truth value of such formulas F,
i.e., whether there exist values of variables in V; such that for every assignment
of values to variables in V3, and so on, M is satisfied (set to TRUE).

For two Boolean formulas G and G’, G = G’ will denote syntactic equality
(they “look” the same) and G = G’ will denote semantic equality (they evaluate
to the same truth value for every variable assignment). For two QBFs F' and
F', F = F’' will denote syntactic equality, while F = F’ will denote semantic
equality between the matrices (i.e., the Boolean parts) of F' and F’.

k is even. Defining V; = {x } and using associativity within each level

2.3 QBF and Two-Player Games

A QBF F = 31 VV; ... QVir M has a natural interpretation as a two-player
game G (see standard texts, e.g. [14]). The idea is to have an existential player

386 A. Sabharwal et al.

FE and a universal player U, who take turns setting variables in V1, V5, ..., Vi in
order. If M is satisfied after all variables are set, ¥ wins. Otherwise, U wins.

Our interest in this work, however, is in going the other direction, that is,
treating arbitrary adversarial tasks as discrete games and modeling them as
QBF. Given a discrete two-player game G with players E and U, a bound k on
the total number of turns, and the guarantee that after k turns either F or U
will be declared a winner (i.e., there is no “draw”), we can construct a QBF
F=3ViVVa ... QV,; M that models G in the following manner.?

We will follow the systematic framework described by Ansotegui et al. [1].
It is based on a highly successful technique used in SAT-based planning [9] and
can be applied to any well-defined discrete game G without draws. The variables
of F' model the possible moves of E and U as well as global state information
maintained about the game as it is played. The possible moves in the i* turn
naturally correspond to variables in V;. The rules and goal of G are formulated
as follows: (1) precondition and effect axioms for each move in relation to the
game state before and after the move, (2) mutual exclusion axioms restricting a
player to one move per turn, (3) frame axioms ensuring that parts of the game
state not affected by the current move stay unchanged, (4) initial state axioms,
and (5) goal axioms stating the winning conditions for one of the players chosen
arbitrarily. With no draws, it clearly suffices to describe one player’s goals.

The transition axioms for the i*" turn are the conjunction of the precondition,
effect, mutual exclusion, and frame axioms for that turn, denoted by Tr' =
Pri A Mf* A Me' A Frt. With a bound k on the total number of turns in G,
all transition axioms for the existential player E and the universal player U
can be grouped together as Try = Tr' A Tr3 A ... A Tr-°44*) and Try =
T2 A TP A Treven ™) where odd(k) and even (k) denote the largest odd and
even integers up to k, respectively. Let I denote the initial state axioms and Gg
the goal axioms for E. The following Boolean formulas represent two alternative
formulations of G:

M, =1AN TTE/\(TTU—>GE) MQZTT’U—>(I/\ T’/’E/\GE) (1)

In general, the choice of the formulation is dictated by the requirements of
the game being modeled. Formulation M; has the property that it evaluates to
TRUE on a variable assignment iff (a) E adheres to all her rules and (b) either
E achieves her goal or U violates his rules. This fits the game interpretations
of the circuit minimization and graph coloring examples we saw in Sect. 2.1. In
graph coloring, for instance, E must adhere to her rules of producing a valid
k-coloring of H irrespective of whether U is able to produce a (k — 1)-coloring.
On the other hand, My evaluates to TRUE iff either (a) E adheres to all her
rules and achieves her goal, or (b) U violates his rules. This relieves E of all

3 Interestingly, without the possibility of a draw, exactly one of E and U is guaranteed
to have a winning strategy even before they start playing the game. This is because if
FE does not have a choice of moves that will make her win irrespective of the moves of
U, then U’s winning strategy is simply the “witness” of this fact. This corresponds
to the only two possible evaluations of the QBF F'| namely, TRUE and FALSE.

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 387

responsibility if U violates a rule. This formulation fits games like chess where
E doesn’t even need to continue playing the game according to her rules if U
makes an illegal move; she is immediately declared the winner. While chess may
also be formulated as M7, using Ms increases the reasoning efficiency.

Let S* denote the state variables for G during the i*" turn, A* the move or
action variables, and I* a set of auxiliary “indicator” variables [1] used to detect
when the formula may be declared satisfiable. Assuming k is odd, the complete
CNF-based QBF formulation of G is given by:

351A'S? VA2 312834381 ... vART JrilghARghtl oan (2)
—_— N Y e e

where i € {1,2} is chosen based on the requirements of G.

3 A New QBF Modeling Technique

In this section, we present a new QBF modeling technique based on a game-
theoretic view of the underlying problem and a dual CNF-DNF representation.
We also describe a QBF solver that uses this dual representation. We begin with
the motivation behind using DNF.

CNF is the generally accepted input format for SAT solvers, and for two good
reasons. First, many problems of interest are naturally expressed as a conjunction
of several constraints. Second, before SAT solvers reach their goal of finding any
one satisfying assignment, they typically encounter many falsifying assignments.
It is therefore extremely beneficial for them to be able to deduce locally from
a single CNF clause that all extensions of the current partial assignment will
be falsifying. This forms the basis of DPLL-based backtrack search as well as
heuristics for local search. On the other hand, due to universal quantification,
a QBF solver must continue its search even after one satisfying assignment is
found. It must therefore also detect satisfiability quickly. While the satisfaction of
a CNF formula is a global property (all clauses must be satisfied), the satisfaction
of a DNF formula can be guaranteed locally by evaluating an individual term.

This fact is exploited by QBF solvers that implement “solution learning”
[21]. We take this observation a step further, using a combination of CNF and
DNF as part of the input formula itself. Interestingly, adding DNF-based solu-
tion learning to the solver Quaffle, while theoretically natural and desirable,
has limited practical impact on many problem instances over and above what
“conflict clause” learning already achieves. In fact, the “conditional” variant of
Quaffle called QuaffleC [1], which outperforms all state-of-the-art QBF solvers
on our benchmarks, doesn’t even use solution learning and DNF because of tech-
nical reasons. On the other hand, using DNF as part of the problem specification
itself, as we will see, can be extremely effective.

Our modeling technique is based on the interpretation of adversarial tasks as
games as discussed in Sect. 2.1. For modeling games as QBF, recall the generic
framework of Sect. 2.3 and, in particular, the matrices My = I A Trg A (Try —
Gg), My = Try — (I A Trg A Gg) in Eqn. (1) and the variable quantifica-
tion in Eqn. (2). Two crucial observations about this representation of games

388 A. Sabharwal et al.

motivate our modeling approach. (A) The implications Try — ... in M; and
Ms must be translated into a CNF formula by either expanding it out, which is
typically costly, or adding new auxiliary variables, which cause problems with
unit propagation and lead to the illegal search space issue. This is discussed in
detail by Ansotegui et al. [1] and is handled using a fairly intricate machinery of
individual and grouped “indicator” variables that flag the violation of any rule
by U and “propagate” this information globally to all clauses. This makes the
model undesirably complex. (B) The variable quantification in Eqn. (2) clearly
depicts the “unequal treatment” of E and U. While U only decides actions at
even-numbered turns, F is left with the responsibility of deciding actions at odd-
numbered turns, maintaining the correct game state at every turn, and setting
and propagating appropriate indicator variables when U violates a rule.

3.1 Modeling Games in a Dual CNF-DNF Form

Representing games as QBF in the framework of Sect. 2.3 boils down to specify-
ing the initial state, the rules of the game, and the goal for a player as a Boolean
formula, and quantifying appropriately over its variables. In our approach, we
model the rules for the existential player E as a CNF formula G and, unlike
existing encoding techniques, model (the negations of) the rules for the universal
player U as a DNF formula H, respecting the following behavior: violation of
a rule by E should directly falsify a clause of G and violation of a rule by U
should directly satisfy a term of H. The dual formula will encode the winning
conditions for E.

Before going into the details for the general setting, we illustrate the complete
dual encoding for the chromatic number problem described earlier.

Ezample 3. Dual Encoding of the Chromatic Number Problem: Let
(H, k) be the problem input. Let n = |V (H)| and [m] denote {1,2,...,m}. Recall
the game playing interpretation of this problem from Sect. 2.1. The correspond-
ing dual QBF encoding has nk existential variables z; ; with i € [n],j € [k] for
the rules of the existential player F, and n(k — 1) universal variables y; ; with
i € [n],j € [k — 1] for the rules of the universal player U. Semantically, x; ; (or
Yy;,;) is TRUE iff E (or U, respectively) assigns color j to vertex i.

We construct a CNF formula Feong such that it is satisfied by a variable
assignment iff the x variables form a legal k-coloring of H. The first set of clauses
in Fonr will say that every vertex must be assigned some color by x, the second
set will say that a vertex can get only one color, and the third set will say that
if two vertices share an edge, then they do not get the same color. Formally,

Fonr = /\ (xm V...V 1‘,’7k-) A /\ (f@j Vf@j/) A /\ (fi,j V Ei’,j)
i€[n] 1€[n] (i,i")EE(H)
J#i'€[k] JE[K]

We now construct a DNF formula Fpng which is satisfied by an assignment iff
the y variables do not form a legal (k — 1)-coloring of H. The first set of terms
in Fpnr will say that some vertex is not assigned any color by y, the second set

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 389

will say that two different colors are assigned to a single vertex, and the third
set will say that two adjacent vertices are assigned the same color. Formally,

Fpnr = \/ Gig A AT gm1) V \/ (Yij Nyigr) V \/ (Yij Nyirj)
i€[n] i€[n] (4,4) EB(H)
J#3' €lk—1] Jj€E(k—1]

Finally, the dual QBF encoding of the chromatic number problem is given by

Fopronum(H, k) = 3xi12i0. . nk YYit¥i2- - Unjk—1 Fonr A Fone

The game playing interpretation implies that Fopynum (H, k) is TRUE iff the chro-
matic number of H is k. O

More generally, we begin by thinking of the rules for E and U as standard
clauses encoding various axioms like preconditions and effects for each turn, as
defined in Sect. 2.3. For F, these directly become part of the CNF portion.
For U, we negate each of these clauses to obtain DNF terms, which directly
become part of the DNF portion. The overall QBF encoding is created from the
perspective of E by encoding conditions under which E would win. We illustrate
the translation of rules into clauses and terms with a simple example.

Ezample 4. The Game of Chess: We use standard chess notation, with board
columns a-g and rows 1-8. A typical set of precondition axioms would be: if the
white player moves a rook from square b2 to square b4 at step s, then (a) that
rook must be at b2 to begin with, (b) b3 must be empty, and (c) there must not
be a white piece at b4. Treated as clauses, these translate into:

Ciy = (NOT move-wRook-b2-b4-s OR at-wRook-b2-s)

C2 = (NOT move-wRook-b2-bd-s OR empty-b3-s)

Cs = (NOT move-wRook-b2-b4-s OR NOT at-wPiecel-b4-s)
Cy = (NOT move-wRook-b2-b4-s OR NOT at-wPiece2-b4-s)

The clause C1, for instance, says that the CNF formula is immediately falsified
if a white rook tries to move from square b2 to b4 without actually being there
at step s. When modeling the white player as the existential player E, we use the
above set of clauses. The axioms for the black player modeled as the universal
player U state the converse, i.e., the conditions under which it violates a rule or
fails to reach its goal, causing E to win. These are the negations of the standard
axiom clauses, and are modeled as DNF terms of the form:

D; = (move-bRook-b2-b4d-s AND NOT at-bRook-b2-s)
D; = (move-bRook-b2-b4-s AND NOT empty-b3-s)
D3 = (move-bRook-b2-b4-s AND at-bPiecel-b4-s)
D, = (move-bRook-b2-b4-s AND at-bPiece2-b4-s)

The term Ds, e.g., says that the DNF formula is satisfied if a black rook attempts
to move from b2 to b4 and the intermediate square b3 is non-empty. m]

390 A. Sabharwal et al.

Given this symmetric way of encoding the rules for E and (the negations of)
the rules for U as a collection of clauses and terms, respectively, we are ready to
state the complete new encoding in the generic framework of Sect. 2.3. Recall
Eqn. (1) describing two possible matrices M7 and Mj of the QBF formulation of
a game G. Note that since there is no draw, Gy = -G g. We rewrite M7 and M,
in the following manner, which immediately suggests a natural split into CNF
and DNF parts and how to logically combine them. We use M/ to emphasize
the syntactic difference with M;,i € {1, 2}; semantically M] = M.

M{:(I/\T’I“E)/\(—‘TT’U\/—‘GU) MQ/:(I/\T’I‘E/\GE)\/—'T’FU (3)
—— ————— —_— ——
CNF DNF CNF DNF

We see that while M| combines the CNF and DNF parts with the AND operator,
M uses the OR operator. Which one of M| and M} is chosen for a particular
game G at hand is dictated by the requirements of G as discussed in Sect. 2.3.
Particularly, if the game stops as soon as U violates a rule, M} is preferred.

Recall that Try is the conjunction of transition clauses for even-numbered
turns, so that —Try is naturally expressed as a DNF formula with terms corre-
sponding to negated original clauses:

~Try = —Tr* v =Tr* v...v =Trevenk)
))) .) DNF
-Tr* = =Pr'Vv-Mf'V-Me" V—-Fr'

Similarly for -Gy . Equation (3) is the heart of our dual representation. All that
remains to be specified is variable quantification. As in Sect. 2.3, we use S* for
state variables and A’ for move or action variables during the i** turn. (Indicator
variables I* are not used.) The complete dual CNF-DNF encoding of G is:

351 3A1S? VA%S® 3A38% vArSS .. QAFSHTL M (4)

where i € {1,2}. Intuitively, this quantification says that given the initial state,
E makes her move A! and brings G to state S? while obeying her rules, U then
makes his move A% and brings G to state S® while obeying his rules, and so
on, for k turns. Contrasting this with the original quantification in Eqn. (2)
immediately highlights our symmetric treatment of the two players.

3.2 Duaffle: A QBF Solver using the Dual Encoding

We adapted the QBF solver Quaffle to create a new solver Duaffle (short for
dual-Quaffle) that determines the truth value of QBF formulas in the dual
CNF-DNF form described above. The input format for Duaffle is a straight-
forward extension of the standard QDIMACS format [cf. 12]. Specifically, the
formula is specified as a collection of CNF clauses and DNF terms along with
variable quantification, as defined in Eqns. (3)-(4) and illustrated in Example 3.
In addition, Duaffle takes as input a parameter specifying which of M| and M}
in Eqn. (3) is used in the problem formulation. We identify these two formula-
tions with the Boolean operator that is used to combine the corresponding CNF
and DNF parts, namely, AND and OR.

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 391

In general, the behavior of a QBF solver with a mix of CNF and DNF as
input is defined by what we call its solver policy: the actions it takes when
it encounters any of the nine combinations of the CNF and DNF parts being
undetermined (denoted U), falsified (F), or satisfied (T) by a partial variable
assignment. The possible actions include declaring the current branch unsatis-
fiable (UNS), declaring it satisfiable (SAT), or continuing to branch further by
setting more variables (BRN). Duaffle implements two policies that correspond
to the AND and OR dual formulations. These are given in Figure 1(a)-(b).

DNF part DNF part DNF part
U F T U F T U F T
U | BRN | UNS | BRN U | BRN | BRN | SAT U | BRN | BRN | SAT
CNF
part F | UNS | UNS | UNS F | BRN | UNS | SAT F|(UNS)| UNS | ST
T | BRN | UNS | SAT T | SAT | SAT | SAT T | SAT | SAT | SAT

(c) Duaffle with OR

(a) Duaffle with AND (b) Duaffle with OR v)
optimized for pure games

Fig. 1. Solver policies of Duaffle and the optimization for pure games

Implementation: Modern QBF solvers such as Quaffle already have the data
structures and reasoning methods to support the DNF format we need. These
are used for solution learning. The input format of Quaffle is pure CNF with
quantification. Duaffle is created by adapting Quaffle so as to receive a dual
CNF-DNF input, follow the solver policies in Fig. 1(a)-(b), and use a modified
constraint propagation mechanism necessary for our dual formulation.

Quaffle assumes certain restrictions on the CNF and DNF formulas it oper-
ates on, most notably that the DNF part logically implies the CNF part (because
DNF terms are added only through solution learning). Besides resulting in a dif-
ferent solver policy than what we need, this also makes Quaffle’s constraint
propagation mechanism unsuitable for Duaffle. Consider a simple quantified
DNF term: Vz3y (z A y). Let F = Fonr A Fpnr be the complete formula. In
the game-playing interpretation, the goal of the universal player U is to make F’
FALSE. If U sets z = TRUE, the existential player E can set y = TRUE, so that
Fpng = TRUE. When Fpnr — Fenr (the working assumption of Quaffle), this
implies Fong = TRUE, so that F itself is satisfied and U loses. Therefore, U can
safely infer from the DNF term (z A y) that must be set to FALSE. In general,
Quaffle can ignore variables with deeper existential (universal) quantification
when performing standard unit propagation on a universal (existential, resp.)
variable in a term (clause, resp.), achieving faster propagation.

In Duaffle, where FpNr 7~ Fonr, such inference by U would be incorrect.
When z = TRUE and E sets y = TRUE to satisfy the DNF term (z A y), this
could make a clause in Fonp FALSE, so that F' is falsified and U still wins. One
must therefore ignore quantification levels and revert back to a simpler SAT-type
notion of unit propagation: a universal (or existential) variable is implied by a
term (or clause, resp.) iff all other literals in it are TRUE (or FALSE, resp.). Fortu-

392 A. Sabharwal et al.

nately, the cost incurred by the removal of quantifier-sensitive unit propagation is
more than paid off by the benefits of the dual model, such as propagation across
quantifiers (see Sect. 4). Partly due to these reasons, the experimental results we
report are based on Duaffle™, a restricted version of Duaffle with no conflict
learning or solution learning. If today’s SAT and QBF solvers are any indication,
the performance of Duaffle™ can only improve by re-integrating learning.

Optimization: Figure 1(c) depicts an optimization to Duaffle when using the
OR formulation (i.e., matrix M%) on “pure” games. Recall that M}, can be used for
any game in which £ immediately wins as soon as U violates a rule. Such games
are typically pure in the sense that they also follow the converse: U immediately
wins if F violates a rule. This converse is not captured by the OR connective in
M. The optimization for the solver policy is the following: if the DNF part is
still undetermined but the CNF part is FALSE, declare the branch to be UNS and
backtrack. The correctness of this relies on the top-down structure of Quaffle,
which sets variables respecting the quantification order. As a result, the DNF
part being undetermined and the CNF part being FALSE imply that the game
has indeed already been played according to the rules till the current turn.

4 Experimental Results

We evaluated our approach on a challenging set of QBF formulas encoding a
rich variant of the game of chess. This game fits well in the M}, dual formulation
using the OR connective.

The Game xChess: xChess is based on Evader-Pursuer, a chess-like game
introduced as a QBF benchmark by Madhusudan et al. [11] and later extended to
several pieces [1]. We generalize it further by introducing more refined movements
of various pieces. The input is an n x n chess board with an initial configuration
consisting of some white and black pieces, the rules defining legal moves of each
piece, the maximum number k of turns, and the goal square g. The players take
alternating turns as usual, starting with white. The white player wins iff the
white king, K, is placed at g at or before step k. K, is always part of the
initial board configuration. We assume that k is odd.

The rules for the moves, which are part of the problem input for xChess, are
defined as follows. The sets of legal moves for pawns and knights are defined as
an arbitrary subset of their possible moves in standard chess. The set of legal
moves for every other piece is defined by an 8-tuple, which denotes the maximum
number of squares the piece can move in each of the eight directions (horizontal,
vertical, and diagonal). Thus, one can create new kinds of pieces by appropriately
defining the rules for their moves, yielding a fairly rich setting.

Table 1 summarizes the results obtained on several xChess instances on a 550
MHz 8 processor Intel Pentium III Linux machine with 4 GB shared memory. The
first set of instances encode an unreachability argument based on the number of
moves (details in Sect. 5). The second and third sets have a mix of wins for white
and black, and range in hardness from being solved in a few seconds to several

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 393

Table 1. QBF solvers on xChess instances. T/F indicates formula is TRUE (white
wins) or FALSE (black wins). Run-time is in seconds. — denotes time-out after 1 hour,
-m- denotes out of memory, and -e- denotes runtime error related to stack overflow.

Pure CNF Encoding New Dual Encoding
xChess °) /
instance wé/ &6Q’ 1&’0 5 ‘;;5’ Qg)

vars cls & 5 A7 & o vars cls trms %
name T/F I A v & & 3 S

(x10%) (x107) <

conf-rl F 5 42 — 12 4.0 15 1.3 3 22 14| o0.01
conf-r2 F 7 60 — 25 58 33 25 5 29 22| 0.02
conf-r3 F 10 7 — 55 93 62 4.1 6 36 29/ 0.03
conf-r4 F 12 94 — 8 26 124 64 7 43 36| 0.04
conf-r5 F 23 207 — 985 84 676 34| 13 88 75| 0.08
conf-r6 F 27 239] — 2042 73 713 49| 15101 88| 0.10
confla T 13 155 — 627 83 — 161 7 55 63 1.8
conflb F 13 155 — 682 176 2939 124 7 55 63 1.3
confle T 13 155/ -e- 659 804 — 156 7 55 63 2.1
confld F 13 155 — 706 1930 1473 148 7 55 63 2.2
conf2a T 9 83 — — — — 438 4 24 35 65.9
conf2b F 9 88 —- — — — 275 4 24 35| 56.9
conf3a T 17 176 — — -m- — 653|| 12 94 62 5.2
conf3b F 16 162 — — — 2128 327|| 11 79 62 2.2
conf4 F 17 163 — — — — 274 11 73 74| 32.0
confs5 F 8 770 — 1018 427 142 11 5 41 26 0.1
conf0l F 19 210 -e- 1225 492 — 539 9 61 99 6.4
conf02 F 12 100| -e- 93 30 6.0 1.0 7 12 69 0.0
conf03 T 9 88| — — 1532 — 83 6 47 31 1.4
conf04 T 10 92| — — -e- 2352 100 T 47 37 3.5
conf05 F 15 181 -e- 3290 448 510 196 9 94 66 0.1
conf06 F 12 123 — — -m- — 633 7 47 54| 30.6
conf07 F 10 84| -e- 261 42 78 35 6 12 48 0.0
conf08 T 13 142 — — 1509 — 1088 8 59 64| 31.2

minutes to hours. These instances have an average of 7 quantifier alternations.
We compare the performance of five state-of-the-art QBF solvers on a pure CNF
encoding against Duaffle™ (Duaffle without solution- or conflict-learning) with
the pure games optimization on the dual encoding with the ORrR formalism. The
solvers used are the conditional solver QuaffleC [1], Quaffle [20], sKizzo version
0.8.1 [3], Semprop version 010604 [10], and Quantor version 2004.01.25 [4]. These
were among the top five solvers in QBF Evaluation 2005 [12].

The results clearly show that the benchmark suite of xChess instances is
challenging for the best available QBF solvers. While Semprop, sKizzo, and
Quaffle solve many of the instances in a few minutes, QuaffleC performs the
best on the pure CNF encoding. Surprisingly, Quantor was unable to solve any
of the instances of xChess we considered. As the last column of the table shows,
by using the dual encoding along with Duaffle™ optimized for pure games, we
consistently achieve two orders of magnitude improvement even over QuaffleC.

394 A. Sabharwal et al.

The first set of xChess instances, conf-rl to conf-r6, highlight an important
benefit of the dual encoding, namely, fast unit propagation across quantifiers,
which previous approaches did not achieve. The net effect is that while QuaffleC
needs thousands of branching decisions and conflict-learning to solve these in-
stances, Duaffle solves them during its preprocessing stage by simple constraint
propagation without even a single explicit branch. This is explained as follows.
These instances are based on an “unreachability” argument, namely, the white
player simply has one too few steps to make the white king, K, reach the goal
square g, and therefore must lose. In our framework, this can be inferred by con-
straint propagation across quantifiers: if the distance between K, and g after the
white player’s turn ¢ is d (denoted dist(K,,g,t) = d), then dist(K,,g,t + 1) =
d,dist(Ky,g,t+2) >d—1,dist(Ky,g,t+3) >d—1,dist(Ks,g,t +4) > d — 2,
and so on, till dist(K,,g,k) > 1, where k is the total number of allowed turns.
These distance inequalities manifest themselves in the sets of falsified location
variables capturing squares at which K,, cannot be after ¢ turns.

For the above inference to work, state information from turn ¢ to t + 2 to
t + 4, and so on, must be carried across intermediate turns of the black player
through frame axioms (Sect. 2.3), which involve universal variables. Technically,
a CNF clause can never imply and fix the value of universal variables at steps
t+1,t+3, etc., hindering the process of determining the locations not reachable
by K. With pure CNF a solver must branch on intermediate universal variables
and later learn that this was irrelevant. In the dual encoding, universal state
variables for K, are instead implied and set by DNF terms encoding frame
axioms, bridging state information between consecutive existential layers.

Note also that the number of variables in the dual encodings of xChess in-
stances is roughly a half of pure CNF encodings because auxiliary variables are
not needed. Variables in the dual encoding correspond precisely to the set of
possible moves and locations for each piece, making the QBF model very clean.
The “rules” are split into CNF clauses and DNF terms in proportion to the
richness of the sets of pieces the two players have in each instance.

5 Conclusion

This paper demonstrates that by using a well-designed combination of CNF and
DNF formulas as the input for QBF solvers, one can avoid many issues tradition-
ally associated with QBF reasoning. Most tasks one intends to model as QBF
have natural interpretations as generalized two-player games. Such tasks fit well
into our game-theoretic formalism and translate into our dual representation. In
addition to being simpler and avoiding the illegal search space issue, the dual
model enhances in QBF solvers an essential technique that has made SAT solvers
highly successful, namely, constraint propagation, which is now achieved across
quantifiers. Our solver Duaffle outperforms state-of-the-art solvers by orders of
magnitude. Finally, we believe that the full potential of solution learning tech-
niques, which were inhibited by a pure CNF input highly biased towards conflict
learning, will be unveiled once learning is re-integrated into Duaffle™.

6

QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency 395

Acknowledgments

We thank the anonymous reviewers for helpful comments. This work was supported
by the Intelligent Information Systems Institute, Cornell University (AFOSR grant
F49620-01-1-0076) and DARPA (REAL grant FA8750-04-2-0216). The work of Carlos
Ansotegui was also partially supported by the Ministerio de Educacion y Ciencia,
Spain (projects TIN2004-07933-C03-03 and TIC2003-00950).

References

(1]

[17]
[18]
[19]
[20]

[21]

C. Ansotegui, C. P. Gomes, and B. Selman. The Achilles’ heel of QBF. In 20th
AAAI pages 275281, Pittsburgh, PA, July 2005.

M. Benedetti. Extracting certificates from quantified Boolean formulas. In 19th
1JCAI pages 47-53, Edinburgh, Scotland, July 2005.

M. Benedetti. sKizzo: a suite to evaluate and certify QBF's. In 20th CADE, volume
3632 of LNCS, pages 369-376, Tallinn, Estonia, July 2005.

A. Biere. Resolve and expand. In 7th SAT, volume 3542 of LNCS, pages 59-70,
Vancouver, BC, Canada, May 2004. Selected papers.

M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An algorithm to eval-
uate QBFs and its experimental evaluation. J. Auto. Reas., 28(2):101-142, 2002.
M. Davis, G. Logemann, and D. Loveland. A machine program for theorem prov-
ing. CACM, 5:394-397, 1962.

I. P. Gent and A. G. Rowley. Encoding Connect-4 using quantified Boolean for-
mulae. In Work. Modelling and Reform. CSP, pages 78-93, Ireland, Sept. 2003.
E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A symtem for deciding
QBFs satisfiability. In IJCAR, vol. 2083 of LNCS, pg. 364-369, Italy, June 2001.
H. A. Kautz and B. Selman. Planning as satisfiability. In Proc., 10th Euro. Conf.
on Al pages 359-363, Vienna, Austria, Aug. 1992.

R. Letz. Lemma and model caching in decision procedures for quantified Boolean
formulas. In TABLEAUX, vol. 2381 of LNCS, pg. 160-175, Denmark, July 2002.
P. Madhusudan, W. Nam, and R. Alur. Symbolic computation techniques for
solving games. FElec. Notes TCS, 89(4), 2003.

M. Narizzano and A. Tacchella (Organizers). QBF 2005 evaluation, June 2005.
URL http://www.qbflib.org/qbfeval/2005.

C. Otwell, A. Remshagen, and K. Truemper. An effective QBF solver for planning
problems. In Proc. MSV/AMCS, pages 311-316, Las Vegas, NV, June 2004.

C. H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

J. Rintanen. Improvements to the evaluation of quantified Boolean formulae. In
16th IJCAI, pages 1192-1197, Stockholm, Sweden, July 1999.

J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for quanti-
fied Boolean formulae. In 8th Intl. Conf. Logic for Prog., Al, and Reason., volume
2250 of LNCS, pages 362-376, Havana, Cuba, Dec. 2001.

J. Rintanen. Constructing conditional plans by a theorem prover. JAIR, 10:
323-352, 1999.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time.
In Conf. Record of 5th STOC, pages 1-9, Austin, TX, Apr.-May 1973.

L. Zhang. Solving QBF by combining conjunctive and disjunctive normal forms.
In 21th AAAI Boston, MA, July 2006. To appear.

L. Zhang and S. Malik. Conflict driven learning in a quantified Boolean satisfia-
bility solver. In ICCAD, pages 442-449, San Jose, CA, Nov. 2002.

L. Zhang and S. Malik. Towards a symmetric treatment of satisfaction and con-
flicts in QBF evaluation. In 8th CP, pages 200-215, Ithaca, NY, Sept. 2002.

http://www.qbflib.org/qbfeval/2005

