
Integrating Systematic and Local Search Paradigms:
A New Strategy for MaxSAT

Lukas Kroc and Ashish Sabharwal and Carla P. Gomes and Bart Selman

Department of Computer Science, Cornell University

Ithaca, NY 14853-7501, U.S.A.

{kroc,sabhar,gomes,selman}@cs.cornell.edu

Abstract

Systematic search and local search paradigms for
combinatorial problems are generally believed to
have complementary strengths. Nevertheless, at-
tempts to combine the power of the two paradigms
have had limited success, due in part to the ex-
pensive information communication overhead in-
volved. We propose a hybrid strategy based on
shared memory, ideally suited for multi-core pro-
cessor architectures. This method enables contin-
uous information exchange between two solvers
without slowing down either of the two. Such a hy-
brid search strategy is surprisingly effective, lead-
ing to substantially better quality solutions to many
challenging Maximum Satisfiability (MaxSAT) in-
stances than what the current best exact or heuristic
methods yield, and it often achieves this within sec-
onds. This hybrid approach is naturally best suited
to MaxSAT instances for which proving unsatisfi-
ability is already hard; otherwise the method falls
back to pure local search.

1 Introduction

Boolean Satisfiability (SAT) solvers have seen tremendous
progress in recent years. Several of the current best open
source SAT solvers scale up to instances with over a mil-
lion variables and several million clauses. These advances
have led to an ever growing range of applications, such as in
hardware and software verification, and planning (cf. Hand-
book of SAT [Biere et al., 2009]). In fact, the technology has
matured from being a largely academic endeavor to an area
of research with strong academic and industrial participation.
The current best SAT solvers for handling “structured” in-
stances are based on Davis-Putnam-Logemann-Loveland or
DPLL [Davis and Putnam, 1960; Davis et al., 1962] style
complete, systematic search. The competing search paradigm
for SAT solving is based on local search (cf. [Hoos and
Stützle, 2004]), which performs well in certain problem do-
mains but, in general, is not as effective on highly structured
problem domains.

Determining whether a Boolean formula is satisfiable or
not is a special case of the maximum satisfiability (MaxSAT)

problem, where the goal is to find an assignment that satis-
fies as many clauses, or constraints, as possible. Even though
MaxSAT is a natural generalization of SAT, and thus closely
related, progress has been much slower on efficient solution
strategies for the MaxSAT problem. There is a good explana-
tion as to why this is the case. Two key components behind
the rapid progress for DPLL based SAT solvers are: highly ef-
fective unit propagation, and clause learning. (Other factors
include randomization and restart strategies, and effective
data structures.) Both techniques in a sense focus on avoiding
local inconsistencies: when a unit clause occurs in a formula,
one should immediately assign a truth value to the variable so
that it satisfies the clause, and when a branch reaches a con-
tradiction, a no-good clause can be derived which captures
the cause of the local inconsistency.

In a MaxSAT setting, these strategies, at least in the con-
text of branch-and-bound techniques, can be quite counter-
productive and in fact lead to incorrect results. For example,
for an unsatisfiable instance, the optimal assignment, i.e., one
satisfying the most clauses, may be the one that violates sev-
eral unit clauses. Also, when a contradiction is reached, the
best solution may be to violate one of the clauses that led to
the contradiction rather than adding a no-good which effec-
tively steers the search away from the contradiction. Hence,
neither unit propagation nor clause learning appear directly
suitable for a MaxSAT solver. Unfortunately, taking such
mechanisms out of the DPLL search strategy dramatically re-
duces the effectiveness of the search. This is confirmed when
one considers the performance of exact solvers for MaxSAT
that, in effect, employ a branch-and-bound search but do not
have unit propagation or clauses learning incorporated. Al-
though progress has been made in the area of exact MaxSAT
solvers, the instances that can be solved in practice are gener-
ally much smaller than instances that can be handled by SAT
solvers. Just as an example, a bounded model checking in-
stance considered in our experiments, cmu-bmc-barrel6.cnf,
is solved by the state-of-the-art exact MaxSAT solvers such
as maxsatz [Li et al., 2007a] and msuf [Marques-Silva and
Manquinho, 2008] in 20-30 minutes while within only a cou-
ple of seconds by an exact SAT solver like MiniSat [Eén and
Sörensson, 2005].

A more natural fit for the MaxSAT problem is to use lo-
cal search. Such methods are incomplete but they can find
approximate solutions for large problem instances. The ad-

vantage of a local search strategy is that it in a sense op-
erates in a more global manner, generally using the current
number of unsatisfied clauses as a gradient to guide a fur-
ther descent. In this process local search doesn’t hesitate to
violate unit clauses if that appears beneficial. Some of the
earliest local search results for MaxSAT were based on the
Walksat procedure [Selman et al., 1996]. From the per-
spective of local search, the basic SAT and MaxSAT strate-
gies are quite similar. Researchers have recently showed
that more sophisticated local search strategies can signifi-
cantly improve upon the Walksat performance. For ex-
ample, two state-of-the-art local search solvers, which also
work very well for MaxSAT, are saps [Hutter et al., 2002;
Tompkins and Hoos, 2003] and adaptg2wsat+p [Li et al.,
2007b].

The performance of the recent local search methods on
large hard problem instances (unsatisfiable instances at the
edge of feasibility for current SAT solvers) appears impres-
sive. For example, on the industrial instance babic-dspam-
vc973.cnf from the SAT Race-2008 [Sinz (Organizer), 2008],
a typical unsatisfiable benchmark instance with 900,000+
clauses, Walksat can find an assignment that leaves around
35,000 clauses unsatisfied but saps and adaptg2wsat can
find solutions with around 1,500 clauses unsatisfied (see
Table 1). A systematic SAT solver, MiniSat [Eén and
Sörensson, 2005], can prove the instance to be unsatisfiable
in around 3 hours. The question remains, how close the
obtained MaxSAT solution is to the optimal solution? The
fact that different local search MaxSAT methods converge
to roughly the same number of unsatisfied clauses and run-
ning them for many more hours does not further improve
the solution may lead one to conjecture that 1,000 might be
close to optimal. However, one reason to be less confident
of the quality of the solution is that local search methods
have been shown to have trouble dealing with long chains of
dependencies in structured problem instances, even though
special encodings and the addition of inferred clauses can
help alleviate some of these problems (e.g., [Prestwich, 2007;
Hirsch and Kojevnikov, 2005]).

The issue of problem structure, on which DPLL methods
excel but which challenges local search style methods, leads
us naturally to the two main questions addressed in this pa-
per: (1) How good are the current best solutions on struc-
tured problems? (2) Can state-of-the-art SAT solvers help on
the MaxSAT problem? As we will demonstrate, the current
best solutions on structured problems are often surprisingly
far from optimal. We show this by finding solutions with a
single unsatisfied clause (and therefore optimal) for unsatis-
fiable problem instances, where the best previously known
solutions had hundreds or thousands of unsatisfied clauses.
For example, the optimal solution for the instance mentioned
above does not have around 1,000 unsatisfied clauses but ac-
tually just one (out of 900,000+ clauses total). We demon-
strate this using a new solver that came forth out of our study
of the second question—can we use DPLL to boost a local
search solver? We introduce a hybrid solution strategy,
where information from a DPLL SAT solver provides contin-
ued guidance for a local search style MaxSAT solver. We use
MiniSat as our DPLL solver and Walksat as our MaxSAT

solver. Our hybrid solver is called MiniWalk. The integration
of the solvers is surprisingly clean, requiring only a few lines
of code.

The incremental, systematic search approach behind back-
track search (as in MiniSat) and the stochastic local search
approach (as in Walksat) represent the two main combina-
torial search paradigms. It appears natural to integrate these
approaches to leverage each other’s strengths. In fact, there
have been various attempts at such integration, for example,
using local search to find good branching variables for DPLL
or to identify minimal unsatisfiable subsets (e.g., [Mazure et
al., 1998; Grégoire et al., 2007a]). However, these attempts,
especially those targeted at traditional SAT solving, have not
been as effective as one would have hoped. One particular
issue that hampers integration of solvers in general is that
time spent in the less effective solver is often more costly than
the time saved by the faster solver when using the informa-
tion obtained with the slower one. More concretely, although
Walksat may be able to provide better branching informa-
tion leading to a smaller DPLL tree, the time saved through
the reduction in tree size is often less than the time spent on
running Walksat. Hence, the issue of how much time to
spend in each solver becomes a careful balancing act, and is
often problem instance dependent.

Fortunately, the compute paradigm based on multi-core
processors eliminates much of these difficulties. In particular,
in our hybrid solver, we run both MiniSat and Walksat at
full speed in parallel on two different cores of a standard dual-
core processor. During the run, MiniSat writes its current
branching information into a shared memory. More specif-
ically, this memory contains the values of all variables that
are set in the current branch of the DPLL search. Running
on the other processor, before flipping the value of a variable,
Walksat “peeks” at the shared memory and only makes the
flip if the variable is not set on the DPLL branch or if the
flip will set the variable on the branch to its current value.
(Stated differently, Walksat does not flip any variable to a
setting conflicting with that of the current DPLL branch.) In
this setting, information from DPLL continuously steers the
Walksat search strategy. And, as we will see, the DPLL
search frequently steers Walksat to extremely promising re-
gions of the search space, where near-satisfying assignments
exist. Moreover, without the guidance, Walksat or other lo-
cal search methods do not appear to reach such promising
areas of the search space. We will discuss the search be-
havior of our hybrid strategy in more detail in the text. We
will see that our hybrid search progresses in a manner not ob-
served in any non-hybrid search strategy. We again stress that
the dual-core mechanism is a key factor behind the success of
our approach, because it eliminates the need for intricate time
allocations for the two types of search.

In summary, our results show that DPLL can provide
highly effective guidance for a local search style solver for
the MaxSAT problem, leading to the optimal solution on
many structured instances. From the SAT Race-2008 bench-
mark set, we find a provably optimal solution (one unsatis-
fied clause) on 37 of the 52 unsatisfiable instances,1 while

1We have recently been able to further improve upon this using

the current best alternative approaches suggest hundreds, if
not thousands, of unsatisfied clauses in the best solutions to
these very instances. This work therefore provides a step to-
wards closing the performance gap between SAT solvers and
MaxSAT solvers. The results also demonstrate that there is a
real potential in using multi-core processors in combinatorial
search, where shared memory is used to provide a low-cost
communication channel between the processes.

We note that the focus of our hybrid approach is natu-
rally on instances that are non-trivial for both DPLL and lo-
cal search solvers. Most of the MaxSAT benchmarks cur-
rently available, such as the ones used in MaxSAT Evaluation
2007 [Argelich et al., 2007], are targeted towards the scala-
bility region of exact MaxSAT solvers, and are thus too easy
for DPLL-based SAT solvers such as Minisat. On such in-
stances, the DPLL part of our hybrid solver, MiniWalk, of-
ten terminates within a second, providing little guidance to
the local search part. The hybrid method therefore essen-
tially falls back to pure local search, performing no better (but
also no worse) than alternative approaches on these instances.
To illustrate the strength and promise of our approach, we
perform an evaluation on all unsatisfiable instances used in
SAT Race-2008, which are challenging not only as MaxSAT
instances but also as satisfiability instances. We hope our
positive results will encourage the development of MaxSAT
benchmarks that are non-trivial to prove unsatisfiable.

We also note that given the performance of other MaxSAT
solvers on the SAT Race-2008 instances, it is quite surprising
that all but one of these instances have only a single unsatis-
fied clause in the optimal MaxSAT solution. This clause can
be thought of as a “bottleneck constraint” for the instance. In
fact, by running our solver multiple times with different ran-
dom seeds, we can identify several different bottleneck con-
straints, relaxing any one of which will turn the instance into
a satisfiable one. In this sense, bottleneck constraints provide
a form of explanation of unsatisfiability, complementing the
information provided by other concepts being explored in the
literature such as minimal unsatisfiable cores, minimal sets of
unsatisfiable tuples, etc. (cf. [Marques-Silva and Manquinho,
2008; Grégoire et al., 2007a; 2007b]). The kind of informa-
tion provided by the single violated constraint obviously de-
pends on the problem encoding. In the standard AI planning
encodings based on the Satplan/Blackbox framework [Kautz
and Selman, 1998], we found that, contrary to what one might
expect, the bottleneck constraint is often not simply the “goal
predicate” that is being violated. It is, in fact, more common
to find clauses encoding constraints in the intermediate steps
of the plan. The semantic meaning of the violation of the
constraint is tightly tied to the problem domain and its encod-
ing. Often how one may physically “fix” the issue highlighted
by the violated bottleneck constraint is not obvious. Design-
ing special encodings where violated constraints do indicate
ways to fix the underlying issue is an interesting direction for
future research.

The rest of the paper is organized as follows. After dis-

a “relaxed DPLL” approach, which shows that in fact as many as 51
out of the 52 unsatisfiable SAT Race-2008 instances have only one
unsatisfied clause in the optimal solution [Kroc et al., 2009].

cussing some basic concepts, we present our hybrid solver,
MiniWalk, in more detail in Section 3. In Section 4, we eval-
uate the performance of MiniWalk and compare it with other
state-of-the-art MaxSAT solvers. In Section 5, we show how
the search performed by MiniWalk differs qualitatively from
that of other search methods. Finally, we provide concluding
remarks in Section 6.

2 Preliminaries

Let V be a set of propositional (Boolean) variables, which
take value in the set {0,1}. We think of 1 as True and 0 as
False. Let F be a propositional formula over V . A solution
to F (also referred to as a satisfying assignment for F) is a
0-1 assignment to all variables in V such that F evaluates to
1. Propositional Satisfiability or SAT is the decision problem
of determining whether an input formula F has any solutions.
This is the canonical NP-complete problem. In practice, one
is also interested in finding a solution, if there exists one.

Instances of the SAT problem are often specified in the
Conjunctive Normal Form (CNF). Here F is given as a con-
junction of clauses, each clause is a disjunction of literals,
and each literal is either a variable or its negation. For exam-
ple, F = (a∨¬b)∧ (¬a∨ c) is a CNF formula.

When a CNF formula F is unsatisfiable, i.e., there is no
truth assignment to the variables in V for which all clauses
of F are satisfied, one is often interested in solving the prob-
lem as much as possible. Formally, Maximum Satisfiability
or MaxSAT is the optimization problem of finding a truth as-
signment that satisfies as many clauses of an input formula F
as possible. We will refer to such truth assignments as opti-
mal MaxSAT solutions. One natural quantity of interest when
performing a search for an optimal MaxSAT solution is the
number of unsatisfied clauses found at the end of a search
procedure. As we will see in Section 4, the optimal MaxSAT
solutions for many interesting industrial problem instances
happen to have only one unsatisfied clause, and the proposed
hybrid method is often able to find such solutions very effi-
ciently.

Most of the successful search methods for SAT can be clas-
sified into two categories: systematic complete search and
heuristic local search. For SAT, systematic complete search
takes the form of the Davis-Putnam-Logemann-Loveland or
DPLL procedure [Davis and Putnam, 1960; Davis et al.,
1962]. The idea is to do a standard branch-and-backtrack
search in the space of all partial truth assignments. Heuris-
tics are used to set variables to promising values until either
a solution is found or a contradiction is reached; in the latter
case, the solver backtracks, flips the value of a variable higher
up in the search tree, and systematically continues the search
for a solution—now in a previously unexplored part of the
search space. Modern SAT solvers based on DPLL employ
additional techniques such as clause learning, restarts, highly
efficient data structures, etc. While the systematic solver,
Minisat, that forms one half of our hybrid approach does
implement these advanced techniques, the details of these
techniques are not crucial for understanding the rest of this
paper.

Local search SAT solvers, also referred to as stochastic lo-

cal search or SLS solvers, work with complete truth assign-
ments which, of course, violate some number of clauses be-
fore a solution is found. The idea here is to do local modifi-
cations to the current complete truth assignment, guided es-
sentially by the currently unsatisfied clauses. The local mod-
ifications often take the form of heuristically selecting one
variable to flip, based often on how many of the currently
unsatisfied clauses will become satisfied and how many of
the currently satisfied clauses will become unsatisfied. Re-
fined local search solvers employ techniques such as select-
ing variables mostly only from currently unsatisfied clauses,
clause re-weighting and stochastic noise to escape local min-
ima, adaptively adjusting the noise level, etc.

3 Using DPLL to Guide Local Search

Our hybrid MaxSAT solver, MiniWalk, has two parts that
are very independent except for sharing a small amount of
memory for information exchange: a DPLL solver and a lo-
cal search solver. The main idea is the following: MiniSat
informs the local search which part of the search space it is
currently searching in, and Walksat loosely restrains itself
to the same part of the search space by not flipping a literal
against MiniSat.

Both DPLL and local search are performed simultaneously,
so there are literally two processes (solvers) running at the
same time. This does not slow down the performance of ei-
ther, given the multi-core architecture that is becoming a stan-
dard in the computer industry and the very low communica-
tion overhead involved. The details will follow shortly, but
let us remark already that any DPLL heuristic and any local
search heuristic can be instrumented to create a hybrid solver
in this fashion, and the actual implementation requires only a
few additional lines of code.

A DPLL solver proceeds by successively selecting vari-
ables and their polarities (truth values), fixing those variables
accordingly, and simplifying the instance. A lot of effort has
been invested in designing heuristics that guide the search
into parts of the search space where solutions are likely to
be found. A good DPLL heuristic often guides the search
in the direction where as many clauses as possible are satis-
fied. We use this search bias even on formulas that are not
satisfiable, assuming that good near-solutions will lie in the
regions that look attractive to a DPLL heuristic. The infor-
mation about the region of the search space that the DPLL
solver is currently exploring is communicated using a shared
memory array. In this array shared between the two solver
processes, each variable of the problem instance has either the
value “unassigned” or the polarity (0 or 1) that is currently as-
signed to it by the DPLL search. The only change to the code
of the DPLL solver is thus a line that writes the correct po-
larity every time a variable is fixed (branched on or set, e.g.,
by unit propagation). The variable value in the shared array
is reverted back to “unassigned” upon backtracking.2

On the local search side, the modification is also only very
slight. The standard local search procedure has two steps that
keep repeating: pick a variable to flip, and flip the selected

2There are a few lines of initial code for declaring the shared
memory array; see Appendix for completeness.

variable. The only modification we make is in the second
step: we flip the truth value of a variable only if the new
value does not violate the setting the DPLL search has for that
variable in the shared array. In other words, we flip a variable
from, say, TRUE to FALSE only if it is either unassigned by
the DPLL search or is assigned FALSE. Otherwise we simply
do nothing and Walksat selects a different variable to flip in
the next step. This is depicted formally as Algorithm 1. The
two steps marked with “***” are literally the only change that
needs to be made to pure Walksat.

Algorithm 1: Hybrid-Walksat part of Miniwalk

begin
*** Initialize shared memory array M
σ ← a randomly generated truth assignment for F
for j← 1 to MAX-FLIPS do

if σ satisfies F then return σ

Select a variable v using a heuristic
*** if M[v] 6= value(v) then

Flip the value of v in σ

end

This way, the information flows only in one direction: from
DPLL to the local search. The local search is responsible
for reporting the best-so-far achieved assignment, which is in
turn used as an estimated solution to the MaxSAT instance. If
the DPLL search finishes very quickly (i.e., easily determines
unsatisfiability within a few seconds), then the local search
has no time to take advantage of the guidance provided by
the shared array, and the hybrid method does not improve
upon plain local search. If, on the other hand, we have a
sufficiently hard instance at hand, we found that this strategy
is remarkably successful at finding very good solutions.

There is, of course, the question of which DPLL and local
search solvers to select. The Minisat and Walksat com-
bination turned out to perform the best. We also considered
Rsat DPLL solver, which adds the concept of “restart mem-
ory” to the search. While successful for SAT, we found that
Rsat did not perform as well as Minisat for our purposes,
perhaps because the memory constrained the search to too
local a region and also because Rsat generally terminates
quicker than Minisat, providing less guidance to Walksat.
On the local search side, we tried using more powerful al-
gorithms, namely adaptg2wsat+p and saps, which per-
formed best on our problem suite as stand-alone local search
solvers (see Section 4). But we found that neither performed
as well as Walksat when coupled with a DPLL solver, pre-
sumably because their decisions/flips were much more fo-
cused than Walksat’s, and it was harder for the solvers to
follow the DPLL guidance.

4 Experimental Results

We conducted experiments on all 52 unsatisfiable formulas
from the SAT Race-2008 suite [Sinz (Organizer), 2008]. The
reason for choosing these instances rather than the Max-SAT
Evaluation 2007 [Argelich et al., 2007] instances is that the
latter are all too easy for MiniSat, thus limiting the DPLL

Table 1: Comparison of MAXSAT results for exact, local search, and hybrid methods. Timelimit: 1 hour. If a sure optimum was
achieved (i.e., 1 unsatisfied clause), the time is reported in parenthesis. Note: the superscript “(2)” for babic-dspam-vc973.cnf
denotes that this instance gets down to 267 unsatisfied clauses using MiniWalk in the 1 hour time limit, and is solved to
optimality within three hours.

Exact Methods Local Search Methods Hybrid
#unsat best #unsat best #unsat

Instance #vars #clauses maxsatz Adapt- SAPS Walksat MiniWalk

or msuf g2wsat+p

anbul-dated-5-15-u 152K 687K — 12 22 266 1 (15m)
een-pico-prop05-75 77K 248K — 2 47 325 1 (4s)
fuhs-aprove-15 21K 74K — 35 31 430 1 (0s)
fuhs-aprove-16 52K 182K — 437 246 1993 1 (1s)
ibm-2002-25r-k10 61K 302K — 111 95 1122 1 (9s)
ibm-2002-31 1r3-k30 44K 194K — 78 101 182 1 (2s)
ibm-2004-29-k25 17K 78K — 14 12 170 1 (6m)
manol-pipe-c10nid i 253K 751K — 678 695 5211 1 (20m)
manol-pipe-c10nidw 434K 1292K — 1013 1363 22554 1 (16s)
manol-pipe-c6bidw i 96K 284K — 239 274 924 1 (24s)
manol-pipe-c8nidw 269K 800K — 697 742 13463 1 (7s)
manol-pipe-c9n i 35K 104K — 214 66 184 1 (3s)
manol-pipe-g10bid i 266K 792K — 723 822 7622 1 (103s)
post-cbmc-aes-d-r2 278K 1608K — 834 734 5234 1 (69s)
post-cbmc-aes-ee-r2 268K 1576K — 839 760 5160 1 (37s)
post-cbmc-aes-ee-r3 501K 2928K — 1817 1822 10776 1 (37m)
schup-l2s-abp4-1-k31 15K 48K — 7 16 155 1 (0s)
schup-l2s-bc56s-1-k391 561K 1779K — 5153 26312 12882 1 (168s)
velev-vliw-uns-4.0-9-i1 96K 1814K — 12 10 7 1 (23s)
velev-vliw-uns-4.0-9 154K 3231K — 2 3 3 1 (10s)

babic-dspam-vc1080 118K 375K — 728 306 11857 20

babic-dspam-vc973 274K 908K — 2112 1412 32783 1(2)

ibm-2002-22r-k60 209K 851K — 198 409 2204 10
ibm-2002-24r3-k100 148K 550K — 205 221 1294 2
manol-pipe-f7nidw 310K 923K — 810 797 15431 7
manol-pipe-f9b 183K 547K — 756 600 9827 177
manol-pipe-g10nid 218K 646K — 585 727 6047 27
manol-pipe-g8nidw 121K 358K — 356 336 1151 7
simon-s03-fifo8-400 260K 708K — 89 289 5939 13

goldb-heqc-dalumul 9426 60K — 11 10 1 (48m) 1 (0s)
goldb-heqc-frg1mul 3230 21K — 1 (0s) 1 (0s) 1 (0s) 1 (0s)
goldb-heqc-x1mul 8760 56K — 1 (0s) 1 (0s) 1 (0s) 1 (0s)
post-c32s-ss-8 54K 148K — 1 (2s) 1 (8s) 1 (4s) 1 (0s)
simon-s02-f2clk-50 35K 101K — 1 (110s) 32 652 1 (12s)
velev-vliw-uns-2.0-iq1 25K 261K — 1 (40m) 4 1 (22s) 1 (0s)
velev-vliw-uns-2.0-iq2 44K 542K — 2 2 1 (6s) 1 (1s)
velev-vliw-uns-2.0-uq5 152K 2466K — 40 11 1 (310s) 1 (18s)
aloul-chnl11-13 286 1742 — 4 4 4 4

hoons-vbmc-lucky7 8503 25K — 1 (0s) 3 1 (0s) 9
post-c32s-col400-16 286K 840K — 88 111 973 698
post-c32s-gcdm16-23 136K 404K — 25 225 3038 127
post-cbmc-aes-ele 277K 1601K — 864 781 5390 2008

cmu-bmc-barrel6 2306 8931 1 (19m) 1 (0s) 1 (0s) 1 (0s) 1 (0s)
cmu-bmc-longmult13 6565 20K 1 (171s) 5 12 36 1 (1s)
cmu-bmc-longmult15 7807 24K 1 (137s) 6 4 41 1 (5s)
goldb-heqc-alu4mul 4736 30K 1 (14m) 1 (105s) 1 (47m) 45 1 (1s)
jarvi-eq-atree-9 892 3006 1 (158s) 1 (0s) 1 (0s) 1 (0s) 1 (0s)
marijn-philips 3641 4456 1 (336) 1 (0s) 1 (0s) 1 (0s) 1 (0s)
post-cbmc-aes-d-r1 41K 252K 1 (177s) 7 10 30 1 (1s)
velev-engi-uns-1.0-4nd 7000 68K 1 (76s) 1 (3s) 2 1 (19m) 1 (0s)

babic-dspam-vc949 113K 360K 1 (315s) 797 216 11818 250
een-pico-prop00-75 94K 324K 1 (253s) 23 108 1334 276

guidance provided to the hybrid method to just a few sec-
onds, turning it into essentially local search. The SAT Race
instances well illustrate the strengths and promises of the ap-
proach, and by using all unsatisfiable ones, we did not bias
our selection to only “good” instances. Although not tradi-
tional in the MaxSAT domain, we believe that useful informa-
tion can be obtained from the near-solutions which our tech-
nique finds. The usefulness of such information, in the sense
of identifying bottleneck constraints, is relatively limited if
the minimum number of unsatisfied clauses is large. That is
why we do not discuss in depth the performance of our al-
gorithm on instances with no “near solutions,” i.e., where the
optimal solution has a large number of unsatisfied clauses.

The solvers used in the comparison were from three fam-
ilies: exact MaxSAT solvers maxsatz [Li et al., 2007a] and
msuf [Marques-Silva and Manquinho, 2008]; local search
SAT solvers saps, adaptg2wsat+p, and walksat; and our
hybrid solver MiniWalk. We used a cluster of 3.8 GHz In-
tel Xeon computers running Linux 2.6.9-22.ELsmp. The time
limit for the main experiments was set to 1 hour and the mem-
ory limit to 2 GB. The main findings are reported in Table 1.

The two local search algorithms saps and
adaptg2wsat+p were selected as the best performing
ones on our suite from a wide pool of choices offered by the
UBCSAT solver [Tompkins and Hoos, 2004]. Pure Walksat

was added to contrast performance of an unguided local
search with the guided version introduced in this paper.
Three runs for each problem and algorithm were performed
with default parameters (or those used in the accompanying
papers for the solvers, e.g., α = 1.05 for saps), and the best
run is reported.

The exact MaxSAT solvers selected were those that per-
formed exceptionally well in Max-SAT Evaluation 2007, on
industrial instances in particular. Nevertheless, only 10 in-
stances in our suite were small enough to be solved by these
solvers, and are reported as the bottom two sets of instances
in the table. While 8 of these are still solved by MiniWalk,
such instances are often too easy for MiniSat to provide
more than a couple of seconds of useful guidance in the hy-
brid strategy.

More interestingly, out of the 42 remaining harder in-
stances, MiniWalk is the only solver that found surely op-
timal solutions (i.e., with 1 unsatisfied clause) in as many as
20 instances, out of which 13 instances were solved by it in
under a minute. These are reported as the first set of instances
in Table 1. Note that the previously best known MaxSAT
solutions for, e.g., schup-12s-bc56s-1-k391 and post-cbme-
aes-ee-r3 had over 5,000 and 1,000 unsatisfied clauses, resp.
The second set of instances includes the 9 instances on which
MiniWalk was able to find significantly better quality solu-
tions than any other technique, often with two orders of mag-
nitude fewer unsatisfied clauses.

The third set of instances in Table 1 includes 9 instances on
which other local search methods were able to find equally
good solutions as MiniWalk, although sometimes taking
much longer. Finally, for the fourth set with 4 instances, ei-
ther saps or adaptg2wsat+p was able to find a better qual-
ity solution than MiniWalk.

In summary, we see that on a vast majority of the instances,

the hybrid MaxSAT solver, MiniWalk, performed the best.
It solved 37 out of the 52 unsatisfiable SAT-Race 2008 in-
stances, i.e., 71%, to optimality.3 In contast, all other solvers
could solve to optimality somewhere between 7 and 12 in-
stances, i.e., only 13%-21%. Finally, 29 out of the 52 in-
stances, i.e., 56%, were solved by MiniWalk in under one
minute, highlighting the efficiency of the hybrid method.

5 Further Insights: Hybrid Search Pattern

We now explore a little deeper into the search behavior of
MiniWalk and contrast it with the local search heuristics
(adaptg2wsat+p and saps heuristics). Figure 1 shows a
comparison of the behavior for the babic-dspam-vc973 in-
stance from our suite, with x-axis showing the time elapsed
since the solver started and the y-axis the number of un-
satisfied clauses at a given time (log-scale). The instance
was chosen because it highlights some of the key features
of the search methods. It is solved to optimality (one un-
satisfied clause) by MiniWalk within a few hours, although
the data shown in the plot has it come down to two unsatis-
fied clauses. The three curves that level-off represent, in de-
scending order, Walksat, saps, and adaptg2wsat+p. The
remaining curve with steep drops depicts MiniWalk. While
the local search algorithms initially descent rapidly and then
stabilize at around 1,000 unsatisfied clauses with some nat-
ural noise, the hybrid method stays relatively high during
the entire search (as high as the unguided Walksat, nearly
35,000 unsatisfied clauses), with occasional but extremely
steep drops into promising regions. These regions are exactly
where the best solutions are found, thanks to the DPLL guid-
ance. While the local search often gets stuck in a plateau,
the hybrid method keeps trying new promising regions as
the DPLL search continues its systematic exploration. Even
DPLL does not make very informed choices at the beginning
of its search, but due to restarts, which are an integral part of
the state-of-the-art DPLL solvers, these decisions are revised
and a promising region is found relatively quickly. (A similar
plot for an instance on which MiniWalk finishes much faster
may be found in the Appendix.)

Figure 2 shows a more detailed look at the internals of the
hybrid solver. The y-axis shows a comparison of the depth of
the DPLL search (number of choice points, scaled down by
a constant factor) and the quality of the current assignment
found by the solver (number of unsatisfied clauses). The x-
axis is again time and the instance is, as before, babic-dspam-
vc973 (although the data is from a different, shorter run than
in Figure 1). The curves show some amount of correlation
between the DPLL depth and the quality of solution, suggest-
ing that indeed when a brand new region is explored by the
DPLL search, a good quality solution can be discovered.

Relative speed of the two solvers plays an important role
in the process. The slower the DPLL search, the more
time the local search has to explore given regions, but on
the other hand, the whole search space is traversed more

3As noted earlier, we have been able to improve these numbers
to 51 out of the 52 instances having only one unsatisfied clause in
the optimal solution [Kroc et al., 2009].

0 2000 4000 6000 8000 10000 12000 14000

1
1
0
0

1
0
0
0
0

babic−dspam−vc973

runtime (s)

n
u
m

 u
n
s
a
t
c
la

u
s
e
s
 (

lo
g
−

s
c
a
le

)

Adaptg2wsat+p
Saps
Walksat
MiniWalk

Figure 1: Qualitative search behavior in terms of the number of unsatisfied clauses (y-axis, log scale) as runtime progresses
(x-axis). Both state-of-the-art pure local search methods, unguided Walksat and MiniWalk are shown. Note the deep drops
of MiniWalk, which distinguish it from the other techniques. Instance: babic-dspam-vc973.cnf.

0 500 1000 1500 2000 2500 3000 3500

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

babic−dspam−vc973

runtime (s)

n
u
m

 u
n
s
a
t
c
la

u
s
e
s
,
 D

P
L
L
 d

e
p
th

(l
o
g
−

s
c
a
le

)

Current num unsat clauses
DPLL depth x 0.1

Figure 2: Number of unsatisfied clauses in MiniWalk and
DPLL search depth vs. time in babic-dspam-vc973.cnf.

slowly. We experimented with this effect by artificially slow-
ing down MiniSat, and running the resulting solver on the
instances. There appeared to be no obvious setting that is
clearly better than all others, and we used the default speed
of Minisat in the results presented here. It is the case, how-
ever, that some instances were solved better when MiniSat

was slowed down. Other parameters of the DPLL solver (the
restart frequency in particular) have also mixed effect on the
results. We left these parameters to MiniSat’s default setting
in our experiments.

6 Conclusion

This paper presents a novel approach to solving MaxSAT
instances that combines strengths of both DPLL and local
search SAT solvers. The proposed hybrid solver can be eas-
ily constructed from any pair of such solvers, and we found
that Minisat and Walksat work exceptionally well, solv-
ing many hard problems to optimality that were not solved
by any other state-of-the-art technique. The ideas presented
here can be explored also for other related problems, such
as weighted and partial MaxSAT. There is a clear potential
of using the DPLL search to satisfy all hard constraints (or
those with large weight) and leaving the “fine tuning” of the
lower-weight constraints to the local search. Finally, further
exploration of information flow in the other direction—from
local search to DPLL—beyond what is known in the context
of SAT (e.g., [Mazure et al., 1998]) is left as future work.

Acknowledgments

This research was supported by IISI, Cornell University (AFOSR
Grant FA9550-04-1-0151), NSF Expeditions in Computing award
for Computational Sustainability (0832782), NSF IIS award
(0514429), and NSF EMT award (0829861). Part of this work was
done while the second author was visiting McGill University.

References
[Argelich et al., 2007] J. Argelich, C. M. Li, F. Manyà,

and J. Planes. Max-SAT Evaluation 2007, May 2007.
http://www.maxsat07.udl.es.

[Biere et al., 2009] A. Biere, M. J. H. Heule, H. van Maaren, and
T. Walsh, editors. Handbook of Satisfiability, volume 185 of

Frontiers in Artificial Intelligence and Applications. IOS Press,
Feb 2009.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing
procedure for quantification theory. CACM, 7:201–215, 1960.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Loveland. A
machine program for theorem proving. CACM, 5:394–397, 1962.

[Eén and Sörensson, 2005] N. Eén and N. Sörensson. MiniSat: A
SAT solver with conflict-clause minimization. In 8th SAT, St.
Andrews, U.K., Jun 2005.

[Grégoire et al., 2007a] E. Grégoire, B. Mazure, and C. Piette.
Boosting a complete technique to find MSS and MUS thanks to
a local search oracle. In 20th IJCAI, pg. 2300–2305, Hyderabad,
India, Jan 2007.

[Grégoire et al., 2007b] E. Grégoire, B. Mazure, and C. Piette.
MUST: Provide a finer-grained explanation of unsatisfiability. In
13th CP, volume 4741 of LNCS, pg. 317–331, Providence, RI,
Sep 2007.

[Hirsch and Kojevnikov, 2005] E. A. Hirsch and A. Kojevnikov.
UnitWalk: A new SAT solver that uses local search guided by
unit clause elimination. Annals Math. and AI, 43(1):91–111,
2005.

[Hoos and Stützle, 2004] H. H. Hoos and T. Stützle. Stochastic Lo-
cal Search: Foundations and Applications. Morgan Kaufmann,
San Francisco, CA, 2004.

[Hutter et al., 2002] F. Hutter, D. A. D. Tompkins, and H. H. Hoos.
Scaling and probabilistic smoothing: Efficient dynamic local
search for SAT. In 8th CP, volume 2470 of LNCS, pg. 233–248,
Ithaca, NY, Sep 2002.

[Kautz and Selman, 1998] H. A. Kautz and B. Selman. BLACK-
BOX: A new approach to the application of theorem proving to
problem solving. In Working notes of the Workshop on Plan-
ning as Combinatorial Search, held in conjunction with AIPS-98,
Pittsburgh, PA, 1998.

[Kroc et al., 2009] L. Kroc, A. Sabharwal, and B. Selman. Relaxed
DPLL search for MaxSAT. In 12th SAT, Swansea, Wales, U.K.,
Jun 2009. To appear.

[Li et al., 2007a] C. M. Li, F. Manyà, and J. Planes. New inference
rules for Max-SAT. JAIR, 30:321–359, 2007.

[Li et al., 2007b] C. M. Li, W. Wei, and H. Zhang. Combining
adaptive noise and look-ahead in local search for SAT. In 10th
SAT, volume 4501 of LNCS, pg. 121–133, Lisbon, Portugal, May
2007.

[Marques-Silva and Manquinho, 2008] J. P. Marques-Silva and
V. M. Manquinho. Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In 11th SAT, volume 4996 of
LNCS, pg. 225–230, Guangzhou, China, May 2008.

[Mazure et al., 1998] B. Mazure, L. Sais, and E. Grégoire. Boost-
ing complete techniques thanks to local search methods. Annals
Math. and AI, 22(3-4):319–331, 1998.

[Prestwich, 2007] S. D. Prestwich. Variable dependency in local
search: Prevention is better than cure. In 10th SAT, volume 4501
of LNCS, pg. 107–120, Lisbon, Portugal, May 2007.

[Selman et al., 1996] B. Selman, H. Kautz, and B. Cohen. Local
search strategies for satisfiability testing. In D. S. Johnson and
M. A. Trick, editors, Cliques, Coloring and Satisfiability: the
Second DIMACS Implementation Challenge, volume 26 of DI-
MACS Series in DMTCS, pg. 521–532. Amer. Math. Soc., 1996.

[Sinz (Organizer), 2008] C. Sinz (Organizer). SAT-race 2008, May
2008. http://www-sr.informatik.uni-tuebingen.de/sat-race-2008.

[Tompkins and Hoos, 2003] D. A. D. Tompkins and H. H. Hoos.
Scaling and probabilistic smoothing: Dynamic local search for
unweighted MAX-SAT. In 16th Canadian Conf. on AI, volume
2671 of LNCS, pg. 145–159, Halifax, Canada, Jun 2003.

[Tompkins and Hoos, 2004] D. A. D. Tompkins and H. H. Hoos.
UBCSAT: An implementation and experimentation environment
for SLS algorithms for SAT and MAX-SAT. In 7th SAT, Vancou-
ver, BC, May 2004. Solver description.

A Appendix

A.1 Using Shared Memory Array

We use the IPC shared memory framework in both systematic
and local search solver as follows (a C code snippet):

#include <sys/shm.h>

int *sharedMem = NULL;

long shmKey = 0x11112222; //any unique id

int shmId = shmget(shmKey, \

sizeof(int)*(nVars+1), IPC_CREAT|0600);

sharedMem = (int*)shmat(shmId, NULL, 0);

This memory can now be written to (within DPLL) and read
from (within local search) by sharedMem[verId]. At
the end of each program, shmctl(shmid, IPC_RMID, 0)

frees up the shared memory.

A.2 Additional Instance Analysis

Figure 3 shows the comparison between local search and
MiniWalk (the bottom-most curve, finishing early), this
time for the ibm-2002-31 1r3-k30 instance. This instance is
one where MiniWalk is clearly the best approach and very
quickly discovers an assignment with only one unsatisfied
clause (and thus an optimal MaxSAT solution for this unsat-
isfiable instance). In fact, this is the more common mode of
operation of the hybrid solver: it is able to very quickly find
assignments that are optimal or close to optimal.

0 500 1000 1500 2000

1
5

1
0

5
0

1
0

0
5

0
0

ibm−2002−31_1r3−k30

runtime (s)

n
u
m

 u
n
s
a
t
c
la

u
s
e
s
 (

lo
g
−

s
c
a
le

)

Adaptg2wsat+p
Saps
Walksat
MiniWalk

Figure 3: Qualitative search behavior in terms of the number
of unsatisfied clauses (y-axis, log scale) vs. runtime (x-axis).
Both state-of-the-art pure local search methods, unguided
Walksat and MiniWalk are shown. Note the unique steep
drops of MiniWalk. Instance: ibm-2002-31 1r3-k30.cnf.

