
Leveraging Belief Propagation, Backtrack Search, and Statistics
for Model Counting

Lukas Kroc and Ashish Sabharwal and Bart Selman
Department of Computer Science

Cornell University, Ithaca NY 14853-7501, U.S.A.
{kroc,sabhar,selman}@cs.cornell.edu ∗

Abstract
We consider the problem of estimating the model count (num-
ber of solutions) of Boolean formulas, and present two tech-
niques that compute estimates of these counts, as well as
either lower or upper bounds with different trade-offs be-
tween efficiency, bound quality, and correctness guarantee.
For lower bounds, we use a recent framework for probabilis-
tic correctness guarantees, and exploit message passing tech-
niques for marginal probability estimation, namely, variations
of Belief Propagation (BP). Our results suggest that BP pro-
vides useful information even on structured loopy formulas.
For upper bounds, we perform multiple runs of the MiniSat
SAT solver with a minor modification, and obtain statistical
bounds on the model count based on the observation that the
distribution of a certain quantity of interest is often very close
to the normal distribution. Our experiments demonstrate that
our model counters, BPCount and MiniCount, based on
these two ideas can provide very good bounds in time signif-
icantly less than alternative approaches.

Introduction
The model counting problem for Boolean satisfiability or
SAT is the problem of computing the number of solutions
or satisfying assignments for a given Boolean formula. Of-
ten written as #SAT, this problem is #P-complete (Valiant,
1979) and is widely believed to be significantly harder than
the NP-complete SAT problem, which seeks an answer to
whether or not the formula in satisfiable. With the amazing
advances in the effectiveness of SAT solvers since the early
90’s, these solvers have come to be commonly used in com-
binatorial application areas like hardware and software ver-
ification, planning, and design automation. Efficient algo-
rithms for #SAT will further open the doors to a whole new
range of applications, most notably those involving proba-
bilistic inference (Roth, 1996; Littman, Majercik, & Pitassi,
2001; Park, 2002; Bacchus, Dalmao, & Pitassi, 2003; Sang,
Beame, & Kautz, 2005; Darwiche, 2005).

A number of different techniques for model counting have
been proposed over the last few years. For example, Relsat
(Bayardo Jr. & Pehoushek, 2000) extends systematic SAT

∗Research supported by IISI, Cornell University (AFOSR Grant
FA9550-04-1-0151), DARPA (REAL Grant FA8750-04-2-0216),
and NSF (Grant 0514429).
Copyright c© 2007, authors listed above. All rights reserved.

solvers for model counting and uses component analysis for
efficiency, Cachet (Sang et al., 2004) adds caching schemes
to this approach, c2d (Darwiche, 2004) converts formu-
las to the d-DNNF form which yields the model count as
a by-product, ApproxCount (Wei & Selman, 2005) and
SampleCount (Gomes et al., 2007) exploit sampling tech-
niques for estimating the count, MBound (Gomes, Sabhar-
wal, & Selman, 2006) relies on the properties of random par-
ity or XOR constraints to produce estimates with correctness
guarantees, and the recently introduced SampleMinisat
(Gogate & Dechter, 2007) uses sampling of the backtrack-
free search space of systematic SAT solvers. While all of
these approaches have their own advantages and strengths,
there is still much room for improvement in the overall scal-
ability and effectiveness of model counters.

We propose two new techniques for model counting that
leverage the strength of message passing and systematic
algorithms for SAT. The first of these yields probabilistic
lower bounds on the model count, and for the second we in-
troduce a statistical framework for obtaining upper bounds.

The first method, which we call BPCount, builds upon a
successful approach for model counting using local search,
called ApproxCount. The idea is to efficiently obtain a
rough estimate of the “marginals” of each variable: what
fraction of solutions have variable x set to TRUE and what
fraction have x set to FALSE? If this information is com-
puted accurately enough, it is sufficient to recursively count
the number of solutions of only one of F |x and F |¬x, and
scale the count up appropriately. This technique is extended
in SampleCount, which adds randomization to this process
and provides lower bounds on the model count with high
probability correctness guarantees. For both ApproxCount
and SampleCount, true variable marginals are estimated by
obtaining several solution samples using local search tech-
niques such as SampleSat (Wei, Erenrich, & Selman, 2004)
and computing marginals from the samples. In many cases,
however, obtaining many near-uniform solution samples can
be costly, and one naturally asks whether there are more ef-
ficient ways of estimating variable marginals.

Interestingly, the problem of computing variable
marginals can be formulated as a key question in Bayesian
inference, and the Belief Propagation or BP algorithm
(Pearl, 1988), at least in principle, provides us with exactly
the tool we need. The BP method for SAT involves repre-

senting the problem as a two-layer factor graph and passing
“messages” back-and-forth between variable and clause
nodes until a fixed point is reached. This process is cast
as a set of mutually recursive equations which are solved
iteratively. From the fixed point, one can easily compute, in
particular, variable marginals.

While this sounds encouraging, there are two immediate
challenges in applying the BP framework to model count-
ing: (1) quite often the iterative process for solving the BP
equations does not converge to a fixed point, and (2) while
BP provably computes exact variable marginals on formulas
whose constraint graph has a tree-like structure (formally
defined later), its marginals can sometimes be substantially
off on formulas with a richer interaction structure. To ad-
dress the first issue, we use a “message damping” form of
BP which has better convergence properties (inspired by a
damped version of BP due to Pretti (2005)). For the sec-
ond issue, we add “safety checks” to prevent the algorithm
from running into a contradiction by accidentally eliminat-
ing all assignments.1 Somewhat surprisingly, avoiding these
rare but fatal mistakes turns out to be sufficient for obtaining
very close estimates and lower bounds for solution counts,
suggesting that BP does provide useful information even on
highly structured loopy formulas. To exploit this informa-
tion even further, we extend the framework borrowed from
SampleCount with the use of biased coins during random-
ized value selection.

The model count can, in fact, also be estimated directly
from just one fixed point run of the BP equations, by com-
puting the value of so-called partition function (Yedidia,
Freeman, & Weiss, 2005). In particular, this approach com-
putes the exact model count on tree-like formulas, and ap-
peared to work fairly well on random formulas. However,
the count estimated this way is often highly inaccurate on
structured loopy formulas. BPCount, as we will see, makes
a much more robust use of the information provided by BP.

The second method, which we call MiniCount, exploits
the power of modern DPLL (Davis & Putnam, 1960; Davis,
Logemann, & Loveland, 1962) based SAT solvers, which
are extremely good at finding single solutions to Boolean
formulas through backtrack search.2 The problem of com-
puting upper bounds on the model count has so far eluded
solution because of an asymmetry which manifests itself in
at least two inter-related forms: the set of solutions of in-
teresting N variable formulas typically forms a minuscule
fraction of the full space of 2N variable assignments, and the
application of Markov’s inequality as in SampleCount does
not yield interesting upper bounds. Note that systematic
model counters like Relsat and Cachet can also be easily
extended to provide an upper bound when they time out (2N

minus the number of non-solutions encountered), but these
bounds are uninteresting because of the above asymmetry.
To address this issue, we develop a statistical framework

1 A tangential approach for handling such fatal mistakes is in-
corporating BP as a heuristic within backtrack search, which our
results suggest has clear potential.

2 Gogate & Dechter (2007) have recently independently pro-
posed the use of DPLL solvers for model counting.

which lets us compute upper bounds under certain statisti-
cal assumptions, which are independently validated. To the
best of our knowledge, this is the first effective and scal-
able method for obtaining good upper bounds on the model
counts of formulas that are beyond the reach of exact model
counters.

More specifically, we describe how the DPLL-based
solver MiniSat (Eén & Sörensson, 2005), with two mi-
nor modifications, can be used to estimate the total num-
ber of solutions. The number d of branching decisions (not
counting unit propagations and failed branches) made by
MiniSat before reaching a solution, is the main quantity
of interest: when the choice between setting a variable to
TRUE or to FALSE is randomized,3 the number d is prov-
ably not any lower, in expectation, than log2(model count).
This provides a strategy for obtaining upper bounds on the
model count, only if one could efficiently estimate the ex-
pected value, E [d], of the number of such branching deci-
sions. A natural way to estimate E [d] is to perform multiple
runs of the randomized solver, and compute the average of
d over these runs. However, if the formula has many “easy”
solutions (found with a low value of d) and many “hard”
solutions, the limited number of runs one can perform in a
reasonable amount of time may be insufficient to hit many
of the “hard” solutions, yielding too low of an estimate for
E [d] and thus an incorrect upper bound on the model count.

Interestingly, we show that for many families of formulas,
d has a distribution that is very close to the normal distribu-
tion. Under the assumption that d is normally distributed,
when sampling various values of d through multiple runs of
the solver, we need not necessarily encounter high values of
d in order to correctly estimate E [d] for an upper bound. In-
stead, we can rely on statistical tests and conservative com-
putations (Thode, 2002; Zhou & Sujuan, 1997) to obtain a
statistical upper bound on E [d] within any specified confi-
dence interval.

We evaluated our two approaches on challenging formu-
las from several domains. Our experiments with BPCount
demonstrate a clear gain in efficiency, while providing much
higher lower bound counts than exact counters (which often
run out of time or memory) and competitive lower bound
quality compared to SampleCount. For example, the run-
time on several difficult instances from the FPGA routing
family with over 10100 solutions is reduced from hours for
both exact counters and SampleCount to just a few min-
utes with BPCount. Similarly, for random 3CNF instances
with around 1020 solutions, we see a reduction in com-
putation time from hours and minutes to seconds. With
MiniCount, we are able to provide good upper bounds on
the solution counts, often within seconds and fairly close to
the true counts (if known) or lower bounds. These experi-
mental results attest to the effectiveness of the two proposed
approaches in significantly extending the reach of solution
counters for hard combinatorial problems.

3 MiniSat by default always sets variables to FALSE.

2

Notation
A Boolean variable xi is one that assumes a value of either 1
or 0 (TRUE or FALSE, respectively). A truth assignment for a
set of Boolean variables is a map that assigns each variable a
value. A Boolean formula F over a set of n such variables is
a logical expression over these variables, which represents
a function f : {0,1}n → {0,1} determined by whether or
not F evaluates to TRUE under a truth assignment for the n
variables. A special class of such formulas consists of those
in the Conjunctive Normal Form or CNF: F ≡ (l11 ∨ . . .∨
l1k1)∧ . . .∧ (lm1 ∨ . . .∨ lmkm), where each literal llk is one of
the variables xi or its negation ¬xi. Each conjunct of such
a formula is called a clause. We will be working with CNF
formulas throughout this paper.

The constraint graph of a CNF formula F has variables
of F as vertices and an edge between two vertices if both of
the corresponding variables appear together in some clause
of F . When this constraint graph has no cycles (i.e., it is a
collection of disjoint trees), F is called a tree-like or poly-
tree formula.

The problem of finding a truth assignment for which F
evaluates to TRUE is known as the propositional satisfiability
problem, or SAT, and is the canonical NP-complete problem.
Such an assignment is called a satisfying assignment or a so-
lution for F . In this paper we are concerned with the prob-
lem of counting the number of satisfying assignments for a
given formula, known as the propositional model counting
problem. This problem is #P-complete (Valiant, 1979).

Lower Bounds Using BP Marginal Estimates
In this section, we develop a method for obtaining lower
bounds on the solution counts of a given Boolean formula,
using the framework recently used in the SAT model counter
SampleCount (Gomes et al., 2007). The key difference be-
tween our approach and SampleCount is that instead of re-
lying on solution samples, we use a variant of belief prop-
agation to obtain estimates of the fraction of solutions in
which a given variable appears positively. We call this algo-
rithm BPCount. After describing the basic method, we will
discuss two techniques that often significantly increase the
effectiveness of BPCount in practice, namely, biased vari-
able assignments and safety checks.

Counting using BP: BPCount
We begin by recapitulating the framework of SampleCount
for obtaining lower bound model counts with probabilistic
correctness guarantees. A variable u will be called balanced
if it occurs equally often positively and negatively in all so-
lutions of the given formula. In general, the marginal prob-
ability of u being TRUE in the set of satisfying assignments
of a formula is the fraction of such assignments where u =
TRUE. Note that computing the marginals of each variable,
and in particular identifying balanced or near-balanced vari-
ables, is quite non-trivial. The model counting approaches
we describe attempt to estimate such marginals using indi-
rect techniques such as solution sampling or iterative mes-
sage passing.

Given a formula F and parameters t,z ∈ Z
+,α > 0,

SampleCount performs t iterations, keeping track of the
minimum count obtained over these iterations. In each it-
eration, it samples z solutions of (potentially simplified) F ,
identifies the most balanced variable u, uniformly randomly
sets u to TRUE or FALSE, simplifies F by performing any
possible unit propagations, and repeats the process. The rep-
etition ends when F is reduced to a size small enough to be
feasible for exact model counters like Cachet. At this point,
let s denote the number of variables randomly set in this it-
eration before handing the formula to Cachet, and let M′ be
the model count of the residual formula returned by Cachet.
The count for this iteration is computed to be 2s−α × M′

(where α is a “slack” factor pertaining to our probabilistic
confidence in the bound). Here 2s can be seen as scaling up
the residual count by a factor of 2 for every uniform random
decision we made when fixing variables. After the t itera-
tions are over, the minimum of the counts over all iterations
is reported as the lower bound for the model count of F ,
and the correctness confidence attached to this lower bound
is 1− 2−αt . This means that the reported count is a correct
lower bound with probability 1−2−αt .

The performance of SampleCount is enhanced by also
considering balanced variable pairs (v,w), where the balance
is measured as the difference in the fractions of all solutions
in which v and w appear with the same sign vs. with different
signs. When a pair is more balanced than any single literal,
the pair is used instead for simplifying the formula. In this
case, we replace w with v or ¬v uniformly at random. For
ease of illustration, we will focus here only on identifying
and randomly setting balanced or near-balanced variables.

The key observation in SampleCount is that when the
formula is simplified by repeatedly assigning a positive or
negative polarity to variables, the expected value of the
count in each iteration, 2s ×M′ (ignoring the slack factor
α), is exactly the true model count of F , from which lower
bound guarantees follow. We refer the reader to Gomes et
al. (2007) for details. Informally, we can think of what hap-
pens when the first such balanced variable, say u, is set uni-
formly at random. Let p∈ [0,1]. Suppose F has M solutions,
F |u has pM solutions, and F |¬u has (1− p)M solutions. Of
course, when setting u uniformly at random, we don’t know
the actual value of p. Nonetheless, with probability a half,
we will recursively count the search space with pM solutions
and scale it up by a factor of 2, giving a net count of pM.2.
Similarly, with probability a half, we will recursively get a
net count of (1− p)M.2 solutions. On average, this gives
1/2.pM.2+1/2.(1− p)M.2 = M solutions.

Interestingly, the correctness guarantee of this process
holds irrespective of how good or bad the samples are. How-
ever, when balanced variables are correctly identified, we
have p ≈ 1/2 in the informal analysis above, so that for
both coin flip outcomes we recursively search a space with
roughly M/2 solutions. This reduces the variance tremen-
dously, which is crucial to making the process effective in
practice. Note that with high variance, the minimum count
over t iterations is likely to be much smaller than the true
count; thus high variance leads to poor quality lower bounds.

The idea of BPCount is to “plug-in” belief propagation

3

methods in place of solution sampling in the SampleCount
framework, in order to estimate “p” in the intuitive analysis
above and, in particular, to help identify balanced variables.
As it turns out, a solution to the BP equations (Pearl, 1988)
provides exactly what we need: an estimate of the marginals
of each variable. This is an alternative to using sampling for
this purpose, and is often orders of magnitude faster. One
bottleneck, however, is that the basic belief propagation pro-
cess is iterative and does not even converge on most for-
mulas of interest. We therefore use a “message damping”
variant of standard BP, very similar to the one introduced
by Pretti (2005). This variant is parameterized by κ ∈ [0,1],
and has the property that as κ decreases from 1 to 0, the dy-
namics of the equations go from standard BP to a damped
variant with assured convergence. We use its output as an
estimate of the marginals of the variables in BPCount. Note
that there are several variants of BP that assure convergence,
such as by Yuille (2002) and Hsu & McIlraith (2006); we
chose the “κ” variant because of its good scaling behavior.

Given this process of obtaining marginal estimates from
BP, BPCount works almost exactly like SampleCount and
provides the same lower bound guarantees.
Using Biased Coins. We can improve the performance of
BPCount (and also of SampleCount) by using biased vari-
able assignments. The idea here is that when fixing variables
repeatedly in each iteration, there is no need to uniformly set
the variable to TRUE or FALSE. The correctness guarantees
still hold even if we use a biased coin and set the chosen
variable u to TRUE with probability q and to FALSE with
probability 1− q, for any q ∈ (0,1). Using earlier notation,
this leads us to a solution space of size pM with probabil-
ity q and to a solution space of size (1− p)M with prob-
ability 1− q. Now, instead of scaling up with a factor of
2 in both cases, we scale up based on the bias of the coin
used. Specifically, with probability q, we go to one part
of the solution space and scale it up by 1/q, and similarly
for 1− q. The net result is that in expectation, we still get
q.pM/q + (1 − q).(1 − p)M/(1 − q) = M solutions. Fur-
ther, the variance is minimized when q is set to equal p; in
BPCount, q is set to equal the estimate of p obtained using
the BP equations. To see that the resulting variance is min-
imized this way, note that with probability q, we get a net
count of pM/q, and with probability (1− q), we get a net
count of (1− p)M/(1− q); these balance out to exactly M
in either case when q = p. Hence, when we have confidence
in the correctness of the estimates of variable marginals (i.e.,
p here), it provably reduces variance to use a biased coin that
matches the marginal estimates of the variable to be fixed.
Safety Checks. One issue that arises when using BP tech-
niques to estimate marginals is that the estimates, in some
case, may be far off from the true marginals. In the worst
case, a variable u identified by BP as the most balanced may
in fact be a backbone variable for F , i.e., may only occur,
say, positively in all solutions to F . Setting u to FALSE based
on the outcome of the corresponding coin flip thus leads one
to a part of the search space with no solutions at all, so that
the count for this iteration is zero, making the minimum over
t iterations zero as well. To remedy this situation, we use
safety checks using an off-the-shelf SAT solver (Minisat

or Walksat (Selman, Kautz, & Cohen, 1996) in our imple-
mentation) before fixing the value of any variable. The idea
is to simply check that u can be set both ways before flipping
the random coin and fixing u to TRUE or FALSE. If Minisat
finds, e.g., that forcing u to be TRUE makes the formula un-
satisfiable, we can immediately deduce u = FALSE, simplify
the formula, and look for a different balanced variable. This
safety check prevents BPCount from reaching the undesir-
able state where there are no remaining solutions at all.

In fact, with the addition of safety checks, we found that
the lower bounds on model counts obtained for some for-
mulas were surprisingly good even when the marginal esti-
mates were generated purely at random, i.e., without actu-
ally running BP. This can perhaps be explained by the errors
introduced at each step somehow canceling out when sev-
eral variables are fixed. With the use of BP, the quality of the
lower bounds was significantly improved, showing that BP
does provide useful information about marginals even for
loopy formulas. Lastly, we note that with SampleCount,
the external safety check can be conservatively replaced by
simply avoiding those variables that appear to be backbone
variables from the obtained samples.

Upper Bound Estimation
We now describe an approach for estimating an upper bound
on the number of solutions of a formula. We use the reason-
ing discussed for BPCount, and apply it to a DPLL style
search procedure. There is an important distinction between
the nature of the bound guarantees presented here and ear-
lier: here we will derive statistical guarantees (as opposed
to probabilistic guarantees), and their quality may depend
on the particular family of formulas in question. The appli-
cability of the method will also be determined by a statistical
test, which succeeded in most of our experiments.

Counting using Backtrack Search: MiniCount
For BPCount, we used a backtrack-less branching search
process with a random outcome that, in expectation, gives
the exact number of solutions. The ability to randomly as-
sign values to selected variables was crucial in this process.
Here we extend the same line of reasoning to a search pro-
cess with backtracking, and argue that the expected value of
the outcome is an upper bound on the true count. We ex-
tend the MiniSat SAT solver (Eén & Sörensson, 2005) to
compute the information needed for upper bound estimation.
MiniSat is a very efficient SAT solver employing conflict
clause learning and other state-of-the-art techniques, and has
one important feature helpful for our purposes: whenever it
chooses a variable to branch on, it is left unspecified which
value should the variable assume first. One possibility is to
assign the value TRUE or the value FALSE randomly with
equal probability. Since MiniSat does not use any infor-
mation about the variable to determine the most promising
polarity, this random assignment in principle does not lower
MiniSat’s power.

Algorithm MiniCount: Given a formula F , run the
MiniSat algorithm with no restarts, choosing a value for
a variable uniformly at random at each choice point (option

4

-polarity-mode=rnd). When a solution is found, output
2d where d is the number of choice points on the path to the
solution (the final decision level), not counting those choice
points where the other branch failed to find a solution.

The restriction that MiniCount cannot use restarts is the
only change to the solver. This limits somewhat the range
of problems MiniCount can be applied to compared to the
original MiniSat, but is a crucial restriction for the guaran-
tee of an upper bound (as explained below). We found that
MiniCount is still efficient on a wide range of formulas.
Since MiniCount is a probabilistic algorithm, its output, 2d ,
on a given formula F is a random variable. We denote this
random variable by #FMiniCount, and use #F to denote the
true number of solutions of F . The following proposition
forms the basis of our upper bound estimation.
Proposition 1. E [#FMiniCount] ≥ #F.

Proof. The proof follows a similar line of reasoning as for
BPCount, and we give a sketch of it. Note that if no back-
tracking is allowed (i.e., the solver reports 0 solutions if it
finds a contradiction), the result follows, with strict equal-
ity, from the proof that BPCount (or SampleCount) pro-
vides accurate counts in expectation. We will show that
the addition of backtracking can only increase the value of
E [#FMiniCount], by looking at its effect on any choice point.
Let u be any choice point variable with at least one satisfiable
branch in its subtree, and let M be the number of solutions
in the subtree, with pM in the left branch (when u =FALSE)
and (1− p)M in the right branch (when u =TRUE). If both
branches under u are satisfiable, then the expected number
of solutions computed at u is 1/2.pM.2+1/2.(1− p)M.2 = M,
which is the correct value. However, if either branch is un-
satisfiable, then two things might happen: with probability
half the search process will discover this fact by exploring
the contradictory branch first and u will not be counted as a
choice point in the final solution (i.e., its multiplier will be
1), and with probability half this fact will go unnoticed and
u will retain its multiplier of 2. Thus the expected number
of reported solutions at u is 1/2.M.2+1/2.M = 3

2 M, which is
no smaller than M. This finishes the proof.

The reason restarts are not allowed in MiniCount is ex-
actly Proposition 1. With restarts, only solutions reachable
within the current setting of the restart threshold can be
found. This biases the search towards “easier” solutions,
since they are given more opportunities to be found. For for-
mulas where easier solutions lie on paths with fewer choice
points, MiniCount with restarts could undercount and thus
not provide an upper bound in expectation.

With enough random sample outputs, #FMiniCount, ob-
tained from MiniCount, their average value will eventually
converge to E [#FMiniCount] by the Law of Large Numbers,
thereby providing an upper bound on #F because of Proposi-
tion 1. Unfortunately, providing a useful correctness guaran-
tee on such an upper bound in a manner similar to the lower
bounds seen earlier turns out to be impractical, because the
resulting guarantees, obtained using a reverse variant of the
standard Markov’s inequality, are too weak. Further, relying

on the simple average of the obtained output samples might
also be misleading, since the distribution of #FMiniCount is of-
ten heavy tailed, and it might take very many samples for the
sample mean to become as large as the true solution count.

Estimating the Upper Bound
In this section, we develop an approach based on statistical
analysis of the sample outputs that allows one to estimate
the expected value of #FMiniCount, and thus an upper bound
with statistical guarantees, using a relatively small number
of samples.

Assuming the distribution of #FMiniCount is known, the
samples can be used to provide an unbiased estimate of the
mean, along with confidence intervals on this estimate. This
distribution is of course not known and will vary from for-
mula to formula, but it can again be inferred from the sam-
ples. We observed that for many formulas, the distribution
of #FMiniCount is well approximated by a log-normal distribu-
tion. Thus we develop the method under the assumption of
log-normality, and include techniques to independently test
this assumption. The method has three steps:

1. Generate n independent samples from #FMiniCount by run-
ning MiniCount n times on the same formula.

2. Test whether the samples come from a log-normal distri-
bution (or a distribution sufficiently similar).

3. Estimate the true expected value of #FMiniCount from the
samples, and calculate the (1−α)% confidence interval
for it, using the assumption that the underlying distribu-
tion is log-normal. We set the confidence level α to 0.01,
and denote the upper bound of the resulting confidence
interval by cmax.
This process, some of whose details will be discussed

shortly, yields an upper bound cmax along with a statistical
guarantee that cmax ≥ E [#FMiniCount] and thus cmax ≥ #F :

Pr [cmax ≥ #F] ≥ 1−α

The caveat in this statement (and, in fact, the main differ-
ence from the similar statement for the lower bounds for
BPCount given earlier) is that it is true only if our assump-
tion of log-normality holds.

We now describe methods for testing the log-normality
assumption and calculating the cmax value.

Testing for Log-Normality. By definition, a random vari-
able X has a log-normal distribution if the random variable
Y = logX has a normal distribution. Thus a test whether Y
is normally distributed can be used, and we use the Shapiro-
Wilk test (cf. Thode, 2002) for this purpose. In our case,
Y = log(#FMiniCount) and if the computed p-value of the test
is below the confidence level α = 0.05, we conclude that our
samples do not come from a log-normal distribution; other-
wise we assume that they do. If the test fails, then there
is sufficient evidence that the underlying distribution is not
log-normal, and the confidence interval analysis to be de-
scribed shortly will not provide any statistical guarantees.
Note that non-failure of the test does not mean that the sam-
ples are actually log-normally distributed, but inspecting the

5

Quantile-Quantile plots (QQ-plots) often supports the hy-
pothesis that they are. QQ-plots compare sampled quan-
tiles with theoretical quantiles of the desired distribution: the
more the sample points align on a line, the more likely it is
that the data comes from the distribution.

−4 −2 0 2 4

−4
−2

0
2

4

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

Normal
’Supernormal’
’Subnormal’

−4 −2 0 2 4

−4
−2

0
2

4

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

−4 −2 0 2 4
−4

−2
0

2
4

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4

−4
−2

0
2

4

Figure 1: Sampled quantiles and theoretical quan-
tiles for formulas described in the experimental sec-
tion (left: alu2 gr rcs w8, lang19; right: 2bitmax 6,
wff-3-150-525, ls11-norm).

We found that a surprising number of formulas had
log2(#FMiniCount) very close to being normally distributed.
Figure 1 shows normalized QQ-plots for dMiniCount =
log2(#FMiniCount) obtained from 100 to 1000 runs of
MiniCount on various families of formulas (discussed in
the experimental section). The top-left QQ-plot shows the
best fit of normalized dMiniCount (obtained by subtracting the
average and dividing by the standard deviation) to the nor-
mal distribution: (normalized dMiniCount = d) ∼ 1√

2π
e−d2/2.

The ‘supernormal’ and ‘subnormal’ lines show that the fit
is much worse when the exponent of d is, for example, 1.5
or 2.5. The bottom-left plot shows that the corresponding
domain (Langford problems) is somewhat on the border of
being log-normally distributed, which is reflected in our ex-
perimental results to be described later.

Note that the nature of statistical tests is such that if the
distribution of E [#FMiniCount] is not exactly log-normal, ob-
taining more and more samples will eventually lead to re-
jecting the log-normality hypothesis. For most practical pur-
poses, being “close” to log-normally distributed suffices.

Confidence Interval Bound. Assuming the output samples
from MiniCount {o1, . . . ,on} come from a log-normal dis-

tribution, we use them to compute a number cmax, an upper
bound of the confidence interval for the mean of #FMiniCount.
An exact method for computing the confidence interval of
the mean of a log-normal distribution is complicated, and
seldom used in practice. We use a conservative bound com-
putation described by Zhou & Sujuan (1997). The upper
bound is computed as follows: let yi = log(oi), ȳ = 1

n ∑n
i=1 yi

denote the sample mean, and s2 = 1
n−1 ∑n

i=1(yi− ȳ)2 the sam-
ple variance. Then the upper bound is constructed as

cmax = ȳ+
s2

2 +

(

n−1
χ2

α(n−1)
−1

)

√

s2

2

(

1+
s2

2

)

where χ2
α(n − 1) is the α-percentile of the chi-square

distribution with n − 1 degrees of freedom. This ap-
proximate bound is conservative, that is we do have
Pr [cmax ≥ E [#FMiniCount]] ≥ 1−α, but may not be as tight
as the exact bound for the confidence interval.

The main assumption of the method described in this sec-
tion is that the distribution of #FMiniCount can be well ap-
proximated by a log-normal. This, of course, depends on
the nature of the search space of MiniCount on a particular
formula. As noted before, the assumption may sometimes
be incorrect. In particular, one can construct a pathological
search space where the reported upper bound will be lower
than the actual number of solutions. Consider a problem P
that consists of two non-interacting subproblems P1 and P2,
where it is sufficient to solve either one of them to solve P.
Suppose P1 is very easy to solve (e.g., requires few choice
points that are easy to find) compared to P2, and P1 has very
few solutions compared to P2. In such a case, MiniCount
will almost always solve P1 (and thus estimate the number
of solutions of P1), which would leave an arbitrarily large
number of solutions of P2 unaccounted for. This situation
violates the assumption that #FMiniCount is log-normally dis-
tributed, but it may be left unnoticed. This possibility of a
false upper bound is a consequence of the inability to prove
from samples that a random variable is log-normally dis-
tributed (it is only possible to disprove this assertion). For-
tunately, as our experiments suggest, this situation is rare
and does not arise in many real-world problems.

Experimental Results
We conducted experiments with BPCount as well as
MiniCount, with the primary focus on comparing the re-
sults to exact counters and the recent SampleCount algo-
rithm providing probabilistically guaranteed lower bounds.
We used a cluster of 3.8 GHz Intel Xeon computers running
Linux 2.6.9-22.ELsmp. The time limit was set to 12 hours
and the memory limit to 2 GB.

We consider problems from five different domains, many
of which have previously been used as benchmarks for eval-
uating model counting techniques: circuit synthesis, ran-
dom k-CNF, Latin square construction, Langford problems,
and FPGA routing instances from the SAT 2002 competi-
tion. The results are summarized in Table 1. The columns
show the performance of BPCount and MiniCount, com-
pared against the exact solution counters Relsat, Cachet,

6

Table 1: Performance of BPCount and MiniCount. [R] and [C] indicate partial counts obtained from Cachet and Relsat,
respectively. c2d was slower for the first instance and exceeded the memory limit of 2 GB for the rest. Runtime is in seconds.

Cachet / Relsat / c2d SampleCount BPCount MiniCount
of True Count (exact counters) (99% confidence) (99% confidence) S-W (99% confidence)

Instance vars (if known) Models Time LWR-bound Time LWR-bound Time Test Average UPR-bound Time
CIRCUIT SYNTH.

2bitmax 6 252 2.1×1029 2.1×1029 2 sec[C] ≥ 2.4×1028 29 sec ≥ 2.8×1028 5 sec √
3.5×1030 ≤ 4.3×1032 2 sec

RANDOM k-CNF
wff-3-3.5 150 1.4×1014 1.4×1014 7 min[C] ≥ 1.6×1013 4 min ≥ 1.6×1011 3 sec √

4.3×1014 ≤ 6.7×1015 2 sec
wff-3-1.5 100 1.8×1021 1.8×1021 3 hrs[C] ≥ 1.6×1020 4 min ≥ 1.0×1020 1 sec √

1.2×1021 ≤ 4.8×1022 2 sec
wff-4-5.0 100 — ≥ 1.0×1014 12 hrs[C] ≥ 8.0×1015 2 min ≥ 2.0×1015 2 sec √

2.8×1016 ≤ 5.7×1028 2 sec
LATIN SQUARE

ls8-norm 301 5.4×1011 ≥ 1.7×108 12 hrs[R] ≥ 3.1×1010 19 min ≥ 1.9×1010 12 sec √
6.4×1012 ≤ 1.8×1014 2 sec

ls9-norm 456 3.8×1017 ≥ 7.0×107 12 hrs[R] ≥ 1.4×1015 32 min ≥ 1.0×1016 11 sec √
6.9×1018 ≤ 2.1×1021 3 sec

ls10-norm 657 7.6×1024 ≥ 6.1×107 12 hrs[R] ≥ 2.7×1021 49 min ≥ 1.0×1023 22 sec √
4.3×1026 ≤ 7.0×1030 7 sec

ls11-norm 910 5.4×1033 ≥ 4.7×107 12 hrs[R] ≥ 1.2×1030 69 min ≥ 6.4×1030 1 min √
1.7×1034 ≤ 5.6×1040 35 sec

ls12-norm 1221 — ≥ 4.6×107 12 hrs[R] ≥ 6.9×1037 50 min ≥ 2.0×1041 70 sec √
9.1×1044 ≤ 3.6×1052 4 min

ls13-norm 1596 — ≥ 2.1×107 12 hrs[R] ≥ 3.0×1049 67 min ≥ 4.0×1054 6 min √
1.0×1054 ≤ 8.6×1069 42 min

ls14-norm 2041 — ≥ 2.6×107 12 hrs[R] ≥ 9.0×1060 44 min ≥ 1.0×1067 4 min √
3.2×1063 ≤ 1.3×1086 7.5 hrs

LANGFORD PROBS.
lang-2-12 576 1.0×105 1.0×105 15 min[R] ≥ 4.3×103 32 min ≥ 2.3×103 50 sec × 5.2×106 ≤ 1.0×107 2.5 sec
lang-2-15 1024 3.0×107 ≥ 1.8×105 12 hrs[R] ≥ 1.0×106 60 min ≥ 5.5×105 1 min √

1.0×108 ≤ 9.0×108 8 sec
lang-2-16 1024 3.2×108 ≥ 1.8×105 12 hrs[R] ≥ 1.0×106 65 min ≥ 3.2×105 1 min × 1.1×1010 ≤ 1.1×1010 7.3 sec
lang-2-19 1444 2.1×1011 ≥ 2.4×105 12 hrs[R] ≥ 3.3×109 62 min ≥ 4.7×107 26 min × 1.4×1010 ≤ 6.7×1012 37 sec
lang-2-20 1600 2.6×1012 ≥ 1.5×105 12 hrs[R] ≥ 5.8×109 54 min ≥ 7.1×104 22 min √

1.4×1012 ≤ 9.4×1012 3 min
lang-2-23 2116 3.7×1015 ≥ 1.2×105 12 hrs[R] ≥ 1.6×1011 85 min ≥ 1.5×105 15 min × 3.5×1012 ≤ 1.4×1013 23 min
lang-2-24 2304 — ≥ 4.1×105 12 hrs[R] ≥ 4.1×1013 80 min ≥ 8.9×107 18 min × 2.7×1013 ≤ 1.9×1016 25 min

FPGA routing (SAT2002)
apex7 * w5 1983 — ≥ 4.5×1047 12 hrs[R] ≥ 8.8×1085 20 min ≥ 3.0×1082 3 min √

7.3×1095 ≤ 5.9×10105 2 min
9symml * w6 2604 — ≥ 5.0×1030 12 hrs[R] ≥ 2.6×1047 6 hrs ≥ 1.8×1046 6 min √

3.3×1058 ≤ 5.8×1064 24 sec
c880 * w7 4592 — ≥ 1.4×1043 12 hrs[R] ≥ 2.3×10273 5 hrs ≥ 7.9×10253 18 min √

1.0×10264 ≤ 6.3×10326 26 sec
alu2 * w8 4080 — ≥ 1.8×1056 12 hrs[R] ≥ 2.4×10220 143 min ≥ 2.0×10205 16 min √

1.4×10220 ≤ 7.2×10258 16 sec
vda * w9 6498 — ≥ 1.4×1088 12 hrs[R] ≥ 1.4×10326 11 hrs ≥ 3.8×10289 56 min √

1.6×10305 ≤ 2.5×10399 42 sec

and c2d (we report the best of the three for each instance;
for all but the first instance, c2d exceeded the memory limit)
and SampleCount. The table shows the reported bounds on
the model counts and the corresponding runtime in seconds.

For BPCount, the damping parameter setting (i.e., the κ
value) we use for the damped BP marginal estimator is 0.8,
0.9, 0.9, 0.5, and either 0.1 or 0.2 for the five domains,
respectively. This parameter is chosen (with a quick man-
ual search) as high as possible so that BP converges in a
few seconds or less. The exact counter Cachet is called
when the formula is sufficiently simplified, which is when
50 to 500 variables remain, depending on the domain. The
lower bounds on the model count are reported with 99%
confidence. We see that a significant improvement in ef-
ficiency is achieved when the BP marginal estimation is
used through BPCount, compared to solution sampling as in
SampleCount (also run with 99% correctness confidence).
For the smaller formulas considered, the lower bounds re-
ported by BPCount border the true model counts. For the
larger ones that could only be counted partially by exact
counters in 12 hours, BPCount gave lower bound counts that
are very competitive with those reported by SampleCount,
while the running time of BPCount is, in general, an order

of magnitude lower than that of SampleCount, often just a
few seconds.

For MiniCount, we obtain n = 100 samples of the es-
timated count for each formula, and use these to estimate
the upper bound statistically using the steps described ear-
lier. The test for log-normality of the sample counts is done
with a rejection level 0.05, that is, if the Shapiro-Wilk test
reports p-value below 0.05, we conclude the samples do not
come from a log-normal distribution, in which case no up-
per bound guarantees are provided (MiniCount is “unsuc-
cessful”). When the test passed, the upper bound itself was
computed with a confidence level of 99% using the compu-
tation of Zhou & Sujuan (1997). The results are summarized
in the last set of columns in Table 1. We report whether
the log-normality test passed, the average of the counts ob-
tained over the 100 runs, the value of the statistical upper
bound cmax, and the total time for the 100 runs. We see that
the upper bounds are often obtained within seconds or min-
utes, and are correct for all instances where the estimation
method was successful (i.e., the log-normality test passed)
and true counts or lower bounds are known. In fact, the
upper bounds for these formulas (except lang-2-23) are
correct w.r.t. the best known lower bounds and true counts

7

even for those instances where the log-normality test failed
and a statistical guarantee cannot be provided. The Lang-
ford problem family seems to be at the boundary of appli-
cability of the MiniCount approach, as indicated by the
alternating successes and failures of the test in this case.
The approach is particularly successful on industrial prob-
lems (the circuit synthesis and FPGA routing problems),
where upper bounds are computed within seconds. Our re-
sults also demonstrate that a simple average of the 100 runs
provides a very good approximation to the number of solu-
tions. However, simple averaging can sometimes lead to an
incorrect upper bound, as seen in the instances wff-3-1.5,
ls13-norm, alu2 gr rcs w8, and vda gr rcs w9, where
the simple average is below the true count or a lower bound
obtained independently. This justifies our statistical frame-
work, which as we see provides more robust upper bounds.

Conclusion
This work brings together techniques from message pass-
ing, DPLL-based SAT solvers, and statistical estimation in
an attempt to solve the challenging model counting prob-
lem. We show how (a damped form of) BP can help signif-
icantly boost solution counters that produce lower bounds
with probabilistic correctness guarantees. BPCount is able
to provide good quality bounds in a fraction of the time com-
pared to previous, sample-based methods. We also describe
the first effective approach for obtaining good upper bounds
on the solution count. Our framework is general and enables
one to turn any state-of-the-art complete SAT/CSP solver
into an upper bound counter, with very minimal modifica-
tions to the code. Our MiniCount algorithm provably con-
verges to an upper bound, and is remarkably fast at providing
good results in practice.

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Algorithms and

complexity results for #SAT and Bayesian inference. In 44nd
FOCS, 340–351.

Bayardo Jr., R. J., and Pehoushek, J. D. 2000. Counting models
using connected components. In 17th AAAI, 157–162.

Darwiche, A. 2004. New advances in compiling CNF into decom-
posable negation normal form. In 16th ECAI, 328–332.

Darwiche, A. 2005. The quest for efficient probabilistic inference.
Invited Talk, IJCAI-05.

Davis, M., and Putnam, H. 1960. A computing procedure for
quantification theory. CACM 7:201–215.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A machine
program for theorem proving. CACM 5:394–397.

Eén, N., and Sörensson, N. 2005. MiniSat: A SAT solver with
conflict-clause minimization. In 8th SAT.

Gogate, V., and Dechter, R. 2007. Approximate counting by sam-
pling the backtrack-free search space. In 22th AAAI, 198–203.

Gomes, C. P.; Hoffmann, J.; Sabharwal, A.; and Selman, B. 2007.
From sampling to model counting. In 20th IJCAI, 2293–2299.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model count-
ing: A new strategy for obtaining good bounds. In 21th AAAI,
54–61.

Hsu, E. I., and McIlraith, S. A. 2006. Characterizing propagation
methods for boolean satisfiability. In SAT, 325–338.

Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001. Stochastic
Boolean satisfiability. J. Auto. Reas. 27(3):251–296.

Park, J. D. 2002. MAP complexity results and approximation
methods. In 18th UAI, 388–396.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.

Pretti, M. 2005. A message-passing algorithm with damping. J.
Stat. Mech. P11008.

Roth, D. 1996. On the hardness of approximate reasoning. J. AI
82(1-2):273–302.

Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing Bayesian
inference by weighted model counting. In 20th AAAI, 475–482.

Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi, T.
2004. Combining component caching and clause learning for
effective model counting. In 7th SAT.

Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strate-
gies for satisfiability testing. In Johnson, D. S., and Trick, M. A.,
eds., Cliques, Coloring, and Satisfiability: the Second DIMACS
Implementation Challenge. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, volume 26. Ameri-
can Mathematical Society. 521–532.

Thode, H. C. 2002. Testing for Normality. CRC.
Valiant, L. G. 1979. The complexity of computing the permanent.

Theoretical Comput. Sci. 8:189–201.
Wei, W., and Selman, B. 2005. A new approach to model counting.

In 8th SAT, volume 3569 of LNCS, 324–339.
Wei, W.; Erenrich, J.; and Selman, B. 2004. Towards efficient

sampling: Exploiting random walk strategies. In 19th AAAI,
670–676.

Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2005. Construct-
ing free-energy approximations and generalized belief propa-
gation algorithms. Information Theory, IEEE Transactions on
51(7):2282–2312.

Yuille, A. L. 2002. CCCP algorithms to minimize the Bethe and
Kikuchi free energies: Convergent alternatives to belief propa-
gation. Neural Comput. 14(7):1691–1722.

Zhou, X.-H., and Sujuan, G. 1997. Confidence intervals for the
log-normal mean. Statistics In Medicine 16:783–790.

8

	Introduction
	Notation
	Lower Bounds Using BP Marginal Estimates
	Counting using BP: BPCount

	Upper Bound Estimation
	Counting using Backtrack Search: MiniCount
	Estimating the Upper Bound

	Experimental Results
	Conclusion

