
Backdoors in the Context of Learning

Bistra Dilkina Carla P. Gomes Ashish Sabharwal

Department of Computer Science
Cornell University, Ithaca NY 14853-7501, U.S.A.

{bistra,gomes,sabhar}@cs.cornell.edu

Abstract. The concept of backdoor variables has been introduced as a
structural property of combinatorial problems that provides insight into
the surprising ability of modern satisfiability (SAT) solvers to tackle
extremely large instances. This concept is, however, oblivious to “learn-
ing” during search—a key feature of successful combinatorial reasoning
engines for SAT, mixed integer programming (MIP), etc. We extend the
notion of backdoors to the context of learning during search. We prove
that the smallest backdoors for SAT that take into account clause learn-
ing and order-sensitivity of branching can be exponentially smaller than
“traditional” backdoors. We also study the effect of learning empirically.

1 Introduction

In recent years we have seen tremendous progress in the state of the art of SAT
solvers: we can now efficiently solve large real-world problems. A fruitful line
of research in understanding and explaining this outstanding success focuses on
the role of hidden structure in combinatorial problems. One example of such
hidden structure is a backdoor set, i.e., a set of variables such that once they
are instantiated, the remaining problem simplifies to a tractable class [6, 7, 8,
12, 15, 16]. Backdoor sets are defined with respect to efficient sub-algorithms,
called sub-solvers, employed within the systematic search framework of SAT
solvers. In particular, the definition of strong backdoor set B captures the fact
that a systematic tree search procedure (such as DPLL) restricted to branching
only on variables in B will successfully solve the problem, whether satisfiable or
unsatisfiable. Furthermore, in this case, the tree search procedure restricted to
B will succeed independently of the order in which it explores the search tree.

Most state-of-the-art SAT solvers rely heavily on clause learning which adds
new clauses every time a conflict is derived during search. Adding new informa-
tion as the search progresses has not been considered in the traditional concept
of backdoors. In this work we extend the concept of backdoors to the context
of learning, where information learned from previous search branches is allowed
to be used by the sub-solver underlying the backdoor. This often leads to much
smaller backdoors than the “traditional” ones. In particular, we prove that the
smallest backdoors for SAT that take into account clause learning can be expo-
nentially smaller than traditional backdoors oblivious to these solver features. We
also present empirical results showing that the added power of learning-sensitive
backdoors is also often observed in practice.

2 Preliminaries

For lack of space, we will assume familiarity with Boolean formulas in conjunctive
normal form (CNF), the satisfiability testing problem (SAT), and DPLL-based
backtrack search methods for SAT. Backdoor sets for such formulas and solvers
are defined with respect to efficient sub-algorithms, called sub-solvers, employed
within the systematic search framework of SAT solvers. In practice, these sub-
solvers often take the form of efficient procedures such as unit propagation (UP),
pure literal elimination, and failed-literal probing. In some theoretical studies, so-
lution methods for structural sub-classes of SAT such as 2-SAT, Horn-SAT, and
RenamableHorn-SAT have also been considered as sub-solvers. Formally [16], a
sub-solver A for SAT is any polynomial time algorithm satisfying certain natural
properties on every input CNF formula F : (1) Trichotomy: A either determines
F correctly (as satisfiable or unsatisfiable) or fails; (2) A determines F for sure
if F has no clauses or contains the empty clause; and (3) if A determines F , then
A also determines F |x=0 and F |x=1 for any variable x.

For a formula F and a truth assignment τ to a subset of the variables of
F , we will use F |τ to denote the simplified formula obtained after applying the
(partial) truth assignment to the affected variables.

Definition 1 (Weak and Strong Backdoors for SAT [16]). Given a CNF
formula F on variables X, a subset of variables B ⊆ X is a weak backdoor for
F w.r.t. a sub-solver A if for some truth assignment τ : B → {0, 1}, A returns a
satisfying assignment for F |τ . Such a subset B is a strong backdoor if for every
truth assignment τ : B → {0, 1}, A returns a satisfying assignment for F |τ or
concludes that F |τ is unsatisfiable.

Weak backdoor sets capture the fact that a well-designed heuristic can get
“lucky” and find the solution to a hard satisfiable instance if the heuristic guid-
ance is correct even on the small fraction of variables that constitute the back-
door set. Similarly, strong backdoor sets B capture the fact that a systematic
tree search procedure (such as DPLL) restricted to branching only on variables
in B will successfully solve the problem, whether satisfiable or unsatisfiable.
Furthermore, in this case, the tree search procedure restricted to B will succeed
independently of the order in which it explores the search tree.

3 Backdoor Sets for Clause Learning SAT Solvers

The last point made in Section 2—that the systematic search procedure will
succeed independent of the order in which it explores various truth valuations
of variables in a backdoor set B—is, in fact, a very important notion that has
only recently begun to be investigated, in the context of mixed-integer program-
ming [1]. In practice, many modern SAT solvers employ clause learning tech-
niques, which allow them to carry over information from previously explored
branches to newly considered branches. Prior work on proof methods based
on clause learning and the resolution proof system suggests that, especially for

unsatisfiable formulas, some variable-value assignment orders may lead to signif-
icantly shorter search proofs than others. In other words, it is very possible that
“learning-sensitive” backdoors are much smaller than “traditional” strong back-
doors. To make this notion of incorporating learning-during-search into backdoor
sets more precise, we introduce the following extended definition:

Definition 2 (Learning-Sensitive Backdoors for SAT). Given a CNF for-
mula F on variables X, a subset of variables B ⊆ X is a learning-sensitive
backdoor for F w.r.t. a sub-solver A if there exists a search tree exploration
order such that a clause learning SAT solver branching only on the variables in
B, with this order and with A as the sub-solver at the leaves of the search tree,
either finds a satisfying assignment for F or proves that F is unsatisfiable.

Note that, as before, each leaf of this search tree corresponds to a truth as-
signment τ : B → {0, 1} and induces a simplified formula F |τ to be solved by A.
However, the tree search is naturally allowed to carry over and use learned in-
formation from previous branches in order to help A determine F |τ . Thus, while
F |τ may not always be solvable by A per se, additional information gathered
from previously explored branches may help A solve F |τ . We note that incorpo-
rating learned information can, in principle, also be considered for the related
notion of backdoor trees [14], which looks at the smallest search tree size rather
than the set of branching variables.

We explain the power of learning-sensitivity through the following example
formula, for which there is a natural learning-sensitive backdoor of size one w.r.t.
unit propagation but the smallest traditional strong backdoor is of size 2. We
will then generalize this observation into an exponential separation between the
power of learning-sensitive and traditional strong backdoors for SAT.

Example 1. Consider the unsatisfiable SAT instance, F1:

(x ∨ p1), (x ∨ p2), (¬p1 ∨ ¬p2 ∨ q), (¬q ∨ a), (¬q ∨ ¬a ∨ b), (¬q ∨ ¬a ∨ ¬b)
(¬x ∨ q ∨ r), (¬r ∨ a), (¬r ∨ ¬a ∨ b), (¬r ∨ ¬a ∨ ¬b)

We claim that {x} is a learning-sensitive backdoor for F1 w.r.t. the unit prop-
agation sub-solver, while all traditional strong backdoors are of size at least
two. First, let’s understand why {x} does work as a backdoor set when clause
learning is allowed. When we set x = 0, this implies—by unit propagation—the
literals p1 and p2, these together imply q which implies a, and finally, q and a
together imply both b and ¬b, causing a contradiction. At this point, a clause
learning algorithm will realize that the literal q forms what’s called a unique
implication point (UIP) for this conflict [10], and will learn the singleton clause
¬q. Now, when we set x = 1, this, along with the learned clause ¬q, will unit
propagate one of the clauses of F1 and imply r, which will then imply a and
cause a contradiction as before. Thus, setting x = 0 leads to a contradiction by
unit propagation as well as a learned clause, and setting x = 1 after this also
leads to a contradiction.

To see that there is no traditional strong backdoor of size one with respect
to unit propagation (and, in particular, {x} does not work as a strong backdoor

without the help of the learned clause ¬q), observe that for every variable of F1,
there exists at least one polarity in which it does not appear in any 1- or 2-clause
(i.e., a clause containing only 1 or 2 variables) and therefore there is no empty
clause generation or unit propagation under at least one truth assignment for
that variable. (Note that F1 does not have any 1-clauses to begin with.) E.g.,
q does not appear in any 2-clause of F1 and therefore setting q = 0 does not
cause any unit propagation at all, eliminating any chance of deducing a conflict.
Similarly, setting x = 1 does not cause any unit propagation. In general, no
variable of F1 can lead to a contradiction by itself under both truth assignments
to it, and thus cannot be a traditional strong backdoor. Note that {x, q} does
form a traditional strong backdoor of size two for F1 w.r.t. unit propagation. ut

Theorem 1. There are unsatisfiable SAT instances for which the smallest
learning-sensitive backdoors w.r.t. unit propagation are exponentially smaller
than the smallest traditional strong backdoors.

Proof (Sketch). We, in fact, provide two proofs of this statement by constructing
two unsatisfiable formulas F2 and F3 over N = k+3 ·2k variables and M = 4 ·2k

clauses, with the following property: both formulas have a learning-sensitive
backdoor of size k = Θ(log N) but no traditional strong backdoor of size smaller
than 2k +k = Θ(N). F2 is perhaps a bit easier to understand and has a relatively
weak ordering requirement for the size k learning-sensitive backdoor to work
(namely, that the all-1 truth assignment must be evaluated at the very end);
F3, on the other hand, requires a strict value ordering to work as a backdoor
(namely, the lexicographic order from 000 . . . 0 to 111 . . . 1) and highlights the
strong role a good branching order plays in the effectiveness of backdoors. For
lack of space, the details are deferred to an extended Technical Report [3]. ut

In fact, the discussion in the proof of Theorem 1 also reveals that for the con-
structed formula F3, any value ordering that starts by assigning 0’s to all xi’s
will lead to a learning-sensitive backdoor of size no smaller than 2k. This imme-
diately yields the following result under-scoring the importance of the “right”
value ordering even amongst various learning-sensitive backdoors.

Corollary 1. There are unsatisfiable SAT instances for which one value order-
ing of the variables can lead to exponentially smaller learning-sensitive backdoors
w.r.t. unit propagation than a different value ordering.

We now turn our attention to the study of strong backdoors for satisfiable
instances, and show that clause learning can also lead to strictly smaller (strong)
backdoors for satisfiable instances. In fact, our experiments suggest a much more
drastic impact of clause learning on backdoors for practical satisfiable instances
than on backdoors for unsatisfiable instances. We have the following formal result
that can be derived from a slight modification of the construction of formula F1

used earlier in Example 1 (see Technical Report [3]).

Theorem 2. There are satisfiable SAT instances for which there exist learning-
sensitive backdoors w.r.t. unit propagation that are smaller than the smallest
traditional strong backdoors.

As a closing remark, we note that the presence of clause learning does not
affect the power of weak backdoors w.r.t. a natural class of syntactically-defined
sub-solvers, i.e., sub-solvers that work when the constraint graph of the instance
satisfies a certain polynomial-time verifiable property. Good examples of such
syntactic classes w.r.t. which strong backdoors have been studied in depth are 2-
SAT, Horn-SAT, and RenamableHorn-SAT [cf. 2, 11, 12]. Most of such syntactic
classes satisfy a natural property, namely, they are closed under clause removal.
In other words, if F is a 2-SAT or Horn formula, then removing some clauses from
F yields a smaller formula that is also a 2-SAT or Horn formula, respectively.
We have the following observation (see Technical Report [3] for a proof):

Proposition 1. Clause learning does not reduce the size of weak backdoors with
respect to syntactic sub-solver classes that are closed under clause removal.

4 Experimental Results

We evaluate the effect of clause learning on the size of backdoors in a set of
well-known SAT instances from SATLIB [5]. Upper bounds on the size of the
smallest leaning-sensitive backdoor w.r.t. UP were obtained using the SAT solver
RSat [13]. At every search node RSat employs UP and at every conflict it employs
clause learning based on UIP. We turned off restarts and randomized the variable
and value selection. In addition, we traced the set of variables used for branching
during search—the backdoor. We ran the modified RSat 5,000 times per instance
and recorded the smallest backdoor set among all runs.

Upper bounds on the size of the smallest traditional backdoor w.r.t. UP
were obtained using a modified version of Satz-rand [4, 9] that employs UP as
a sub-solver and also traces the set of branch variables. We ran the modified
Satz 5,000 times per instance and recorded the smallest backdoor set among all
runs. Note that these results concern traditional weak backdoors for satisfiable
instances and strong backdoors for unsatisfiable instances. Satz relies heavily on
good variable selection heuristics in order to minimize the solution time. Hence,
using Satz instead of a modified version of RSat with learning turned off gave
us much better bounds on traditional backdoors w.r.t. UP.

The results are summarized in Table 1. Across all satisfiable instances the
learning-sensitive backdoor upper bounds are significantly smaller than the tra-
ditional ones. For unsatisfiable instances, the upper bounds on the learning-
sensitive and traditional backdoors are not very different. However, a notable
exception is the parity instance where including clause learning reduces the back-
door upper bound to less than 10% from almost 39%.

Acknowledgments

This research was supported by IISI, Cornell University (AFOSR grant FA9550-04-1-

0151), NSF Expeditions in Computing award for Computational Sustainability (Grant

0832782) and NSF IIS award (Grant 0514429). The first author was partially supported

by an NSERC PGS Scholarship. Part of this work was done while the third author was

visiting McGill University.

Table 1. Upper bounds on the size of the smallest backdoor when using clause learning
and unit propagation (within RSat) and when using only unit propagation (within
Satz). Results are given as percentage of the number of variables.

Instance Status Vars Clauses UP+CL UP

bf0432-007 UNSAT 1,040 3,668 12.12% 13.65%
bf1355-075 UNSAT 2,180 6,778 3.90% 5.92%
bf1355-638 UNSAT 2,177 6,768 3.86% 6.84%
bf2670-001 UNSAT 1,393 3,434 1.22% 2.08%

apex7 gr 2pin w4 UNSAT 1,322 10,940 12.25% 20.73%
parity unsat 4 5 UNSAT 2,508 17,295 9.85% 39.07%

anomaly SAT 48 261 4.17% 4.17%
medium SAT 116 953 1.72% 14.66%

huge SAT 459 7,054 1.09% 3.27%
bw large.a SAT 459 4,675 1.53% 3.49%
bw large.b SAT 1,087 13,772 1.93% 11.59%
bw large.c SAT 3,016 50,457 2.95% 13.76%
bw large.d SAT 6,325 131,973 3.37% 43.27%

References

[1] B. Dilkina, C. P. Gomes, Y. Malitsky, A. Sabharwal, and M. Sellmann. Backdoors
to combinatorial optimization: Feasibility and optimality. In CPAIOR, 2009.

[2] B. Dilkina, C. P. Gomes, and A. Sabharwal. Tradeoffs in the complexity of back-
door detection. In CP, pp. 256–270, 2007.

[3] B. Dilkina, C. P. Gomes, and A. Sabharwal. Backdoors in the context of learning
(extended version). Technical report, Cornell University, Computing and Infor-
mation Science, Apr. 2009. URL http://hdl.handle.net/1813/12231.

[4] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In AAAI, pp. 431–437, 1998.

[5] H. H. Hoos and T. Stützle. SATLIB: An online resource for research on SAT. In
SAT, pp. 283–292, 2000. URL http://www.satlib.org.

[6] P. Kilby, J. K. Slaney, S. Thibaux, and T. Walsh. Backbones and backdoors in
satisfiability. In AAAI, pp. 1368–1373, 2005.

[7] O. Kullmann. Investigating a general hierarchy of polynomially decidable classes
of cnf’s based on short tree-like resolution proofs. ECCC, vol. 41, 1999.

[8] O. Kullmann. Upper and lower bounds on the complexity of generalised resolu-
tion and generalised constraint satisfaction problems. Annals of Mathematics and
Artificial Intelligence, 40(3-4):303–352, 2004. ISSN 1012-2443.

[9] C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In IJCAI, pp. 366–371, 1997.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. In DAC, pp. 530–535, 2001.

[11] N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to
Horn and binary clauses. In SAT, pp. 96-103, 2004.

[12] L. Paris, R. Ostrowski, P. Siegel, and L. Sais. Computing Horn strong backdoor
sets thanks to local search. In ICTAI, pp. 139–143, 2006.

[13] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for
satisfiability solvers. In SAT, pp. 294–299, 2007.

[14] M. Samer and S. Szeider. Backdoor trees. In AAAI, pp. 363–368, 2008.
[15] S. Szeider. Backdoor sets for DLL subsolvers. J. Auto. Reas., 35(1-3):73–88, 2005.
[16] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In

IJCAI, pp. 1173–1178, 2003.

http://hdl.handle.net/1813/12231
http://www.satlib.org

