
The Sequential Semantics of Producer Effect Systems
Technical Report

Ross Tate
Cornell University
ross@cs.cornell.edu

Abstract
Effects are fundamental to programming languages. Even the
lambda calculus has effects, and consequently the two famous
evaluation strategies produce different semantics. As such, much
research has been done to improve our understanding of effects.
Since Moggi introduced monads for his computational lambda cal-
culus, further generalizations have been designed to formalize in-
creasingly complex computational effects, such as indexed monads
followed by layered monads followed by parameterized monads.
This succession prompted us to determine the most general formal-
ization possible. In searching for this formalization we came across
many surprises, such as the insufficiencies of arrows, as well as
many unexpected insights, such as the importance of considering
an effect as a small component of a whole system rather than just
an isolated feature. In this paper we present our semantic formal-
ization for producer effect systems, which we call a productor, and
prove its maximal generality by focusing on only sequential com-
position of effectful computations, consequently guaranteeing that
the existing monadic techniques are specializations of productors.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Theory

Keywords Effects, Monads, Effectors, Productors, Thunks

1. Introduction
Effects have been around since the beginning of programming
languages. After all, even programs written in the lambda calculus
have effects: some programs diverge and some programs disregard
their inputs. How these effects interact determines the semantics of
a program, leading to strict or lazy evaluation depending on what
choices are made. Yet, despite their prevalence, effects and their
behavior remain fairly mysterious, especially when one considers
how thoroughly data and types have been formalized. We view
effects and types as complementary systems, so by improving our
understanding of effects to match that of types we hope to broaden
the perspective of programming languages as a whole.

Before we go any further, we should define what we mean by an
effect, since this term has come to have different meanings in differ-
ent communities. For some an effect is a classification of a compu-
tation determined by some analysis [17, 19, 22, 23, 30–33]. For oth-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

ers an effect is synonymous with a monad [3, 9, 12, 13, 37]. Indeed,
Wadler and Thiemann illustrated the intimate connection between
the former type-and-effect perspective and the latter computational-
effect perspective [37], which we will refine within this paper. What
we mean by an effect is a classification of a computation indepen-
dent of the values of its inputs and outputs. For example, “writes to
the heap” is an effect but “writes to the heap only if the input inte-
ger is non-zero“ is not. Thus, whereas types classify the inputs and
outputs of computations, effects classify the internals of computa-
tions, forming complementary classification systems. More specif-
ically, we are avoiding imposing the complexity of dependent clas-
sification systems in addition to the complexity of reasoning about
effects in a language-independent manner.

This informal definition is much broader than what many might
consider an effect. For example, “disregards its input” satisfies our
definition: though it mentions the input to the computation, the
meaning of this classification does not depend on the actual value
of that input. Similarly, “uses variable x” satisfies our definition.
These effects correspond to the use of context. They are often disre-
garded since many consider freely accessible persistent contexts to
be a basic part of programming languages, even though such con-
texts are not necessarily present in resource-constrained or stack-
based languages. When we realized this assumption, we had to re-
consider our own notion of effect. What we found is that effects like
“uses its input multiple times” can be formalized as consumer ef-
fects because they reason about how a computation consumes its
inputs. In fact, many fundamental of behaviors of programming
languages reflect these consumer effects. Unfortunately, in order
to keep this paper focused, we must consider consumer effects to
be outside of the scope at hand. Instead, we will focus on the much
more familiar dual notion that we call producer effects.

A producer effect reasons about how a computation produces
its outputs. For example, “may throw an exception instead of pro-
ducing its output” or “may examine and alter the heap before pro-
ducing its output” are familiar producer effects. Here is where most
existing work on effects lies, and so likewise here is where we fo-
cus our attention. The reason that producer effects are so common
is that they are intimately tied to the notion of thunked computa-
tions, meaning computations which have been delayed so that they
can be treated as values. Indeed, we will define an effect as a pro-
ducer effect if all computations with that effect can be thunked as
“pure” computations for a domain-specific notion of purity. From
this basic property, we will prove that the sequential semantics of
all producer effects can be formalized by our framework. As a re-
sult, Moggi’s monads for his computational lambda calculus [20],
Wadler’s indexed monads [37], Filinski’s layered monads [5], and
Atkey’s parameterized monads [2] are subsumed by our frame-
work, and we will illustrate how these various formalizations arise
from simple assumptions on the producer effects at hand, as well
as how those assumptions restrict the kind of information that the
effect system can track. As an example, we present an effect system
for ensuring shared memory is accessed only in critical regions, the

semantics of which is guaranteed to be inexpressible by these ex-
isting systems because it violates their assumptions. However, we
show how the semantics can easily be formalized with our frame-
work to prove that the effect system prevents race conditions.

Just as we restrict our scope to producer effects, we also re-
strict it to sequential composition of computations. There are many
other forms of composition, such as multiplicative composition (for
parallelism and for adjacent subexpressions), additive composition
(for branching), and coinductive composition (for recursion and for
loops). We choose sequential composition because that is where
existing research has focused its efforts. We focus on just the one
form of composition so that we may address its challenges in full.
We believe many of the insights and techniques in this paper can be
adapted to other forms of composition, though there is still plenty
of interesting work to be done there.

With our semantic framework, which we call productors, we
provide a powerful solution to the problem of formalizing the se-
quential semantics of producer effects. This solution is not tied to
common assumptions such as freely accessible persistent contexts
or higher-order functions, enabling us to delve into more interest-
ing semantic domains as well as narrow down the fundamental
aspects of programming languages. Because it is so general, not
only does our framework provide a means for specifying the se-
mantics of programming languages or first steps towards improv-
ing the extensibility of programming languages, it also provides a
meta-language for discussing effects and their properties. We will
demonstrate how such a meta-language illuminates the constructs
in existing languages, particularly in prior formalizations of effects.

This paper begins by first providing an example of an effect
system greatly simplified for sake of exposition (Section 2). Then
we present monads and how they formalize the semantics of an
effect, albeit in a slightly different light than prior such explana-
tions (Section 3). Afterwards, we adapt this approach to our ex-
ample effect system, showing where and why monads need to be
generalized (Section 4). That concludes our example-driven por-
tion of the paper. We then move on to formalizing effect systems
as effectors and effectoids (Section 5). We follow that by formal-
izing their semantics as productors and productoids (Section 6).
With these formalisms established, we illustrate how a variety of
existing semantic frameworks are special cases of productors aris-
ing from extra assumptions on the structure of the effect system
at hand (Section 7). We then show what basic properties of a lan-
guage with effects guarantee all its effects are producer effects and
so formalizable using productors (Section 8). Finally, we remark
on higher-level insights, opportunities to expand existing semantic
techniques, and further directions to take our research in order to
meet our goal of providing an abstract language for discussing and
formalizing programming languages (Section 9).

2. Effects for Locking
Effects are a classification of computations independent of the ex-
plicit inputs and outputs of those computations. Sometimes effects
are superimposed on top of an existing language in order to iden-
tify optimization opportunities or potential bugs [19, 31–33]. Other
times effects are integrated into the type system [1]. For example,
Java has checked exceptions, and Haskell uses monads in order to
combine laziness and side effects. In this paper we will demon-
strate how patterns in applications of effects lead to patterns in the
semantics of effects. To demonstrate that these are just patterns and
not necessarily inherent to effects, we present a toy language that
breaks from all of these patterns.

Our toy language Crit, shown in Figure 1, has explicit synchro-
nization and shared memory, limited for simplicity in that there is
only one lock and one shared integer. Clearly this is just a subset of
a more realistic language with branches, functions, and actual par-

x : Z, y : Z ` z := x+ y a z : Z | e

∅ ` acquire a ∅ | locking ∅ ` release a ∅ | unlocking

∅ ` x := get() a x : Z | critical x : Z ` set(x) a ∅ | critical

Prop
Γ ` p a Γ′ | ε

Γ̄,Γ ` p a Γ̄,Γ′ | ε
Sub

Γ ` p a Γ′ | ε ε ≤ ε′

Γ ` p a Γ′ | ε′

Seq2
;

Γ ` p a Γ′ | ε Γ′ ` p′ a Γ′′ | ε′ ε ; ε′ 7→ ε′′

Γ ` p; p′ a Γ′′ | ε′′

Figure 1. A toy language Crit with critical-region effects

EFF = {e, locking, unlocking, critical, entrant}
e ≤ critical, entrant

↓ ;→ e locking unlocking critical entrant

e e locking unlocking critical entrant
locking locking − entrant locking −

unlocking unlocking critical − − unlocking
critical critical − unlocking critical −
entrant entrant locking − − entrant

Figure 2. The effect system for Crit

allelism, as well as a much richer type system. However, our intent
is just to address sequential composition, so we strip down the lan-
guage to sequential composition. Nonetheless, even the semantics
of this very simple language cannot be formalized using existing
frameworks, at least not in a way that allows the semantics to prove
the desired properties of the effect system. In particular, the effect
system for this language is intended to prove that whenever a lock is
acquired it is subsequently released (without being acquired again
beforehand) and every use of shared memory occurs within such a
critical region.

Before we get into the effect system, let us explain Crit at a high
level. The judgement Γ ` p a Γ′ | ε indicates that the program p
consumes context Γ as its input, produces context Γ′ as its output,
and has overall effect ε. Note that Crit is linear: every value created
is used exactly once. There is one exception: an integer stored to the
shared state via set can be read multiple times via multiple gets.
We can do this because it is possible to implement a duplicating
function Z (!Z in linear type theory. One could make Crit non-
linear by restricting its types to ones which have such a duplicating
function. We chose not to because it is orthogonal to the concerns of
sequential composition and would make the denotational semantics
of Crit unnecessarily complex.

Next, consider the five primitive statements of Crit and their
effect. We give addition the effect e, which we call the basic effect,
and which more generally can be used for all effects not related
to locking (such as non-determinism or memory allocation). The
statement acquire has the effect locking because overall it changes
the state of the lock from free to occupied. Dually, release has the
effect unlocking because overall it changes the state of the lock from
occupied to free. Lastly, get and set have the effect critical because
they must occur inside a critical region.

Finally, consider the three general-purpose rules. Prop allows
unused context to propagate through a program without altering
the effect. While this is not necessary, and indeed is not possible for
all effect systems (e.g. low-level stack-based effect systems), we
will show how this relates to the notion of strength used in existing

semantic frameworks. Sub conveys the notion of subeffects analo-
gous to subtyping. Seq2

;
specifies how effects sequence statically.

These rules can easily be used for other languages, so we give their
specifics separately in Figure 2. Note that Figure 2 has an additional
effect entrant used to indicate code that enters and leaves a critical
section (possibly multiple times), so though the code restores the
state of the lock it first needs the lock to be free in order to execute.

This effect system has a number of unusual attributes. First, the
effects do not form a lattice. In particular, e is not a subeffect of
every effect. Second, not all effects can be sequenced, not even
necessarily with themselves. This means that effects can influence
the typability of a program. Third, the order of the effects matters.
locking before unlocking is considered entrant but the reverse is not
allowed at all. All these attributes have important consequences
on the denotational semantics of Crit and on the insufficiency
of existing frameworks. But before we discuss those we should
present the basics of denotational techniques for effects.

3. Monads
In 1958, Godement invented standard constructions [7], which be-
came known as (Kleisli) triples, which became known as mon-
ads. In 1988, Moggi migrated the concept of monads from the
category-theory community to the programming-languages seman-
tics community [20]. In 1990, Wadler carried this concept over to
the functional-languages community [34, 35], and in 1993 these
concepts were realized as monadic programming and added to
Haskell to make I/O more convenient and to embrace imperative
functional programming [12], blurring the line between imperative
programming and pure programming. This progression has made
monads the most well known technique for formalizing the seman-
tics of effects. Here we show how a monad formalizes an effect, but
in a way that highlights opportunities for generalization.

Propagating an Effect Consider the expression (64 ÷ x) + 1
(using integer division). Focus on the problem that + expects its
first argument to be an integer but the ÷ in the first argument may
fail to produce one because÷ is a partial operation. In other words,
÷ has the partial effect. We might represent this by saying that÷ has

type Z× Z partial−−−→ Z. We want to formalize what it means to have
the partial effect. Moggi observed that we can do so by modifying
the return type of÷ [20]. In particular, we can view÷ as a function
that returns an integer or a failure code. We can define an algebraic
data type Ppartial to represent these two cases:

Ppartial(τ) = success(τ) | failure

Then we can formalize ÷ as a pure operation Z×Z→ Ppartial(Z).
When a failure occurs, any subsequent computations need to

propagate this failure. In particular, if 64÷x fails, then (64÷x)+1
should fail as well. Thus, (64 ÷ x) + 1 also has the partial effect.
We can do this by making the pure computation λv.v+1 from Z to
Z instead take a Ppartial(Z) and return a Ppartial(Z). This is achieved
with a map operation:

mappartial : ∀α, β. (α→ β)→ (Ppartial(α)→ Ppartial(β))

mappartial(f) = λpx. case px

{
success(x) 7→ success(f(x))
failure 7→ failure

Thus map turns a pure computation into one which takes an effect-
ful argument and propagates the effect. In this case, mappartial indi-
cates that if a failure code is present then all computation should be
bypassed and the failure propagated. Using map we can formalize
the semantics of (64÷x)+1 as mappartial(λv.v + 1)(64÷ x). We
map the computation after the effectful operation so that it can take
an effectful argument, then pass the effectful result to this mapped
computation which propagates the effect. Thus if 64 ÷ x fails so
does the entire expression.

This pair of a type constructorP : TYPE→TYPE and a function
on computations map : (τ → τ ′)→ (P (τ)→ P (τ ′)) is called an
(endo)functor (on the category of types) provided it satisfies a few
additional equalities which we do not repeat here, and this is just
one part of a monad. In the setting of effects, the type constructor
P indicates how a production of the effect can be described as
data so that effectful computations can be represented as pure
computations with a modified return value, and the function map
defines how to propagate the effect through pure computations.

Sequencing Effectful Computations Now consider a slightly
more complex example: (64 ÷ x) ÷ y. Here we are sequencing
two effectful computations. We can use the functor representation
of the partial effect in order to formalize this expression:

mappartial(λv.v ÷ y)(64÷ x)

The type of this formalization, though, is Ppartial(Ppartial(Z)), since
the computation we mapped, namely λv.v ÷ y, also has the partial
effect. Although having a doubly partial value allows us to de-
termine which ÷ failed, in this case we are only concerned with
whether any ÷ failed. That is, we want the effect of (64 ÷ x) ÷ y
to be partial rather than (conceptually) partial2. We can accomplish
this by using a monadic join operation to turn doubly partial values
into (singly) partial values:

joinpartial : ∀α.Ppartial(Ppartial(α))→ Ppartial(α)

joinpartial(ppx) = case ppx

success(success(x)) 7→ success(x)
success(failure) 7→ failure
failure 7→ failure

Note that in this example there is only one effect in the whole
system, and this is why we can use a single monad. Some semantic
frameworks generalize from one effect to multiple effects by using
multiple monads, but our semantic framework provides a more
general system in which these approaches are special cases.

Making Pure Computations Effectful With the above structures
we can sequence a non-empty list of effectful computations in-
terspersed with pure computations together into a single effectful
computation. Monads have one more component that enables an
empty list of effectful computations (from a type to itself) to be
turned into a single effectful computation. This structure also en-
ables pure computations to be turned into effectful computations. It
is known as the unit of the monad, in this case turning pure values
into partial values:

unitpartial : ∀α. α→ Ppartial(α)
unitpartial(x) = success(x)

While it is important to be able to treat pure computations as
effectful computations in order to handle computations uniformly,
a system with many effects need only have one effect with a unit
in order to accomplish this. Recognizing this is important since it
allows effects to express significantly more concepts, as we will
demonstrate later.

Coherency The operations for monads have a variety of equali-
ties which must hold, known as the identity and associativity laws.
We do not repeat those laws here, rather we convey their signifi-
cance. Consider the expression (((64 ÷ x) ÷ y) ÷ z) + 5. This
is essentially five computations sequenced together: 64, λv.v ÷ x,
λv.v ÷ y, λv.v ÷ z, and λv.v + 5. Using the structures above we
can sequence these computations (maintaining order) in a variety of
ways depending on how we combine consecutive pairs and whether
we turn pure computations into effectful computations or simply
use functorial structure to propagate effects through them, but the
result should be the same no matter which way is used. We call this
concept semantic coherency, and the monad laws are necessary and
sufficient to ensure this for sequential composition.

4. Semantics for Locking
With monadic techniques in mind, let us consider how we might
define a denotational semantics for Crit. First, we need to choose a
semantic domain on which to define all of our operations. Choos-
ing a good semantic domain can enable the semantics to automati-
cally ensure useful properties. In this case, we want to ensure that
acquires match up with releases one-to-one, and gets and sets hap-
pen only inside critical regions.

Selecting a Semantic Domain To this end, we opt for linear type
theory as our semantic domain, since linear type theory already
has a notion of counting built into it. We use an abstract type L to
denote a free lock and an abstract type C to denote the capability
to access shared memory. An abstract operation acquire converts a
free lockL to a capabilityC, and an abstract operation release does
the reverse. An abstract operation get fetches the value of the shared
state provided a capability C is present, and an abstract operation
set replaces the value of the shared state provided a capability C is
present. Of course, L and C actually stand for Z, but by hiding that
information and ensuring every primitive operation consumes and
produces one L or C we are guaranteed that every acquire matches
up with a release and all gets and sets occur in between. These
abstract constants and their types are summarized below.

L : TYPE C : TYPE
acquire : L(C release : C (L
get : C (C ⊗ Z set : C ⊗ Z (C

Representing Effectful Values Next, we must specify how to
represent productions of each effect as data. While we could de-
fine Pe(τ) as simply τ , we want to emphasize that e represents
all effects not related to locking. For example, e could be non-
determinism, in which case Pe(τ) would be µt. τ ⊕ (τ & t).
As such, we simply assume Pe(τ) is some monad with operations
map

e
, join

e
, and unit e, along with an operation strength

e
of type

∀α, β. α⊗ Pe(β) (Pe(α⊗ β) which we will explain later.
As for the impure effects, their semantics all have the form:

TS,S′(τ) = S (Pe(S
′ ⊗ τ)

TS,S′ transforms the state from S to S′. In particular, the impure
effects transform between L and C:

Plocking = TL,C Punlocking = TC,L
Pcritical = TC,C Pentrant = TL,L

Thus a computation with the locking effect must have access to
a (necessarily unique) free lock L, do some computation with
effect e, and complete with a (necessarily unique) capability to
access shared memory C still available.

Formalizing Primitive Operations Once we have determined
how to represent an effect, we can give semantics to the primi-
tive effectful computations. The strategy formalizes the semantics
of a judgement Γ ` s a Γ′ | ε as a term in linear type theory with
the type (

⊗
Γ) (Pε(

⊗
Γ′). With this in mind, we define the

semantics of the primitive effectful computations in Figure 3.
Note that the semantic domain guarantees that only one portion

of code can hold the lock at a time. Thus, just the fact that these
primitives can be expressed in that semantic domain ensures that
they preserve that property. This helps a language designer deter-
mine how they can safely extend the language, since now they need
only check that any potential new constructs are expressible in this
domain.

Propagating Effects Next, we have to define how effects propa-
gate through pure computations. Since the impure effects have the
same shape, they also use approximately the same map operation:

mapTS,S′
= λf.λg.λs.map

e
(λ〈s′, x〉.〈s′, f(x)〉)(g(s))

Jx : Z, y : Z ` z := x+ y a z : Z | eK = λ〈m,n〉.unit e(m+ n)

J∅ ` acquire a ∅ | lockingK = λ〈〉.λl.unit e(〈acquire(l), 〈〉〉)
J∅ ` release a ∅ | unlockingK = λ〈〉.λc.unit e(〈release(c), 〈〉〉)

J∅ ` x := get() a x : Z | criticalK = λ〈〉.λc.unit e(get(c))
Jx : Z ` set(x) a ∅ | criticalK = λn.λc.unit e(〈set(c, n), 〈〉〉)

Figure 3. Semantics of the primitive effectful computations of Crit

Sequencing Effectful Computations The most challenging se-
mantic component is sequencing effectful components. Here is
where we have to stray from monads. After all, not all of these
effects are monads. For example, there is no join operation for
locking. To see why, recall that a locking computation needs a free
lock to be available and then removes that free lock, turning it into
a capability. Thus, immediately after a locking computation there is
no free lock available, so there cannot be another locking computa-
tion that needs a free lock.

Fortunately, our effect system is designed to address precisely
this problem. In Figure 2, locking ; locking is intentionally undefined
so that such programs are disallowed and we do not have to worry
about sequencing two locking computations. This suggests how we
might generalize monads for sequencing computation. Suppose we
had functions p : A (Pε(B) and p′ : B (Pε′(C) representing
effectful computions with different effects. Furthermore, suppose
ε ; ε′ were defined as ε′′. Then we should be able to combine p
and p′ into a function of type A(Pε′′(C) representing a compu-
tation from A to C with effect ε′′. So far, we can use map to get
the following function:

λa.mapε(p
′)(p(a)) : A(Pε(Pε′(C))

This function essentially produces a doubly effectful value like
with monads, but this time with two different effects. So, like with
monads, we need some way to turn this doubly effectful value into
a (singly) effectful value with just effect ε′′. Thus, whenever ε ; ε′

is defined as ε′′ we need the following operation to sequence the
two effectful computations:

joinε,ε′ : ∀α. Pε(Pε′(α)) (Pε′′(α)

For Crit there are four major categories of such sequencings:
(1) basic followed by basic, (2) impure followed by basic, (3) basic
followed by impure, and (4) impure followed by impure.

The first is simply assumed to be defined as discussed before:

join
e,e = join

e

The second is fairly simple to define:

joinTS,S′ ,e
= λf.λs.join

e
(map

e
(strength

e
)(f(s)))

Note that this is simply the result of sequencing the linear func-
tion f : S (Pe(S

′ ⊗ Pe(α)), viewed as a computation with ef-
fect e, with strength

e
: S′ ⊗ Pe(α) (Pe(S

′ ⊗ α), also viewed as
a computation with effect e. What strength

e
is doing is pulling the

context of the state S′ produced by f into the effectful value Pe(α)
so that it can be accessed by subsequent computations. Unlike in
Haskell, strength

e
does not exist for all monads in linear type the-

ory. One notable exception is the error monad: 1 ⊕ τ . This is why
languages with both errors and locks have to have special constructs
for handling the case when an error is thrown by a thread holding
a lock. Similarly, this is why many languages have constructs for
resource-sensitive data in the face of errors, such as C#’s using
construct for IDisposable objects. Also, we were careful to de-
fine non-determinism using & rather than⊗ (which corresponds to
the (non-empty) list monad used by parsers) since the former has
linear strength whereas the latter does not.

Moving on, the third is only slightly more complex to define:

join
e,TS,S′

=λf̂ .λs.join
e
(map

e
(λ〈s,f〉.f(s)〉)(strength

e
(s, f̂)))

Here we have an S-state s and f̂ is an e-effectful value containing
a function expecting an S, so once again we have to use strength

e

and map
e

to give the contained function f access to the state s.
This results in a doubly e-effectful value, so we use join

e
.

The fourth case is the most interesting regarding this paper:

joinTS,S′ ,TS′,S′′
= λf.λs.join

e
(map

e
(λ〈s′, g〉.g(s′))(f(s)))

Note that it is only defined when the intermediate state S′ agrees
for both effectful computations, in which case it results in a
TS,S′′ -effectful computation. In fact, when we consider just the
impure effects we get an instance of Atkey’s parameterized mon-
ads [2], a connection we will discuss in Section 7.

With these components we can define the semantics of Seq2
;
:

JΓ ` p a Γ′ | εK = f JΓ′ ` p′ a Γ′′ | ε′K = f ′

Jε ; ε′ 7→ ε′′K = joinε,ε′

JΓ ` p; p′ a Γ′′ | ε′′K = λg.joinε,ε′(mapε(f
′)(f(g)))

Coercing Effectful Computations Crit has another feature, name-
ly subeffects, that we could not encounter with monads since there
was only one effect. Like subtypes, the intuition for subeffects
is that there is a way to coerce computations pertaining to the
subeffect into ones pertaining to the supereffect. As such, whenever
ε ≤ ε′ holds, we need an operation with the following form:

coerceε,ε′ : ∀α. Pε(α) (Pε′(α)

With Crit, we can define such coercions from the basic effect
to an impure effect whenever the input and output states match up,
namely for critical and entrant:

coercee,TS,S = λx̂.λs.strength
e
(s, x̂)

Using these coercions we can define the semantics of Sub :

JΓ ` p a Γ′ | εK = f Jε ≤ ε′K = coerceε,ε′

JΓ ` p a Γ′ | ε′K = λg.coerceε,ε′(f(g))

Propagating Context There is only one rule left to handle for
Crit. Prop is in a sense orthogonal to the concerns of sequen-
tial composition, yet it is so common in languages that we in-
clude it for sake of discussion. Suppose we have some function
f :
⊗

Γ (Pε(
⊗

Γ′) denoting the semantics of Γ a p ` Γ′ | ε.
We want to extend f so that it propagates the values of an addi-
tional context Γ̄ through the computation. It is easy to define the
following function that does at least part of the job:(⊗

Γ̄
)
⊗ f :

(⊗
Γ̄
)
⊗ (
⊗

Γ) (
(⊗

Γ̄
)
⊗ Pε (

⊗
Γ)

So the issue is that we need to somehow pull the
⊗

Γ̄ inside the Pε
so that we have the necessary Pε((

⊗
Γ̄)⊗ (

⊗
Γ)).

This issue should look familiar, since when sequencing the
impure effects we needed some way to pull state inside of Pe, and
so we use the same technique we used there. In particular, we need
every effect to have a strength operation:

strengthε : ∀α, β. α⊗ Pε(β) (Pε(α⊗ β)

We already assumed such an operation has been defined for e, so
we need only define it for the impure effects. Again, the strength
operations for the impure effects all have the same form:

strengthTS,S′
= λ〈x, f〉.λs.map

e
(swap)(strength

e
(x, f(s)))

swap = λ〈x, 〈s′, y〉〉.〈s′, 〈x, y〉〉
Note that this strength need only be defined for types α that

can occur in a context Γ. So, if one were to extend Crit to be

Seq
;

Γ0 ` p1 a Γ1 | ε1 . . . Γn−1 ` pn a Γn | εn
[ε1, . . . , εn]

;7−→ ε

Γ0 ` p1; . . . ; pn a Γn | ε

Figure 4. Assumed typing rule for effect systems

non-linear and ensure all Crit types τ had an operation τ (!τ ,
then the effects could use a non-linear strength. This way Crit’s
effect system could be extended with exceptions, so long as one
were to carefully track and define the interaction of exceptions with
locking. However, since we already need the basic effect to have
linear strength, we make no such restriction on the types occurring
in Γ here.

We mentioned that Prop is not necessary for sequential compo-
sition; it comes from the notion that the context is freely accessible.
In low-level stack-based languages, effectful operations may be re-
quired for even just accessing the context. Sometimes the context
can be extended, but only if the effect is altered as well. For ex-
ample, in a low-level stack-based language, it is occasionally the
responsibility/privilege of the exception handler to clean-up/work-
with the stack that existed at the point the exception was thrown.
Such a language might have an effect of the form exc(Γ̂) where Γ̂ is
the state of the stack at the point the exception was thrown. Deno-
tationally, the effect may be represented as Pexc(Γ̂)(τ) = τ ⊕

⊗
Γ̂.

Should the stack be extended prior to throwing the exception, then
this must be encoded in the effect. As such, this language might
have a rule like the following:

Γ ` p a Γ′ | exc(Γ̂)

Γ̄,Γ ` p a Γ̄,Γ′ | exc(Γ̄, Γ̂)

Thus this effect has no need for strength. We emphasize this exam-
ple both to illustrate the origin of strength present in many existing
formalizations and to illustrate the wide variety of languages our
framework is capable of handling.

5. Effectors
While so far we have been focusing on our example language Crit,
the intent of this work is to apply to nearly all effect systems. In
this section, we introduce effectors to formalize effect systems as
they pertain to typing sequential composition of programs. In the
next section, we then present our semantic framework for effectors.
Following that, we show how existing semantic frameworks fit
within our own. Finally, we show what common properties of a
language and its effect system guarantee that the semantics can be
formalized with our framework.

For the sake of formalizing effect systems, we assume the un-
known language at hand admits the rule Seq

;
in Figure 4. The lan-

guage may (and should) admit many other rules as well; we simply
need to know that it admits at least Seq

;
. The symbol

;7−→ is a rela-
tionship from lists of effects to effects, so that [ε1, . . . , εn]

;7−→ ε
indicates that ε is the overall effect of sequencing computations
with effects ε1 through εn in that order. Seq

;
informs us that the

effects of computations are independent of their specific inputs and
outputs, granting the modularity one would expect from an effect
system. Thus we do not concern ourselves with some form of de-
pendent effects. Note that we intend Seq

;
to include when n is 0,

corresponding to typing the empty program. The following short-

hands may further elucidate the meaning of
;7−→:

e 7→ ε means []
;7−→ ε

ε ≤ ε′ means [ε]
;7−→ ε′

ε ; ε′ 7→ ε′′ means [ε, ε′]
;7−→ ε′′

Seq
;
may not seem like much to work with, but it actually pro-

vides some very useful structure. In particular, it is important to
realize that given a sequence of computations, say [p1, p2, p3], the
syntax p1; p2; p3 could be parsed as a whole or as (p1; p2); p3 or as
p1; (p2; p3) or even as (); p1; (); p2; (); p3; () with the empty pro-
gram interspersed. As such, one can show that, should [ε1, ε2]

;7−→ ε′

and [ε′, ε3]
;7−→ ε hold, then we can assert that [ε1, ε2, ε3]

;7−→ ε also
holds without changing the effects of programs. In light of this, we
formalize effect systems as follows:

Definition (Effector). A set EFF along with a relation
;7−→ between

List(EFF) and EFF satisfying the following two properties:

Identity Associativity
ε = ε′ ∃ε1...εn.(∀i.~εi

;7−→ εi) ∧ [ε1...εn]
;7−→ ε

∀ε, ε′. ⇓ ∀~ε1...~εn, ε. ⇓
[ε]

;7−→ ε′ ~ε1 ++ . . .++ ~εn
;7−→ ε

The identity rule says that sequencing an effectful computation
with no other computations should have (at least) the same effect.
The associativity rule says that, should one partition a list of ef-
fectful computations and sequence each partition together and then
sequence each of those results together, sequencing the original list
all together should have (at least) the same overall effect. This for-
malization may seem rather foreign with respect to existing work
on effects. However, when an effector is semi-strict, meaning the
associativity implication is actually an if-and-only-if, there is an
equivalent monoid-like definition more akin to prior work:

Theorem 1. A semi-strict effector can equivalently be defined as
an effectoid: a set EFF along with a unary relation e 7→ −, a binary
relation − ≤ −, and a ternary relation − ;− 7→ − satisfying:

Id
en

tit
y

∀ε, ε′.

∃ε`. e 7→ ε` ∧ ε` ; ε 7→ ε′

m
ε ≤ ε′

m
∃εr. e 7→ εr ∧ ε ; εr 7→ ε′

A
ss

oc
ia

tiv
ity

∀ε1, ε2, ε3, ε.
∃ε̄. ε1 ; ε2 7→ ε̄ ∧ ε̄ ; ε3 7→ ε

m
∃ε̂. ε2 ; ε3 7→ ε̂ ∧ ε1 ; ε̂ 7→ ε

R
efl

ex
iv

e
C

on
gr

ue
nc

e

∀ε. ε ≤ ε

∀ε, ε′. e 7→ ε ∧ ε ≤ ε′ =⇒ e 7→ ε′

∀ε1, ε2, ε, ε
′. ε1 ; ε2 7→ ε ∧ ε ≤ ε′ =⇒ ε1 ; ε2 7→ ε′

Proof. The proof can be found in Appendix B.1.

Semi-strict effectors are common because compositional type
systems are common. Conceptually, if Seq

;
is actually an if-and-

only-if, then the effector for the language is semi-strict. Note that
e 7→ ε does not necessarily imply ε is an identity in the usual sense
for monoids. It simply means that pure computations (particularly
the empty program) can be given the ε effect. We call such effects
centric effects.

The effect system for Crit is defined as a congruently preordered
partial monoid. This works because congruently preordered partial
monoids are equivalent to principalled effectoids. A principalled

effector is one where for every list of effects ~ε such that ~ε
;7−→ ε

holds for some effect ε there exists a minimal such ε with respect
to ≤. Principalled effectors are common for the same reasons prin-
cipalled type systems are common, such as simplifying type check-
ing and type inference.

Note that not all effectors are semi-strict, especially ones used
in analyses. For example, an analysis may say that x := *p has
the read effect and that *p := x has the write effect but then give
x := *p; *p := x the e effect even though generally those ef-
fects would combine into the read-write effect. The analysis is using
information not contained in the descriptions read and write, namely
that the same value and pointer is used in both heap uses, to rea-
son that the program’s semantics factor through the operation co-
ercing pure computions into read-write computations and so can be
treated as pure. In general, such effectors typically arise when an
analysis uses more detailed reasoning intraprocedurally but coarser
reasoning interprocedurally. Thus, while effectoids are extremely
common, the generality of effectors is necessary to capture exist-
ing effect systems.

6. Productors
At last, we present our semantic framework for sequential composi-
tion of effectful computations, which we call a productor. Our goal
is to give a denotational semantics to Seq

;
in such a way that all the

many possible parsings of p1; . . . ; pn are guaranteed to produce the
same semantics. Our fundamental assumption is that the semantics
of the judgement Γ ` p a Γ′ | ε can be represented as a morphism
JΓK→ Pε(JΓ′K) for some function-on-objects Pε.

Definition (Productor for an effector 〈EFF,
;7−→〉). A category Sem

with endofunctors {〈Pε,mapε〉}ε∈EFF and natural transformations
{join [ε1,...,εn],ε : Pε1 ◦ · · · ◦ Pεn → Pε}

[ε1,...,εn]
;7−→ε

such that
join [ε],ε is always the identity transformation and the following
diagram commutes whenever all terms are defined:

P~ε1 ◦ · · · ◦ P~εn

Pε1 ◦ · · · ◦ Pεn

Pε
.........................

.....................................
............

join~ε1,ε1 ∗ . . . ∗ join~εn,εn
.

join [ε1,...,εn],ε

..

join~ε1 ++...++ ~εn,ε

Notice the similarity between the commutativity requirements
for productors and the implicational requirements for effectors. The
idea is to ensure that the many ways that a sequence of programs
may be typed all correspond to the same semantics. In other words,
the specific proof used to type check a program should be irrelevant
to its semantics. In Appendix A, we ensure precisely that for the
following denotational semantics of Seq

;
:

JΓ0 ` p1 a Γ1 | ε1K = f1 . . . JΓn−1 ` pn a Γn | εnK = fnr
[ε1, . . . , εn]

;7−→ ε
z

= join [ε1,...,εn],ε

JΓ0`p1; . . . ; pnaΓn |εK = f1;mapε1(. . . (fn)); join [ε1,...,εn],ε

One might wonder why we worry about parsing ambiguity. Af-
ter all, a language could always parse sequential composition left-
associatively, like Haskell does. The reason is that by addressing
ambiguity concerns we also address the kind of program transfor-
mations one would intuitively expect from sequential composition.
For example, should f() be defined as p1; p2; p3, g() as the empty
program, and h() as p4, then one would expect f(); g();h() to
have the same semantics as p1; p2; p3; p4. This is precisely what
our commutative diagrams ensure.

We have proven that when the effector is semi-strict there is an
equivalent definition of productors that may appear more familiar
for those acquainted with existing semantic frameworks:

Theorem 2. A productor for an effectoid 〈EFF, e,≤, ;〉 can equiv-
alently be defined as a productoid: a category Sem with end-

ofunctors {〈Pε,mapε〉}ε∈EFF along with natural transformations
{unitε : Sem→ Pε}e7→ε and {coerceε,ε′ : Pε → Pε′}ε≤ε′ and
{joinε,ε′,ε′′ : Pε ◦ Pε′ → Pε′′}ε ; ε′ 7→ε′′ such that coerceε,ε is al-
ways the identity morphism and the following diagrams commute
whenever all terms are defined:

Pε

Pε` ◦ Pε

Pε ◦ Pεr

P ′ε
.................

.................
.................

.................
.................

.................
..................
............unitε`

..
..

joinε`,ε,ε′

...
coerceε,ε′

..
..mapε(unitεr)

.................
.................

.................
.................

.................
..................
............

joinε,εr,ε′

Pε1 ◦ Pε2 ◦ Pε3

Pε̄ ◦ Pε3

Pε

Pε1 ◦ Pε̂

.........
.........
.........
.........
...............
............joinε1,ε2,ε̄

....

join ε̄,ε3,ε

..
....

mapε1(joinε2,ε3,ε̂)
.........
.........
.........
.........
...............
............

joinε1,ε̂,ε

Id

Pε

Pε′
..........
...........
..........
..........
................
............unitε

....

coerceε,ε′

..

unitε′
Pε1 ◦ Pε2

Pε

Pε′

...........
...........
................
............

joinε1,ε2,ε
....

coerceε,ε′

..

joinε1,ε2,ε′

Proof. The proof can be found in Appendix B.2.

The implicational requirements of an effectoid is essential to the
above theorem. Using a productoid for a pre-effectoid, meaning
an effectoid not necessarily satisfying the relevant implications,
can indeed result in ambiguous semantics. Figure 5 provides a toy
example of such.

The intuition behind this example is that pure represents no
effect, err represents a possible error, and hndl indicates an er-
ror handler has been specified (more precisely the ∀α.α must
be a natural transformation – note that sometimes there can be
many inhabitants of ∀α.α, such as differing error messages or even
null in object-oriented domains). A primitive err-effectful opera-
tion error() throws an error, and a primitive hndl-effectful operation
handle(h) sets the handler. The definition of joinhndl,hndl,hndl indi-
cates that, if the handler is set twice in a row, the second handler
should be used in place of the first one.

The interaction of handlers and exceptions is defined solely by
the joinhndl,err,pure operation. In particular, this definition indicates
that, should an exception be thrown, then the previously set handler
should be used to handle the exception and proceed with normal
execution. The result is that a computation has effect pure only if a
handler has been set every place an exception might be thrown.

One can check that these operations do indeed satisfy the re-
quirements of our definition in Theorem 2. However, supposing h1

and h2 are handlers, the following pure-effectful program still has
two possible semantics:

handle(h1); handle(h2); error(); error()

In particular, the program can result in h1 or h2. The program re-
sults in h1 if handle(h2) gets matched up with the first error()
(via joinhndl,err,pure), sequencing into a pure-effectful computation
so that then handle(h1) can be matched up with the second error()
(via joinhndl,err,pure), sequencing into a pure-effectful computation
resulting in h1. The program results in h2 if handle(h2) over-
rides handle(h1) (via joinhndl,hndl,hndl) and the two error()s are
combined (via joinerr,err,err), so that then handle(h1); handle(h2)
can be matched up with error(); error(), sequencing into a pure-
effectful computation resulting in h2. Thus, the specific proof used
to show the program has effect pure actually influences the pro-
gram’s semantics, violating semantic coherency.

EFF = {pure, err, hndl}
∀ε. pure ; ε 7→ ε ε ; pure 7→ ε

err ; err 7→ err hndl ; hndl 7→ hndl hndl ; err 7→ pure

Ppure(τ) = τ Perr(τ) = Ppartial(τ) Phndl(τ) = τ × ∀α.α

∀ε. joinpure,ε,ε = joinε,pure,ε = id
joinerr,err,err = joinpartial
joinhndl,hndl,hndl = λ〈〈x, h′〉, h〉.〈x, h′〉

joinhndl,err,pure = λ〈px, h〉.case px
{

success(x) 7→x
failure 7→h

Figure 5. A semantically incoherent pre-effectoid and productoid

This productoid was designed by intentionally devising a pre-
effectoid that violates our associativity requirement for effectoids.
For example, hndl ; hndl 7→ hndl and hndl ; err 7→ pure hold, but there
is no ε̂ such that hndl ; err 7→ ε̂ and hndl ; ε̂ 7→ pure hold. As such,
one cannot progressively transform either proof into the other using
the required equivalences on the productoid, so they can produce
different semantics.

This illustrates the subtleties of semantic coherency for effect
systems addressed by our framework. Because the pre-effectoid
does not satisfy the appropriate requirements, the productoid does
not extend to a productor. Although not immediately apparent,
in general a productor actually has more equational requirements
than a productoid in order to maintain semantic coherency; it just
happens to be that the implicational requirements of an effectoid
imposes enough structure on its productoids to ensure they satisfy
those additional equational requirements. In general, additional
structure on the effector at hand imposes structure on its productors.
This interplay will be a common theme during our discussion of
existing semantic frameworks for effects.

7. Existing Frameworks
While the components and requirements of a productor can be
described concisely, the high-level nature of this description can
be daunting. As such, it is helpful to see how existing semantic
frameworks for effects can be seen as special classes of productors.
We start with the simplest such framework: monads.

Monads A monad 〈M,map, unit , join〉 is a productor for the
effector with one effect ε and with ~ε

;7−→ ε always holding. M is
simply Pε; map is mapε; unit is join [],ε; and join is join [ε,ε],ε.
The equational requirements for a monad are precisely those re-
quired by our definition of productor.

More generally, for any effector with an effect ε such that
e 7→ ε and ε ; ε 7→ ε hold (called a centric idempotent effect),
any productor’s representation of ε is necessarily a monad.

Monad Morphisms A monad morphism coerce from a monad
〈M,map, unit , join〉 to another monad 〈M ′,map′, unit ′, join ′〉
is a natural transformation from M to M ′ such that the following
diagrams commute:

Sem

M

M ′
.........
.........
.........
.........
.........
.............
............unit

..
....
coerce

..

unit ′

M ◦M

M ′ ◦M ′

M

M ′
.........
.........
.........
.........
...................
............coerce ∗ coerce

..
....

join ′

..
....join

.........
.........
.........
...................
............

coerce

These equational requirements ensure that implicit coercions for
effectful computations do not affect the semantics of the program,

in the same spirit as Reynolds’ requirements for implicit coercions
for data types [28].

As we mentioned, monads correspond to centric idempotent ef-
fects. Furthermore, given two such effects ε and ε′ with the addi-
tional property that ε is a subeffect of ε′, then the equational re-
quirements for productors guarantee precisely that the correspond-
ing natural transformation coerceε,ε′ = join [ε],ε′ from Pε to Pε′ is
a monad morphism. Thus both the concepts of monads and monad
morphisms are special cases of productors.

Indexed Monads Program analysis is one of the most common
applications of effect systems. Such analyses typically use what
is known as a type-and-effect system [19, 22, 32], which taints
code with a collection of atomic effects. For example, Talpin and
Jouvelot taint code with how it accesses various heap regions [31],
and Abadi showed that the dependency core calculus essentially
takes this approach as well [1]. Abstractly, these effect systems
form a join semi-lattice, and the combined effect of a sequence
of computations is the join (t) of the effects of the individual
computations, with pure and empty computations being given the
⊥ effect [3, 13].

Wadler and Thiemann famously showed that one of Talpin and
Jouvelot’s effect systems can be formalized by what has become
known as an indexed monad [37]. An indexed monad is a join semi-
lattice of monads connected by monad morphisms. The semantics
of sequencing effectful computations was defined by coercing both
computations to the least common supermonad and then using the
join of that monad. They did this for a single effect system, but
with our framework it is easy to determine that join semi-lattice
effectors are intimately connected to indexed monads, and in these
cases the semantics of sequential composition are guaranteed to be
defined with this coerce-then-join strategy.

To see why, consider the following properties of an effector
where sequential composition of effects coincides with a lattice-
join operation. They are guaranteed to be centric effectors, mean-
ing all their effects are centric effects. They are guaranteed to be
idempotent, meaning all their effects are idempotent. Lastly, they
are guaranteed to be increasing, meaning whenever ~ε

;7−→ ε holds
then all elements of ~ε are subeffects of ε.

The first two properties already guarantee that a productor rep-
resents all effects as monads and furthermore all coercions be-
tween such effects must be monad morphisms. Thus a productor
for any centric idempotent effector must be a network of monads
and monad morphisms, like an indexed monad. All we have left to
do is show why sequential composition must take the coerce-then-
join strategy:

Theorem 3. Any increasing centric idempotent effector is semi-
strict. For any productor of an increasing idempotent effector,
joinε1,ε2,ε is determined by coerceε1,ε, coerceε2,ε, and joinε,ε,ε.

Proof. First, suppose ~ε1 ++ . . .++ ~εn 7→ ε holds. Since the effec-
tor is increasing, all effects in each ~εi must be subeffects of ε. Since
the effector is centric and idempotent, [ε, . . . , ε] 7→ ε holds for all
arities. These and the definition of effector imply that ~εi 7→ ε holds.
Thus, since [ε, . . . , ε] 7→ ε also holds, the effector is semi-strict.

Second, suppose ε1 ; ε2 7→ ε holds. Since the effector is in-
creasing, εi ≤ ε holds so join [εi],ε

must exist. Since the effector is
idempotent, [ε, ε] 7→ ε holds so join [ε,ε],ε must exist. Then by def-
inition of productor since [ε1] ++[ε2] equals [ε1, ε2], join [ε1,ε2],ε

must equal (join [ε1],ε ∗ join [ε2],ε) ; join [ε,ε],ε, which is the long-
hand form of (coerceε1,ε ∗ coerceε2,ε) ; joinε,ε,ε.

In the other direction, let us consider what kind of effectors in-
dexed monads can handle. Suppose an effector is represented by
an indexed monad. Then that effector can be faithfully extended so

that it is a principalled, idempotent, increasing, centric, and further-
more commutative, meaning if ~ε

;7−→ ε holds then~ε
;7−→ ε holds for all

permutations ~ε of ~ε. This tells us three things: the effector cannot
guarantee properties that depend on an effectful computation oc-
curring; the effector cannot guarantee properties that depend on the
order of effectful computations; and the effector cannot guarantee
properties that depend on the frequency of effectful computations.

First, we know that an effector represented by an indexed monad
cannot have effects that guarantee an effectful computation occurs,
since all effects are centric. In Crit it is important to distinguish
computations that must lock from those that might lock in order to
ensure shared-memory accesses occur in critical regions. In partic-
ular, the effector must not confuse a pure or empty computation for
one that definitely locks, so that whatever effect ε used to identify
definite locking cannot satisfy e 7→ ε and so cannot be centric. As
such, indexed monads cannot be used for effectors that guarantee
locking or guarantee responsiveness (e.g. a server always produc-
ing a response for each request).

Second, we know that an effector represented by an indexed
monad cannot guarantee properties dependent on the order of oper-
ations, since the effector is commutative. In Crit it is important to
distinguish accessing shared memory after acquiring a lock from
accessing shared memory before acquiring a lock. Yet, if the effec-
tor were commutative, then locking ; critical would necessarily equal
critical ; locking so such computations would be indistinguishable in
the effector. As such, indexed monads cannot be used for effectors
that need order sensitivity.

Third, we know that an effector represented by an indexed
monad cannot guarantee properties dependent on the frequency of
operations, since each effect is idempotent. In Crit it is important
to distinguish acquiring a lock once from acquiring a lock multiple
times since Crit prevents reentrant code. However, if locking were
idempotent, then locking ; locking would have to equal locking so that
multiple acquisitions would appear the same as a single acquisition.
As such, indexed monads cannot be used for effectors that want to
track the quantity of effectful operations.

These limitations of indexed monads were part of why we en-
deavored to find a more general framework. The discussion here
illustrates that, not only are there advantages to having a more gen-
eral semantic framework, but our formalizations provide a useful
language for discussing effectors, another reason why we began our
investigations. It also bears some importance for effect analyses,
since our findings indicate that lattice-based effectors have some
severe limitations in what they can determine about a program. We
hope these insights will encourage investigations into new analyti-
cal techniques and new semantic techniques.

Layered Monads Filinski introduced the semantic technique of
layered monads [5]. A layering of a monad 〈M ′,map′, unit ′, join ′〉
over another monad 〈M,map, unit , join〉 is a natural transforma-
tion layer : M ◦ M ′ → M ′ satisfying certain equational prop-
erties. layer looks very much like our join operation for effects
> and ⊥ should ⊥ ;> 7→ > hold. Indeed, Filinski’s equational
requirements for layerings are simply our equivalent requirements
for productoids of an increasing centric idempotent effectoid, and
Filinski uses the layer operation to sequence a ⊥ computation fol-
lowed by a > computation, as our framework would do with the
corresponding join operation.

In more recent work [6], Filinski allows users to build a tree
of monadic subeffects, with non-termination at the root of the
tree, so that programmers could build their own effect system.
Any effect system designed in such a way is guaranteed to be an
increasing centric idempotent effector and so has many of the key
limitations that we discussed for indexed monads. However, there is
one significant difference: indexed monads necessarily correspond
to total effectors whereas Filinski’s tree of subeffects may not be

total. An effector is total if for every list of effects ~ε there is some
effect ε such that ~ε

;7−→ ε holds. This is not necessarily a limitation
of Filinski’s approach, though. It has the advantage that it can
express user effects that are incompatible with each other. This is
an important property for a modular language where users should
be able to design their effects without worrying about what other
effects may be present elsewhere in the system should they never
meet each other.

Parameterized Monads Atkey made the observation that many
effect systems have to do with transitioning from one state to an-
other [2]. Indeed, most of the effects in Crit are used to indicate the
required incoming state of the lock and the guaranteed outgoing
state of the lock. As such, Atkey designed a parameterized monad
to address this common case, and showed how parameterized mon-
ads can formalize a variety of concepts such as composable contin-
uations [4, 36]. A parameterized monad is (equivalently)

• a category S of states and primitive transitioning operations
• a functor 〈T,map〉 : Sop × S→ (Sem→ Sem)

• an extranatural transformation unit : ∀s. Id → T (s, s)

• an extranatural transformation

join : ∀s, s′, s′′. T (s, s′) ◦ T (s′, s′′)→ T (s, s′′)

satisfying equational requirements we do not repeat here.
This should look slightly familiar. In fact, the productor cor-

responding to just the impure effects of Crit is a parameterized
monad. The category S is just the discrete category with objects
free and occupied. The extranaturality conditions hold automati-
cally since the category is discrete.

Now, it is important to note that a parameterized monad does
two things simultaneously: it specifies how to sequence computa-
tions and it specifies the semantics of primitive operations. For ex-
ample, our semantics for acquire and release could be adapted into
a parameterized monad for the free category generated by the graph
with two objects and a morphism between them in each direction.
However, the intent of our framework is only to formalize sequen-
tial composition of computations, so we focus on a restricted sub-
set of parameterizations. In particular, we focus on parameterized
monads where S is thin, meaning there is at most one morphism
between any two states. Such an S is actually a preorder, and so
represents states with a substate relation.

Given such a set of states S and a substate preorder ≤, define
an effectoid E〈S,≤〉 as follows:

• EFF is S × S, so that the effect 〈s, s′〉 represents computations
that transition from state s to state s′.

• e 7→ 〈s, s′〉 holds iff s ≤ s′ holds.
• 〈s′1, s2〉 ≤ 〈s1, s

′
2〉 holds iff s1 ≤ s′1 and s2 ≤ s′2 hold.

• 〈s′1, s2〉 ;〈s′2, s3〉 7→ 〈s1, s
′
3〉 holds iff s1 ≤ s′1, s2 ≤ s′2, and

s3 ≤ s′3 hold.

Due to their definition, all effectors formalizable by parameterized
monads are of this form.

Theorem 4. Given a set of states S and a substate preorder≤, there
is a one-to-one correspondence between parameterized monads for
the category 〈S,≤〉 and productoids for the effectoid E〈S,≤〉.

Proof. Given a parameterized monad 〈T,map, unit , join〉 for
〈S,≤〉, define the productoid for E〈S,≤〉 as follows:

• 〈P〈s,s′〉,map〈s,s′〉〉 = T (s, s′)

• unit〈s,s′〉 = Id
units−−−→ T (s, s)

map(s≥s,s≤s′)−−−−−−−−−−→ T (s, s′)

• coerce〈s′1,s2〉,〈s1,s′2〉 = map(s′1 ≥ s1, s2 ≤ s′2)
• join〈s′1,s2〉,〈s′2,s3〉,〈s1,s′3〉

=

T (s′1, s2) ◦ T (s′2, s3)

T (s1, s2) ◦ T (s2, s
′
3)

T (s1, s
′
3)

.................................
.....
.......
.....map(s′1 ≥ s1, s2 ≤ s2) ∗map(s′2 ≥ s2, s3 ≤ s′3)

.................................
.....
.......
.....joins1,s2,s′3

The necessary equivalences hold due to the equational require-
ments of parameterized monads.

Given a productoid 〈P,map, unit , coerce, join〉 for E〈S,≤〉,
define the parameterized monad for 〈S,≤〉 as follows:

• T (s, s′) = 〈P〈s,s′〉,map〈s,s′〉〉
• map(s′1 ≥ s1, s2 ≤ s′2) = coerce〈s′1,s2〉,〈s1,s′2〉
• units = unit〈s,s〉
• joins,s′,s′′ = join〈s,s′〉,〈s′,s′′〉,〈s,s′′〉

The necessary equivalences hold to due to the equational require-
ments of productoids.

These two processes are clearly inverses of each other.

Now that we have seen how parameterized monads fit within
our framework, let us consider the expressiveness of parameterized
monads. First, a parameterized monad is not a family of monads.
While T (s, s) forms a monad since the input and output are the
same, this is not the case for T (s, s′) whenever s and s′ are not
equivalent to each other. This is because e 7→ 〈s, s′〉 holds only
when s is a substate of s′ and 〈s, s′〉 ;〈s, s′〉 7→ 〈s, s′〉 holds
only when s′ is a substate of s. So, the effectoid E〈S,≤〉 is neither
centric, idempotent, nor increasing in general. Thus the very notion
of distinct states is inexpressible by indexed monads and layered
monads, indicating how powerful parameterized monads are.

Parameterized monads have their limitations, though. For ex-
ample, information-flow effect systems [29] and contextual ef-
fects [21] do not meet the requirements of Theorem 4 and so cannot
be formalized using parameterized monads. Interestingly, though,
should we allow EFF for E〈S,≤〉 to be just a subset of S × S rather
than all pairs of states, then we can represent information-flow ef-
fect systems and contextual effects. For example, in [29] the states
are levels of secrecy, so EFF contains only those pairs 〈s, s′〉 where
s is a lower level of secrecy than s′, since inputs can be propagated
to outputs. Thus, Theorem 4 suggests such effect systems must be
formalizable by something very similar to a parameterized monad.

Even such generalizations are still too restrictive for some ef-
fectoids. For example, the full effectoid for Crit including the basic
effect e cannot be formalized by a parameterized monad. The issue
is that, ignoring substates since they are orthogonal to the following
concerns, a parameterized monad can only have one effect between
any two states. However, both e and critical computations are per-
mitted when the lock is acquired and finish with the lock acquired.
If we wanted to prevent race conditions, then we would want to
distinguish e and critical computations since we should allow critical
computations be ran in parallel with e computations but not with
other critical computations. Furthermore, if we wanted to track other
effectful attributes that are state agnostic, such as non-determinism,
then we would need multiple effects between any two states. Even
just an indexed monad can be viewed as having many effects be-
tween a single state, showing why non-trivially indexed monads
cannot be formalized by parameterized monads. Thus, while pa-
rameterized monads are expressive, there are still useful effectoids
inexpressible even by generalized parameterized monads but still
expressible by our framework.

Arrows and Freyd Categories Arrows [8], another generalization
of monads, are a little difficult to discuss because they are simulta-
neously too general and too restrictive. First, they have three com-
ponents, which we describe informally:

• a way to sequentially compose arrows
• a way to turn a pure computation into an arrow
• a way to propagate additional context through an arrow

These three components must satisfy equalities which essentially
indicate that the arrows form a category, the pure computations
form a pure subcategory, and a pure computation can be executed
alongside an arrow without altering the overall effect of the arrow.

In fact, the above intuition behind the equational properties has
been formalized. Heunan and Jacobs proved that arrows are equiv-
alent to Freyd categories [10], an attempt to formalize arbitrary
effectful computations. Informally, a Freyd category [26] is a pre-
monoidal category [25] (a category with a notion of extending mor-
phisms to propagate context) with a wide cartesian monoidal sub-
category of pure morphisms that can be executed alongside other
morphisms without altering their overall effect.

Note that an important aspect of the above descriptions is the
notion of extending and propagating context. Herein lies our pri-
mary criticism of arrows and Freyd categories. What we deter-
mined is that nearly all of their structure has to do with extending
and propagating context. If one removes the components that are
present to serve those roles (i.e. anything using⊗), what remains is
just a category of effectful computations with a wide subcategory of
pure computations. That is, arrows and Freyd categories say noth-
ing about sequencing effectful computations besides the fact that
sequencing pure computations results in a pure computation (not to
mention they only handle one effect). So, while arrows generalize
strong monads, they do so at the cost of discarding most of the use-
ful structure to work with. It is for this reason that we focused on
producer effects; our investigations suggest that being as general as
possible means not providing any structure beyond a category with
a distinguished subcategory.

8. Generality
The intent of this work is not to generalize prior semantic frame-
works for effects, but to design the most general such framework
possible. However, as we just mentioned while discussing arrows,
the most general framework possible is not very useful. As such,
we focused on producer effects and defined productors for formal-
izing producer effect systems. Here we show how a few language
properties guarantee that the semantics of sequential composition
forms a productor.

Figure 6 extends the language assumptions made in Figure 4.
Again, while we assume these rules can be imposed upon the
language at hand, we expect the language will have a different
syntax and more rules in addition to those we assume.

Figure 6 introduces two new judgements. The judgement
Γ ` p a Γ′ indicates that p is a pure program with input Γ and
output Γ′ for some notion of purity. In prior work, this separa-
tion usually is termed as values versus computations. For example,
OCaml restricts type generalization to values rather than arbitrary
computations [38]. However, not all notions of purity may be re-
stricted to values. For example, Haskell’s notion of purity includes
exceptions and non-termination. Here we let the designer determine
their own notion of purity. Then we will show how effectful com-
putations can be expressed by a productor on pure computations
for whatever notion of purity the designer decided upon.

The other new judgement ` p
Γ Γ′
ε

p′ indicates that p and p′,
viewed as ε-effectful computations from Γ to Γ′, are semantically
equivalent. When ε is absent, then they are semantically equivalent

Seq

Γ0 ` p1 a Γ1

. . .
Γn−1 ` pn a Γn

Γ0 ` p1; . . . ; pn a Γn
Seq

e

Γ ` p a Γ′

Γ′ ` p′ a Γ′′ | ε
Γ′′ ` p′′ a Γ′′′

Γ ` p; p′; p′′ a Γ′′′ | ε

Thunk
Γ ` p a Γ′ | ε

Γ ` bpcε a LΓ′Mε
Exec

LΓMε ` execε a Γ | ε

Eqβ
Γ ` p a Γ′ | ε

` bpcε; execε Γ Γ′
ε

p
Eqη

Γ ` p a LΓ′Mε
` bp; execεcε Γ LΓ′Mε

p

Figure 6. Typing and semantic rules that guarantee productors

when viewed as pure computations. While not explicitly stated in
Figure 6, we assume semantic equivalence is congruent with re-
spect to sequential composition, implicit coercion of pure compu-
tation into effectful computation, and thunking.

Figure 6 also introduces three new meta-operations. The op-
eration b−cε maps an ε-effectful program to a pure thunked ver-
sion of that program, delaying its execution and treating it as a
value. In OCaml, given an (e-effectful) expression e, bec

e
would

be fun () -> e, effectively delaying the evaluation of e by turn-
ing it into a function waiting for an input, namely (). The opera-
tion L−Mε maps a context Γ to the context representing a thunked
ε-effectful computation that would produce Γ whenever it is exe-
cuted, i.e. the output of a thunked computation bpcε. In OCaml,
LτMe would be unit -> τ . Lastly, the operation execε is the pro-
gram that finally executes a thunked ε-effectful computation. In
OCaml, exece would be − (), i.e. the program finally passing ()
to the thunked computation of the form fun () -> e. Note that,
while our OCaml example defines the operations by wrapping the
relevant program or context, other examples may be done by a more
in-depth translation. For example, if a language has sum types, then
thunking an exception-throwing program can be done by recur-
sively translating the entire program to inject left or right instead
of throwing an exception and to use pattern matching to explic-
itly propagate the exception. Thus a language does not have to be
higher order in order to satisfy the requirements of Figure 6.

The rules in Figure 6 formalize a number of language properties,
some of which are obvious, and some of which are fundamental to
the notion of producer effects. Seq indicates that pure computations
are closed under sequential composition. Note in particular that the
empty computation is pure. Seq

e
indicates that sequential composi-

tion of effectful computations with pure computation preserves the
effect of a computation. This formalizes the idea that the effect of a
computation is not dependent on the values of its inputs or outputs.
Note that these rules combined with using the empty computation
for Seq

;
admit the following:

Γ ` p a Γ′ e 7→ ε

Γ ` p a Γ′ | ε
Thunk and Exec formally evidence the notion of producer ef-

fects. First, any effectful computation can be thunked into a pure
computation by modifying only the output in a uniform manner.
Second, there is a similarly effectful computation that executes a
thunked computation. Eqβ and Eqη essentially correspond to β-
and η-equivalence for these constructs.

Note that these are not the only rules of the language; they are
simply properties that may be superimposed upon a language. In
particular, there can be (and typically are) many rules that operate
on contexts of form LΓMε so that execε is not necesarilly the
only operation that can be performed on a thunked computation.
Nonetheless, regardless of what additional rules the language at

hand may have, so long as it admits at least the rules in Figures 4
and 6 then it is guaranteed to be an instance of our framework.

With these we can finally present our fundamental theorem:

Theorem 5. If a language with an effector 〈EFF,
;7−→〉 admits

at least the rules in Figures 4 and 6, then there is a productor
〈L−M,map, join〉 using pure computations modulo semantic equiv-
alence as Sem, such that the language admits the following:

Γ0 ` p1 a Γ1 | ε1 . . . Γn−1 ` pn a Γn | εn [ε1, . . . , εn]
;7−→ ε

bp1; . . . ; pncε Γ0 LΓnMε
bp1cε1;mapε1(. . . (bpncεn)) ; join [ε1,...,εn],ε

Proof. Define the productor as follows:

• Pε(Γ) is already defined as LΓMε
• mapε(p) = bexecε; pcε
• join [ε1,...,εn],ε = bexecε1 ; . . . ; execεncε

In Appendix C, using Eqβ , Eqη , and congruence. Here we prove
only the desired semantic property of sequential composition, using
approximately the same proof strategy.

First, there is an important lemma: given pure programs p and p′

from Γ to Γ′, if p; execε is semantically equivalent to p′; execε,
then p and p′ are semantically equivalent. The lemma assumptions
and congruence imply that bp; execεcε is semantically equivalent
to bp′; execεcε. Eqη then tells us that the former is semantically
equivalent to p and the latter to p′. Thus, by transitivity, p and p′

are semantically equivalent.
Now, to prove that bp1; . . . ; pncε is semantically equivalent to

bp1cε1 ;mapε1(. . . (bpncεn)); join [ε1,...,εn],ε, due to our lemma
we can instead prove bp1; . . . ; pncε; execε is semantically equiv-
alent to bp1cε1 ;mapε1(. . . (bpncεn)); join [ε1,...,εn],ε; execε. So,
bp1; . . . ; pncε; execε is semantically equivalent to p1; . . . ; pn by
Eqβ . From Eqβ and the definition of join , join [ε1,...,εn],ε; execε
is semantically equivalent to execε1 ; . . . ; execεn . From Eqβ
and the definition of map, mapεi(p); execεi is semantically
equivalent to execεi ; p. Using that fact and Eqβ , we know that
bpicεi ;mapεi(. . . (bpncεn)); execεi ; . . . ; execεn is equivalent
to pi;bpi+1cεi+1

;mapεi+1
(. . . (bpncεn)); execεi+1 ; . . . ; execεn .

Via induction, bp1cε1 ;mapε1(. . . (bpncεn)); execε1 ; . . . ; execεn
is equivalent to p1; . . . ; pn. Taking advantage of congruence, then
bp1cε1 ;mapε1(. . . (bpncεn)); join [ε1,...,εn],ε is also equivalent to
p1; . . . ; pn. Therefore the desired semantic property holds.

Example Our toy language Crit does not actually satisfy the re-
quirements of Figure 6. This illustrates that Figure 6 is sufficient
but not necessary for our framework, demonstrating that our frame-
work is useful even for formalizing languages without a notion
of thunks. Nonetheless, for sake of illustration, we show how we
might extend Crit so that it models Figure 6.

A sufficient extension of Crit is shown in Figure 7. Semantically
we assume the usual β- and η-equivalences. The first extension is
a singleton type Unit. The second and more important extension
is effectful function types. In particular, τ ε−→ Γ represents an
ε-effectful function accepting a τ as input and during execution
assigning values of the appropriate types to the variables in Γ.
Thus this extension is like the computational lambda calculus with
multiple effects mixed with a register-based language.

With this language we can define the required judgements and
operations in Figure 6 as follows:

Γ ` p a Γ′ ≡ Γ ` p a Γ′ | e LΓMε ≡ t : Unit
ε−→ Γ

bpcε ≡ t := (λu.〈〉 := u; p) execε ≡ u := 〈〉; t u
That is, a pure computation is one with the basic effect e. Thunking
works by turning the computation into a function waiting for a

∅ ` u := 〈〉 a u : Unit | e
Γ, x : τ ` p a Γ′ | ε

Γ ` f := λx.p a f : (τ
ε−→ Γ′) | e

u : Unit ` 〈〉 := u a ∅ | e f : (τ
ε−→ Γ), x : τ a f x ` Γ | ε

Figure 7. Crit extended with effectful functions

Unit value, eliminating that unit value, and then finally running the
computation. That function is stored into variable t so that thunking
results in an output context of the form t : Unit

ε−→ Γ. Executing
a thunked computation, then, simply involves storing the unique
value of Unit into a variable and then calling the thunk with that
variable as the argument, thus causing the body of the function to
finally execute.

These definitions clearly satisfy the requirements of Figure 6.
Thus, our fundamental theorem implies that the semantics of ex-
tended Crit can be formalized with a productor defined on just the
extended Crit computations with the basic effect e. Furthermore,
the theorem shows how to construct this productor.

Closed Freyd Categories Now we would like to revisit exist-
ing frameworks to see what insights the assumptions in Figure 6
can offer. As we discussed, while Freyd categories offer a lot
of useful structure for working with contexts, they provide little
structure regarding sequential composition. However, Power and
Thielecke recognized that strong monads arise for closed Freyd
categories [27]. This is no surprise given our theorem, since the
structures that makes a Freyd category closed are essentially the
assumptions in Figure 6. Similarly, Atkey defined a notion of pa-
rameterized Freyd categories [2], and observed that closed parame-
terized Freyd categories gave rise to parameterized monads. Again,
the additional structure for a closed parameterized Freyd category
corresponds to the assumptions in Figure 6, so this result is no sur-
prise given our theorem.

9. Conclusion
We have presented productors, a semantic framework for sequen-
tial composition of computations with producer effects, a concept
we were able to formalize abstractly. In particular, we showed why
the widespread notion of thunking makes producer effects so com-
mon. In our discussions of existing frameworks, we argued why it
is important to restrict our attention to producer effects. We illus-
trated how monadic frameworks fit within productors, and used our
framework to illustrate how properties of the effect system at hand
give rise to various semantic structures.

In all this discussion, we have elided the higher categorical con-
nections. For example, productors can be viewed as functors from
the effector to the 2-category of categories. This higher perspec-
tive suggests some ways to adapt the framework to more special-
ized forms of computation. For example, by changing the target
2-category to that of premonoidal categories (i.e. categories with
a notion of propagating context), one arrives at productors that
can propagate context, such as a strong monad. Or, by using the
2-category of categories and partial functors, one can drop the im-
plicit assumption of Theorem 5 that LΓMε is defined for all con-
texts Γ even if there is no ε-effectful computation with Γ as its out-
put. In another direction, while we chose to present effectors along
the line of lax List-monad algebras in Rel, they can equivalently be
described as thin multicategories [15]. It would be interesting to in-
vestigate how the concepts for multicategories translate to effectors
and productors. For example, a representable thin multicategory is
equivalently a total principalled effectoid (equivalent to a congru-
ently preordered monoid).

Our preliminary investigations into the dual concept of con-
sumer effects and consumptors have been very intriguing. The tra-
ditional notion of context seems to be well described as a consump-
tor. Strength appears to be formalizable as an interplay of this con-
sumer effect with the producer effects. Similarly, non-linear uses
of inputs also seem best described as a consumptor. After all, an
intuitionistic implication P ⇒ Q translates to linear implication
!P (Q with a modification on the input rather than the output.
The ! modality is a comonad, which is a special class of consump-
tors just like monads are a special class of productor. Furthermore,
it seems that strictness and laziness arise as two dual ways to make
such a consumptor interact with producer effects.

Finally, while we have discussed what the semantic framework
for producer effects should look like, we have not investigated how
to actually build productors. With monads, there have been a va-
riety of techniques for composing monads [11] (though interest-
ingly many of these, such as distributive laws [14], arise as spe-
cial cases of our framework), building monads from monad trans-
formers [16], or combining algebraic monads [24] with tensors and
sums [9]. We would like to see how these concepts extend to pro-
ductors. For example, the coproduct of two monads is relatively
simple to define [18], but at first thought it is not clear whether
the coproduct of two effectors and respective productors would be
simpler or more complex. Also, transformers such as for exceptions
rely heavily on the presence of a unit operation, so one wonders
if they are restricted to just centric effectors. By reexamining these
techniques in this new light, we expect to acquire a better under-
standing of their fundamental structure.

With this framework we aim to lay new grounds for the foun-
dations of programming languages. Of course, there are still many
more forms of composition to formalize the semantics of, but we
have already begun transferring the strategy taken here to those
settings and found some fruitful results. In the end we expect to
have composable frameworks for formalizing the many roles ef-
fects have in programming languages. We hope this work will pro-
vide a new means to abstractly formalize, expand, and communi-
cate programming languages.

Acknowledgements In addition to our anonymous reviewers, we
thank John C. Baez, Thomas Ball, Daniel Brown, Jeffrey S. Foster,
Michael Hicks, Ohad Kammar, Daan Leijen, Sorin Lerner, Daniel
Marino, Andrew Myers, Patrick Rondon, Michael Shulman, and
Zachary Tatlock for their valuable feedback on the research, its
context, and our writing.

References
[1] Martı́n Abadi. Access control in a core calculus of dependency. In

ICFP, 2006.

[2] Robert Atkey. Parameterised notions of computation. JFP, 19:335–
376, July 2009.

[3] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects.
In International Summer School on Applied Semantics, 2000.

[4] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed
contexts. Technical report, University of Copenhagen, 1989.

[5] Andrzej Filinski. Representing layered monads. In POPL, 1999.

[6] Andrzej Filinski. Monads in action. In POPL, 2010.

[7] Roger Godement. Topologie Algébrique et Théorie des Faisceaux.
Hermann, 1958.

[8] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, May 2000.

[9] Martin Hyland, Gordon Plotkin, and John Power. Combining effects:
Sum and tensor. Theoretical Computer Science, 357(1):70–99, 2006.

[10] Bart Jacobs, Chris Heunen, and Ichiro Hasuo. Categorical semantics
for arrows. JFP, 19:403–438, 2009.

[11] Mark P. Jones and Luc Duponcheel. Composing monads. Technical
report, Yale University, New Haven, CT, USA, December 1993.

[12] Simon Peyton Jones and Philip Wadler. Imperative functional pro-
gramming. In POPL, 1993.

[13] Richard B. Kieburtz. Taming effects with monadic typing. In ICFP,
1998.

[14] David J. King and Philip Wadler. Combining monads. In ETAPS,
1992.

[15] Tom Leinster. Higher Operads, Higher Categories. Cambridge Uni-
versity Press, 2004.

[16] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In POPL, 1995.

[17] John M. Lucassen and David K. Gifford. Polymorphic effect systems.
In POPL, 1988.

[18] Christoph Lüth and Neil Ghani. Composing monads using coproducts.
ACM SIGPLAN Notices, 37(9):133–144, 2002.

[19] Daniel Marino and Todd Millstein. A generic type-and-effect system.
In TLDI, 2009.

[20] Eugenio Moggi. Computational lambda-calculus and monads. In
LICS, 1989.

[21] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios
Pratikakis. Contextual effects for version-consistent dynamic software
updating and safe concurrent programming. In POPL, 2008.

[22] Flemming Nielson and Hanne Riis Nielson. Type and effect systems.
In ACM Computing Surveys, 1999.

[23] Hanne Riis Nielson, Flemming Nielson, and Torben Amtoft. Polymor-
phic subtyping for effect analysis: The static semantics. In LOMAPS,
1997.

[24] Gordon Plotkin and John Power. Notions of computation determine
monads. In FoSSaCS, 2002.

[25] John Power and Edmund Robinson. Premonoidal categories and no-
tions of computation. Mathematical Structures in Computer Science,
7:453–468, October 1997.

[26] John Power and Hayo Thielecke. Environments, continuation seman-
tics and indexed categories. In TACS, 1997.

[27] John Power and Hayo Thielecke. Closed Freyd- and κ-categories. In
ICAL, 1999.

[28] John C. Reynolds. Using category theory to design implicit conver-
sions and generic operators. LNCS, 94:211–258, 1980.

[29] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks.
Lightweight monadic programming in ML. Technical report, Mi-
crosoft Research, 2011.

[30] Jean-Pierre Talpin. Theoretical and Practical Aspects of Type and
Effect Inference. PhD thesis, École des Mines de Paris and University
Paris VI, Paris, France, 1993.

[31] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and
effect inference. JFP, 2:245–271, 1992.

[32] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 111(2):245–296, 1994.

[33] Andrew P. Tolmach. Optimizing ML using a hierarchy of monadic
types. In Types in Compilation, 1998.

[34] Philip Wadler. Comprehending monads. In LISP and Functional
Programming, 1990.

[35] Philip Wadler. The essence of functional programming. In POPL,
1992.

[36] Philip Wadler. Monads and composable continuations. LISP and
Symbolic Computation, 7:39–56, January 1994.

[37] Philip Wadler and Peter Thiemann. The marriage of effects and
monads. Transactions on Computational Logic, 4(1):1–32, 2003.

[38] Andrew K. Wright. Simple imperative polymorphism. LISP and
Symbolic Computation, 8(4):343–355, 1995.

A. Coherence
In Section 6 we claim that a productor gives a coherent semantics to Seq

;
. Here we formalize and prove that claim.

Theorem 6. Suppose we have an effector 〈EFF,
;7−→〉 and a productor 〈P,map, join〉 for 〈EFF,

;7−→〉. Given a list of programs [p1, . . . , pn],
contexts Γ1, . . . , Γn and Γ, effects ε1, . . . , εn and ε with [ε1, . . . , εn]

;7−→ ε holding, proofs of Γ1 ` p1 a Γ2 | ε1, . . . , Γn ` pn a Γ | εn,
and translations of those proofs f1 : JΓK1 → Pε1(JΓK2), . . . , fn : JΓKn : JΓKn → Pεn(JΓK), for any proof of Γ1 ` p1; . . . ; pn a Γ | ε
containing Seq

;
and the given proofs, its translation using the given translations of the given proofs and the following translation for Seq

;

JΓ1 ` p1 a Γ2 | ε1K = f1 . . . JΓn ` pn a Γ | εnK = fnr
[ε1, . . . , εn]

;7−→ ε
z

= join [ε1,...,εn],ε

JΓ1`p1; . . . ; pnaΓ |εK = f1;mapε1(. . . (fn)); join [ε1,...,εn],ε

is guaranteed to be equal to
f1;mapε1(. . . (fn)); join [ε1,...,εn],ε

Proof. We prove by induction on the proof of Γ1 ` p1; . . . ; pn a Γ | ε. Either the proof is one of the given proofs or it is an application of
Seq

;
.

Suppose it is one of the given proofs. Then its conclusion must show that pi has effect εi, and its translation must be fi. Thus we have to
prove that fi is equal to fi; join [εi],εi

. By definition of productor, join [εi],εi
is the identity function, so fi equals fi; join [εi],εi

.
Suppose instead it is an application of Seq

;
. Then its assumptions must be Γ′1 ` p′1 a Γ′2 | ε′1 through Γ′m ` p′m a Γ′ | ε′m and

[ε′1, . . . , ε
′
m]

;7−→ ε, where p′1; . . . ; p′m is syntactically equal to p1; . . . ; pn. Thus, each p′i is some substring of p1; . . . ; pn, so let [ε1
i , . . . , ε

ki
i]

and [f1
i , . . . , f

ki
i] be the list of effects and given translations corresponding to that substring. By our induction hypothesis, this implies the

translation of the proof corresponding to each p′i is equal to f1
i ;mapε1i

(. . . (fkii)); join
[ε1i ,...,ε

ki
i],ε′i

. Thus, the translation of the whole proof
is

f1
1 ;mapε11

(. . . (fk11)); join
[ε11,...,ε

k1
1],ε′1

;mapε′1
(. . . (f1

m;mapε1m(. . . (fkmm)); join
[ε1m,...,ε

km
m],ε′m

)); join [ε′1,...,ε
′
m],ε

We need to prove this equals f1;mapε1(. . . (fn)); join [ε1,...,εn],ε. We can apply functoriality of map and naturality of join to inductively
rewrite the above as

f1
1 ;mapε11

(. . . (fk11 ;map
ε
k1
1

(. . . (f1
m;mapε1m(. . . (fkmm)))))); join

[ε11,...,ε
k1
1],ε′1

;mapε′1
(. . . (join

[ε1n,...,ε
kn
n],ε′n

)); join [ε′1,...,ε
′
n],ε

By definition of productor, join
[ε11,...,ε

k1
1],ε′1

;mapε′1
(. . . (join

[ε1n,...,ε
kn
n],ε′n

)); join [ε′1,...,ε
′
n],ε must equal join

[ε11,...,ε
k1
1 ,...,ε1m,...,ε

km
m],ε

,

which must exist since [ε1
1, . . . , ε

k1
1 , . . . , ε1

m, . . . , ε
km
m]

;7−→ ε must hold by definition of effector. Thus we can rewrite the above as

f1
1 ;mapε11

(. . . (fk11 ;map
ε
k1
1

(. . . (f1
m;mapε1m(. . . (fkmm)))))); join

[ε11,...,ε
k1
1 ,...,ε1m,...,ε

km
m],ε

And so we have our desired equality, since [f1
1 , . . . , f

k1
1 , . . . , f1

m, . . . , f
km
m] must equal [f1, . . . , fn] and [ε1

1, . . . , ε
k1
1 , . . . , ε1

m, . . . , ε
km
m]

must equal [ε1, . . . , εn], so the above is just another way of writing f1;mapε1(. . . (fn)); join [ε1,...,εn],ε.

B. Semi-Strictness
In Section 5 and Section 6 we present biased definitions (i.e. effectors and productors) that we claim are equivalent to our unbiased definitions
(i.e. effectoids and productoids) under certain conditions. Here we prove those claims.

B.1 Effectors and Effectoids
Definition (Semi-Strict Effector). An effector 〈EFF,

;7−→〉 satisfying the following additional property:

∀~ε1...~εn, ε.
∃ε1...εn. (∀i.~εi

;7−→ εi) ∧ [ε1...εn]
;7−→ ε

⇑
~ε1 ++ . . .++ ~εn

;7−→ ε

Definition (Effectoid). A set EFF along with a unary relation e 7→ −, a binary relation − ≤ −, and a ternary relation − ;− 7→ − satisfying:

Id
en

tit
y

∀ε, ε′.

∃ε`. e 7→ ε` ∧ ε` ; ε 7→ ε′

m
ε ≤ ε′

m
∃εr. e 7→ εr ∧ ε ; εr 7→ ε′ A

ss
oc

ia
tiv

ity

∀ε1, ε2, ε3, ε.
∃ε̄. ε1 ; ε2 7→ ε̄ ∧ ε̄ ; ε3 7→ ε

m
∃ε̂. ε2 ; ε3 7→ ε̂ ∧ ε1 ; ε̂ 7→ ε

R
efl

ex
iv

e
C

on
gr

ue
nc

e

∀ε. ε ≤ ε

∀ε, ε′. e 7→ ε ∧ ε ≤ ε′ =⇒ e 7→ ε′

∀ε1, ε2, ε, ε
′. ε1 ; ε2 7→ ε ∧ ε ≤ ε′ =⇒ ε1 ; ε2 7→ ε′

Lemma 1. For any effectoid 〈EFF, e,≤, ;〉, the following holds:

∀ε, ε′, ε′′. ε ≤ ε′ ∧ ε′ ≤ ε′′ =⇒ ε ≤ ε′′

Proof. Given any effects ε, ε′, and ε′′, suppose ε ≤ ε′ and ε′ ≤ ε′′ hold. By definition of effectoid, the former assumption implies there exists
some effect ε` such that e 7→ ε` and ε` ; ε 7→ ε′ hold. By definition of effector, the latter and ε′ ≤ ε′′ imply ε` ; ε 7→ ε′′ holds. Therefore, by
definition of effector, that and e 7→ ε` imply ε ≤ ε′′ holds.

Lemma 2. For any effectoid 〈EFF, e,≤, ;〉, the following holds:

∀ε1, ε
′
1, ε2, ε. ε1 ≤ ε

′
1 ∧ ε′1 ; ε2 7→ ε =⇒ ε1 ; ε2 7→ ε

Proof. Given any effects ε1, ε′1, ε2, and ε, suppose ε1 ≤ ε
′
1 and ε′1 ; ε2 7→ ε hold. By definition of effectoid, the former assumption implies

there exists some effect ε` such that e 7→ ε` and ε` ; ε1 7→ ε′1 hold. By definition of effectoid, the latter and ε′1 ; ε2 7→ ε imply there exists
some effect ε̂ such that ε1 ; ε2 7→ ε̂ and ε` ; ε̂ 7→ ε hold. By definition of effectoid, the latter and e 7→ ε` imply ε̂ ≤ ε holds. Therefore, by
definition of effectoid, that and ε1 ; ε2 7→ ε̂ imply ε1 ; ε2 7→ ε holds.

Lemma 3. For any effectoid 〈EFF, e,≤, ;〉, the following holds:

∀ε1, ε2, ε
′
2ε. ε2 ≤ ε

′
2 ∧ ε1 ; ε

′
2 7→ ε =⇒ ε1 ; ε2 7→ ε

Proof. Given any effects ε1, ε2, ε′2, and ε, suppose ε2 ≤ ε
′
2 and ε1 ; ε

′
2 7→ ε hold. By definition of effectoid, the former assumption implies

there exists some effect εr such that e 7→ εr and ε2 ; εr 7→ ε′2 hold. By definition of effectoid, the latter and ε1 ; ε
′
2 7→ ε imply there exists

some effect ε̄ such that ε1 ; ε2 7→ ε̄ and ε̄ ; εr 7→ ε hold. By definition of effectoid, the latter and e 7→ εr imply ε̄ ≤ ε holds. Therefore, by
definition of effectoid, that and ε1 ; ε2 7→ ε̄ imply ε1 ; ε2 7→ ε holds.

Theorem 7. There is a bijection between semi-strict effectors and effectoids.

Proof. Given an effector 〈EFF,
;7−→〉, let e 7→ ε be defined as []

;7−→ ε, and let ε ≤ ε′ be defined as [ε]
;7−→ ε′, and let ε ; ε′ 7→ ε′′ be defined as

[ε, ε′]
;7−→ ε′′. Then 〈EFF, e,≤, ;〉 is an effectoid provided we can prove the required properties:

Identity Let ε and ε′ be any two effects.
• Suppose there is an ε` with e 7→ ε` and ε` ; ε 7→ ε′. That means we have []

;7−→ ε` and [ε`, ε]
;7−→ ε′. By definition of effector we also

have [ε]
;7−→ ε. Thus, since [] ++[ε] equals [ε], by definition of effector we can infer that [ε]

;7−→ ε′ holds, which means ε ≤ ε′ holds.
• Suppose ε ≤ ε′ holds. That means we have [ε]

;7−→ ε′. Since [] ++[ε] equals [ε], by definition of semi-strictness there must be some
ε` and ε̄ such that []

;7−→ ε`, [ε]
;7−→ ε̄, and [ε`, ε̄]

;7−→ ε′ hold. Because [ε`] 7→ ε` and [ε]
;7−→ ε̄ hold, and [ε`] ++[ε] equals [ε`, ε]

and [ε`, ε̄]
;7−→ ε′ holds, by definition of effector we get that [ε`, ε]

;7−→ ε′ holds. Thus, there exists an effect ε` such that e 7→ ε`
(i.e. []

;7−→ ε`) and ε` ; ε 7→ ε′ (i.e. [ε`, ε]
;7−→ ε′) hold.

• Suppose there is an εr with e 7→ εr and ε ; εr 7→ ε′. That means we have []
;7−→ εr and [ε, εr]

;7−→ ε′. By definition of effector we also
have [ε]

;7−→ ε. Thus, since [ε] ++[] equals [ε], by definition of effector we can infer that [ε]
;7−→ ε′ holds, which means ε ≤ ε′ holds.

• Suppose ε ≤ ε′ holds. That means we have [ε]
;7−→ ε′. Since [ε] ++[] equals [ε], by definition of semi-strictness there must be some

εr and ε̄ such that []
;7−→ εr , [ε]

;7−→ ε̄, and [ε̄, εr]
;7−→ ε′ hold. Because [εr] 7→ εr and [ε]

;7−→ ε̄ hold, and [ε] ++[εr] equals [ε, εr]

and [ε̄, εr]
;7−→ ε′ holds, by definition of effector we get that [ε, εr]

;7−→ ε′ holds. Thus, there exists an effect εr such that e 7→ εr
(i.e. []

;7−→ εr) and ε ; εr 7→ ε′ (i.e. [ε, εr]
;7−→ ε′) hold.

Associativity Let ε1, ε2, ε3, and ε be any effects.
• Suppose there is a ε̄ such that ε1 ; ε2 7→ ε̄ and ε̄ ; ε3 7→ ε hold. That means [ε1, ε2]

;7−→ ε̄ and [ε̄, ε3]
;7−→ ε hold. Then, since

[ε1, ε2] ++[ε3] equals [ε1, ε2, ε3] and also [ε3]
;7−→ ε3 holds by definition of effector, by definition of effector [ε1, ε2, ε3]

;7−→ ε must
hold. Next, since [ε1] ++[ε2, ε3] equals [ε1, ε2, ε3], by definition of semi-strictness there must be some ε′1 and ε̂ such that [ε1]

;7−→ ε′1,
[ε2, ε3]

;7−→ ε̂, and [ε′1, ε̂]
;7−→ ε hold. From [ε1]

;7−→ ε′1, [ε̂]
;7−→ ε̂ (guaranteed by definition of effector), and [ε′1, ε̂]

;7−→ ε we get that
[ε1, ε̂]

;7−→ ε also holds. Thus there is an effect ε̂ such that ε2 ; ε3 7→ ε̂ (i.e. [ε2, ε3]
;7−→ ε̂) and ε1 ; ε̂ 7→ ε (i.e. [ε1, ε̂]

;7−→ ε) hold.
• Suppose there is a ε̂ such that ε2 ; ε3 7→ ε̂ and ε1 ; ε̂ 7→ ε hold. That means [ε2, ε3]

;7−→ ε̂ and [ε1, ε̂]
;7−→ ε hold. Then, since

[ε1] ++[ε2, ε3] equals [ε1, ε2, ε3] and also [ε1]
;7−→ ε1 holds by definition of effector, by definition of effector [ε1, ε2, ε3]

;7−→ ε must
hold. Next, since [ε1, ε2] ++[ε3] equals [ε1, ε2, ε3], by definition of semi-strictness there must be some ε̄ and ε′3 such that [ε1, ε2]

;7−→ ε̄,
[ε3]

;7−→ ε′3, and [ε̄, ε′3]
;7−→ ε hold. From [ε̄]

;7−→ ε̄ (guaranteed by definition of effector), [ε3]
;7−→ ε′3, and [ε̄, ε′3]

;7−→ ε we get that
[ε̄, ε3]

;7−→ ε also holds. Thus there is an effect ε̄ such that ε1 ; ε2 7→ ε̄ (i.e. [ε1, ε2]
;7−→ ε̄) and ε̄ ; ε3 7→ ε (i.e. [ε̄, ε3]

;7−→ ε) hold.
Reflexive Congruence

• Let ε be any effect. Then ε ≤ ε means [ε]
;7−→ ε which holds by definition of effector.

• Let ε and ε′ be any effects, and suppose e 7→ ε and ε ≤ ε′ hold. This means []
;7−→ ε and [ε]

;7−→ ε′ hold. Thus, since [] equals [] (no
appending required since there is only one list), by definition of effector []

;7−→ ε′ also holds, which means e
;7−→ ε′ holds.

• Let ε1, ε2, ε, and ε′ be any effects, and suppose ε1 ; ε2 7→ ε and ε ≤ ε′ hold. This means [ε1, ε2]
;7−→ ε and [ε]

;7−→ ε′ hold. Thus, since
[ε1, ε2] equals [ε1, ε2] (no appending required since there is only one list), by definition of effector [ε1, ε2]

;7−→ ε′ also holds, which
means ε1 ; ε2 7→ ε′ holds.

In the other direction, given an effectoid 〈EFF, e,≤, ;〉, define ~ε
;7−→ ε as there exists a Tree(~ε, ε), where Tree(~ε, ε) is an inductively defined

data-structure with the following constructors:

Input ∀ε. Tree([ε], ε)
Leaf ∀ε. e 7→ ε→ Tree([], ε)
Edge ∀~ε, ε, ε′. ε ≤ ε′ → Tree(~ε, ε)→ Tree(~ε, ε′)
Branch ∀~ε, ε, ~ε′, ε′, ε′′.ε ; ε′ 7→ ε′′ → Tree(~ε, ε)→ Tree(~ε′, ε′)→ Tree(~ε++ ~ε′, ε′′)

Then 〈EFF,
;7−→〉 is a semi-strict effector provided we can prove the required properties. But first, we need to identify a number of useful

transformations and properties for such trees.

Right Rotation If Branchε(Branchε̄(t1, t2), t3) is valid then there exists some effect ε̂ such that Branchε(t1,Branchε̂(t2, t3)) is valid: Let
ε1, ε2, and ε3 be the effects of t1, t2, and t3 respectively. Validity implies ε1 ; ε2 7→ ε̄ and ε̄ ; ε3 7→ ε holds. By definition of effectoid,
these imply there exists some effect ε̂ such that ε2 ; ε3 7→ ε̂ and ε1 ; ε̂ 7→ ε hold. These imply the rotated tree is valid.

Left Rotation If Branchε(t1,Branchε̂(t2, t3)) is valid then there exists some effect ε̄ such that Branchε(Branchε̄(t1, t2), t3) is valid: Let ε1,
ε2, and ε3 be the effects of t1, t2, and t3 respectively. Validity implies ε2 ; ε3 7→ ε̂ and ε1 ; ε̂ 7→ ε holds. By definition of effectoid, these
imply there exists some effect ε̄ such that ε1 ; ε2 7→ ε̄ and ε̄ ; ε3 7→ ε hold. These imply the rotated tree is valid.

Right Elimination If Branchε′(t,Leafεr ()) is valid, then Edgeε′(t) is valid: Let ε be the effect of t. Validity implies e 7→ εr and ε ; εr 7→ ε′

hold. By definition of effectoid, these imply ε ≤ ε′ holds. This implies the tree after elimination is valid.
Left Elimination If Branchε′(Leafε`(), t) is valid, then Edgeε′(t) is valid: Let ε be the effect of t. Validity implies e 7→ ε` and ε` ; ε 7→ ε′

hold. By definition of effectoid, these imply ε ≤ ε′ holds. This implies the tree after elimination is valid.
Right Introduction If Edgeε′(t) is valid, then there is an effect εr such that Branchε′(t,Leafεr ()) is valid: Let ε be the effect of t. Validity

implies ε ≤ ε′ must hold and so there exists an effect εr such that e 7→ εr and ε ; εr 7→ ε′ hold. These imply the tree after introduction is
valid.

Left Introduction If Edgeε′(t) is valid, then there is an effect ε` such that Branchε′(Leafε`(), t) is valid: Let ε be the effect of t. Validity
implies ε ≤ ε′ must hold and so there exists an effect ε` such that e 7→ ε` and ε` ; ε 7→ ε′ hold. These imply the tree after introduction is
valid.

Edge Identification If t has effect ε, then Edgeε(t) is valid: Valid since ε ≤ ε holds by definition of effectoid.
Leaf Simplification If Edgeε′(Leafε()) is valid, then Leafε′() is valid: Validity implies e 7→ ε and ε ≤ ε′ hold. By definition of effectoid,

these imply e 7→ ε′ hold. This implies the simplified tree is valid.
Branch Simplification If Edgeε′(Branchε(t1, t2)) is valid, then Branchε′(t1, t2) is valid: Let ε1 and ε2 be the effects of t1 and t2

respectively. Validity implies ε1 ; ε2 7→ ε and ε ≤ ε′ hold. By definition of effectoid, these imply ε1 ; ε2 7→ ε′ holds. This implies
the simplified tree is valid.

From the above we can easily derive a few useful properties about trees:

• Any Tree(~ε, ε′) can be transformed into a simplified tree either of the form Edgeε′(Input(ε)) or containing no Edge nodes.
• Any tree can be transformed into any simplified tree of the same type.
• Any Tree(~ε1 ++ ~ε2, ε) can be transformed into a tree of the form Branchε(t1, t2) where each ti is a Tree(~εi, εi) for some εi.

Now we can prove the semi-strict effector requirements.

Identity Let ε be any effect. Then Input(ε) is a Tree([ε], ε), so {ε} 7→ ε holds.
Associativity Let ~ε1, . . . , ~εn be any list of effects, and let ε be any effect. Suppose for each i there is some effect εi such that ~εi

;7−→ εi
hold. Also suppose that [ε1, . . . , εn]

;7−→ ε holds. These assumptions tell us we there are trees Tree(~ε1, ε1) t1, . . . , Tree(~εn, εn) tn, and
Tree([ε1, . . . , εn], ε) t. For all lists of effects ~ε1, ~ε2, ~ε3, effects ε2 and ε, and trees Tree(~ε2, ε2) t2 and Tree(~ε1 ++[ε2] ++ ~ε3, ε) t, there
is a Tree(~ε1++~ε2++~ε3, ε) denoted t[ε2 7→ t2], which is easily constructed by induction on t. Thus t[ε1 7→ t1] . . . [εn 7→ tn] has type
Tree(~ε1 ++ . . .++ ~εn, ε). Therefore ~ε1 ++ . . .++ ~εn

;7−→ ε holds.
Associativity Converse Let ~ε1, . . . , ~εn be any list of effects, and let ε be any effect. Suppose ~ε1 ++ . . .++ ~εn

;7−→ ε holds. This assumption
tells us there is a Tree(~ε1 ++ . . .++ ~εn, ε) t. t can be transformed so that it can be broken up into subtrees Tree(~ε1, ε1) t1, . . . ,
Tree(~εn, εn) tn forming the base of t, for some effects ε1, . . . , εn, and a subtree Tree([ε1, . . . , εn], ε) t̄ connecting those subtrees
together. Thus there exist effects ε1, . . . , εn such that ~ε1

;7−→ ε1, . . . , ~εn
;7−→ εn and [ε1, . . . , εn] hold.

Lastly, we have to show that the above conversions between semi-strict effectors and effectoids are inverses.

Effector to Effectoid and Back Given a semi-strict effector 〈EFF,
;7−→〉, let

;−⇀ be the result of translating to an effectoid 〈EFF, e,≤, ;〉 and
back. In particular, ~ε

;−⇀ ε means there exists a Tree(~ε, ε). We have to show that ~ε
;−⇀ ε holds if and only if ~ε

;7−→ ε holds.
We show that ~ε

;−⇀ ε implies ~ε
;7−→ ε by induction on a corresponding Tree(~ε, ε). If the tree is an Input(ε), then we need to show that

[ε]
;7−→ ε holds. That holds by definition of effector. If the tree is a Leafε(), then we know e 7→ ε holds and we need to show that []

;7−→ ε
holds. The latter is the definition of the former, so this holds trivially. If the tree is an Edgeε(t) where t is a Tree(~ε, ε′), then we know
ε′ ≤ ε holds, and by induction ~ε

;7−→ ε′ holds. ε ≤ ε′ is defined as [ε]
;7−→ ε′, so by definition of effector and the inductive hypothesis we

have ~ε
;7−→ ε. If the tree is a Branchε(t1, t2) where each ti is a Tree(~εi, εi), then we know ε1 ; ε2 7→ ε holds, and by induction ~ε1

;7−→ ε1

and ~ε2
;7−→ ε2 hold. ε1 ; ε2 7→ ε is defined as [ε1, ε2]

;7−→ ε, so by definition of effector and the inductive hypotheses we have ~ε1 ++ ~ε2
;7−→ ε

as desired.
We show that ~ε

;7−→ ε implies ~ε
;−⇀ ε by induction on ~ε. When ~ε is empty, []

;7−→ ε is the definition of e 7→ ε, so Leafε() is a valid Tree([], ε)

exemplifying []
;−⇀ ε. Otherwise, suppose ~ε is ~ε1 ++[ε2]. Since ~ε1 ++[ε2]

;7−→ ε holds, by definition of semi-strictness there must be some

ε1 and ε′2 such that ~ε1
;7−→ ε1, [ε2]

;7−→ ε′2, and [ε1, ε
′
2]

;7−→ ε hold, meaning ε2 ≤ ε
′
2 and ε1 ; ε

′
2 7→ ε hold. By inductive hypothesis, ~ε1

;7−→ ε1

also implies there is some Tree(~ε1, ε1) t. As such, Branchε(t,Edgeε′2(Input(ε2))) is a valid Tree(~ε1 ++[ε2], ε), implying ~ε1 ++[ε2]
;−⇀ ε.

Efectoid to Effector and Back Given an effectoid 〈EFF, e,≤, ;〉, let ê, ≤̂, and ;̂ be the result of translating to a semi-strict effector 〈EFF,
;7−→〉

and back. In particular, ê 7→ ε means there exists a Tree([], ε), ε ≤̂ ε′ means there exists a Tree([ε], ε′), and ε ;̂ ε′ 7→ ε′′ means there
exists a Tree([ε, ε′], ε′′). We have to show that the new relations hold if and only if the old ones hold.
Suppose e 7→ ε holds. Then Leafε() is a Tree([], ε), implying ê 7→ ε holds. On the other hand, suppose ê 7→ ε holds, meaning there exists
a Tree([], ε) t. t cannot contain any Input nodes, and consequently can be simplified and eliminated until it contains only Leaf nodes. In
particular, this means t can be transformed to a valid tree of the form Leafε(). Therefore, validity implies e 7→ ε holds.
Suppose ε ≤ ε′ holds. Then Edgeε′(Input(ε)) is a Tree([ε], ε′), implying ε ≤̂ ε′ holds. On the other hand, suppose ε ≤̂ ε′ holds, meaning
there exists a Tree([ε], ε′) t. t must contain exactly one Input node, and consequently can be simplified, eliminated, and identified until it
is of the form Edgeε′(Input(ε)). Therefore, validity implies ε ≤ ε′ holds.
Suppose ε ; ε′ 7→ ε′′ holds. Then Branchε′′(Input(ε), Input(ε′)) is a Tree([ε, ε′], [ε′′]), implying ε ;̂ ε′ 7→ ε′′ holds. On the other hand,
suppose ε ;̂ ε′ 7→ ε′′ holds, meaning there exists a Tree([ε, ε′], ε′′) t. t must contain exactly two Input nodes, so any transformation
must contain a Branch node. Consequently, after simplification and elimination, t must have the form Branchε′′(Input(ε), Input(ε′′)).
Therefore, validity implies ε ; ε′ 7→ ε′′ holds.

B.2 Productors and Productoids
Definition (Productoid). A productoid for an effectoid 〈EFF, e,≤, 7→〉 is a category Sem with endofunctors {〈Pε,mapε〉}ε∈EFF and natural
transformations {unitε : Id → Pε}e 7→ε, {coerceε,ε′ : Pε → Pε′}ε≤ε′ , and {joinε,ε′,ε′′ : Pε;Pε′ → Pε′′}ε ; ε′ 7→ε′′ such that coerceε,ε is
always the identity transformation and the following diagrams commute whenever all terms are defined:

Pε

Pε` ◦ Pε

Pε ◦ Pεr

P ′ε

.........
.........
.........
.........
...............
............unitε`

....

joinε`,ε,ε′

...
coerceε,ε′

...
....

mapε(unitεr)
.........
.........
.....................
............

joinε,εr,ε′

Pε1 ◦ Pε2 ◦ Pε3

Pε̄ ◦ Pε3

Pε

Pε1 ◦ Pε̂

.........
.........
.........
.........
...............
............joinε1,ε2,ε̄

....

join ε̄,ε3,ε

..
....

mapε1(joinε2,ε3,ε̂)
.........
.........
.........
.........
...............
............

joinε1,ε̂,ε
Id

Pε

Pε′
...........
..........
..........
...........
...............
............unitε

....
coerceε,ε′

..

unitε′
Pε1 ◦ Pε2

Pε

Pε′

...........
...........
................
............

joinε1,ε2,ε
....
coerceε,ε′

..

joinε1,ε2,ε′

Theorem 8. There is a bijection between productors for semi-strict effectors and productoids for effectoids corresponding to the bijection
between semi-strict effectors and effectoids in Theorem 7.

Proof. Given a semi-strict effector 〈EFF,
;7−→〉, let 〈EFF, e,≤, ;〉 be the effectoid given by Theorem 7. Given a productor 〈Sem, P, join〉

for 〈EFF,
;7−→〉, let unitε with e 7→ ε (meaning []

;7−→ ε) be defined as join [],ε, let coerceε,ε′ with ε ≤ ε′ (meaning [ε]
;7−→ ε′) be defined

as join [ε],ε′ , and let joinε,ε′,ε′′ with ε ; ε′ 7→ ε′′ (meaning [ε, ε′]
;7−→ ε′′) be defined as join [ε,ε′],ε′′ . Then 〈Sem, P, unit , coerce, join〉 is

a productoid for 〈EFF, e,≤, ;〉 provided we can prove the required properties. coerceε,ε is defined as join [ε],ε which is assumed to be the
identity transformation.

Left Identity unitε` , joinε`,ε,ε′ , and coerceε,ε′ are defined as join [],ε`
, join [ε`,ε],ε

′ , and join [ε],ε′ respectively. Since [] ++[ε] equals [ε],

and [ε]
;7−→ ε holds by definition of effector, (join [],ε`

∗ join[ε], ε) ; join [ε`,ε],ε
′ equals join[ε], ε′ by definition of productor. join [ε],ε is

the identity by definition of productor, so this implies join [],ε`
; join [ε`,ε],ε

′ equals join[ε], ε′ as desired.
Right Identity unitεr , joinε,εr,ε′ , and coerceε, ε′ are defined as join [],εr

, join [ε,εr],ε′ , and join [ε],ε′ respectively. Since [ε] ++[] equals

[ε], and [ε]
;7−→ ε holds by definition of effector, (join [ε],ε ∗ join[], εr) ; join [ε,εr],ε′ equals join[ε], ε′ by definition of productor. join [ε],ε

is the identity by definition of productor, so this implies mapε(join [],εr
) ; join [ε,εr],ε′ equals join[ε], ε′ as desired.

Associativity joinε1,ε2,ε̄, join ε̄,ε3,ε, joinε2,ε3,ε̂, and joinε1,ε̂,ε are defined as join [ε1,ε2],ε̄, join [ε̄,ε3],ε, join [ε2,ε3],ε̂, and join [ε1,ε̂],ε

respectively. Since [ε1, ε2] ++[ε3] equals [ε1, ε2, ε3], and [ε3]
;7−→ ε3 holds by definition of effector, [ε1, ε2, ε3]

;7−→ ε holds by definition of
effector so (join [ε1,ε2],ε̄ ∗ join [ε3],ε3

) ; join [ε̄,ε3],ε equals join [ε1,ε2,ε3],ε. Since [ε1] ++[ε2, ε3] equals [ε1, ε2, ε3], and [ε1]
;7−→ ε1 holds

by definition of effector, (join [ε1],ε1
∗ join [ε2,ε3],ε̂) ; join [ε1,ε̂],ε

also equals join [ε1,ε2,ε3],ε. join [ε3],ε3
and join [ε1],ε1

are the identity
by definition of productor, so this and transitivity of equality implies join [ε1,ε2],ε̄ ; join [ε̄,ε3],ε equals mapε1(join [ε2,ε3],ε̂) ; join [ε1,ε̂],ε

as desired.
Congruent Unit unitε, coerceε, ε′, and unitε′ are defined as join [],ε, join [ε],ε′ , and join [],ε′ respectively. By definition of productor,

join [],ε ; join [ε],ε′ equals join [],ε′ as desired.
Congruent Join joinε1,ε2,ε, coerceε, ε

′, and joinε1,ε2,ε′ are defined as join [ε1,ε2],ε, join [ε],ε′ , and join [ε1,ε2],ε′ respectively. By definition
of productor, join [ε1,ε2],ε ; join [ε],ε′ equals join [ε1,ε2],ε′ as desired.

In the other direction, given an effectoid 〈EFF, e,≤, ;〉, let 〈EFF,
;7−→〉 be the semi-strict effector given by Theorem 7. Given a produc-

toid 〈Sem, P, unit , coerce, join〉 for 〈EFF, e,≤, ;〉, let join~ε,ε be defined as joint where t is a Tree(~ε, ε) serving as evidence that ~ε
;7−→ ε

holds. joint is defined below, and following that we prove that the choice of t is irrelevant, proving that this definition is unambiguous.
We define joint by induction on t:

Input(ε) 7→ the identity transformation
Leafε 7→ unitε, which is defined since validity implies e 7→ ε holds
Edgeε′(t) 7→ joint ; coerceε,ε′ where ε is the effect of t, which is defined since validity implies ε ≤ ε′ holds

Branchε(t1, t2) 7→ (joint1 ∗ joint2) ; joinε1,ε2,ε where ε1 and ε2 are the effects of t1 and t2 respectively, which is defined since validity
implies ε1 ; ε2 7→ ε holds

Every two transformations of trees in Theorem 7 has an obvious corresponding equational requirement in the definition of productoids
proving that, if t and t′ are a tree before and after transformation, joint is equal to joint′ . Thus, given any two trees t and t′ of the same
type, since both can be simplified to trees which can then be transformed between one another, joint equals joint′ . Therefore our definition
of join~ε,ε is unambiguous. Thus, we simply need to check the requirements of productors.

Identity join [ε],ε is defined unambiguously as joint for any Tree([ε], ε) t. In particular, t can be Input(ε), so joint is the identity
transformation as desired.

Associativity Each join~εi,εi is defined unambiguously as jointi for any Tree(~εi, εi) ti. join [ε1,...,εn],ε is defined unambiguously as joint
for any Tree([ε1, . . . , εn], ε) t. join~ε1 ++...++ ~εn,ε

is defined unambiguously as join t̄ for any Tree(~ε1 ++ . . .++ ~εn, ε) t̄. In particular, t̄
can be t[ε1 7→ t1, . . . , εn 7→ tn], so that join t̄ can easily be proven to be equal to (joint1 ∗ . . . ∗ jointn) ; joint as desired.

Given that the conversion between semi-strict effectors and effectoids are inverses of each other, it should be clear that these conversions
between (semi-strict) productors and productoids are inverses of each other.

C. Internal Productor
Here we prove that the preproductor described in Theorem 5 is in fact a productor.

Theorem 9. If a language with an effector 〈EFF,
;7−→〉 admits at least the rules in Figures 4 and 6, then the following defines a productor on

the category Sem whose objects are contexts Γ and whose morphisms are semantic-equivalence classes of pure programs:

• Pε(Γ) = LΓMε
• mapε(p) = bexecε; pcε
• join [ε1,...,εn],ε = bexecε1 ; . . . ; execεncε

Proof. Technically we should prove that all operations map semantically equivalent pure programs to semantically equivalent pure programs,
but such proofs are basic so we elide them here. Similarly, we elide proofs that programs have the appropriate effects.

First, there is an important lemma: given pure programs p and p′ from Γ to Γ′, if p; execε is semantically equivalent to p′; execε,
then p and p′ are semantically equivalent. The lemma assumptions and congruence imply that bp; execεcε is semantically equivalent
to bp′; execεcε. Eqη then tells us that the former is semantically equivalent to p and the latter to p′. Thus, by transitivity, p and p′ are
semantically equivalent. We will repeatedly use this lemma and Eqβ implicitly.

First, we must prove each 〈Pε,mapε〉 is a functor. Given Γ ` p a Γ′ and Γ′ ` p′ a Γ′′, we must show that mapε(p);mapε(p
′) is

semantically equivalent to mapε(p; p
′):

mapε(p);mapε(p
′); execε = bexecε; pcε; bexecε; p

′cε; execε
= bexecε; pcε; execε; p

′

= execε; p; p
′

= bexecε; p; p′cε; execε
= mapε(p; p

′); execε

Second, we must prove each join~ε,ε is a natural transformation. Given Γ ` p a Γ′, we must show that join~ε,ε;mapε(p) is semantically
equivalent to map~ε(p); join~ε,ε:

join~ε,ε;mapε(p); execε = bexecε1 ; . . . ; execεncε; bexecε; pcε; execε
= bexecε1 ; . . . ; execεncε; execε; p
= execε1 ; . . . ; execεn ; p
= execε1 ; . . . ; bexecεn ; pcεn ; execεn
= execε1 ; . . . ;mapεn(p); execεn
= mapε1(. . . (mapεn(p))); execε1 ; . . . ; execεn
= mapε1(. . . (mapεn(p))); bexecε1 ; . . . ; execεncε; execε
= map~ε(p); join~ε,ε; execε

Notice that, as part of this proof, we prove that join~ε,ε; execε is semantically equivalent to exec~ε (i.e. execε1 ; . . . ; execεn).
Third, we must prove join [ε],ε is semantically equivalent to the identity program:

join [ε],ε; execε = exec[ε] = execε = id ; execε

Lastly, we must prove (join~ε1,ε1 ∗ . . . ∗ join~εn,εn); join[ε1, . . . , εn], ε is semantically equivalent to join~ε1 ++...++ ~εn,ε
:

(join~ε1,ε1 ∗ . . . ∗ join~εn,εn); join [ε1,...,εn],ε; execε = (join~ε1,ε1 ∗ . . . ∗ join~εn,εn); execε1 ; . . . ; execεn
= (join~ε1,ε1 ∗ . . . ∗ join~εn,εn); (execε1 ∗ . . . ∗ execεn)
= (join~ε1,ε1 ; execε1) ∗ . . . ∗(join~εn,εn ; execεn)
= exec~ε1 ∗ . . . ∗ exec~εn
= exec~ε1 ; . . . ; exec~εn
= exec~ε1 ++...++ ~εn

= join~ε1 ++...++ ~εn,ε
; execε

