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Automatic Algorithm for Correcting Motion Artifacts In Time-Resolved 2D MR 
Angiography Using Convex Projections 

 

Abstract 
 

Time-resolved contrast enhanced Magnetic Resonance Angiography (MRA) may suffer from 

involuntary patient motion. It is noted that while MR signal change associated with motion is large 

in magnitude and has smooth phase variation in k-phase, signal change associated with vascular 

enhancement is small in magnitude and has rapid phase variation in k-space. Based upon this 

observation, a novel POCS (projection onto convex sets) algorithm is developed as an automatic 

iterative method to remove motion artifacts. The presented POCS algorithm consists of high pass 

phase filtering and convex projections in both k-space and image space. Without input of detailed 

motion knowledge, motion effects are filtered out, while vasculature information is preserved. The 

proposed method can be effective for a large class of non-rigid motions, including through-plane 

motion. The algorithm is stable and converges quickly, usually within five iterations. A double-

blind evaluation on a set of clinical MRA cases shows that a completely unsupervised version of 

the algorithm produces significantly better rank scores (p = 0.038) when compared to angiograms 

produced manually by an experienced radiologist. 

 

 

Keywords: Convex Projections, POCS, motion correction, Magnetic Resonance Angiography.
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INTRODUCTION 

 

Time-resolved contrast enhanced Magnetic Resonance Angiography (MRA) provides temporal 

flow and anatomic information about vascular conduits (1). In projection 2D MR Digital 

Subtraction Angiography (MRDSA) (2,3), complex subtraction of pre-contrast from post-contrast 

data yields the arteriogram. Clinical evidence (4) indicates 2D MRDSA is as suitable for 

infrapopliteal imaging as conventional X-ray angiography. Patient motion can cause spurious 

changes in contrast-induced dynamic signal, contaminating the integrity of dynamic data relating to 

vascular evolution. Motion of elongated structures (e.g. bones) can create subtraction artifacts 

resembling arteries. The radiologist may be forced to discard motion-corrupted frames, causing 

gaps in the temporal MRA record and possibly misdiagnosis (5). Techniques that can rescue these 

motion-corrupted frames would be very valuable. 

 

A range of motion correction methods have been developed, most of them utilize specific motion 

modeling. Correction of rigid global motion in single-frame MR images was reported using 

subspace analysis (6,7) and navigator-based correction (8,9,10). Motion in MRA may be non-

global (affecting some but not all portions of image space) as well as inter-view motion (i.e. 

affecting some lines of k-space but not others).  Global, rigid inter-view motion was addressed in a 

model-free manner using projection or entropy minimization (11,12,13,14,15), but these work did 

not address non-rigid motion typically encountered in MRA. Multi-sensor techniques for PET 

images (16) and cardiac gating using EEG (17, 18) may be applied to MRA, but require additional 

instrumentation with questionable effectiveness. Retrospective techniques (18) relying on 

correlation-based template matching of moving regions are inapplicable for inter-view motion, 

since motion occurs not only between frames but also within them. No existing works, to our 

knowledge, have addressed the case of inter-view motion that is non-global in image space. 

Currently for 2D MRDSA, frames corrupted by motion are identified and discarded manually (5). 

 

We present here an automated iterative POCS (projection onto a convex set) algorithm that filters 

out motion artifacts in time series 2D MRDSA. The class of POCS algorithms has been used 

widely for band-limited extrapolation (19), image restoration (20), non-coherent phase correction 

in optics, and Partial Fourier MR techniques (21,22). The success of POCS in diverse applications 
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stems from its conceptually simple but powerful way to exploit a-priori constraints. Rather than 

attempt to track highly complex 3D motion parameters from 2D data, we exploit the dynamic 

information content of the MRDSA data set to retrospectively mitigate motion, however it may 

arise. This non-parametric approach treats motion simply as sources of k-space discrepancy, hence 

it is robust against in- and through-plane inter-view motion, both global and non-global. We take 

special care to ensure that vascular enhancement is not unduly affected in the process. We also 

prove convergence and stability of the algorithm. 

 

 

THEORY 
 
The proposed method relies on the following observations summarized from our extensive 

experience with time resolved contrast enhanced MRDSA: 

1. Within the temporal MRA frames a majority of frames are “good”, i.e. motion-free. 

2. Motion-free frames are nearly identical to each other except in vascular regions. 

3. Contrast-induced vascular enhancement yields small changes in MR signal, with the change 

widespread in k-space. But motion usually causes much larger variations in detected signal. 

4. Phase changes due to translational motion are either linear or smoothly-varying in k-space, 

whereas those due to vascular enhancement are sharply rapidly varying in k-space. 

5. Out-of-plane components of 3D translations do not degrade 2D projection MRA data. 

We now develop projections P1 to P4 that exploit observations 2-5 to remove motion artifacts from 

the corrupted frame by enforcing similarity to the “good” frames (observation 1) without degrading 

the vasculature. Each projection forces the corrupted frame to belong to a certain convex constraint 

set, convexity being required in POCS theory for guaranteed convergence (23,24). See Appendix A 

for definition and proof. The POCS algorithm is applied to the corrupted frame using a reference 

obtained from the “good” frames. For every corrupted frame c in the MRA sequence, let the 

starting image be I0 = Ic(x,y). At n-th iteration, the projections are 
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where 0 < iλ < 1, i = 1,…4, are relaxation factors used to weight the projections. This process is 

repeated many times. P1 and P2 are applied view-by-view in k-space, whereas P3 and P4 are applied 

on the full image. These highly independent constraint sets defined by P1--P4, applied alternately in 

two orthogonal spaces (k-space and image space) form a powerful combination against motion 

artifacts. Figure 1 summarizes the algorithm. 

 

P1 : K-space Box Constraint Step 

Observation 3 is used to design P1, which filters out large motion artifacts in k-space without using 

a specific parametric motion model. Letting F(kx,ky) be the k-space image, we apply the projection  
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where Fref is reference k-space data.  Projection P1 (k-restrict) is a non-linear k-space filter that 

restricts corrupted k-values to lie within a spherical “box” of reference k-values (see Figure 2). The 

box radius around fref is ε | fref |, 0 < ε < 1. Box constraints of this kind are well known to be convex 

(13). Note that the efficacy of P1 is unaltered by whether motion is in-plane or through-plane. 

 

Since P1 keeps large temporal changes from occurring, its application in general will lead to loss 

and obliteration of temporal events along with motion artifacts. However, observation 3 indicates 

that the vasculature is sparse and localized in image space, so its contribution to each k-space point 

is likely to be very small and widely spread. We empirically verify this observation in the next 

section and demonstrate that for a sensible choice of ε sufficiently larger than the mean energy per 

data point of the vasculature, P1 will not adversely affect temporal evolution of the vasculature. 
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P2 : Phase Correction Step 

Projection P2, denoted by the box phase-correct, is a phase filter for correcting in-plane 

translational motion artifacts. It relies on observation 4, that phase artifacts due to translation vary 

smoothly in k-space (i.e. are band-limited to low spectral components), whereas the phase due to 

vascular evolution on subtracted images has much sharper k-space variation. We show this in the 

Results section by plotting the spectral distribution of phase difference (Figure 6). Clearly high-

pass filtering this phase difference effectively suppresses translation phase. We selected a high-pass 

filter having a 5-point impulse response kernel in k-space given by h = [-0.2, -0.6, 1, -0.6, -0.2], 

and the spectral response shown in Figure 3. This filter acts on the phase difference between the 

current and reference echo. Let the current frame be ( , ) | ( , ) | exp{ ( , )}x y x y x yF k k F k k i k kφ= ⋅ . 

Dropping coordinates, P2 is given by 

2

,

| | exp{ ( )}
ref

refP F F i h

φ φ φ

φ φ

Δ = −

= ⋅ + ∗Δ
     [3] 

where * denotes convolution. h may be a 1D filter that acts only in the phase encode ky direction. It 

is usually assumed that a single ky line is acquired quick enough that motion effects occur between 

ky lines, not within them (13). Filtering only along ky prevents corrupted PE lines from influencing 

the phase of other ky lines. In general, P2 can be applied on both phase encoding and frequency 

encoding directions to filter out constant, linear and other smoothly varying phase in k-space. This 

P2 filter can be effective against non-global translation (observation 4) (see empirical verification in 

Fig.6 and theoretically analysis in appendix B). Detailed spectral analysis was earlier reported in 

(25). 

 

Convexity is vital for convergence and stability; unfortunately proving it is difficult due to non-

linearity of P2. In Appendix A we provide a proof based on approximations. Now 2D projection 

MRA is the orthographic projection of 3D data after spatial averaging along the normal. Thus any 

translation normal to this plane does not affect the scan, provided the A-P projection slab is thicker 

than the range of through-plane translations, thus confirming observation 5. 

 

P3 and P4: Intensity Correction Steps 

Projection P3, parenchyma-correct, imposes image intensity constraints given by observation 2 by 

forcing the parenchyma (flesh) regions of the image to be “close” to the corresponding regions of 
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the reference. Let ℘ be the set of all pixels belonging to regions deduced to be parenchyma. Then 

for every pixel p in the corrupted image and the corresponding pixel pref in the reference image 
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This constraint set is well-known to be convex. For sequences without excessive motion a 

reference angiogram is usually available to drive reasonable estimates of parenchyma regions. The 

background is the MR region with no signal, and is non-zero merely due to noise and motion. 

Projection P4, BkGnd in Figure 1, forces it to be zero. This clearly defines a convex set, since a 

linear combination of two images of zero background is also an image of zero background.  

 

 

MATERIALS AND METHOD 

 

To validate the POCS method we performed several imaging experiments using a time resolved 2D 

MRDSA sequence. Both simulation and clinical MRA data were used. These experiments are 

categorized in 3 groups: 2D MRA signal characterization experiments, motion simulations, and in 

vivo clinical studies. 

 

Signal Characterization of Peripheral 2D MRA Data  
In order to validate the observations presented in Theory section, clinical peripheral 2D MRA data 

of the tibial trifurcation was studied. We examined the magnitude and phase of signals arising from 

the vasculature as well as from motion-induced artifacts. An uncorrupted exam was used to 

validate observation 3. The angiogram was obtained manually, and this served as a model for 

vasculature signal. K-space magnitude of this, as well as overall magnitude data, was plotted on the 

same axis, by averaging 4 radial k-space lines. A motion corrupted angiogram displaying non-

global translation in image space was similarly processed for comparison. To validate observation 

4, spectra of phase difference due to vascular enhancement between adjacent frames was obtained 

using Burg’s average periodogram (26) from several rows of vasculature phase in k-space. 

 7



Spectrum of translation-induced phase was obtained; details are in Appendix B. Relevant plots are 

presented in the results section.  

 

Validation on simulated motion  

Motion free clinical MRA data was used to artificially introduce various kinds of motion. POCS 

was applied to these data sets. We varied λ from 0 to 1 in 0.1 increments, ε from 0 to 0.5 in 0.05 

increments and η from 0.5 to 1 in 0.05 increments for a number of cases, and selected the 

parameters yielding the best overall results by visual inspection. These parameters are: λ1 =λ2 =λ3 

=λ4 = 0.8, ε = 0.25, η = 0.75. Unless otherwise noted, all results herein and henceforth used these 

parameters, with 3 iterations of POCS. 

 

We studied three kinds of motion: step translation, random walk translation, and combined 

translation and rotation; all with non-global inter-view motion. In order to introduce non-global 

motion, the original raw data is Fourier transformed into image-space. The first simulation 

introduces a translation in the top half of the image by 2 pixels in both x- and y-directions, then the 

image is transformed back to k-space. To simulate step-type inter-view motion, we replaced the top 

40% of the views by those of the original data. Next we apply a continuous random-walk 

translation in the same manner, which is plotted against PE index in Figure 4(a). The step size at 

each point was sampled from a zero mean Gaussian to model erratic or involuntary motion. Finally 

15 o rotation of the top half of the image corresponding to the left leg was introduced before the 

translation simulated in the first experiment. The k-space data now consists of the top part 

unaffected by motion, the middle part affected by translation and rotation, and the bottom part 

affected by translation only. The resulting effect on k-space data is depicted in 4(b). 

 

Validation on Clinical MRDSA Data 
 
Real clinical peripheral MRA exams of the trifurcation were done on 47 consecutive patients (26 

males aged 24 - 87 years and 19 females aged 33 - 85 years). Primary indications in these patients 

included claudication (n=23), limb threatening ischaemia (n=11), aneurysm (n=7), post-bypass 

graft (n=3), and dissection (n=1). The study was approved by our Institutional Review Board. The 

2D projection MRA data were obtained at 1.5 Tesla using a head coil (LX Horizon, GE Medical 

Systems). Patients were placed feet-first with legs positioned within the head coil to image from 
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above the patella down to mid-calf. The 2D projection MRA was performed as a coronal spoiled 

gradient echo sequence using the following parameters: TR/TE/ flip angle = 10/2/60 degrees, slab 

thickness = 7-10 cm, field-of-view = 30cm, matrix = 256x192, bandwidth = 16 kHz. Imaging time 

was 1.95 seconds per acquisition repeated 35 times. Gadolinium contrast (5-7 ml at 0.5mol/L) 

(Magnevist, Berlex Labs, Wayne, NJ) was injected concurrent with image acquisition and flushed 

with 20 ml saline. The injection rate was 2.5ml/sec by hand with a SmartSet (TopSpins, Ann 

Arbor, MI) or using an automatic injector (Spectris MR Injector, MedRad, Pittsburgh, PA). Five to 

ten pre-contrast frames were obtained. 

 

MRA data was processed in two ways: manual (5) and automatic. First, MRA frame sequences 

were visually evaluated by an experienced radiologist (HZ), and estimates of contrast arrival, 

arterial, mask and venous phase were manually obtained. After discarding motion-corrupted 

frames, the final angiogram was obtained by subtracting mask frames from arterial frames. Next, 

for automatic motion correction, mask and arterial phases were identified using (27), a new, 

automatic MRDSA method. We incorporated the proposed POCS algorithm within this automated 

MRDSA algorithm.  Our implementation ran 3 iterations of POCS on all frames identified by the 

automatic MRDSA software as having motion, with λ = 0.8, ε = 0.25, η = 0.75. The reference was 

obtained, after some experimentation, by median operation on the preceding 3 frames. 

 

To assess the difference between manual motion and automatic correction, a double blinded study 

was performed on 47 cases. Randomized image pairs from both manual and automatic corrections 

were presented to another experienced radiologist (MRP). The images were ranked from 2 to -2, 

with 2 denoting one method performing substantially better than the other, 1 (marginally better), 0 

(same), -1 (marginally worse) and -2 (substantially worse). A one-sided paired signed-rank 

Wilcoxon test was performed on this data to assess the statistical difference between manual and 

automatic motion correction. 

 

 

RESULTS 

 
Signal Characterization of Peripheral 2D MRA Data  
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Figures 5(a-b) show an uncorrupted and a corrupted angiogram respectively. The k-space 

magnitude of both reference and difference (vascular) signal of (a) is plotted in (c). Observe that 

apart from one or two central pixels containing the lowest frequencies, the vascular curve maintains 

nearly constant low energy. In contrast, the reference data follows a more pronounced decline in 

magnitude. In (d) we plot the ratio of uncorrupted vasculature to reference magnitude, averaged 

over several radial lines of several angiograms. The highest point of the curve is lower than 0.25; 

hence ε > 0.25 will ensure against vascular degradation. Part (e) shows the ratio curve of the 

corrupted case (b). The corrupted ratio is much higher, an average of 20 times, than pure vascular 

ratio. This was generally observed in the other cases we investigated, thus confirming observation 

3. Figure 6(a) shows a spectrum of phase (after unwrapping) caused by non-global in-plane 

translation, and (b) shows the spectrum of the phase caused by the vasculature. 

 

Results of Simulated Motion  

The POCS algorithm is quite effective in removing artifacts from the three types of simulated 

motion, as shown in Figure 7. Step translation on uncorrupted frame (a) results in a corrupted 

angiogram (c) after frame subtraction, which is diagnostically useless compared to the uncorrupted 

angiogram (b). Even though only the top half of the image undergoes translation, due to inter-view 

motion the effect is uniformly bad for the entire image. Part (d) shows the POCS-corrected result. 

Angiogram corrupted by random-walk translation is in (e) and POCS corrected angiogram in (f). 

Images for the combined rotation/translation example are in (g) and (h). Due to partial k-space 

effect, the artifacts in (g) are more disturbing than mere rotational mis-alignment, the latter being 

visible in the top half, aligned at roughly 15o. POCS removes most artifacts in all three cases. 

 

Results of Automatic versus manual Motion Correction on Clinical MRDSA Data 

Result of the double-blinded comparison is summarized in Table 1. Improvement in visual quality 

as well as SNR was observed in most cases exhibiting motion artifacts. Two representative 

examples are illustrated in Figs.8&9. Figure 8 shows substantial motion artifacts, whereas Figure 9 

shows little motion. The results on a typical consecutive difference image from this data set are 

shown in Figs.8a&8b. As a consequence of such improvements in individual frames, POCS yielded 

a markedly cleaner automatic summary angiogram (Fig.8d) than the manual angiogram (Fig.8c). 

The case of Figure 9 shows the left leg having an occluded posterior tibial artery. There are few 

artifacts to begin with; POCS yielded slightly better subjective quality (from the double-blinded 
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evaluation) on account of minor improvements in background noise. The one-sided paired signed-

rank Wilcoxon test on this data indicates statistically significant improvement of POCS over 

manual (p = 0.04).  

 

 

DISCUSSION 
 
We have presented a POCS algorithm that can filter out motion artifacts from 2D time resolved 

contrast enhanced MRA. This POCS algorithm is based on the observations that large magnitude 

changes and smooth phase variations in detected k-space signal are associated with motion, while 

small magnitude changes and rapid phase variations in k-space signal are associated with contrast 

enhancement. Simulated motion experiments indicate the POCS algorithm provides clear removal 

of arbitrary artifacts from a variety of motion sources. Evaluation on clinical MRDSA data 

suggests that the automatic POCS provides significant artifact reduction.  

 

Though overall the POCS algorithm significantly outperformed an experienced radiologist in the 

clinical evaluation, quality improvement in the summary angiogram was not observed in all cases 

(Table 1). In cases that the automatic POCS did slightly worse than manual, there were not much 

motion artifacts to begin with. Since it is necessary to constrain the time evolution of vascular 

features to remove arbitrary motion, there may be slight loss of fine details in vascular definition in 

the process of repeat applications of the POCS algorithm on the same data set. This is a problem 

only for incessant, pervasive motion, a relatively infrequent occurrence. In the clinical data set 

investigated in this study, our POCS algorithm caused little vascular degradation.  

 

Phase unwrapping has to be performed prior to high-pass filtering. While unwrapping is a difficult 

problem in general (28, 29), a simple method was found sufficient by smoothing out simple π-

jumps along the ky direction in a center-edge order. Experimentation with more sophisticated 

unwrapping methods did not result in discernible performance gains, probably because the phase 

difference is along the ky only. This is a 1D unwrapping problem that does not require complicated 

phase unwrapping algorithms. 
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The parameters in the presented POCS algorithm were chosen empirically from the following 

range of variations: λi ∈ [0.5, 1.0] (i=1,2,3,4), ε ∈ [0.2, 0.5], and η ∈ [0.5,1.0]. For the studied 

clinical cases, the algorithm performance in terms of convergence and artifacts removal was fairly 

insensitive to the variation in λi and η. For cases with pervasive (rather than isolated) motion, the 

output image quality varied slightly with the box radius ε. We also noted that the POCS algorithm 

performance was also insensitive to the bandwidth of the high-pass filter h . Indeed, a major goal of 

our work is to keep things non-parametric as far as possible.  

 

Since P1--P4 are linear point-wise filtering operations, the algorithm is quite fast, taking 

approximately 3 sec / frame in a MATLAB implementation on a PC with 2GHz Pentium III ® 

processor. We expect an efficient C execution to reduce this by more than an order of magnitude. 

 

We have shown mathematically in Appendix B that global as well as non-global translations can be 

handled by projection P2. This discussion can be extended to rotation, which can be removed by the 

combination of P2 and P1. P1 filters out large rotations both in-plane and through-plane; the 

residual in-plane rotations are small and can be approximated by: 

' | | xx x x δφφ= +
r r r uur

 

where x
r

 is a 2D vector representing spatial location, the rotational angle is δφ , and the direction of 

rotation at x
r

 is given by the unit vector xφ
uur

. Since this is nothing but a piecewise non-global 

translation, it can subsequently be removed by P2. 

 

The assumption that an uncorrupted reference image can be obtained from the median operation 

may fail if there is excessive motion in all or a majority of frames in the pre-contrast reference set. 

Such situations appear to be rare. The median operation on the reference set ignores isolated 

instances of motion in the reference set. The number of frames for reference is selected to average 

out the noise but avoid motion contamination. We found that 3 reference frames worked well in our 

clinical evaluation.  

 

The fully automatic motion filtering presented here used input of contrast arrival frame number to 

classify pre-contrast frames for reference. The automated estimate of contrast arrival may be 

 12



unreliable in the presence of motion (27). The POCS algorithm can be applied in non-automatic 

mode, where an operator selects arterial, mask and motion-corrupted frames.  

 

The retrospective POCS algorithm can be used synergistically with the navigator gating method 

such as to minimize residual motion artifacts within the gating window (30). This non-parametric 

POCS method may be more advantageous than existing parametric motion correction methods (10) 

in cases when object motion cannot be completely determined. The POCS algorithm may also be 

applied to reduce motion artifacts in other dynamic studies such as fMRI and perfusion. 

Generalization to 3D data and complex 3D motion should be quite straightforward since we do not 

rely on specific motion models. These generalizations of the POCS approach will require 

modification of the projection operators. 

 

In conclusion, vascular enhancement and motion artifacts affect k-space signal magnitude and 

phase in a distinct manner. Accordingly, a POCS algorithm can be constructed that imposes 

consistency constraints in dynamic MRA data to filter motion artifacts but preserve vascular 

enhancement. Clinical data demonstrated the feasibility of using the model-free POCS algorithm to 

suppress arbitrary motion artifacts.   
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Appendix A: Convex Constraint Sets – Definition and Proof 
 
For a frame of N x M voxels, imagine an NM-variable solution space, each of whose points 

represents a possible image. In POCS theory projections are defined by constraints, which force 

possible solutions to belong to some convex constraint set in this solution space. A set C is convex 

iff for any two members a, b ∈ C a binary mixture c = α a + (1-α) b, 0 < α < 1, also belongs to C. 

Proving convexity of P2 is complicated since it is a phase operator and not guaranteed to define a 

convex projection in M N� , the space of M x N complex images. Theorem 1 proves that it does in 

fact approximate, to arbitrary accuracy, a convex projection by virtue of algorithm construction.  

Theorem 1: Let H(φ(kx, ky)) be the high pass filter (P2) applied on phase φ(kx, ky). Let L be the 

complementary low-pass filter constructed such that LH = 0, and C the set of M x N complex k-

space frames of identical magnitude M(kx, ky), kx = 1…M, ky = 1…N such that C = {M(kx, ky) 

exp{iφ0(kx, ky) + iφ(kx, ky)} | L(φ(kx, ky)) = 0}. Dropping the indices (kx, ky) henceforth,  

1. The phase correction step defines a projection onto C. 

2. Set C approximates a convex set over a region of interest R ⊆ C containing members with 

phase bounded by φmax: φmax ≤ φ ≤ φmax. The error of approximation is proportional to φmax
2. 

3. The k-space box projection P1 with box radius ε imposes a bound φmax
2 on the phase of the 

intermediate POCS solution at every iteration, with φmax = ε. 

Proof: 1. For any ( )(exp 0 )φφ += iMA , we have ( ) CHiMA ∈+= ))((exp' 0 φφ , since 0))(( =φHL . 
Hence P2 defines a projection onto C. 

2. Let ( ))(exp 101 φφ += iMA , ( ))(exp 202 φφ += iMA  be two members of C. We need to show that  

21 )1( AAA αα −+=  also belongs to C. We have ( )[ ].)exp()1()exp(exp 210 φαφαφ iiiMA −+=  

Linearizing the expression within square brackets by the Taylor Series we obtain  

.))1((
2

))1(()1( 2
2

2
121 termsorderhigheri

+−+−−++−+ φααφαφαφαα  [A1] 

Higher order terms can be safely omitted for small φ1 and φ2. Expanding this in a Taylor Series 

in (αφ1 + (1-α) φ2 ) by completing the square for quadratic terms and omitting higher terms,  

( ){ },)))1((exp(exp 2101 EiiMA +−+= φααφφ     [A2] 
where the error term E is the residue from completing the square. Clearly 1A  belongs to C up to 

error E, since 0))1(( 21 =−+ αφαφL . It follows easily that 2
21 )(

2
)1( φφαα

−
−

=E . Given that 

max21max , φφφφ ≤≤− , clearly the maximum error  occurs at 2
maxmax φ=E 1 2 m1/ 2, axα φ φ φ= = − = . 
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3. From Figure 2, every k-space point f of any solution must reside within the circle of radius ε |fref| 

in the complex plane, where fref is the reference. Then the maximum phase difference between 

any two points in that circle is maxφ  as shown in the figure. Since a tangent subtends a right 

angle at the center, sin(φmax) = ε.  Proof follows from small angle approximation of sines. 

 

Appendix B: Analysis of Translational Phase 
 
A global translation of (Δx, Δy) in image I(x,y) and its k-space dual K(kx, ky) = ℱ ( I(x,y) ), leads to 

linear phase in k-space given by K’(kx, ky) = K(kx, ky) exp{i c (Δx kx + Δy ky)}, for some constant c. 

This phase, a ramp in k-space, is obviously band-limited. Proving band-limitedness of non-global 

translation rigorously is difficult; we prove it for an N-piece translation model (25): 

,)exp(),(),('
0
∑
=

Δ+Δ=
N

i
yyxxyxiyx kkickkKkkK

ii
   [B1] 

where each Ki is the transform of an image piece undergoing translation by (Δxi, Δyi). As N → ∞, 

[B1] obviously models any in-plane motion; however, allowing for piecewise rotations as well, 

even small N can accurately model complex motions like limb articulation, shifting, trembling, etc. 

Definition: Let Ω(W) be the set of 2D functions φ(kx, ky ) : 2 →� �  whose Fourier Transform ℱ(φ) 

is limited to the low spectral band [-W, W] x [-W, W], with W being the cutoff frequency. 

Proposition 2: The phase difference between the corrupted and reference frame, Δφ(K’, K) = φ(K’) 

- φ(K) belongs to Ω(W), i.e., is band-limited. Consequently, the power spectral density of 

Δφ(K’, K) is concentrated in the low spectral region [-W,W] x [-W,W].  

To keep the analysis uncluttered, we only consider the two-piece model 

  ,)exp()),(exp(),()),(exp(),(),(' 2211 yyxxyxyxyxyxyx kkickkikkKkkikkKkkK Δ+Δ⋅+= φφ  [B2] 

where φ(·) denotes the phase, K1 is the stationary component, and K2 undergoes translation. 

However, this does not cause loss of generality due to the following theorem (proved in (25)). 

Theorem 2: If Prop. 2 holds for the 2-piece model [B2], it also holds for N-piece model [B1]. 

That is, the phase difference Δφ(K’, K) is band-limited for [B1] as well: Δφ(K’, K) ∈Ω(W). 

We now derive the phase Δφ = φ’ - φ caused by the two-piece translation model [B2]. 
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Expression For Phase Difference 

We model φ(kx, ky) as a random process uniformly distributed in [-π, π] with a power spectral 

density exhibiting 3 dB cutoff at angular frequency W0; this is a popular stochastic model of phase. 

Let δ (kx, ky) = c(Δx kx + Δy ky) be the phase term due to translation. Let φ(kx, ky) and φ’(kx, ky) be the 

phase before and after motion. Theorem 3, proved in (25), summarizes the main result. 

Theorem 3: Let δ, φ, φ’ be defined as above, and let the phases of components K1 and K2 prior to 

translation be φ1 and φ2 respectively. Let α = | K2 | / |K| be the ratio of the moving signal 

strength to the overall signal strength. Then the overall phase change is 
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δδφφαδα
δφφφφαφ   [B3] 

General spectral analysis of [B3] is difficult, but demonstrative results were obtained for special 

cases corresponding to |K1| >> |K2|, |K1| = |K2| and |K1| << |K2|, covering all scenarios. We 

derived bandwidth formulas for each case and proved low leakage outside spectral band [-W0,W0]. 
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Table Captions 
 
Table 1: Double blinded comparison results. Scores: 2(POCS substantially better than manual), 

1(marginally better), 0 (same), -1(marginally worse), -2(substantially worse). 

 
Rank Score 2 1 0 -1 -2 Mean 
# cases 3 22 6 16 0 0.26 

(p=.04) 
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Figure Captions 
 
 

 

 
 

Figure 1: The POCS Algorithm. Each box represents a convex projection P1–P4. P1 or “k-restrict” 

and P2 or “phase-correct” operate in k-space, one view at a time. P3 (parenchyma-correct) and P4 

(background-correct) operate in image space, on the entire image. FFT and IFFT operators perform 

Fourier Transform and its inverse, respectively. The POCS algorithm is repeated till a convergence 

criterion is met. 

 

 
 

Figure 2: The k-space box constraint imposed by P1 moves an arbitrary point F(k) in the corrupted 

frame to the nearest point, denoted by P1F(k), on the circle centered at the corresponding k-value in 

the reference image, Fref(k). This forces corrupted k-space to be similar to reference k-space. The 

parameter ε determines the degree of enforced similarity. 
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Figure 3: Spectral response of high-pass phase filter h. The spectral index has dimension of space. 

 

 
Figure 4:(a) Non-global random-walk translation, plotted as a function of ky, the phase encode 

index (in units of 1/FOV). It is assumed that motion is only between different PE lines, not within 

them. The top curve shows translation along PE; bottom curve along FE. (b) Combined non-global 

rotation and translation mapped in k-space. 
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Figure 5: Signal properties of a typical peripheral 2D MRA case. (a) Uncorrupted difference image; 

(b) Difference image corrupted with non-global translation and rotation; (c) Plot of k-space 

magnitudes vs. radius for (a) (solid line: unsubtracted reference magnitude, dashed line: vascular 

signal); (d) ratio of vascular to reference magnitude for the uncorrupted case (a); (e) ratio of 
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vascular to reference magnitude for the corrupted case (b). The corrupted ratio is on average 20 

times higher than the uncorrupted ratio. 

 

 
Figure 6: Typical power spectra of k-space signal phases, obtained from the phase difference 

between consecutive frames: (a) phase due to non-global translation in image space; (b) phase due 

to vascular enhancement, obtained from an artifact-free sequence. Spectra concentrated near low 

(high) spectral index correspond to slow (fast) phase variation across k-space. Note that although 

spectral index has spatial dimensions, a simple interpretation in terms of image-space properties is 

not available since the former indexes only phase data rather than the entire complex data. 
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Figure 7: Examples of various types of non-global inter-view motion: (a) Uncorrupted frame, (b) 

Uncorrupted (single difference) angiogram, (c) Corrupted by step translation, (d) POCS result, (e) 

Corrupted by random-walk translation, (f) POCS result, (g) Combined translation + rotation, (h) 
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POCS result. POCS effectively removed most motion artifacts from these complicate d examples 

of non-global motion. 

 

 
Figure 8: Motion Correction of clinical peripheral MRA case. (a) Motion corrupted difference 

image from two consecutive frames, and (b) Difference image after POCS correction. After this 

process was repeated for every corrupted frame, a summary angiogram was created automatically 

using the Automatic MRDSA program. (c) shows the manually obtained summary angiogram, 

and (d) shows the automatic summary angiogram after motion correction, demonstrating marked 

improvement in vascular delineation over (c).  
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Figure 9: Clinical peripheral MRA example where little difference is seen between manual (a) and 

automatic (b) motion methods. There was little motion artifacts in this case. 
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