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Abstract

In the multi-armed bandit problem, an online algorithm must
choose from a set of strategies in a sequence of n trials so as to
minimize the total cost of the chosen strategies. While nearly tight
upper and lower bounds are known in the case when the strategy
set is finite, much less is known when there is an infinite strategy
set. Here we consider the case when the set of strategies is a subset
of R?, and the cost functions are continuous. In the d = 1 case, we
improve on the best-known upper and lower bounds, closing the
gap to a sublogarithmic factor. We also consider the case where
d > 1 and the cost functions are convex, adapting a recent online
convex optimization algorithm of Zinkevich to the sparser feedback
model of the multi-armed bandit problem.

1 Introduction

In an online decision problem, an algorithm must choose from among a set of
strategies in each of n consecutive trials so as to minimize the total cost of the
chosen strategies. The costs of strategies are specified by a real-valued function
which is defined on the entire strategy set and which varies over time in a manner
initially unknown to the algorithm. The archetypical online decision problems are
the best expert problem, in which the entire cost function is revealed to the algorithm
as feedback at the end of each trial, and the multi-armed bandit problem, in which
the feedback reveals only the cost of the chosen strategy. The names of the two
problems are derived from the metaphors of combining expert advice (in the case
of the best expert problem) and learning to play the best slot machine in a casino
(in the case of the multi-armed bandit problem).

The applications of online decision problems are too numerous to be listed here.
In addition to occupying a central position in online learning theory, algorithms
for such problems have been applied in numerous other areas of computer science,
such as paging and caching [6, 12], data structures [7], routing [4, 5], wireless net-
works [16], and online auction mechanisms [8, 13]. Algorithms for online decision
problems are also applied in a broad range of fields outside computer science, in-
cluding statistics (sequential design of experiments [15]), economics (pricing [17]),
game theory (adaptive game playing [11]), and medical decision making (optimal
design of clinical trials [10]).
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Multi-armed bandit problems have been studied quite thoroughly in the case of a
finite strategy set, and the performance of the optimal algorithm (as a function of n)
is known up to a constant factor [3, 15]. In contrast, much less is known in the case
of an infinite strategy set. In this paper, we consider multi-armed bandit problems
with a continuum of strategies, parameterized by one or more real numbers. In other
words, we are studying online learning problems in which the learner designates a
strategy in each time step by specifying a d-tuple of real numbers (z1,...,z4); the
cost function is then evaluated at (x1,...,z4) and this number is reported to the
algorithm as feedback. Recent progress on such problems has been spurred by the
discovery of new algorithms (e.g. [4, 9, 14, 18]) as well as compelling applications.
Two such applications are online auction mechanism design [8, 13], in which the
strategy space is an interval of feasible prices, and online oblivious routing [5], in
which the strategy space is a flow polytope.

Algorithms for online decisions problems are often evaluated in terms of their re-
gret, defined as the difference in expected cost between the sequence of strategies
chosen by the algorithm and the best fixed (i.e. not time-varying) strategy. While
tight upper and lower bounds on the regret of algorithms for the K-armed bandit
problem have been known for many years [3, 15], our knowledge of such bounds for
continuum-armed bandit problems is much less satisfactory. For a one-dimensional
strategy space, the first algorithm with sublinear regret appeared in [1], while the
first polynomial lower bound on regret appeared in [13]. The best known upper and
lower bounds for this problem (in the case of Lipschitz-continuous cost functions) are
currently O(n?’/ 4) and Q(nl/ 2), respectively, leaving as an open question the prob-
lem of determining tight bounds for the regret as a function of n. Here, we solve
this open problem by sharpening the upper and lower bounds to O(n?/3 logl/g(n))
and Q(n?/3), respectively, closing the gap to a sublogarithmic factor. Note that this
requires improving the best known algorithm as well as the lower bound technique.

For a d-dimensional strategy space, any multi-armed bandit algorithm must suf-
fer regret depending exponentially on d unless the cost functions are further con-
strained. (This is demonstrated by a simple counterexample in which the cost
function is identically zero in all but one orthant of R?, takes a negative value
somewhere in that orthant, and does not vary over time.) For the best-expert prob-
lem, algorithms whose regret is polynomial in d and sublinear in n are known for
the case of cost functions which are constrained to be linear [14] or convex [18]. In
the case of linear cost functions, the relevant algorithm has been adapted to the
multi-armed bandit setting in [4, 9]. Here we adapt the online convex program-
ming algorithm of [18] to the continuum-armed bandit setting, obtaining the first
known algorithm for this problem to achieve regret depending polynomially on d
and sublinearly on n.

2 Terminology and Conventions

We will assume that a strategy set S C R is given, and that it is a compact
subset of RY. Time steps will be denoted by the numbers {1,2,...,n}. For each
t €{1,2,...,n} a cost function Cy : S — R is given. These cost functions must
satisfy a continuity property based on the following definition. A function f is
uniformly locally Lipschitz with constant L (0 < L < o0), exponent o (0 < a < 1),
and restriction § (§ > 0) if it is the case that for all u,u’ € § with |ju — v/|| <4,

[f(u) = f(u))] < Lju— '],

(Here, || - || denotes the Euclidean norm on R%.) The class of all such functions f
will be denoted by wlL(«a, L, d).



We will consider two models which may govern the cost functions. The first of
these is identical with the continuum-armed bandit problem considered in [1], ex-
cept that [1] formulates the problem in terms of maximizing reward rather than
minimizing cost. The second model concerns a sequence of cost functions chosen
by an oblivious adversary.

Random The functions C,...,C, are independent, identically distributed ran-
dom samples from a probability distribution on functions C': S — R. The
expected cost function C' : S — R is defined by C(u) = E(C(u)) where C
is a random sample from this distribution. This function C' is required to
belong to ulL(«, L, ) for some specified «, L, §. In addition, we will assume
there exist positive constants (, sg such that if C' is a random sample from
the given distribution on cost functions, then

E(es¢™) < e2¢’s V|s| < sp,u €S.

The “best strategy” u* is defined to be any element of argmin,ecs C(u).
(This set is non-empty, by the compactness of S.)

Adversarial The functions Cq,...,C,, are a fixed sequence of functions in
ulL(a, L, §), taking values in [0,1]. The “best strategy” u* is defined to
be any element of arg min,es > ;. C¢(u). (Again, this set is non-empty by
compactness. )

A multi-armed bandit algorithm is a rule for deciding which strategy to play at
time ¢, given the outcomes of the first ¢ — 1 trials. More formally, a determinis-
tic multi-armed bandit algorithm U is a sequence of functions Uy, Us, ... such that
Uy : (S x R)*"! — S. The interpretation is that Uy(uy, o1, U2, To,. .., Us_1,2T¢_ 1)
defines the strategy to be chosen at time ¢ if the algorithm’s first ¢ — 1 choices were
Uy, - .., us_1 respectively, and their costs were x1,...,x;_1 respectively. A random-
ized multi-armed bandit algorithm is a probability distribution over deterministic
multi-armed bandit algorithms. (If the cost functions are random, we will assume
their randomness is independent of the algorithm’s random choices.) For a random-
ized multi-armed bandit algorithm, the n-step regret R,, is the expected difference
in total cost between the algorithm’s chosen strategies ui,us,...,u, and the best
strategy u*, i.e.

R,=E

Z Ct(ut) — Ct(u*)

Here, the expectation is over the algorithm’s random choices and (in the random-
costs model) the randomness of the cost functions.

3 Algorithms for the one-parameter case (d = 1)

The continuum-bandit algorithm presented in [1] is based on computing an estimate
C of the expected cost function €' which converges almost surely to C' as n — co.
This estimate is obtained by devoting a small fraction of the time steps (tending
to zero as n — o0) to sampling the random cost functions at an approximately
equally-spaced sequence of “design points” in the strategy set, and combining these
samples using a kernel estimator. When the algorithm is not sampling a design
point, it chooses a strategy which minimizes expected cost according to the current
estimate C. The convergence of C to C ensures that the algorithm’s average cost
in these “exploitation steps” converges to the minimum value of C.

A drawback of this approach is its emphasis on estimating the entire function C.
Since the algorithm’s goal is to minimize cost, its estimate of C' need only be accurate



for strategies where C is near its minimum. Elsewhere a crude estimate of C' would
have sufficed, since such strategies may safely be ignored by the algorithm. The
algorithm in [1] thus uses its sampling steps inefficiently, focusing too much attention
on portions of the strategy interval where an accurate estimate of C' is unnecessary.
We adopt a different approach which eliminates this inefficiency and also leads to
a much simpler algorithm. First we discretize the strategy space by constraining
the algorithm to choose strategies only from a fixed, finite set of K equally spaced
design points {1/K,2/K,...,1}. (For simplicity, we are assuming here and for the
rest of this section that S = [0,1].) This reduces the continuum-armed bandit
problem to a finite-armed bandit problem, and we may apply one of the standard
algorithms for such problems. Our continuum-armed bandit algorithm is shown in
Figure 1. The outer loop uses a standard doubling technique to transform a non-
uniform algorithm to a uniform one. The inner loop requires a subroutine M AB
which should implement a finite-armed bandit algorithm appropriate for the cost
model under consideration. For example, MAB could be the algorithm UCB1
of [2] in the random case, or the algorithm Exp3 of [3] in the adversarial case. The
semantics of MAB are as follows: it is initialized with a finite set of strategies;
subsequently it recommends strategies in this set, waits to learn the feedback score
for its recommendation, and updates its recommendation when the feedback is
received.

The analysis of this algorithm will ensure that its choices have low regret relative
to the best design point. The Lipschitz regularity of C' guarantees that the best
design point performs nearly as well, on average, as the best strategy in S.

ALcoriTHM CABI1
T—1
while T'<n
1
2a+1
K< ngT)
Initialize MAB with strategy set {1/K,2/K,...,1}.
fort=T,T+1,...,min(27 — 1,n)
Get strategy u; from MAB.
Play u; and discover Cy(uy).
Feed 1 — Cy(u;) back to MAB.
end
T 2T
end

Figure 1: Algorithm for the one-parameter continuum-armed bandit problem

Theorem 3.1. In both the random and adversarial models, the regret of algorithm
a+1 o
CAB1 is O(n2a++1 log2e+1 (n)).

Proof Sketch. Let ¢ = 5%, so that the regret bound is O(n'~%log?(n)). It suffices

to prove that the regret in the inner loop is O(T*~%1og?(T)); if so, then we may
sum this bound over all iterations of the inner loop to get a geometric progression
with constant ratio, whose largest term is O(n!=9log?(n)). So from now on assume
that T is fixed and that K is defined as in Figure 1, and for simplicity renumber the
T steps in this iteration of inner loop so that the first is step 1 and the last is step
T. Let u* be the best strategy in S, and let v/ be the element of {1/K,2/K,...,1}
nearest to u*. Then |u' — u*| < 1/K, so using the fact that C' € ulL(«, L,d) (or



that + Zthl Ci € ulL(a, L, d) in the adversarial case) we obtain

T

E < —
S Ko

=0 (T" log!(T)).

T
> Ci(w) = Cy(u”)

It remains to show that E [Zthl Ci(ur) — Ct(u’)} = O (T""%1og(T)). For the

adversarial model, this follows directly from Corollary 4.2 in [3], which asserts that
the regret of Exp3 is O (\/TK log K). For the random model, a separate argument
is required. (The upper bound for the adversarial model doesn’t directly imply
an upper bound for the random model, since the cost functions are required to
take values in [0, 1] in the adversarial model but not in the random model.) For
u € {1/K,2/K,...,1} let A(u) = C(u) — C(u'). Let A = /Klog(T)/T, and
partition the set {1/K,2/K,...,1} into two subsets A, B according to whether
A(u) < A or A(u) > A. The time steps in which the algorithm chooses strategies
in A contribute at most O(TA) = O(T*~%10og?(T)) to the regret. For each strategy
u € B, one may prove that, with high probability, u is played only O(log(T)/A(u)?)
times. (This parallels the corresponding proof in [2] and is omitted here. Our
hypothesis on the moment generating function of the random variable C'(u) is strong
enough to imply the exponential tail inequality required in that proof.) This implies
that the time steps in which the algorithm chooses strategies in B contribute at most
O(K log(T)/A) = O(T*~%10g?(T)) to the regret, which completes the proof. [

4 Lower bounds for the one-parameter case

There are many reasons to expect that Algorithm CAB1 is an inefficient algorithm
for the continuum-armed bandit problem. Chief among these is that fact that
it treats the strategies {1/K,2/K,...,1} as an unordered set, ignoring the fact
that experiments which sample the cost of one strategy j/K are (at least weakly)
predictive of the costs of nearby strategies. In this section we prove that, contrary
to this intuition, CAB1 is in fact quite close to the optimal algorithm. Specifically,

in the regret bound of Theorem 3.1, the exponent of 2‘2111 is the best possible: for

any 8 < 2‘(‘1111, no algorithm can achieve regret O(n?). This lower bound applies to

both the randomized and adversarial models.

The lower bound relies on a function f : [0,1] — [0,1] defined as the sum of a
nested family of “bump functions.” Let B be a C*° bump function defined on the
real line, satisfying 0 < B(z) < 1 for all , B(z) = 0if x < 0 or z > 1, and
B(x) = 1if 2 € [1/3,2/3]. For an interval [a, b], let By, ; denote the bump function
B(#=2), i.e. the function B rescaled and shifted so that its support is [a, b] instead
of [0, 1]. Define a random nested sequence of intervals [0, 1] = [ao, bo] D [a1,b1] D ...
as follows: for k > 0, the middle third of [ax_1,br—1] is subdivided into intervals
of width wy = 37, and [ay, bs] is one of these subintervals chosen uniformly at
random. Now let

fl@)=1/3+ (371 = 1/3) > wiBia, b (2).
k=1

Finally, define a probability distribution on functions C : [0,1] — [0,1] by the
following sampling rule: sample A uniformly at random from the open interval
(0,1) and put C(z) = \(®),

The relevant technical properties of this construction are summarized in the follow-
ing lemma.



Lemma 4.1. Let u* = (;—,lak,bx]. The function f(z) belongs to ulL(w, L,?)
for some constants L,§, it takes values in [1/3,2/3], and it is uniquely mazimized
at u*. For each A\ € (0,1), the function C(z) = M@ belongs to ulL(a, L,d) for
some constants L,§, and is uniquely minimized at u*. The same two properties are
satisfied by the function C(z) = Exc(o1) [M @] = (1 + f(z))~".

Theorem 4.2. For any randomized multi-armed bandit algorithm, there exists a
probability distribution on cost functions such that for all 5 < 20:;11 , the algorithm’s
regret { R, 1521 in the random model satisfies

. n
lim sup —& = 0.
n—o0 n?

The same lower bound applies in the adversarial model.

Proof sketch. The idea is to prove, using the probabilistic method, that there exists
a nested sequence of intervals [0,1] = [ag,bo] D [a1,b1] D ..., such that if we
use these intervals to define a probability distribution on cost functions C(x) as
above, then R,/n® diverges as n runs through the sequence n,ng,ns, ... defined
by ny, = [E(wk—1/wy)wy >*]. Assume that intervals [ag,bo] D ... D [ap_1,bp_1]
have already been specified. Subdivide [a;_1,br—1] into subintervals of width wy,
and suppose [a, bg] is chosen uniformly at random from this set of subintervals. For
any u, v’ € [ag—1,bg—1], the Kullback-Leibler distance K L(C(u)||C(u’)) between the
cost distributions at u and v’ is O(wi®), and it is equal to zero unless at least one of
u,u’ lies in [ag, bk]. This means, roughly speaking, that the algorithm must sample
strategies in [ay, by] at least w; >* times before being able to identify [a, by] with
constant probability. But [ag, bx] could be any one of wy_1 /wy, possible subintervals,
and we don’t have enough time to play w,;Za trials in even a constant fraction of
these subintervals before reaching time nj. Therefore, with constant probability, a
constant fraction of the strategies chosen up to time ny are not located in [ag, bg],
and each of them contributes Q(w§) to the regret. This means the expected regret
at time ny, is Q(niwy). Using the fact that

a+1
sarr—o(1)
npwy =ngo ,

we obtain the stated lower bound.

Although this proof sketch rests on a much more complicated construction than the
lower bound proof for the finite-armed bandit problem given by Auer et al in [3],
one may follow essentially the same series of steps as in their proof to make the
sketch given above into a rigorous proof. The only significant technical difference
is that we are working with continuous-valued rather than discrete-valued random
variables, which necessitates using the differential Kullback-Leibler distance (defined

by the formula KL(P||Q) = [log (%) dp(x), for probability distributions P, Q

with density functions p, ¢) rather than working with the discrete Kullback-Leibler
distance as in [3]. O

5 An online convex optimization algorithm

We turn now to continuum-armed bandit problems with a strategy space of dimen-
sion d > 1. As mentioned in the introduction, for any randomized multi-armed
bandit algorithm there is a cost function C' (with any desired degree of smoothness
and boundedness) such that the algorithm’s regret is Q(2¢) when faced with the
input sequence C7; = Cy = ... = C,, = C. As a counterpoint to this negative result,



we seek interesting classes of cost functions which admit a continuum-armed bandit
algorithm whose regret is polynomial in d (and, as always, sublinear in n). A natu-
ral candidate is the class of convex, smooth functions on a closed, bounded, convex
strategy set S C R?, since this is the most general class of functions for which the
corresponding best-expert problem is known to admit an efficient algorithm, namely
Zinkevich’s greedy projection algorithm [18]. Greedy projection is initialized with
a sequence of learning rates 11 > 72 > .... It selects an arbitrary initial strategy
u; € § and updates its strategy in each subsequent time step ¢ according to the
rule w1 = Pluy — 1:VCi(uy)), where VCi(u,) is the gradient of Cy at w; and
P :R% — S is the projection operator which maps each point of R? to the nearest
point of S. (Here, distance is measured according to the Euclidean norm.)

Note that greedy projection is nearly a multi-armed bandit algorithm: if the algo-
rithm’s feedback when sampling strategy u; was the vector VCy(u;) rather than the
number Cy(uy), it would have all the information required to run greedy projection.
To adapt this algorithm to the multi-armed bandit setting, we use the following
idea: group the timeline into phases of d+ 1 consecutive steps, with an average cost
function Cy for each phase ¢ defined by averaging the cost functions at each time
step of ¢. In each phase use trials at d+ 1 affinely independent points of S, located
at or near u;, to estimate the gradient VCy(uy).

To describe the algorithm, it helps to assume that the convex set S is in isotropic
position in R%. (If not, we may bring it into isotropic position by an affine trans-
formation of the coordinate system. This does not increase the regret by a factor
of more than d?.) The algorithm, which we will call simulated greedy projection
works as follows. It is initialized with a sequence of “learning rates” 71,72, ... and
“frame sizes” v1,vs,.... At the beginning of a phase ¢, we assume the algorithm
has determined a basepoint strategy ugs. (An arbitrary u, may be used in the
first phase.) The algorithm chooses a set of (d + 1) affinely independent points
{zo = ug, 1,2, ..., x4} with the property that for any y € S, the difference y — o
may be expressed as a linear combination of the vectors {x; —z : 1 <7 < d} using
coefficients in [—2,2]. (Such a set is called an approzimate barycentric spanner, and
may computed efficiently using an algorithm specified in [4].) We then choose a ran-
dom bijection o mapping the time steps in phase ¢ into the set {0,1,...,d}, and in
step ¢t we sample the strategy y; = ug+vg(To) —ug). At the end of the phase we let
L4 denote the unique affine function whose values at the points y; are equal to the
costs observed during the phase at those points. The basepoint for the next phase
¢’ is determined according to Zinkevich’s update rule ugy = P(ug — 76V Le(ugp)).
Theorem 5.1. Assume that S is in isotropic position and that the cost functions
satisfy ||Ce(z)|| <1 for allx € S,t € {1,2,...,n}, and that in addition the Hessian
matriz of Cy(x) at each point x € S has Frobenius norm bounded above by a constant.
If g, = k3% and v, = kY4, then the regret of the simulated greedy projection
algorithm is O(d*n3/%).

Proof sketch. In each phase ¢, let Y, = {yo,...,yq} be the set of points which
were sampled, and define the following four functions: Cy, the average of the cost
functions in phase ¢; Ay, the linearization of Cy at ug, defined by the formula

Ap(x) = VCy(ug) - (x —ug) + Cyp(ug);

L, the unique affine function which agrees with Cy4 at each point of Yy; and Ly, the
affine function computed by the algorithm at the end of phase ¢. The algorithm is
simply running greedy projection with respect to the simulated cost functions L,
and it consequently satisfies a low-regret bound with respect to those functions. The



expected value of Ly (u) is Lg(u) for every u. (Proof: both are affine functions, and
they agree on every point of Y;.) Hence we obtain a low-regret bound with respect
to Ly. To transfer this over to a low-regret bound for the original problem, we need
to bound several additional terms: the regret experienced because the algorithm
was using ug + 1¢(Te) — ug) instead of ug, the difference between Lg(u*) and
Ag(u*), and the difference between Ag(u*) and Cy(u*). In each case, the desired
upper bound can be inferred from properties of barycentric spanners, or from the
convexity of Cy and the bounds on its first and second derivatives. O
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