Technical report HW-MACS-TR-0079

A constraint system for a SML type error slicer

Vincent Rahli

J. B. Wells

Fairouz Kamareddine

ULTRA group, Heriot-Watt University

Abstract

Existing compilers for many languages have confusing typere
messagesType error slicing(TES) helps the programmer by iso-
lating the part of a program contributing to a type error, bator-
tunately TES was initially done for a tiny toy language. Extimg
TES to a full programming language is extremely challengargd
for SML we needed a number of innovations and generalisation

which constraints are accumulated and solved at diffeisrgg in
the traversal. The confusion is worsened because thesethigs
usually exhibit in error messages (1) an internal repregim of
the program subtree at the blamed location which often hea be
transformed substantially from what the programmer wrai, (2)
details of inferred types which were not written by the paogmer
and which are anyway erroneous and therefore confusing.

Some issues would be faced for any language, and some are SML-Other improved error reporting systems. Attempting to solve

specific but representative of the complexity of languaggeesic
issues likely to be faced for other languages. We solve bioitisk
of issues and present a simple, general constraint systeprde
viding type error slices for ill-typed programs. Our comstt sys-
tem elegantly and efficiently handles features like thédateopen
SML feature. We show how the simple clarity of type error atic
can demystify language features known to confuse users.

this problem, constraint-based type inference algoritli22s 23,
24] separate the two following processes: the generatioty
constraints for a given term and their unification. Many vwesdke
based on this idea to improve error reporting (a probablymme
plete list includes [15, 10, 11, 9, 25, 26, 27]). Indepeniyefnom

this separation, there exist many different approachesriim-
proving error reporting [32]: error explanation systems32] and

We also provide in an appendix a case study on how to use our error reporting systems [28]. Another approach to type reree
TES to help modifying user data types, and extend the core lan porting is the one of Lerner et al. [19] or Hage and Heeren [12]

guage presented in the main body of this report to handle wfore
the implementation of our system. These extensions allowllivay
local declarations, type declarations and some uses Oftsigs.

1. Introduction

Higher-order type inference. SML is a higher-order function-
oriented imperative programming language. SML (and sintéla-
guages like OCaml, Haskell, etc.) has polymorphic typesadiig
considerable flexibility, and almost fully automatic typédrence,
which frees the programmer from writing explicit types. Way's
“almost fully” because some explicit types are required MLS
e.g., as part of datatype definitions, module types, and ayp®e-
tations sometimes needed in special circumstances. NAlkér
algorithm [8] is the original type-checking algorithm ofetfiunc-
tional core of ML (variables, abstractions, applicatiomsl goly-
morphic let-expressions). W implementations generaNg grror
messages relative to the syntax tree node the algorithm isitisng
when unification failed, and this is often unsatisfactory.

Moving the error spot. Following W, other algorithms try to get
better locations by arranging that untypability will be cbsered
when visiting a different syntax tree node. For example, e Yi
proved that the folklore algorithm M [18] finds errors “eafi than
W and claimed that their combination “can generate strigttyre
informative type-error messages than either of the tworélyos
alone can”. Similar claims are made for’'\{20] and UAE [30].
McAdam observes that W suffers a left-to-right bias andstrie
to eliminate it using “unification of substitutions”. Yandains
that UAE’s primary advantage is that it also eliminates thiess.
However, all the algorithms mentioned above retain a keftight
bias in handling of let-bindings and they all blame only opetax
tree node for each type error when in fact a node set is at fault

suggesting changes to perform in the untypable code to $ghee
errors.

Type error slicing. Haack and Wells [11] noted thatdentifying
only one node or subtree of the program as the error locatiakes

it difficult for programmers to understand type errors. Tacke
the correct place to fix a type error, the programmer must fithd a
of the other program points that participate in the erfofhey
locate type errors gbrogram sliceswhich include all parts of an
untypable piece of code where changes can be made to fix thre err
and exclude the parts where changes cannot fix the error.

Haack and Wells gave their methodtgpe error slicing(TES)
for atiny subset of SML barely larger than thecalculus. The TES
of Haack and Wells generates constraints for SML code, enrume
ates minimal unsatisfiable subsets of the constraint seit ttzan
computes type error slices. Generation and solving of caimgs
are not interleaved. To identify program slices respoesibt type
errors, each constraint is labeled by the location resjpda$or its
generation. Error slices are portions of a program wheresait-
terms with no responsibility for the error are elided (ergplaced
by dots). Slices can also be shown by highlighting the socock.
These slices are intended to contain all and only the inféona
needed to solve the type errors.

The method of Haack and Wells meets the following crite-
ria [32] for good type error reports: it reports only erroc fll-
typed code ¢orrec), it reports no more than the conflicting por-
tions of code [precis@, it reports short messagesugcincj, it does
not report internal information such as internal types gatesl dur-
ing type inferenced-mechanicd| it reports only code written by
the programmer which has not been transformed as happehs wit
existing SML implementationsspurce-basey] it does not privi-
lege any location over the othemsnpiased, and it reports all the
conflicting portions of codecomprehensive

When only one node is reported as the error site, this node is Slicing for a full language. We aim toward a TES method that

often far away from the actual programming error. The sitrat

(1) covers the full SML language, (2) is practical on realgyeons,

is made worse because which node is blamed depends on interand (3) has a simple and general design. As would happen yor an

nal implementation detalils, i.e., the tree node traversa¢roand

programming language, we encountered challenges.

2010-8-19

One challenge was avoiding a combinatorial explosion in the Figure 1 Datatypes, pattern matching and type functions

number of constraints. Naive constraint generation coulaidate
the environment of a polymorphic declaration such as in S\Ht-
expressions. Our solution is related to a constraint systgmot-
tier and Rémy [24, 23] although it has evolved significabtyond
that, especially to handle the challenge of SMifsendeclaration.
The most interesting constraints in their constraint systee “let-
constraints” (generated for let-bindings). They are to s@xtent
inspired by constraint-based type systems such as the cBedry

sky, Sulzmann and Wehr [22] (and mainly by the type schemes

used in that system). As explained by Pottier such conssraat-

low building a constraint of linear size” [23]. We have gealeed
the structure of these constraints to deal with sequencdiverfse
(both polymorphic and monomorphic) identifier declarasidfor

values, types, structures, and signatures), and we dexeéppom-
patible slicing machinery. Our new constraint system regiethe
type duplicating approach of Haack and Wells and gaineabial
ity at the cost of losing compositional analysis.

Another major challenge was SMLépenfeature which splices
the declarations of a structure into the current envirortméhis
feature has been criticized in the literature [13, 3, 4, ljrper
writes [13]: ‘it is hard to control its behaviour, since it incorporates
the entire body of a structure, and hence may inadvertehtgew
identifiers that happen to be also used in the stru¢tuBlume
writes [3]: “Programs are not only read by analysis tools; human

read them as well. A language construct like open that serves

to confuse the analysis tool is also likely to confuse thedwum
reader’. Our TES provides useful type error reports whepenis
involved, clarifying otherwise obscure type errors, antiarcing
the usability ofopen To handle errors involvingpen we designed
a simple and general machinery of “constrained environsient
(definition in Sec. 4.2, example in Sec. 2.2) which goes walbind
what is supported by Pottier and Rémy'’s let-constraints.
Another challenge is SML’s value identifier statuses. In S&lL
value identifier can be a value variable (the only statusidensd
by Haack and Wells), a datatype constructor, or an excegion
structor (omitted in this paper’s formalism). For examlédenti-
fier ¢ has value variable status in the contet,c => (¢ 1, c())
has a unique minimal error which is thahas a monomorphic type
but is applied to two expressions with different typas: andunit.
However, this error would not exist if the code was precedgd b
e.g.,datatype t = c because the fn-binding would not biagbut
instead there would be a minimal error thas declared as a nullary
datatype constructor and is applied to an argumeast in To com-
pute correct type error slices, we annotate constraintsdoyest
dependencies on identifier statuses. For the fn-bindingepted
above we generate during unification constraints relatiegtcur-
rences ofc annotated by the dependency thas a value variable
and not a datatype constructor. These constraints are netafed
if a context confirms that must be a datatype constructor. The con-
straints but not the context dependency are generated ihexio
confirms thatc cannot be a datatype constructor. When handling
incomplete programs, we report conditional errors (wags)rthat
assume a sensible default truth status for the dependencies
Later sections detail solving these and other challenges.

2. Key motivating examples

This section gives motivating examples of TES. Type errimesl
are highlighted with very light grey. Dark grey highlightsrer
end pointg(e.g., the sources of conflicting types constrained to be
equal). A color version has been made available.

2.1 Datatypes, pattern matching and type functions.Fig. 1
shows how TES is important for intricate errors. The coddates
the datatypet and the functiontrans to deal with user defined

datatype (’a, ’b, ’c) t = Red of ’a * ’b * ’c
| Blue of ’a * ’b * ’c
| Pink of ’a * ’b * ’c
| Green of ’a x ’b * ’bCD
| Yellow of ’a * ’b * ’c
| Orange of ’a * ’b * ’c
fun trans (Red (x, y, 2z)) = Blue (y, x, z)
| trans (Blue (x, y, 2z)) = Pink (y, x, 2)
| trans (Pink (x, y, z)% = Green (y, x, Z)()
| trans (Green (x, y, 2)) = Yellow (y, x, z)
| trans (Yellow (x, y, z)) = Orange (y, x, z)
| trans (Orange (x, y, z)) = Red (y, x, z)
type (a, ’b) u = (’a, ’a, ’b) t x_’b

val x = (Red (2, 2, false), true) ®

val y : (int, bool) u = (trans (#1 x%j #2 x)

Figure 2 Chainedopers and nested structures

structure S = struct
structure Y = struct

structure A = struct val x = false end
structure X = struct val x = false end
structure M = struct val x = true end
end
open Y
val m = M.x
val x = if m then true else false
end
structure T = struct
structure X = struct val x = 1 end
open S
open X
val y = if m then 1 else x
end

colours. This function is then applied to an instance of ago(the
first element in the pait). Assume that our programming error is
that we wrote’b instead of’c in Green’s definition at locationD.
SML/NJ (version 110.72) reports a type constructor clas®at

operator domain: (int,int,int) t

operand: (int,int,bool) t

in expression:

trans ((fn {1=<pat>,...} => 1) x)

The reported code does not resemble our code and is far away
from the programming error location. SML/NJ gives the samere
message if, instead of the error described above, we wiitstead
of z in the right-hand-side of any branch&fans. This means with
SML/NJ one must check the entire program to find the error.

Fig. 1 shows one of the type error slices reported by our type e
ror slice, highlighted in the code. This error is contexpeedent: it
assumes thatandz are value variables and not datatype construc-
tors. The programming error location being in the slice, veek it
down by considering only the highlighted portions of codarting
from the clashing types on the last line. The ty@a@t, bool) u
constrains the type afrans’s application and the highlighted por-
tion of trans is when applied to &reen object. At (D, Green’s
second and third arguments are constrained to be of the sgame t
At @, y is incidentally constrained to be of the same type.at
@), becauseg andz are respectively the first and third arguments of
Yellow and usingrellow’s definition, we infer that the type of the
application ofvel1ow to its three arguments (returned bians) is
t where its first and third parameters have to be equal@Aand
®) we can see thairans is constrained to returnawhere its first
(int) and third pool) parameters differ.

2.2 Chainedopens and nested structures. Fig. 2 presents a
type error involving nestedpers leading to intricate type errors.
Let us describe what the code was meant to do. In the strutture
we declare a structure declaring an integet. We then open the
structures to access the Boolean We then operx to access the

2010-8-19

integerx. Finally, if m is true then we returm otherwise we returag.
Unfortunately, this piece of code is untypable and SML/Nibrés
the following error message which blamgs body:
Error: types of if branches do not agree [literal]
then branch: int
else branch: bool
in expression:
if m then 1 else x
The programming error here, as our type error slice explains
clearly, is that opening causess’s declarations to shadow the
current typing environment. Becauseis opened ins, the three
structuresa, x and M are part ofs’s declarations. Hence, when
openings in T, the structurex which was in our current typing
environment is shadowed by the one defined i@ne can solve this
programming error by replacingpen S open X" by “open S X".
Our type error slice rules out's declarations irk ands and
clearly shows why does not have the expected type. SML/NJ’s
report leaves us to track dow's binding by hand.

2.3 Merged minimal error slices. We have found cases need-
ing the display of many minimal errors at once. One important
case is in record field name clashes where, e.g., the higdinggh
val {foo,bar} = {f661=0,bar=1} reports two minimal errors at
once: thattool is not in{foo, bar} andzoo is not in{fool, bar}.
This merged error is preferable over the minimal errors heeaof
the explosion in the number of minimal slices. Light greyttights
the fields that are common to different minimal slices. Forged
slices minimality is understood as follows: retain a sirdgek grey
field name in one of the two clashing records and all field names
the other.

3.

Let ¢, j,n, m be metavariables ranging ové¥, the set of natu-
ral numbers. If a metavariable ranges over a clas€, then the
metavariablesv, (wherez can be anything) and the metavari-
ablesv’, v”, etc., also range ovef'. Let s range over sets. If
ranges oves, then letv range ovetP(s), the power set of. Let
dj(s1,...,sn) (“disjoint”) hold iff for all 7,5 € {1,...,n}, if

1 # jthens;Ns; = . Lets1 Wsa besiUss if dj(s1, s2) and unde-
fined otherwise. LeR range over binary relations (we wrife, y)
for a pair). Given a relatio letdom(R) = {z | (z,y) € R} and
ran(R) ={y | (z,y) € R}. Lets < R = {(z,y) € R| z & s}.
Let f range over functions, let — s = {f | dom(f) C s A
ran(f) C s'}, and letz — y be an alternative notation fdtz, y)
used when writing some functions. A tuplés a function such that
dom(t) C Nandifl < k € dom(¢) thenk — 1 € dom(¢). Let
t range over tuples. We write the tup{® — xo,...,n +— x,} as
(20, - .., zn). We define the appendin@:, ..., zi)Q(y1, ..., y;)
of two tuples as the tuplér, ..., =i, y1, .. ., y;). If v ranges over
s, @ is defined to range oveuple(s) = {t | ran(t) C s}.

Mathematical definitions and notations

4. Technical design of our TES

The different modules of our TES are: constraint generation
(Sec. 4.3), constraint solving (Sec. 4.4), minimisatioeq$4.5),
enumeration (Sec. 4.5), and slicing (Sec. 4.6). Sec. 4&igies
minimality, Sec. 4.7 defines the overall algorithm of ourdghicer,
and Sec. 4.9 discusses the principles of our approach.

4.1 External syntax. Fig. 3 (upper half) defines our external syn-
tax which is a subset of the SML syntax. Many syntactic fornes a
annotated with labeld). These labels are generated by our TES to
track locations responsible for inferences made durindyaisa To
provide a visually convenient place for labels, expressipplica-
tions are surrounded by] which are not seen by programmers but
are part of an internal representation used to avoid coorfiusiith

() as part of SML syntax. Value identifiersi¢l) are subscripted
to distinguish between occurrences in expressiond.f, datatype
constructor definitionsi¢d?), and patternsud.).

4.2 Constraint syntax. Constraint terms. Fig. 3 (lower half)
defines our constraint terms.

In addition to distinguishing identifier classegl{ for value
identifiers, TyCon for type constructor names, etc.), SML assigns
statuses within the value identifier class to distinguislieavari-
ables, datatype constructors, and exception construd@esause
SML has no lexical distinction between, e.g., a datatypestan-
tor and a value variable, a value identifier's status canhdys be
inferred from any context smaller than the entire program.

In our constraint system, an identifier status can either be a
raw status {is) or a raw status annotated with dependencigs (
The v status is for value variables (e.g., the recursive function
in val rec f = fn x => x iS a value variable and not a datatype
constructor). Statusesandd are for unary and nullary datatype
constructors respectively (€.g.in datatype ’a t = C of ’aand
d in datatype ’a t = D). Statusu is for unconfirmed context-
dependent statuses (e.g.fih x => x, the identifierx could be a
value variable or a nullary datatype constructor). Status for
unresolvable statuses such aslét open S in fn x => x end,
wherex could be declared as a value variable as well as a datatype
constructor in the free structure Finally, statusa is similar to
a variable as it can be any status (used by our constraintirite
functionfilt defined in Fig. 8 in Sec. 4.4 to generate dummy envi-
ronments that cannot participate in type errors).

Some syntactic forms, calledependent formsare annotated
by dependencies{z, d). A dependencyd can be a label or
a value identifiervid. During analysis, if a dependenay is a
label, the annotated syntactic form depends on the program node
labelled by!. For example, if the dependent equality constraint

T1 T2 is generated for the annotated cofierp atexp]’,
then the equality constraint;= 7= depends on the application
root node of[exp atexp]’. If d is a value identifierid, then the
syntactic form depends owd’s status in the code beingwor u.
Because identifiers’ statuses are resolved during conssalving,
such dependencies (value identifiers) are only generatedgdu
constraint solving and not during initial constraint geatem. For
example, if constraint solving generates the dependenaliéggu

constraintniuz{iim, then the equality constraimt = needs to

be satisfied only ifvid cannot be a datatype constructor. k&fp
be the function that strips off the outer dependencies (ested
under another constructor than the dependency constjudtany
syntactic formstrip(z) = strip(y) if = = (y, d) andz otherwise.

An internal type of the formr . is called atype construction
and is built from an internal type constructgrand its argument
7 (such as the polymorphic list type 1ist, wherea is an ex-
plicit type variable in SML). We only allow type construcsoto
take one parameter in this paper and so we only allow intéypal
constructors to take one parameter in our constraint systém
internal type constructoar is used during constraint solving to
represent the arrow type constructor so that we can gengfage
constraints between the arrow type constructor and any atiey
type constructor. This is necessary to compute the negepsar
tions of code when generating type errors. A type schemeitizere
be a universal quantification or an internal type.

We usel to represent bindings (as ifvd=x that associates
the semantics: to the binding occurrencél) andt to constrain
the semantics of non-binding occurrences (also calledsaocs) of
identifiers (as intid=x that constraingd’s semantics to be). A
binder of the formtvid=c, is an unconfirmed binder that can either
be confirmed to be a binder of a value variable at constraluirep

2010-8-19

Figure 3 External syntax and constraint system

external syntax (what the programmer sees, plus labels)

::=val rec pat 4 ezp | datatype dn L b | open’ sid
! dec in exp end

atexp | fn pat L exp | [exp atezp]!

' | € Label (Iabels) ; dec € Dec
vid € VId (value identifiers) atezp € AtExp = vidl. | let
sid € Strld (structure identifiers) P L e
tv € TyVar (type variables) exp € Exp —
tc € TyCon (type constructors) atpat € AtPat ::= vid),
ty €Ty o= tol | ty, KR ty, | ty tc! pat € Pat = atpat | vid' atpat
cb € ConBind ::= vid!, | vid of ! ty sdec € StrDec ::=

dn € DatName ::= tv tc! sexp € StrExp ::=
constraint terms
ev € EnvVar (environment variables) € 1TyCon
0 € TyConVar (type constructor variables) r ¢ ITy
~ € TyConName (type constructor names) o € Scheme
«a € | TyVar (internal type variables) bind € Bind
d € Dependency ::=1| vid acc € Accessor
ris € RawldStatus :=v |c|d|u|p|a
is € ldStatus = ris | (is, d)

s=alTp
T | Va.
lte=p
= Ttc=9

e € Env

extra metavariables mostly used in side conditions
id € 1d == wvid | sid | tv | tc var € Var:=o | 0 | ev

dep € Dependent ::= (7,d) | (u, d) | (e, d) | (is, d)

Lol
dec | structure sid = sexp
sid! | struct! sdecy - - - sdecy, end

(syntax of entities used internally by the type error sliaed which the programmer never sees)
w=6 |y | ar | (4, d)

| =72 | (7, d)

-

| Lsid=e | ltv=a | lvid=0 | lvid=is | tvid=a
| 1sid=ev | Ttv=a | Tvid=a | Tvid=ris

¢ € Constraint := u1=p2 | e1=e2 | T1="72 | is1=152
u=0| ev| bind | acc | ¢ | poly(e) | ez;e1 | (e, d)

time, and so be turned into a binder of the fotmid=« or be
turned into an accessowid=q if it turns out thatvid is a datatype
constructor. This mechanism is further illustrated in Se4.

The keystone of our constraint system is the constrained en-
vironment e;;e; Where e; constrainse,. The environmente; ; ez
builds a new environment from its two components where refer
ences of the formid (accessors) ir2 can depend on occurrences
of Lid (binders) ine; . For example, invid=o;tvid=a, a is con-
strained to ber through the binding ofvid. The motivation for
these environments is to have a general mechanism to build en
ronments for sequential declarations.

In addition to a constrained environment of the foemez, an
environment can also be an empty environn@nan environment
variable ev, a binderbind associating static semantics to identi-
fiers, an accessor to look identifiers’ static semantics upnwi-
ronments, an equality constrainf a special formpoly(e) (ex-
plained below) which grants the possibility to be polymorphic,
or a conditional environmer{ie, d) depending onil. Environments
are special kinds of constraint (on internal types, intetyi@e con-
structors, environments and statuses).

Leter;---;en bemif n =0and(ei;- - ;en—1);en if n > 0.

“Atomic” syntactic forms. Let atoms(x) be the set of syntactic
forms belonging td/ar U TyConName U Dependency and occur-
ring in z whateverz is. We define the following functions:

vars(xz) = atoms(x) N Var (set of variables)
labs(z) = atoms(z) N Label (set of labels)
deps(z) = atoms(x) N Dependency (set of dependencies)

Freshness of variables. We use distinguished dummy variables:
DumVar = {aaun, €Vaun, daun - E@Ch use of a dummy variable acts
like a fresh variable. These variables are used to genetateny
environments and constraints. For example, the equalitgtcaint
evam= € Means that the environmeatmust be solved and does
not constrain any other environment. The relatija ensures the
freshness of the generated variables and type construatoest
dja(z1,...,zn)<dj(f(z1),. .., f(zn), DumVar), wheref (z) =
atoms(z) \ VId. This also ensures that each label occurs at most
once in a labelled program.

Syntactic sugar. We write (z, d) for (z,{d}). Lety be ad or
ad. We write z¥ for (z,y). We writez; == x5 for (z1=x2,y),
and similarly for bind’s and acc’s. We write Lvid == (o, is)
for Lvid = is;lvid = o, andtvid = (a, ris) for tvid =

ris;tvid = o We write [e] for (evam= €). Such a constraint
defines a local environmemtwhich is not visible from outside the
constraint. This is used for local bindings by rulgs?) and (G4)
of our constraint generation algorithm defined in Fig. 4.

4.3 Constraint generation. Value bindings. At constraint gen-
eration (Fig. 4), in the pattern rulgs5), we generate monomor-
phic, unconfirmed binders of the formwid=a where no type
variable is yet quantified over. These binders are mononiorph
because in SML, e.g., the type of a recursive function such as
£ in the let-expressionet val rec f = fn x => f x in f end,

is monomorphic within its definitionz(s first and second occur-
rences’ types are equal) and generalised into a polymoifphiall
type scheme when typing the declaratia’s (third occurrence’s
type is an instance of the generalisationfdf first occurrence’s
type). An environment is then turned into a polymorphic one dur-
ing constraint solving (usingoPoly defined in Fig. 6 in Sec. 4.4)

if marked as followspoly(e). Such forms are generated by the
recursive value declaration ru{€&12) and the datatype declaration
rule (G13). In (G5) again, the binder is unconfirmed and no status
constraint is generated (as opposed to, e.g.,(&1€) which forces
the analysed identifier to be a nullary datatype constriitiecause

in SML, e.g., infn x => x, without any more context, the identi-
fierx could be a value variable or a datatype constructor. Thastat
of x is then unknown. Because recursive functions are force@to b
value variablesx) even when in the scope of a datatype constructor
binding,toV (used by(G12)) generates a status constraint:

toV(e1;e2) =toV(e1);toV(e2)
toV(1vid = @) = (Lvid = (a, v))
toV(e) = e, if none of the above applies
As explained in Sec. 4.4, at constraint solving, an uncormfirm
binder of the formtvid=a eventually turns into a binder of the
form Lvid=ca or an accessor of the formvid=ca. (In some cases,
a status constraint is also generated from an unconfirmefitbjn

Algorithm. Fig. 4 defines our constraint generator. At initial con-
straint generation, the only labelled environments arekiyucon-
straints ¢), binders 6ind), accessorsdcc), and environment vari-
ables ev).

In rule (G12) for recursive function declarations, the environ-
menttoV(e1) generated for the pattern part of the declaration con-
strains the environment, generated for the expression part. This
order is necessary to handle the recursivity of such detobears

2010-8-19

Figure 4 Constraint generation rules

G1) vid! » («, 1vid L)

Expressions
l
G2) let! dec in exp end > (q, [e1;e2;(a= a2)])
l
G3) [ezp atezp]] > (a, e1;e2;(a1= a2—>a)>

)
)
)
G4)
)
)
)

) vid »
G7) tv! + (a, Tt L a) (G8)ty tch (o

Q

(

(

(

(

(

(G7) tv

(G9) ty, 4 tys > {a, eg,el,(aial—wxg»
[Constructor bindings| (G10) vid! + (a, Lvid = (a d))

(

(

(

(

(

(

(

G11) vid of L ty > (oz1, €; azi a—ailvid = <a2, c))

Declarations

G13) datatype dn £ cb -i> (ev= ((ali az);er;poly(e2)));ev

G14) open' sid + (Tszd = ev); evl

Datatype names

[Structure expressions| (G17) sid! + (ev, 1sid L ev)

(G18) struct! sdecy - - -

sdecr, end > (ev, (evé ev');(ev'=(er;- -

G12) val rec pat = exp + (ev=poly(toV(e1); 62,(011—042)));6’[1

G15) tv tct > (o, (o —a'y) (Lte = 'y) (Ltv = L a))

[Structure declarations|(G16) structure sid = sezp > (ev'=(e;(Isid = ev))) ev

ien))) < sdect > er A---

< dec > e1 A exp > (a2, e2) Adja(er, e2,)
< exp > (a1, e1) A atexp > (a2, e2) Adja(er, ez,)

fn pat 4 exp > (oz [(ev=re1);ev! eg,(a— a1—a2)]) < pat & (a1, e1) A exp > (a2, e2) Adja(er, ez, a, ev)
> (o, tvid L a) (G6) vid' atpat + (ag,alé a—az;Tvid L (a1, c)se) < atpat > (o, e) Adja(e, o, a2)
, (Tte L 5);(O/£O£5);6>

< ty > (, e) Adja(e, o/, d)
< ty; > (o, e1) Atyy > (a2, e2) Adja(er, e2, @)

< ty > (o, e) Adja(e, ar,a2)

I < pat (a1, e1) A exp > (az, e2) Adja(er, e2, ev)

! < dn > (a1, e1) A cb > (az, e2) Adja(er, ez, ev)

< a#d

n < sexp > {ev, e) Adja(e, ev’)

A sdecy, > en Adja(er, ..., en,ev, ev’)

In rule (G13) for datatype declarations, the environmengen-
erated for the declared type constructor constrains the@ment
poly(e2) generated for the datatype constructor of the declared
type constructor. This order is necessary to handle therstty
of such datatype declarations @atatype nat = z | s of nat,
the second occurrence eft refers to its first occurrence).

Rule (G14) for structure opening (as for rule€s4), (G12),
(G13) and(G16)) labels an environment variable, so that a sliced
out declaration does not shadow its environment. Withaatéel,
the environment variable would be a constraint that alwayeHo
be satisfied. With the label, the environment variable isrstraint
that has to be satisfied only when the declaration is notchce.
The link between the environment variable and the strud¢tuopen

is made via the labelled accessatd L ev.

Rule (G18) for structure expressions (as for rulgs4), (G12),
(G13) and (G16)) generates unlabelled equality constraints. An
unlabelled equality constraint such as a constraint of trenf
ev'=(e1;-- - ;en) generated by G18) needs to be unlabelled be-
cause each of the is not dependent on the analysed structure ex-
pression itself but is dependent on the corresponding dea
packed together with other declarations in the structupeession.
The information related to the analysed structure expoessiar-
ried by the unlabelled constraint is the fact that a sequehdecla-
rations (corresponding to the constrained environment- - ;e,,)
is packed into a structure. This information depends on tted-a
ysed structure expression via the extra labelled equatinstaint

ev=ev’. In (G4), (G12), (G13) and(G16), we use labelled envi-
ronment variables of the forrew'.

4.4 Constraint solving. Syntax. Fig. 5 defines the syntactic
forms used by our constraint solver (Fig. 7) where one urtifica
step is defined by the relation-, where—" is its reflexive and
transitive closure. To each state of a unification comporatex-
cept the errors), a unification conteit= (u, e) is associated. In a
statesolve((u, e), d, e’), (u, e) is the context in whicke’ must be
solvable for the algorithm to succeed. Lt e¢)(var) be u(var),
let (u, e);e’ be(u, e;e’), and letu; Buz beu; U (DumVar < ug)
if dj(dom(u1),dom(uz)), and undefined otherwise.

Given constraints (of the forna), our constraint solver either
succeeds witlBucc(A) returning its current unification context,

or fails with err(er) returning an error which can be (se# in
Fig. 5) a type constructor clash, a circularity error or awgtalash
(discussed below with theompatible relation). The application of
a renamingren to an internal typer is defined as usual and, is
denotedr[ren]. Renamings are used to instantiate type schemes.

Environment application. Constraint solving maintains a type
environment ¢ in A) where some parts might be shadowed and
so inaccessible. For example, binds;ev;bind{, the usable part
is bind; and ev shadowsbind, because an environment variable
stands for any environment and could potentially bind amnid
fier. During unification, nac or acc occurs in thee stored in aA
because they are transformed into unifierGules (U3) and(U4)

in Fig. 7). Similarly, thepoly(e) and tvid=a forms are elimi-
nated. Concerningg, we never add it to a unification context
while unifying constraints, but we always start a unificatiwocess
with the initial unification contexte,). Thus, during unification

if A = (u,e)thene is of the form;e; - - - ;e,, where eacte; is

either anev or a lid 2 2. Letthe predicatéiding be defined as
follows: hiding(e) be true iff e € Var or e is of the formey ;e;
andhiding(e;) fori = 1 ori = 2. Let hiding({u, e)) be true iff
hiding(e). We define the applicatioa(id) as follows:

(EAL) (¢/3id == va. 7)(id) = Va. 70

(EA2) (¢'51id =% 2)(id) = x?,

(EA3) (¢/;bid’ = z)(id) = ¢ (id

We definee[id] to access value identifiers’ statuses:

if of the formr, por e
), if id # id’ orz € IdStatus

(EAIS) (¢/s1id == is)[id] =

d

(EAIS2) (e;1id" = x)[id] = e’[[zd]] if id # id’ or x & |dStatus

v;lsid L e)(vid) = o

1

but(imd = o; wzd 3 viev;] sid == e)(vid) and (Lvid i3

o; Lvid 2 v;lsid 4 e)(tc) are undefined.
LetA(zd) = e(id) and A[id] = e[id], whereA = (u, e).

For example(imd L o; Lwid 2

Context dependencies solving. Context dependencies are
solved during unification. An unconfirmed binder of the form
tvid=« is then either turned into a binder of the formid=a or

2010-8-19

Figure 5 Syntactic forms used by the constraint solver

ITyVar — ITy A fo € TyConVar — ITyCon A f3 € EnvVar — Env}
tyConsClash(u1, u2) | statusClash(isy, is2) | circularity

uw € Unifier ={fiUfeUfs|fi €
er € Error = (ek, d) ek € ErrKind ::=
A € UnifEnv ::= (u, e) state € State =solve(A4, d, e) | succ(A4) | err(er)
ren € Ren

= {ren € ITyVar — ITyVar | ren is injective A dj(dom(ren), ran(ren))}

an accessor of the formvid=ca by one of these rule¢B2)-(B5).
These rules make use of the functidNotDum which is defined
as follows:ifNotDum(ciau, 7s) = a andifNotDum(«, is) = is

if « ¢ DumVar. This function is required to ensure that a dummy
binder cannot bind something else than a dummy status. (BQle
discards binders generated under unsatisfied context depeies,
€.g.,iNlet datatype t = x in fn x => x end, x'S Second occur-
rence does not bingls third occurrence because g§ declaration
as a datatype constructor. The unconfirmed binder is theredur
into an accessor. In all three other rules, the unconfirmaddsiis
turned into a confirmed one. Rul®3) validates context depen-
dencies, e.g., ifal rec x = fn x => x, x IS confirmed to be a
value variablex’s second occurrence being in the scope'sfirst
occurrence which is a recursive function and so in SML isddrc
to be a value variable and not a datatype constructor. RBde
generates context dependencies, e.gtpir => x, because: can

be a value variable as well as a datatype constructor tlsesec-
ond occurrence is bound t6s first occurrence under the context
dependency that is not a datatype constructor. RulB5) gener-
ates dummy environments when there is not enough informatio
to check whether a context dependency is satisfied or not,ie.g
let open S in fn x => x end, if Sis free, it might declare as a
datatype constructor or as a recursive function. Thus, wead@l-
low x to be a monomorphic binding but we still generate a dummy
binding to catch status clashes (e.qg., if instead of therskcave
hadfn (x y) => y wherex is a unary datatype constructor, we
would then havex occurring in patterns both at a nullary position
and a unary position).

Status compatibility. Two identifier statuses are incompati-
ble iff a unary datatype constructor, occurring in a pattam
bound to a (context-dependent or independent) value Varizb
iNlet val rec £ = fn x => x in fn (f x) => x end Wheref’s
first occurrence is a value variable and second occurrence is a
unary datatype constructor (taking an argument in a patterrif a
value variable in a pattern (not applied) is bound to a unatgtype
constructor asilet datatype t = x of int in fn x => x end.

compatible(is1, is2) <> {is1, 452} & {{c, v}, {c,u}, {c,p}}

Status compatibility is checked by constraint solving syf&6)
and (S7) (in Fig. 7). Compatibility is only defined on raw sta-
tuses because constraint solving rg&8) removes dependencies
on (among other things) statuses.

Building of constraint terms. The constraint solver usesuild

to build, w.r.t. a given unifier, polymorphic types (Fig. @heck

circularity errors (in order not to generate a unifier wheeeg.,

a = T7—a), and build environment:

. build(u, z), if uw(var) =z

build(u, var) = var, otherwise

build(u, 7) = build(u, 7) build(u,)
(
(u,

build(u, 7'1—>7'2) = build(u, 71)~build(u, 72)

build (u, %) = build(u, w)d
build(u :c) = z, if none of the above applies

As explained at the end of this Section, types have to be built
up when generating polymorphic environments for efficiersy
sues. Because SML does not allow infinite types, we alsduide
to detect circularity issues. During unification, beforgyaenting
any unification context, we check if it would allow allow geat

ing infinite types (see rulgU1) of our unification algorithm de-
fined in Flg 7). For example, given the unifigs; — ag , Qg
(s d2>} we do not allow its augmentation with, e.g.,

Qg 4044 y
{as — (af5-al7 d5)} because it would allow generating infi-
nite types.

Environment extraction. The functiondiff is used by rules
(U4), (P1) and (P2) of our constraint solver to extract envi-
ronments generated during unification. It allows, when isglv

an environment, getting back its “solved version” once &élite
constraints have been dealt with. By “solved version” of avie
ronmente, we mean the sequence of environments that has been
added to the unification context of the state in which the unifi
cation process was when it started to soleFor example, if
solve({u,e), d, en) —* succ({u',e’)) thene’ e;e1- - jen
anddiff(e, e’) = [;e1 - - - ;e, Which is the “solved version” ofo.

diff(e, e)
diff(e;

=0
,e2;e3) = diff(e1, e2);es, if e1 # (e2;e3)

Polymorphic environments. Fig. 6 definezoPoly which is used
by rule (P1) of our constraint solver to generate a polymorphic
environment by quantifying the type variables not occutiimthe
types of the monomorphic bindings of the unification envinemt

of the current state.

In Fig. 6, 7 is the type from which we want to generate a
type scheme. First, we build up the type, using the unifiehef t
unification context of the current state)(to obtain the type-’.
The setT is the set of types of the monomorphic bindings for
which, the binding currently being generalised, is in thepgc The
set@ is the set of type variables that are allowed to be quantified
over because they do not depend on the types of the monomorphi
bindings. FinaIIyE/ is the set of dependencies “explaining” why
the type variables not i but occurring in7’ (the type variables
occurring inT’ and also depending on the monomorphic bindings)
are not allowed to be quantified over.

Let us illustrate how this mechanism works with the fn-esgien
erp.fn x => let val rec f = fn z => x z in f end. Thecon-
straint generation algorithm generates an environmenrtefdarm
poly(er) for the recursive declaratiorel rec £ = fn z => x z.
When solving the constraints generated fap, the constraint
solver eventually appliesPoly to a unification contextu, e) and

a binding of the form| £ 2 a1 (which is the “solved version” of

e1). Building upa; results in a type”’ of the form(a2 —>o¢53, dy).
Becausex's type is monomorphic, a monomorphic binding of the

form |x 4 ap occurs ine (the only monomorphic binding occur-
ring in e) and so we build & (see Fig. 6) of the forn{m} where

7o IS obtain bundmg upao and is of the form(aj®—ads, d,)
(equivalent tor” up to dependencies becausg-reduces ta:). We
therefore build & (see Fig. 6) of the fornw becausexv, andas
both occur inr’. We also build a2 of the formd, Uds U d which
is the set of “reasons” for not allowing, andas to be in@ (set of
type variables that are allowed to be generalised over whéd-b
ing the type scheme returned byPoly). Finally, e is augmented

with £ = V& (af?5al 4, U).

2010-8-19

Figure 6 Monomorphic to polymorphic environment

" = build(u, 7)

3

toPoly ({u, e), Lvid 2 (7, 18))
= (u, e;({vid 2 (Va. T/E/, is)))

where

Q| Qf Al

2:{7'0 | Juid. 71 = e(vid) A 70 = build(u, 71)}}
= (vars(7’) N ITyVar) \ (vars(T) U {caun })
= {d | 70 € T A d € deps(0) A —~dj(vars(mo) N ITyVar, vars(7’) \ (@ U {aauw}))}

When solving constraints generated by our constraint geoer

toPoly is only applied tobind%’s resulting from the solving of an
environment wrapped byoly which in turn is only used to wrap
environments built from: dependencies, a unique mononiorph
binding and equality constraints.

Extracting the monomorphic type variables of a bindingisety
is an expansive computation. We only perform it once permpoly
phic binding by, provided a unification context, first buildithe
type of a given binding and by then looking up in the environtne
(in the unification context) which type variables cannot bargi-
fied over because they are monomorphic. When accessinggbe ty
of a polymorphic binding we then only have to generate araims
of its type scheme (see ru{é1) of our unification algorithm).

Algorithm. Fig. 7 defines our constraint solver.

The accessor ruléA4) can also be used to report free identi-
fiers. Ifsolve(A, d, tid=x) — succ(A) and—hiding(A) then it
means that there is no binder fat and so that it is a free identifier.

Free identifiers are in any case important to report, but éisis
pecially vital for structure identifiers impendeclarations. In our
approach, a free opened structure is considered as pdiemnda
defining its entire context. Hencésl x = 1 open S val y = x 1
is typable becausgs first occurrence is hidden by the declaration
open $. This might be confusing & was not reported as being free.
Let us explain how a free opened structure hides its con&ixen
a declarationopen S, our constraint generation algorithm gener-

ates an environment of the fors ev);ev’ wherel is the
label labelling the declaration. Becauses free, rule(A4) applies
when solvingts=ewv. The environment variablev is then not con-
strained to anything. Hence when solviag rule (V2) applies and
Aj;ev (from the right-hand-side of rulév2)) results in the hiding
of A by ev: all the binders inA are hidden byewv.

Let the relationssErr andsolvable be defined as follows:

e £E, o & solve((@, @), &, e) —* err(er)
solvable(e) < JA. solve((@,), &, e) —* succ(A)

solvable(sdec) < Je. sdec + e A solvable(e)

4.5 Minimisation and enumeration. Extraction of environ-
ment labels. Given an environmeng, IBinds extracts the labels
labelling binders §ind) occurring ine. It is used during the first
phase of our minimisation algorithm which consists in tgyito
remove entire sections of code (datatype declarationstifurs,
structures, ...) by “disconnecting” accessors from theiders:

IBinds(e) = {I | bind' occurs ine}

Constraint filtering. Fig. 8 defines our constraint filtering func-
tion filt, used to check the solvability of constraints in which some
constraints are discarded. Itis only applied to constsajenerated
by our constraint generator. This is why we only filter enmiment
equality constraints of the forraw= e and not of the general from
er=ez. Infilt(e, 11,12), 11 is the label set for which we want to keep
the annotated environments (first case of the filtering rateef),
andls is the label set for which we do not want to keep the equality
constraints and accessors but for which we want to turn theds
into dummy ones and keep the environment variables (secasel ¢
of the filtering rule fore'). The environments annotated by labels
that are not inl; U I are then discarded (third case of the filter-
ing rule for ¢'). In the context of constraint filtering, label sets are

sometimes called filters. Being able to distinguish betwseaders
to discard (not labelled by a label in U I2) and binders to turn
into dummy ones (labelled by a label ig) is necessary because
during minimisation, throwing away any environment migésult
in different bindings in the filtered constraints (corresgdimg to a
different SML code). For example, removing the binder l&daeby

Lin (1x 4 (11,1s81));(Ix 2 (T2, 1s2)); (1% L 7) would result in
x's accessor being bound s first binder instead of its second.
Similarly, removing the binding labelled by the label agated to
£'s second occurrence in the environment generated for

let val rec f = fn x => x 1

in let val rec f = fn x => x + 1 in f true end

end

would result inf's third occurrence to be bound to its first

occurrence and so to the enumeration algorithm to find a tynoe e
that does not exist in the original piece of code. When a bimis
labelled by a label fror, it becomes a dummy unlabelled one that
cannot be involved in any error and it results that the sanfstor
its accessors.

Minimisation algorithm. Fig. 9 defines our minimisation algo-
rithm: the relationmin that uses the relation . to test if a la-
bel can be removed from a slice and wherg., is its reflexive
and transitive closure. It consists of two main phases. Thedne
({e,labs(er) \ 1,labs(er) N'1) —&s (e, 11, D)) tries to remove
entire sections of code at once by turning bindings into dymm
ones usingBinds. In a fine-grained second phage, (@, 11) — s

(e, 12, @)) the algorithm tries to remove the remaining labéls (
one at a time. _

A step of our unification algorithm is as followfe, I1, {i} W
12) —est (e,13,14) wherels andl, depend on the solvability of
filt(e, 11 Ulz, {1}). The sef; Ul> U {I} is the label set of the error
that the minimisation algorithm is minimising arfd} w I is the
label set yet to try to discard. The environméitt(e, 71 Ul2, {1}) is
obtained frome by filtering out the constraints that are not labelled
by 7; UT2U{I} and by turning the binders labelled binto dummy
ones. If the obtained filtered environment is solvable it nsthat!
is necessary antk = [; U {i} andly = I». If it is unsolvable
(solving the filtered environment failed and we obtained & ne
smaller error), it means thdtis unnecessary for an error to occur
and that any environment labelled byan be completely filtered
out in the next step. The label sdisandi, are then restricted to
the newly found error (see rul@vil)).

Environments (bindings, environment variables, ...) caodm-
pletely filtered out from one step to another because ourt@ns
generator and solver, together ensure that if a bindergtlinto a
dummy one then none of its accessors will be part of any ertos
invariant could explicitly be enforced during constrainténg by
adding side conditions to ruld#\1)-(A3) checking if the types of
the accessed identifiers are not dummy varialaswVar).

Enumeration algorithm. Fig. 9 also defines our enumeration al-
gorithm: the relation—. where— is its reflexive and transitive
closure. Enumerating the minimal type errors in a piece afeco
consists of trying to solve diverse results of filtering tlomstraints
generated for the piece of code. The tested filters (labg) f&tm
the search space which is built while searching for erron& &nu-
meration algorithm starts with a unique filter: the empty, $et

2010-8-19

Figure 7 Constraint solver

equality simplification equality constraint reversing _

(S1) solve(A, d, z=x) — succ(A) (R) solve(4, d,z=y) — solve(A4, d,y=xz),

(S2) solve(A, d, T p=""p') — solve(A, d, (u=p');(r="")) if y € sandx ¢ s, wheres = Var U Dependent
(S3) solve(A, d, 71 »Te=T3-74) — solve(A, d, (11=73);(T2=74))

(S4) solve(A, d, T1=72) — solve(A, d, u=ar) if {71, 72} = {7 p, 3—>74} fOr somey, 7, 73 andr4

(S5) solve(A, d, u1=p2) — err((tyConsClash (i1, u2), d)), if p1 # po and{u1, u2} € {{y,~'}, {7, ar}} for somey andy’
(S6) solve(A, d,is1=1s2) — err((statusClash(is1, is2), d)), if ~compatible(is1, is2)

(S7) solve(4, d, 151—152) — succ(4), if compatible(is1, ts2) andisy, isz € RawldStatus

(S8) solve(4, d,z? —y) — solve(A, d ud, x=y)

unifier access/updating Rules(U1) through(U6) have also these common side conditions: # x andy = build(u, z)
(U1) solve({u, e), d, var=x) — err((circularity, d U deps(y))), if var € vars(y) \ (dom(u) U Env) andvar # strip(y)

(U2) solve({u, e), d, var= w) — succ((u, €)), if var € vars(y) \ (dom(u) U Env) andvar = strip(y)

(U3) so1ve({u, e), d, var=x) — succ({uB{var xd} e)), if var ¢ vars(y) Udom(u) U Env

(U4) solve({u, e),g, var= :c) — succ({(u' B{var — diff(e, e’)2}, €)), if var € Env \ dom(u) andsolve((u, e),E,x) —* succ({u/,e’))
(U5) solve((u, e), d, var=x) — err(er), if var € Env \ dom(u) andsolve((u, e), d,z) —* err(er)

(U6) solve((u,), d, var=z) — solve((u, e), d, z=x), if u(var) =z

dependent/empty/variables

constrained environments = -
(C1) solve(A, d, e1;e2) — solve(A’, d, e2), if solve(A, d, e1) —* succ(4’) (3) solve(4, d) — solve(AA, dud,e)
(C2) solve(A, d, e1;e2) — err(er), if solve(A4, d, e1) —* err(er) (N) solve(4, d, 1) — succ(4))

V) solve((u e) d, ev) — succ({u, e;build(u, ev)))

binders _ 2
(B1) solve(A,d, lzd z) — succ(A;(lid = x))
(B2) solve(4, d, tvid=a) — solve(A4, d, tvid=(a, ifNotDum(a, u))), if strip(A[vid]) € {c,d}
(B3) solve(4, d, tvid=a) — succ(A;(Lvid L4 a)), if Afvid]] = is andstrip(is) = v anddeps(is) = d
(B4) solve(4, d, tvid=a) — succ(4; (Lmd do{vid) (a, ifNotDum(a, u)))), if strip(A[vid]) = u or (=hiding(A) and A[vid] undefined
(B5) solve(4, d, tvid=a) — succ(A,(Lmd = (0qun, ifNotDum(e, p)))), if strip(Afvid]) € {a, p} or (hiding(A) and Afvid] undefined
accessors
Al) solve(A, d, tvid=a) — solve(A,d,[ren]=a),i vid) = Va. T anddom(ren) = @ anddja(vars ,Q Qtdum |, ran(ren
A f A d d A

(A3) solve id=var) — solve(A,d,z=var), if A(id) = z andz is not of the formva. T
(A4) solve(A, d,tid=z) — succ(AQ), if (x € IdStatus and A[:d] undefined) or{ ¢ ldStatus and A(%d) undefined)

polymorphic environments

(4,4
(A2) solve(A, d, tvid=ris) — solve(A,d,is=ris), if AJvid] =
(A,d, 14
A

(P1) solve({u1, e1), d,poly(e)) — succ(toPoly({uz, e1), €)), if solve({u1, eﬁ,E, e) —* succ((ug, e2)) anddiff(e1, e2) = [;e’
(P2) solve({u1, e1), ﬂ poly(e)) — succ((uz, e2)), if solve({u1, 1), d, e) —* succ({uz, e2)) anddiff(e1, e2) = @
(P3) solve((u1, €1), d,poly(e)) — err(er), if solve({u1, e1), d, e) —* err(er)

Figure 8 Constraint filtering

o el, Ifl€l1\lg
filt(e!, 11, 12) = {dum(e), if 1€l dum(lid=z) = (lid=toDumVar(x)) toDumVar(o) = aqun
o, otherwise dum(tid=z) = ($id=toDumVar(x)) toDumVar(u) = ddqun
filt(ev=e, l1,1l2) = (ev=filt(e,1,12)) dum(ev) = eVqun toDumVar(e) = evaun
filt(e1;ez, 11, I2) —fllt(el,h,lz) filt(e2, 11, 12) dum(c) =0 toDumVar(a) =
filt(poly(e), 11, 12) = poly(filt(e, 11, I2)) dum(acc) =0 toDumVar(is) =
fl|t(|Z| ll,lz) =0

Figure 9 Minimisation and enumeration algorithms

minimisation

(M1) (e, 11, {1} W12) —test (e, 11 N d, 1o N d), if filt(e, Iy Uly, {1}) =5 (ek, d)

(M2) (e, l1,{l} Wl2) —test (€, 11 U{l}, l2), if solvable(filt(e, 1 U l2,{l}))

(M3) (e, er) M0 er/,if IBinds(e) = 1 and{e, labs(er) \ I, labs(er) N1) =&, (e, 11, @) and(e, @, 11) —iy (e, l2, @) andfilt(e, l2, @) EET e/

enumeration EnumState ::= enum(e) | enum(e, er, i) | errors(er) o L

(E1) enum(e) —¢ enum(e, &, {D}) (E4) enum(e,er, [W {l}) — enum(e,er U {(ek,d)}, 1 UI),

(E2) enum(e, 7, 2) —e errors(er) if filt(e, labs(e), 1) = erand(e, er) M0 (ek, d)

(E3) enum(e,er, | W {l}) —. enum(e, €T, 1), if solvable(filt(e, labs(e), 1)) andl _ {l U {l} | 1€ d /\Vlo cl. ZO z U {l}}

solve all the generated constraints. Then, when an errayusd meration algorithm stops. The found errors are then all tid-m
and minimised, the labels of the error are used to build neersil mal type errors of the analysed piece of code (see (). For

=/ . .
(seel in rule (E4)). Once all the filters are exhausted the enu- €xample, assume thatlec > e for an untypable given piece of

8 2010-8-19

code sdec. Then, the first enumeration state is (see r(#&)):
enun(e, &, {@}) where the first empty set is the set of found er-
rors (empty at the beginning) and where the second emptysset i
the first filter. Becausedec is untypable, the constraint solver fails
and returns a type errer. The minimisation algorithm minimises
er and returns a minimal errarr’ such thater’(1) C er(1). The
error er’ can beer if it was already in a minimal form when found
by the enumerator. New filters are then computed based onlthe fi
ter used to find this new errog(in our example) and the new error
itself (er’): {{i} | I € er’(1)}. The enumeration keeps search-
ing for errors using this updated search space: the new iate
enum(e, {er'}, {{l} | | € er’(1)}). For the next step, one of the
{l} wherel € er’(1) will be picked as the filter to try to find an-
other error. When a filter leads to a solvable filtered envitent,

the filter is discarded (ruléE3)) otherwise the filter is used to up-
date the search space as explained above (E4¥

4.6 Slicing. The last phase of our TES consists in the compu-
tation of a minimal type error slice from an untypable piede o
code and a minimal error found by the enumeration algorithine
nodes labelled by the labels not involved in the error areatided
and replaced by “dot” terms. For example, if we remove theenod
associated to the labél (the unit expression) ifil" ()2]% then

we obtain[1% dot-e(2)]%, displayed as (..) in our implemen-
tation. Dots are used as a visually convenient way to showv tha
information has been discarded. Fig. 10 extends our symax a
constraint generator to “dot” terms. Our constraint getweres ex-
tended to dot terms so that every piece of (our extendedpsynt
can be type checked (by generating constraints and by thengo
the constraints), which is needed to state our minimalitgda in
Sec. 4.8. We cablice any syntactic form that can be produced us-
ing the grammar rules defined in Fig. 3 and Fig 10 combined. We
call type error slice any slice for which our constraint generation
algorithm (defined in Fig 4 and Fig. 10 combined) only geresat
unsolvable constraints. Let us restrict our slice defingito struc-
ture declarations. Formally, a slice issdec and a type error slice

is asdec such that-solvable(sdec).

Flattening. Turning nodes not participating in errors into dot
nodes is not enough. Our slicing algorithm uses two tidyungct
tions flat andtidy. The flattening functiorflat flattens sequences
of parts pt). For example, flattening..1..(..0..)..) results

in (..1..0..). Not all nested dot terms are flattened: in order
not to mix up bindings in a slice, we do not allow a declara-
tion to be anept (expression term as opposed to a declaration)
and only allow ept’s to be flattened, so that declarations can-

Algorithm. Our slicing algorithm can be presented in a simple
fashion if our syntax forms defined in Fig. 3 and Fig. 10 are
regarded as abstract syntax trees. In such atiree leaves are
identifiers id and otherwise a node is labelled by a node kind
node and a label (denotednode' (treey, ..., tree,)). Using this
notation, we define out slicing functiahin Fig. 11.

4.7 Overall algorithm for Type Error Slicing. First, given a
SML structure declarationdec, our constraint generation algo-
rithm defined in Fig. 4 generates constraints structurednirer
vironmente. Then, type errors of are enumerated using the enu-
meration algorithm defined in Fig. 9. Once an error is foundhHzy
enumeration algorithm, it is minimised using the minimisatal-
gorithm also defined in Fig. 9. Then a slice is computed froen th
minimised error and the original piece of code using theirgdic
algorithm defined in Fig. 11. Both enumeration and mininidsat
rely on the constraint solver defined in Fig. 7. The compuyge t
error slices are finally reported to the user. In addition tgpee er-
ror slice, a type error report also includes a highlightifighe slice

in the SML user code, a message explaining the kind of the erro
(see Fig. 5), and a set of identifier status context depeiekerieor-
mally, our overall algorithmes is defined as follows:

tes(sdec) = {(sdec’, ek, vid) | sdec > e
A enum(e) —* errors(er)
A {ek,1Uvid) € eF
Asl(sdec, 1) = sdec’}

4.8 Minimality. Let us informally define the functiohindings
on environments. This function uses a modified version of our
constraint solver that keeps track of the bindings genérayethe
accessor rules(A1)-(A3)). Given a piece of codeyindings, us-
ing the constraint generation algorithm, generates arremvient,
filters out all the labelled equality constraint in the gexted en-
vironment, runs the modified constraint solver on the filiezavi-
ronment, and finally returns the recorded bindings. For gtam
if exp IS let val x = true in let val x = 1 in x end end,
and the labell; is associated to théth occurrence ofx then
bindings(ezp) = {(l2, Is)}.

We define the sub-slice relation as follovsglec: T; sdecs iff
sl(sdecz, 1) = sdeci andbindings(sdec1) C bindings(sdecz).

We saysdec: is a minimal type error slice ofdec, iff sdeca T
sdecy, —solvable(sdecz) and for allsdec’ if sdec’ Ty sdecs and
sdec’ # sdecs for somel’ thensolvable(sdec’).

We consider minimality as a design principle for our TES even
though minimal slices do not always seem to be the correetemns

not escape the scope defined by a dot term. For example, wet0 type error reporting. For example for record field namesioés,

do not flatten(..val x = ()..(..val x = 1..)..x + 1..) tO
(..val x = ()..val x = 1..x + 1..) because they have differ-
ent semantics: the first slice is not typable but the second.é&t
flat be defined as follows (wherecan be any og, p, s, d):

fat(()) 0
flat((pt) @pt) = {

ept@flat(pt), if pt = dot-z(ept)
<pt>@f|at(ﬁ), otherwise

The functiontidy tidies sequences of structure declarations
(sdec) when slicing structure expressions:

=0
tidy((dot-d(ept), dot-d(pt))@sdec)
. — —

= tidy((dot-d(ept@pt))Qsdec)

tidy((dot-d(@))Qsdec)
— . — —_ —

= tidy(sdec), if sdec not of the formdot-d(ept)@Qsdec’
tidy ((sdec)@sdec)

= (sdec)@tidy(sdec), if none of the above applies

we do not want to provide minimal slices, as presented in S&c.
For the subset of our TES presented in the present paper, we

believe the following holds: a slicelec’ is a minimal slice ofdec

iff (sdec’, ek, vid) € tes(sdec). We do not formally prove this
statement for diverse reasons. First, our TES is constdigiyg
updated and proving the minimality of one of its versions ldawt
guaranty the minimality of the others. Then, as mentioneavap
minimality is only a design principle. Let us finally stresat we

feel improving the range and quality of our slices is more @mgnt

than ensuring their minimality in particular.

4.9 Design principles. While developing our type error slicer
we discovered, developed, and followed the following pptes.
Constraint termsre those pieces of syntax that can occur anywhere
inside a constraint. In our system, this is aryyu, 7, o, or e.

1. Each syntactic sort of constraint terms should have a case
ranging over an infinite variable set. This allows incomgligifor-
mation in every possible place in constraints, which all@es-
sidering every possible way of slicing away parts of the paoy

2010-8-19

Figure 10 Extension of our syntax and constraint generator to “dathte

extension of the syntax

pt € Part = ept | sdec ConBind ::=-- - | dot-e(ﬁ) AtExp = | dot-e(ﬁ) Pat = | dot-p(p_af)
ept € ExpPart ::=ezp | ty | sezp | pat DatName ::=--- | dot-e(ﬁ) Expi=--- | dot-e(ﬁ) StrDec ::=-- - | dot-d(ﬁ)
Ty = d°t'e(17£) Dec:i=---| dot-d(ﬁ) AtPat ::=--- | dot-p(pTat)) StrExp = - | dot-s(ﬁ)
extension of the constraint generator
Parts ept > e < ept > (var, e)
Declarations dot-d((pty,...,pt,)) > [e1;- - ;en] < pty >erA---Apt, > ey Adjaler, ..., en)
Patterns dot-p({paty,...,pat,)) & (a, e1; - -;en) < pat; &> e1 A--- A pat, > e, Adjaler,..., en,a)
Structure expressions| dot-s((pty,...,pt,)) > (ev,[e1; - -sen]) < pt; & e1 A--- A pt, > en Adjaler, ..., en, ev)
Expressions/ Types/Constructor bindings/Datatype names|
dot-e((pty,...,pt,)) > (o, e1; - ;en]) < pt; et A---Apt, > en Adjaler,. .., en,)

Figure 11 Slicing algorithm

node € Node ::= tyV | tyC | tyA | cbN | cbU | dn | decV | decD | decO | explI | expL | expF | expA | patI | patA | sdec | sexplI | sexpS

The node kinds correspond to the cases of the external sygr@mar. In particularsexpS is the kind for a structure expression of the form
struct! sdecy - - - sdecy, end. In (SL3) and (SL7), = is chosen depending on the argument provided to the slicingtibn. For example, ifSL3), if

node = sexpS thenz is s.
(SL1) sl(node! (treey, .

.., treen), 1) = node! (sl (treeq, 1), ...

,sli(treen, 1)),

if | € 7andnode # sexpS
orsly (treeq,1) = node'!’ tree wherenode’ € {patI,patA}

(SL2) sl(node! (treeq, ..., treen), 1) = node® tidy((sly (tree1,1),...,sli(treen, 1)), if I € landnode = sexpS

(SL3) sl(node! (treeq, .
(SL4) sly (node! tree, 1) = sl(node! tree, 1) (SL6) sy (id, 1) = id
(SL5) sla(node! tree, 1) = sl(node! tree, 1) (SLY) sla(id, T

.., treen), 1) = dot-z(flat({sl2(tree1, 1), . .., sla(treen, 1)))), if none of the above applies

) = dot-a(().

syntax tree. This is essential to get precise type erroeslibat
include all relevant details and exclude the irrelevant.

For us, this means the soyis7, ande have the variable casés
«, andev. Our implementation has a variable case of raw identifier
statuses(is) which is omitted from this paper to save space.

2. Each syntactic sort of constraint terms should have ardepe
dency annotation case. This allows precise blame trackihish
in turn enables precise slicing, which we already motivétave.

For us, this means the sotis 1, 7, ande have the dependency
cases(is, d), (i, d), (r,d), and (e, d). We omit type scheme
dependencieso{ because handling schemes is already complex
and only dependencies on plain type$ ére needed in this paper.

3. In our system, when processing a program syntax tree node,

a constraint generation rule will return a main result (eith type
or an environment) and in some cases also an environmerit resu
(used for constraints and bindings when the main result isano
environment). The rule may connect information from theuhess
for the node’s subtrees to the other subtrees or to the nosXts.

The principle is that these connections should generallyide
constraints that carry the syntax tree node’s label and dnat
“shallow”, i.e., contain only connection details and nohswaints
from program subtrees. Fresh variables should be used dgdee
This allows a program syntax node to be “disconnected” fpety
errors that depend on the node’s details, while still keggipe
errors that arise solely due to connections between envieomn
accessors and bindings that pass through the node.

A good example in our system is rul&18) that handles struc-
tures (SML's modules). The environment for the structurbusgt
by the unlabelled constraint’= (e1;- - - ;e,). This “deep” con-
straint holds a complex structure in order to pack togethee-a
qguence of environments from the declarations making upue-str
ture body. The structure environment is connected to the nesult

by the labelled shallow constrainb = ev’.

4. Duplicating constraints should be unnecessary.

This seems obvious, but some previous constraint formalism
seem to be too weak to allow the needed sharing. Again, wehase t
example of rule(G18), where our system allows the environment

10

for the structure can be written as the sequential composibf
the environments for the component declaratians: - - ;e,. Here
the environmeni; from the first declaration is available both in
the subsequent declarations and also in the result (pradviide
bindings are not shadowed). A previous version of our systath
a weaker constraint system with let-constraints similathtose
of Pottier and Rémy [24], and the best solution we could skevi
required duplicating the environments for the pattern iparbof
each declaration, which resulted in an exponential slowdow

5. Dependencies must be propagated during constrainingolvi
exactly when needed. If dependencies are not propagatdddesp
they should be, minimization will over-minimize producimgn-
errors. This can be detected. More insidiously, propagatiepen-
dencies where they are unneeded will keep alive unneedes par
of error slices much longer during minimization, resultimgse-
rious slowdowns. Because correct results are eventuatigymed,
detecting such bugs is harder so this issue requires great ca

For example, an earlier version of our constraint solverietp
dependencies from declarations in a structure to the streist
result, forcing the minimizer to remove each declaratioe aha
time. Debugging was hard because only speed suffered.

More generally, the constraint solver should be designed to
produce error slices (before minimization) that are as elts
minimal as can be reasonably achieved. If constraint sglyields
a non-minimal error slice, then solving steps must have &ted
a constraint with a location on which it does not uniquelyetep

5.

5.1 Supported features. Our TES handles most SML fea-
tures, e.g., structures, signatures, datatype replicaitipandled
like oper), operator and constant overloading, many uses of func-
tors, etc. We also handle imperative features such as esosgnd

the value polymorphism restriction. We also slice contxtsitive
syntax errors, which comes naturally from handling ideetifta-
tuses and doing context-independent type checking, ea@cur-

ring twice in the pattern iin (x, x) => x is an error only ifx has
value variable status. We do not yet handle fixity changepeTy

Implementation details

2010-8-19

Figure 12 Highlighting of an SML type error in Emacs

Fle Edit Options Buffers Tools SML Help
| Eatatgpe [{'a, ‘b, 'e) t = Red of 'a * 'b * 'c
| Blue of 'a * 'h* 'c
| Pink of 'a* 'h* 'c
| Green of 'a * 'h * 'h
| Tellow of 'a * 'bh * 'c
| Orange of 'a * 'h + 'c
fun trans (Red (®x. v. 2)) = Blue (¥, = &)
| trans (Blue (% v, &)) = Pink vy, = 2
| trans (Pink (x. ¥. 2)) = Green (y, x 2z}
| trans {Breen (x, ¥, z)) = Yellow (y, = z)
| trans (Yellow (x, v. z)) = Orange (y. = zZ)
| trans (Orange (x. . 2)) = Red ¥y, = 2
type ('a, 'h) m = {'a, 'a, 'h} £ * b
wal x = (Red (2, 2, false), true)
= wal v : {ink, bool) u = (trans (#1 x). #2 x)
--:-- test-prog.sml &1L (1,0} (SML) ——=-—-——-—— 4
=

and structure sharing is incomplete. Some errors involeigglity
types and flexible record patterns are not reported.

5.2 Performance. Our implementation is currently usable for
small projects (a few thousand lines) and is steadily impgvOur
latest constraint system and solver is 10 to 100 times fastaany
cases than before we switched to using constrained enveotam
(e2;e1). Our previous TES version was already enormously faster
than the original by Haack and Wells due to avoiding dupiicat

of polymorphic types.

5.3 User interface. An Emacs interface (and a preliminary one
for Vim) highlights slices in the edited source code. Thearalso

a terminal command-line interface. Figure 12 presentseesghot
of the type error presented in Sec. 2.1 highlighted in Ema@bs.
light pink corresponds to slices other than the focused one.

5.4 The Standard ML basis library. Our examples have used
operators like: : and+. For now, we allow defining the Standard
ML basis in a file, and we provide a file declaring a portion of
the basis. For the future, we have begun implementing a way to
use library types extracted from a running instance of SM1, fbut
there are still technical challenges to overcome.

6. Related work

6.1 Methods making use of slices.After the first version of
TES presented by Haack and Wells, many researchers began t
present type errors as program slices obtained from urisie\sts

of constraints.

Neubauer and Thiemann [21] use flow analysis to compute
type dependencies for a small ML-like language to reporetyp
errors. Their system uses discriminative sum types and calyze
any term. Their first step (“collecting phase”) labels thedstd
term and infers type information. This analysis generatesteof
program point sets. These program points are directly dtare
the discriminative sum types. A conflicting type (“multia?) is
then paired with the locations responsible for its generatTheir
second step (“reporting phase”) consists in generatirg egports
from the conflicts generated during the first phase. Slicedailt
from which highlighting are produced. An interesting dkigthat a
type derivation can be viewed as the description of all typers in
an untypable piece of code, from which another step then atesp
error reports.

Similar to ours is work by Stuckey, Sulzmann and Wazny [27,
29] (based on earlier work without slices [25, 26]). They gpe
inference, type checking and report type errors for the GHaon
language (a modified Haskell subset). Chameleon includgs al
braic data types, type-class overloading, and functioepkdden-
cies. They code the typing problem into a constraint probéer
attach labels to constraints to track program locationstagialight
parts of untypable pieces of code. First they compute a nahim-
satisfiable set of generated constraints from which thegcseine

11

(0)

of the type error locations to provide their type explanatithey
finally provide a highlighting and an error message dependim
the selected location. They provide slice highlighting bsing a
different strategy from ours. They focus on explaining dotdlin
the inferred types at one program point inside the errortlonsset.
Itis not completely clear, but they do not seem to worry munobua
whether the program text they are highlighting is exactly more
and no less) a complete explanation of the type error. Fanpig
they do not highlight applications because “they have ndiekp
tokens in the source code”. Itis then stated: “We leave inéouser
to understand when we highlight a function position we map al
refer to its application”. This differs from our strategydaeise we
think it is preferable to highlight all the program locat®orespon-
sible for an error even if these are white spaces. Moreokey, tlo
not appear to highlight the parts of datatype declaratiehesvant
to type errors.

When running on a translation of the code presented in Séc. 2.
into Haskell, ChameleonGecko outputs the error reportigdbrt
displayed below (the rest of the output seems to be intenfial-i
mation computed during unification). This highlighting indi¢ies
the same error location as SML/NJ and would not help solve the
error.

ERROR: Type error; conflicting sites:
y = (trans x1, x2)

Significantly, because they handle a Haskell-like langutgsy
face challenges for accurate type error location that afferdint
from the ones for SML.

Gast [9] generates “detailed explanations of ML type eriors
terms of data flows”. His method is in three steps: generation
subtyping constraints annotated by reasons for their g¢ioer
gathering of reasons during constraint unification; trarmeftion
of the gathered reasons into explanations by data flows. bledas
a visually convenient display of the data flows with arrows in
XEmacs. Gast’'s method (which seems to be designed only for a
small portion of OCaml) can be considered as a slicing method
with data flow explanations.

BraRRel [7] presents a generic approach (implemented for the
language Curry) for type error reporting that consists i tif-
ferent procedures. The first one tries to replace portioreodé by
dummy terms that can be assigned any type. If an untypabte pie
of code becomes typable when one of its subtrees has beecedpl
by a dummy term then the process goes on to apply the same strat
egy inside the subtree. The second procedure consists ursthef
a heuristic to guide the search of type errors. The heuiisti@sed
on two principles: it will always “prefer an inner correctigpoint
to an outer one” and will always “prefer the point which isabed
in a function farther away in the call graph from the functiehich
was reported by the type checker as the error location”. &iaf3
method does not seem to compute proper slices but instegleésin
out different locations that might be the cause of a typereénside
a piece of code.

6.2 Significant non-slicing type explanation methodsHeeren
et al. designed a method used in the Helium project [15, 141216
to provide error messages for the Haskell language relyim@ o
constraint-based type inference. First, a constrainttgiamener-
ated from a piece of code. For an ill-typed piece of code, dlicbn
ing path called an inconsistency is extracted from the camst
graph. Such a conflicting path is a structured unsolvablefdgpe
constraints. Heuristics are used to remove inconsistenteeach
type constraint is associated a trust value and dependirthese
values and the defined heuristics, some constraints arardest
until the inconsistency is removed. They also propose sqmne- “
gram correcting heuristics” used to search for a typableeief
code from an untypable one. Such a heuristic is for exampde th
permutation of parameters which is a common mistake in progr

2010-8-19

ming. Their approach has been used with students learnimgy fu
tional programming. Using pieces of code written by studemtd
their expertise of the language they refined their heussfibis ap-
proach differs from ours by privileging locations over athey the

7.2 Future work. We have already implemented some merging
of minimal slices and are extending this idea to other kindrobrs
than record clashes, such as for unmatched signature spéoifis.

In the near future, we plan to finish extending our TES to tlie fu

use of some heuristics. They do not compute minimal slices an
highlightings.

We present below the most interesting part of the error tepor
obtained using Helium on a translation of the code preseimed

SML language. This includes finishing handling the key fematf
functors and less vital features such as flexible recordgjoaléy
types, which can cause errors we currently do not detect.

We also plan to extend our ideas to other languages such as the

Sec. 2.1 into Haskell. It is reported thatandtrans don't have the
expected types. The application, which is at the end of tle cis
then blamed when our programming error is at the very begnni
of the code.

(16,6): Type error in application

expression : trans x1
term : trans
type :Ta a a ->Ta a a

does not match : T Int Int Bool -> T Int Int Bool

Compilation failed with 1 error

They have also recently tackled the task to report type rror

for Java [5, 6]. Error reports provided by usual compilers ba of
little help, especially in the presence of generics. El Bawisand
Haage try to do a better job by keeping track of more infororati

during type checking. Having more information at hands when

analysing an untypable piece of code allows a more global vie
its type errors and leads to more informative error repdit& main
difference between type error reporting for SML and for Jataat
in Java “types are instantiated based on local informatidyp and
not through a long and complicated sequence of unificatifsjs”

Lerner, Flower, Grossman and Chambers [19] present type err
messages by constructing well-typed programs from iletypnes
using different techniques (like Heeren et al. [12]), esgitching
two parameters. Automatically conceived modificationsh® itl-
typed piece of code are checked for typability. They targainC
and also developed a prototype for C++. The new typable gézer
code is presented as possible code that the programmer haigét
intended. It could be interesting to study the combinatibmhcs
with TES.

7. Conclusion

7.1 Summary of contributions.

1. We solve a previous efficiency problem of TES (combina-

torial explosion of the number of generated constraints) allso
support features such as declaration sequences, strsicadpen
with the techniques of constrained environments and enrrient
variables.

2. We solve SML’s identifier status ambiguity (value varebl
vs. datatype constructor) while also computing minimaktgoror
slices by using type constraints with context dependerandden-
tifier statuses.

3. We solve many other problems to provide clear and helpful

type error slices for many different kinds of SML errors, wafhi
have been carefully designed to provide just the infornmatiee
programmer needs.

4. This paper reports for a stripped-down core of SML the

essential technical details of the TES machinery that stiee
trickiest of the above-mentioned problems, and discuseeses
implementation issues.

5. We have an implementation that covers most of the SML
language. A web demo is available, and there are downloadabl

F# programming language or the C++ template language.

Finally, we have done user evaluations and begun designing

proper scientific experiments to compare the effectiveresds-
proving the productivity of real users of TES vs. more trextiail
type error messages.

References

[1] A.W. Appel. A critique of Standard MLJ. Funct. Program.3(4), 1993.

[2] M. Beaven, R. Stansifer. Explaining type errors in pobnphic languagesACM
Letters on Programming Languages and Systeétis4), 1993.

[3] M. Blume. Hierarchical Modularity and Intermodule OptimizatiohD thesis,
Princeton University, 1997.

[4] M. Blume. Dependency analysis for Standard MACM Trans. Program. Lang.
Syst, 21(4), 1999.

[5] N. E. Boustani, J. Hage. Improving type error messagegémeric java. In
PEPM ACM, 2009.

[6] N.E.Boustani, J. Hage. Corrective hints for type ineatrgeneric java programs.
In PEPM ACM, 2010.

[7] B.BrafRel. TypeHope - there is hope for your type errorslHL04 [17].

[8] L. Damas, R. Milner. Principal type-schemes for funotéb programs. In
POPL82 New York, NY, USA, 1982. ACM.

[9] H. Gast. Explaining ML type errors by data flows. In IFLQ47].

[10] C. Haack, J. B. Wells. Type error slicing in implicitlyped higher-order
languages. ESOR vol. 2618 ofLNCS Springer, 2003.

[11] C. Haack, J. B. Wells. Type error slicing in implicitlyped higher-order
languagesScience of Computer Programmirip(1-3), 2004.

[12] J. Hage, B. Heeren. Heuristics for type error discovang recovery. Irl8th
Int'l Symp., IFL 2006 vol. 4449 ofLNCS Springer, 2007.

[13] R. Harper. Programming in Standard ML, 2009. Workingftiof August 20,
2009.

[14] B. Heeren, J. Hage. Type class directives.7th Int'l Symp., PADL 2005vol.
3350 ofLNCS Springer, 2005.

[15] B.Heeren, J. Jeuring, D. Swierstra, P. A. Alcocer. laying type-error messages
in functional languages. Technical report, Utrecht Ursitgy 2002.

[16] B.J.HeerenTop Quality Type Error MessageBhD thesis, Universiteit Utrecht,
The Netherlands, 2005.

[17] 16th Int'l Workshop, IFL 2004vol. 3474 ofLNCS Springer, 2005.

[18] O. Lee, K. Yi. Proofs about a folklore let-polymorphigpe inference algorithm.
ACM Transanctions on Programming Languages and Sys@2bi), 1998.

[19] B. S. Lerner, M. Flower, D. Grossman, C. Chambers. Seagfor type-error
messages. IACM SIGPLAN 2007 Conference PLIZAICM, 2007.

[20] B.J. McAdam. On the unification of substitutions in typéerence. InL0th Int’l
Workshop, IFL'98 vol. 1595 ofLNCS Springer, 1999.

[21] M. Neubauer, P. Thiemann. Discriminative sum typestedhe source of type
errors. In8th ACM SIGPLAN Int'l Conference, ICFP 2008CM, 2003.

[22] M. Odersky, M. Sulzmann, M. Wehr. Type inference witmstrained types.
Theor. Pract. Object Sys6(1), 1999.

[23] F. Pottier. A modern eye on ML type inference: old teciuds and recent
developments. Lecture notes for the APPSEM Summer Schd@b.2

[24] F. Pottier, D. Rémy. The essence of ML type inference.Bl C. Pierce, ed.,
Advanced Topics in Types and Programming Languatfespter 10. MIT Press, 2005.
[25] P. J. Stuckey, M. Sulzmann, J. Wazny. Interactive typbugiging in haskell.
In Haskell '03: Proceedings of the 2003 ACM SIGPLAN workshopiaskell New
York, NY, USA, 2003. ACM.

[26] P.J. Stuckey, M. Sulzmann, J. Wazny. Improving typermdiagnosis. ItHaskell
'04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskieiv York, NY,
USA, 2004. ACM.

[27] P.J. Stuckey, M. Sulzmann, J. Wazny. Type processingoimgtraint reasoning.
In 4th Asian Symp., APLAS 200®I. 4279 ofLNCS Springer, 2006.

[28] M. Wand. Finding the source of type errors. 18th ACM SIGACT-SIGPLAN
Symp., POPL'86New York, NY, USA, 1986. ACM.

[29] J. Wazny. Type inference and type error diagnosis for Hindley/Milrveith
extensionsPhD thesis, University of Melbourne, Australia, 2006.

packages for Ubuntu (covering also some other Debian-based[30] J. Yang. Explaining type errors by finding the source dfjae conflict. Inlst

systems) and CentOS (covering also some other Red-Hattbase

systems). The web site iSittp://www.macs.hw.ac.uk/ultra/
compositional-analysis/type-error-slicing. We also have an-
other implementation that faithfully implements just thaper.

12

Workshop, SFP'9%xeter, UK, 2000. Intellect Books.

[31] J.Yang, G. Michaelson, P. Trinder. Explaining polymploic typesThe Computer
Journal 45(4), 2002.

[32] J. Yang, J. Wells, P. Trinder, G. Michaelson. Improvgpet error reporting. In
12th Int'l Workshop, IFL 2000vol. 2011 ofLNCS Springer, 2001.

2010-8-19

A. Additional details for Section 4
A.1 Details for Section 4.1 (External syntax)

Remark about syntactic restrictions on our external syntax.
Note that we do not enforce all the syntactic restrictionthefSML
syntax. For example, in SML, in a recursive declaration sash

val rec pat < exp, the expressiorzp must be an-expression.

A.2 Details for Section 4.2 (Constraint syntax)

Comparison with Pottier and Rémy’s let-constraints. Our
constraint system has evolved through many versions. One ea
lier version of our constraint system had a kind of constr#iat
was very close to the let-constraihtsf systems of Pottier and
Rémy [24, 23]. Pottier and Rémy define one system [24] that i
an instance of HMX) [22], and Pottier defines a very similar sys-
tem [23] as a variation of the Damas/Milner type system. In ou
discussion, we will collectively refer to these two systeassthe
PR (Pottier/Rémy) system and ignore their technical déffiees,
although our presentation will follow more closely the metation
of Pottier and Rémy [24].

In PR, a constraint can, among other things, be a let-canstra
a subtyping constraint, a type scheme instantiation caimstra
conjunction of constraints, or the constant (and satisfiatle
constraint. A PR let-constraint looks liket id:c in C where
¢ ranges over type schemes, astranges over constraints. In
PR, type schemes are of the fowiX [C].T where X is a type
variable set(C is a constraint, and” is a type. We borrow for our
discussion two abbreviations that Pottier and Rémy defibjethe
form VX . T stands for the type schemv&X [true]. T, and (2) the
formletid: T in C stands folet id:v@.T in C.

The idea of let-constraints is that a constraint of the form

let id:vX[C].Tin (id = T; Aid = Ts)
is (roughly) equivalent to a constraint of this form:
GX(CAT=T))ANEFX(CAT=Te))A(IX.C)

The key point is that one can get the effect of making the gppro
ate number of copies a@ and T" while keeping the size of the con-
straint proportional to the program size. The constraintsneed
to be copied and each copy solved independently, but each cop
can be solved immediately before the next copy is made, avoid
ing an exponential increase in the amount of memory useagluri
constraint solving. To get the full benefit of this, an impkmta-
tion should be eager in simplifying’ and calculatingl” as much
as possible before making any copies. (In our applicatioepuld
be good to also be lazy in simplifying and calculating onlggé
portions of C' and T' that are actually needed by the usesdfbe-
cause our type error slicer needs to spend most of its timénfind
minimal portions of unsatisfiable constraints. We leavegtigat-
ing this idea for future work.)

In our latest system, the equivalent of let-constraintstearep-
resented as a special case of what our system supportsniifgr
a let-constraint of the forrtet id:vX [C1]. T in C> generated for a
SML recursivelet-binding would be represented in our system by
(using a combination of rulggs2) and(G12) in Fig. 4)

[poly((Lid=(T,v))se1);e2]

where C; is represented by; and T is represented by. (Let-
constraints generated for other SML forms would not neaégsa
get the same representation.) There is no explicit reptagen of
X in the representation in our system; instead the correcofset

1Technically, the let-constraints of Pottier and Rémy aasdal on their
more primitive def-constraints.

13

type variables that can be quantified is calculateddoly which
generates type schemes when it handles environments afrtine f
poly(e) (see Fig. 6).

We now give an example comparing the constraints that would
be generated for SML recursive value declarations in theyRRm
and our system. Consider the SML expression

let val rec £ = fn z => erp; in exp,

whereezp, andexp, are two sub-expressions. The constraint gen-
erated in PR for this let-expression would be

let£:VXY[letf: X — YinletzzX in C1].X — Yin C2

whereX andY are internal type variables, whe’éY is PR nota-
tion for the sef{ X, Y'}, whereC; for ¢ € {1, 2} is the constraint
generated foexp,, and whereY is the result type oézp, . Due to
the way let-constraints declare a local environment, thesy&em
needs two binders far. The outer one polymorphically binds the
occurrences of in exp,, and the inner one monomorphically binds
the occurrences af in exp, .

Some of the differences between PR and our system can be
seen when comparing how this example is handled. Our camistra
generator builds roughfythe following constraint (technically, an
environment) for the example let-expression:

[poly(Ji=(a1—az,v);[(tz=a1);e1]);e2]

In contrast to how PR handles this example, only one binder fo
f is needed in our system. Two features of our system intecact t
allow this. First, in a constrained environment {e2), the bindings
from e; are available irez, but also form part of the result (except
where bindings irez shadow them). Second, in an environment of
the formpoly(e), thepoly operator changes the status of binders
in the result from the status they had internally. In the epiam
constraint (environment) aboves binder is monomorphic within
the scope of th@oly operator (ine;) and polymorphic outside (in
62).

There is a sense in which what the PR system does is similar
to what would happen in our system if thely operator worked
on just single types or single bindings rather than entingren-
ments. It is significant that we can form environments of threnf
poly(lvid=(r,is);e1);e2, in which the type forvid is available
monomorphically ine; and polymorphically ires.

The differences between the PR system and our system gain
greater significance when we consider how to handle the SML
module system. The most basic construct of the module syistem
what forms the body of a structure, namely a sequence of idecla
tionsdecs - - - decy,. For this discussion, assume eakla; declares
exactly one identifier:;. Consider how declaration sequences can
be handled by the PR system and our system. PR can handle such
a sequence with nested let-constraints as follows:

letzq:01in (---letxp:dnin Co---)

The constraints must be nested as indicated because:eesobnly
visible in the ‘in” part of the corresponding let-constraint, where an
identifier binding occurrence is visible when constrairdas cefer

to it. In contrast, our system handles the same declaratignece
with the environment

el en

2We have omitted labels and simplified a bit. The actual cairdtthat is
generated (still omitting labels though) is

[(eva=poly(lf=(a1, v);[(evi=(Tz=a2));evi;ei;ci];c2));eva;ea;cs]

whereci = (az=az2—a4), c2 = (e1=a3), c3 = (as=ap), (a4, €1)
is generated foezp,, (o, e2) is generated foezp,, andas is the type of
the entire let-expression.

2010-8-19

wheree; is the environment generated for the declaratien; for
eachi € {1,...,n}.

The importance of the difference becomes clearer when we
consider how to represent full structures and structur@ibiys.

strained environments forms ;eo where the accessors occurring
in e; can depend on the binders occurringeir), and another one
for constraining the scope of a type environment (obtaimedks
to our environments of the forifz]). The environment we generate

Take the above example declaration sequence and wrap it up infor the structure expression presented above is then sitoildne

a structure definition:
structure sid = struct decy - - - decy, end

A structure expression packs into a unit a sequence of dgias.
The normal scope of the declarations ends at the end of the-str
ture, and subsequent access to the declarations must gugylthttoe
structure itself, which must first be bound to a name via eithe
structure declaration like above or a functor applicatiinen per-
forming type inference for SML structure expressions, itriest
natural and straightforward that the type inferred for aicture
will be a sequence of individual mappings from declared ratoe
their types. Such sequences are often caklenironmentslt seems
clear that any type inference method will need to handlerenvi
ments.

The PR system has never been extended to handle ML-style
structure$, but let us imagine how it might be extended to do this.
First, let us point out that Pottier and Rémy allow abbrém@the
above example of nested let-constraints as follows:

letI'q in Co, wherel'q = x1:61; - ;Zni00n

Let us call this constrain€y; where the “d” means “declarations”.
Given an SML structure definition, this kind of constraintnca
represent the constraints required for typability of thguemce of
declarations in the structure body, and it is the only easy twalo
so in the context of the PR system.

Now, how do we represent the connection of the structure’s
body to the structure’s name? The immediately (and naivelby)
vious idea is to extend PR with let-constraints of a form kmtio
let sid:T's in C, wheresid is a structure identifier, anfs is an en-
vironment (the type of a structure). Let us call this new ¢xist

environmently.

A.3 Details for Section 4.3 (Constraint generation)

An additional view of the constraints generated initially.
Our constraint generator (Fig. 4) only generates restliétems
of environments g where “g” stands for “generation”). Let us
present these restricted forms, wherés a restriction ofr, and
the other forms are restrictions ef(where “p” stands for “poly”

and “I"” for “labelled”):
t € ShallowTypes :=a | ad | avy | a1—a2
lbind € LabBind = Lo = v | Isid L oew | Ltv La

| Lvid = o | Lvid == ris | tvid = a

lc € LabCs = ev1£ evs | aét

lacc € LabAcc = acc!

lev € LabEnvVar =ev!

etp € InPolyEnv = lacc | lc | eipy;eipy

ep € PolyEnv = Lvid = (a, Tis) | ep;eip | eip;ep
eg € GenEnv == lev | lbind | lacc | lc | ev=eg

poly(ep) | egy;egs

The rules of our constraint generator either return envirents
e (rules(G12)-(G14),(G16)) or constrained variables of the form
(var, e) where e constrainsvar. In such a constrained variable,
var is in some cases an internal type variable(rules (G1)-
(G11),(G15)) and in some other cases an environment variable
(rules (G17)-(G18)). We chose not to have a constructor of con-
strained types that would build an internal type from an em
ment and an internal type (as;e2 builds a constrained environ-
ment from two environments), as it simplifies the preseatatf

Cs. This is not enough, because there needs to be some way toour system by not having deep type structures. Such a systégm w

connect the constrainfy to the environment's. In fact, the envi-
ronmentl’y inside Cy is just what we need, but there is no easy way
to get at it, because there is no mechanism in PR for gengratin
environment from a constraint. The easiest thing to do is&i the
entire constrain’; inside the constrainf, inside of Cy, because
the types of ther;’s are not accessible from outside;, but this
seems like turning the program inside out, because theeemtat

of the program must be nested inside the scope of the cantstrai
for just the structure’s body.

So one might then want to extend the PR constraint system with
an exporting mechanism and generate a constrained enarnm
of the form[Cy4].T's for the structure expression whe€e; would
export the type schemes of thes and wherel's would refer
to these exported type schemes. But, all this technicadiglly
shouldn’t be needed becauFg is already the environment that
we would want to generate for the structure expression.

The way our constraint system achieves that is by instead of
having only one mechanism (the let-constraints) to bindtifiers
and to restrict their scope (let-constraints define a locaps), it
has two separate mechanisms: one for bindings that doesnot r
strict the scope of the binders (we obtain this behaviour dyirtg
binding constraints of form:d=x and by having our general con-

3The order of the sequence is important because a type schemomé

value identifier in a structure can refer to a type constnuneme defined
by the structure, while at the same time a type scheme forferelift value
identifier can use the same type constructor name to referdefiaition

outside the structure.

4 Frangois Pottier told us this on 2010-08-09.

14

constrained types could be investigated. Having choseettorr
pairs of the form(a, e) for expressions, we then decided to follow
the same pattern for structure expressions and return phitse
form (ewv, e) instead of returning constrained environments of the
form e;ev.

A.4 Details for Section 4.4 (Constraint solving)

An additional view of the environments generated at con-
straint solving. During constraint solving (see Fig. 7), a unifica-
tion context of the form{«, e) is maintained. Such an environment
e has a restricted form as follows (it is of the form):

sbind € SolvBind = lte=p | lsid=es | ltv=a
| Lvid=o | Lvid=is

esrhs € SolvEnvRHS ::= ev | sbind® | es1;esa

es € SolvEnv =0 | C;esrhs

Moreover, if (u, e) occurs in a unification statetate and ev
occurs ine thenev ¢ dom(w). It is also the case that, for any
environment variablev, if ev € dom(u) thenu(ev) € SolvEnv.

We sometimes call an environment of the foem) a “solved”
environment.

Improvement of the generation of polymorphic environ-
ments. Fig. 6 definestoPoly which is used by rulg€P1) of our
constraint solver to generate a polymorphic environmeoinfra
monomorphic one by quantifying the type variables not odogr
in the types of the monomorphic bindings of the current uaific
tion context. In this figur& is the set of types of the monomorphic
bindings from the current unification context. The &eis the set

2010-8-19

of type variables occurring in’ (the type that we want to gener-

ment variables because when generated, these forms argsalwa

alise to &or all type scheme) that can be generalised and quantified shallow. As a matter of fact, by definition, the right-handesof

over. The dependencies in the dependencﬁ/sate the reasons for
not generalising the type variables occurring-irthat are not irtx
(these dependencies are the reasons why some type vargables
not allowed to be quantified over).

The computation off’ and our constraining of’ with d', even
though a correct approximation (that cannot generate fais®s
and that will eventually allow obtaining minimal type ersyrcould
be refined, thereby speeding up minimisation. We will nowspre
how this can be done.

Let us first define two functiongetDepsVar andputDepsVar.
The applicatiorgetDepsVar(«, 7, @) will result in the dependency
set occurring inr on the paths from its root node to any occurrence
of a.. The applicatiorputDepsVar(r, o, d) will result in the con-
straining of the occurrences of the type variablén = with the
dependency sei. The functiongetDepsVar is defined as follows:

;= _fd,fa=d
getDepsVar(a, o/, d) = {@7 otherwise
getDepsVar(T i, ,d) = getDepsVar(r,a,d)
getDepsVar (11572, a, d) = U?_, getDepsVar(7;, o, d)

getDepsVar(TE, a, El) = getDepsVar(r, o, d U El)

The functionputDepsVar is defined as follows:

— _l . _ ,
putDepsVar(a, o/, d) _ {a‘ Jifa=a«

«, otherwise
putDepsVar (7 1, v, d) = putDepsVar(7, o, d)
putDepsVar (11 =72, a, d) = T TS
where fori € {1,2}, 7/ = putDepsVar(r;, o, d)

putDepsVar (7%, , E/) = putDepsVar(, a,ﬁ/)d

Let us now present another way of constrainirigin Fig. 6
(different from constraining it Witkﬁ'). In the following,7’, 7 and
@ are the same as in Fig. 6. First,

{a1,...,an} = (vars(7") NI TyVar) \ (@ U {@aum})

is the set of type variables that are not allowed to be quadtifi
the generated type scheme. Then,

Vie{l,...,n}.d; ={d| 10 € TAd € getDepsVar(ro, i, @)}
is the set of reasons far; for not being quantified over. Finally,
Vie {1,...,n}. 7 = putDepsVar(ri_1, a;, d;)

where 7, = 7'. The functiontoPoly would then generate the
following type schemeva. 7),.

A.5 Details for Section 4.5 (Minimisation and enumeration)

Clarification on the domain of the constraint filtering func-
tion. Note that our filtering function (Fig. 8) is not defined on all
environments. These forms on which the function is defined co
respond to the ones generated by our constraint generagfingd

in Sec. A.3). When applied to unlabelled equality constsaon
environments, our filtering function is only applied to umidied
equality constraints of the forrw= e because our constraint gen-
erator only generates variables as the left-hand-side efjaality
constraint on environments. Similarly, we only apply outefiing
function on constrained environments of the foem(constrained
by a unique label).

The intended meaning of a labelled constraint is that it only
must hold if the condition represented by the label is truee T
machinery of this paper is designed to implement this inteind
semantics.

Given that, we then allow our filtering function to entirelisd
card labelled equality constraints, bindings, accesswiseaviron-

15

an accessor can only be a variabtei) or a raw statuss).
When generated, the right-hand-side of a binding is eitheara
able ar), a type constructor name), or a raw statusrgs). Con-
cerning the generated equality constraints, by shallow eamalc
constraint as defined in Sec. A.3. The non-shallow geneexjadl-
ity constraints are the non-labelled ones generated by (@é),
(G12), (G13), (G14), (G16) and(G18). Because these constraints
are not labelled, they are then never filtered out but therifilge
function is recursively called on the right-hand-sidestefge con-
straints as they can be non shallow.

Further explanations on minimisation and binding discard-
ing. A step of the first phase of our minimisation algorithm is as
follows: we test if we can remove a labkebssociated to a binder
bind from the slice we want to minimise (and still obtain a type
error slice) by first filtering the constraints of the originéece of
code as followsfilt(e, 7, {1}), to obtaine’ and wheree is the envi-
ronment generated for the original piece of code aiglthe label
set labelling the current slice. In order not to mix up thedigs,
the binderbind associated té is then replaced by a non labelled
dummy binder that cannot participate to any error but thltests

as a binder. If we then solve’ and obtain an error then no label
labelling (ine’) an accessor to (the dummy version of) our binder
bind will occur in the found error (we give below an informal argu-
ment as why none of these accessors will be part of the new) erro
The bindings in this new error are then not mixed up. The found
error is then the new slice to try to minimise further and naxe

the constraints will be filtered w.r.t. this slice, the bingibind will

be completely thrown away (as well as the other constraiots n
participating in the new error).

Note that filtering itself does not prevent bindings to gexexi
up because, for example, filtering allows throwing away timelér
generated for the second occurrencexdh fn x => fn x => x
while not throwing away the binder generated for the firstuvec
rence ofx and not throwing away its accessor. However, we give
below an informal argument as why we never filter a binder with
out filtering its accessor.

Let us now explain why when our unification algorithm returns
an error, the error does not involve accessors to dummy bsrate
accessors without their corresponding binders.

According to rules(A1)-(A4), during unification the label la-
belling an accessor only gets recorded in a unification coiftehe
accessed identifier is in the type environment stored in tfiéca-
tion context in the current state. In the environment (1hezitthe
accessed identifier has a non labelled dummy static seragngic
sulting from filtering) and then, according to ruléd3), (U4) and
(S7), the label of the accessor does not get recorded into the unifi
cation environment. Given an accessed—=x, according to rules
(A1)-(A3), a constraint of the formvar=x wherevar € DumVar
comes from the corresponding binder and Var or of the form
a=x wherez € RawldStatus, is generated. The(U3), (U4) or
(S7) applies and the newly generated constraint is discarded wit
out generating anything. (2) Or the accessed identifier hetsedied
non dummy static semantics and both the label associatdteto t
binder and the one associated the bound occurrence willyalwa
occur together in the unification context.

This is why we believe that an identifier occurring at a non-
binding position in a piece of code (an accessor) only ocoues
slice if it is bound and its binder occurs in the slice as well.

This argument would be enough if only the rulgsl), (G7),
and(G17) were generating accessors because each of them gener-
ates a unigue labelled accessor. This is unfortunatelyhetase
for the rules(G6) and(G8). These rules generate labelled accessors
as well as labelled equality constraints. We might thenkttivat

2010-8-19

these labelled equality constraints can participate inresr gvith-
out having the accessor and its binder participating. Wedcthen
potentially have the label of an identifier occurring at a taypo-
sition participate in an error without having its bindingcoerence
participate. We do not believe so. First, let us point out thés
issue could be fixed by enforcing in our labelled syntax ttzathe
identifier must be labelled by a unique label that does natllaby
larger piece of syntax. This enforcement can be considesedia-
sign principle concerning the labelled syntax, that wadol@iwed
for clarity purposes. Let us now explain why it works evenhaitt
the enforcement described above. Let us first consi@éy. The
type returned by the rule (the type; in (G6)) does not directly
occur on the left or right-hand-side of the generated cairgtrFor
a2 (which is the link with the context of the pattern) to be con-
strained to be equal to a type, fikst has to be constrained to be
equal to a type. The only way fer; to be constrained is to solve
the generated accessor which would result in the case ofran er
in having the binder of the identifier participate in the erfbhe
same reasoning applies {68). The type returned by the rule()

is constrained to be equal toé which at this stage can be equal
to any other type. This is true because we have the interpal ty
constructorar which corresponds to the arrow type constructor
Without this type constructasr, during unification we could infer
thata 6 cannot be an arrow type (of the form—72) and generate
an error. Because of that, we would obtain:

(..datatype ’a t = U of ’a
..datatype (..) =T of (..) t
..val rec g = fn (..) => (..)
..{(..val rech = fn U x => T x
.h U g..)..)

as a minimal slice for:

structure S = struct
datatype ’a t = U of ’a
datatype ’a t =T of ’a t

val rec g = fn v => v
val rec £f = fn v => let val rec h = fn U x => T x
in h (U g)
end
end

In the first slicet’s occurrence irt’s declaration is not bound to
the same occurrence efas in the original code.

But because we allowt § to be equal to any type as long as
0 is not constrained to be equal to a type constructor name or to
ar we then need to resolve the accessor generated i @8eto
obtain a type error if any. For the piece of code presentedebo
we then obtain the following minimal type error slice insted the

one displayed above:
(..datatype ’a t = U of ’a
..datatype ’a t = T of (..) t
..val rec g = fn (..) => (..)
..(..val rech=fnUx =>T x
Lh (U g.))

This type error slice differs from the previous one by thespre
ence of the second binding occurrence @fi the slice.

Because of the invariant that if a binder is filtered out then
its bound occurrences are also filtered out, we can thenyeasil
compute the free identifiers thanks to rle4) which is the rule
for an accessor for which no binder exists in the current caiion
environment (free identifier) or for which the binder is héid

We could also enforce this invariant by (1) ensuring thantde
fiers are labelled independently from any other piece ofays
explained above), (2) ensuring that at constraint gererati a la-
bel [labels an accessor then it does not label any other corstrain
and (3) discarding accessors when the corresponding lsirater
dummy binders (binding a dummy variable or the status

16

Alternatively, we could enforce this invariant by addingetra
component to unification contexts as followat, e, 1), wherel
indicates the labels that are not allowed to participatenieraor. If
an error is found involving a label ihthen this error is not reported.

A.6 Details on Section 4.6 (Slicing)

An alternative formal presentation of the slicing algorithm.
We will now provide an alternative generic definition of thee¥nal
syntax presented in Fig. 3. We also extend our algorithm ti™d
terms. (This alternative definition is not the one preseritethe
main body of this paper for readability issues.) First we roefi
abstract syntax trees as follows:

class € Class ::=ty | conbind | datname | dec | atexp
| exp | atpat | pat | strdec | strexp
prod € Prod ::=tyVar | tyArr | tyCon
| conbind0f | datnameCon
| decRec | decDat | decOpn
| atexpLet | expFn
| strdecDec | strdecStr
| strexpld | strexpSt
| vid | app
dot € Dot ::=dotE | dotP | dotD | dotS
node € Node ::= (class, prod)

tree € Tree = (node, I, tree) | (dot, tree) | id

A node in a tregiree can either be a labelled node of the form
(node, 1, tree), an unlabelled “dot” node of the forffvot, tree),
or a leaf of the formid.

Let aterm be any term that can be derived from Fig. 3:

term € Term ==ty | ¢b | dn | dec | atezp | exp
| atpat | pat | sdec | sexp

Fig. 13 defines the functior Tree that associatestace to each
term.

We are now going to redefine out flattening and tidying func-
tions, and our slicing algorithm. First, we need a mechanism
to distinguish between declarations and non-declaratisimi-
lar to the distinction betweeBxpPart and Part \ ExpPart. Let
isClass(tree, class) be true iff tree = ({class, prod), I, Feé) and
class € class, used to check the class of the root node of a tree.
Let declares(tree) be true iffisClass(tree, {dec, strdec}).

Let us redefine our flattening functidhat:

flat(()) 0

(treei, ..., tree@@flat(%a)),
. if tree = (dot, (treeq, ..., treen))
flat(({tree)Qtree) = and(Vigl, ...,n}. ~declares(tree;)

or tree = ())
(tree)@flat(tree), otherwise

We slightly altered our flattening function from the one deéin
in Sec. 4.6, by adding the condition “éree = ()”. As a matter
of fact, the condition Vi € {1,...,n}. —~declares(tree;)” is there
to ensure that bindings are not mixed up as explained in Séc. 4
However, flattening the last dot term (if it actually is a detrh)
cannot mix up the bindings because there is no identifiertteft
bind. Therefore, flattening .val x = 1..(..val x = true..)..)
would lead to(. .val x = 1..val x = true..). We do not believe
that this is an improvement of the function because we hate no
found a concrete example where this situation occurs.

We also redefine our function that tidies sequences of declar
tions in structure expressions as follows:

2010-8-19

Figure 13 From terms to trees

Types toTree(tv!)

toTree(ty, 4 tys)
toTree(ty tcl)

toTree(vidl)
toTree(vid of ! ty)

Constructor bindings

Datatype names toTree(tv tct)

. l
Declarations toTree(val rec pat = exp) =

toTree(datatype dn L cb)
toTree(open' sid)
toTree(vid))

toTree(let! dec in exp end)

Expressions

toTree(fn pat 4 exp)
toTree([exp atexp]t)

)

f atpat)

Patterns toTree(vid

toTree(vid

Structure declarations

L1
toTree(structure sid = sexp)

toTree(sid})

Structure expressions

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
=
(
(
=

conbind, vid),

strexp, strexpld), [, (
strexp, strexpSt), [, (toTree(sdect), .

ty, tyVar), [, (tv))
ty, tyArr), [, (toTree(ty,), toTree(ty,)))
ty, tyCon), [, (toTree(t

y), tc))
s (vid))

conbind conblndOf), I, (vid, toTree(ty)))

datname, datnameCon), [, (tv, tc))

(
(
(
(
(
(
(dec, decRec), [, (toTree(pat), toTree(ezp)))
= ((dec, decDat), [, (toTree(dn), toTree(cb)))
(dec, decOpn), [, (sid))
(atexp, vid), [, (vid))
(atexp, atexpLet), [, (toTree(dec), toTree(exp)))
(exp, expFn), [, (toTree(pat), toTree(exp)))
(exp, app), I, (toTree(ezp), toTree(atezp)))
(
(
(
(
(

atpat, atpatVid), [, (vid))
pat, app), I, (vid, toTree(atpat)))

strdec, strdecStr), [, (sid, toTree(sezp)))

sid))

toTree(struct! sdecy - - - sdecy, end) = ..,toTree(sdecn)))
Dot terms toTree(dot-e((pty,. .., pt,))) dotE, (toTree(pt,), ..., toTree(pt,,)))
toTree(dot-d({pty,..., pt,))) = (dotD, (toTree(pt,), ..., toTree(pt,,)))
toTree(dot-p({paty,...,pat,))) = (dotP, <toTree(pat) .., toTree(pat,,)))
toTree(dot-s({pty,..., pt,))) dotS, (toTree(pty), ..., toTree(pt,,)))

tidy(()) = O__ I
tidy(((dotD, tree1), (dotD, treea))Qtree)
= tidy({{dotD, tree; Qirees))Qiree),
if Viree € ran(t?c;ﬂ. —declares(tree)
tidy(({dotD, @))@t?e?) = tidy(t?e?), if none of the above applies
tidy((tree)@t?e?) = (tree)@tidy(t%?), if none of the above applies

We also need the functiogetDot that generates a dot marker
(a term inDot) from a node kindrode:

getDot({ty, prod)) = dotE
getDot({conbind, prod)) = dotE

getDot(({datname, prod)) = dotE

(

(
getDot(({dec, prod)) = dotD
getDot({atexp, prod)) = dotE
getDot({exp, prod)) =dotE
getDot((atpat, prod)) = dotP
getDot({pat, prod)) = dotP

(

getDot((strdec, prod)) = dotD
getDot((strexp, prod)) = dotS

This function is, among other things, used by r(§&1) when
discarding a labelled node and so generating a new dot node.

Fig. 14 redefines our slicing algorithm. Note that rf&.9)
generates the dot markewtE, but we could have used any of
the terms inDot because the flattening functidlat discards such
terms. The functionsl; andsl, are defined on trees but also on
sequences of trees in rul¢SL6) and (SL7). Patterns are treated
specially because in our system we do not add the label asedci
to the fn-expression to the following type error slice (theebeing

cessor can directly refer tds binder without using any constraint
labelled by the label associated to the fn-expression.

B. Case study: modify user data types using TES.

Our TES is generally of great help when coding in SML. It is
particularly helpful when one wants to modify a user dataetyp
in a well-typed program. Let us consider the very simple paoy
provided in Fig. 15a where we define a structugeto deal with
labelled identifiers (see the typaiab). In this structure we define
some functions to handle labelled identifiers such as a iflumed
compare two labelled identifiersdmpare), or a function to build a
labelled identifier from a label and an identifiebfs).

Now, let us change the typ&i1ab, for a more convenient type:
type idlab = {id : id, lab : lab} Which is arecord type con-
taining two fields, one nameid of typeid and a second one named
1ab Of type1ab. Records are usually preferred over tuples because
they are more flexible and meaningful thanks to the field names

For example, one can access the field namdgd an expression
x Of type idlab (the new typeidiab) as follows:#id(x:idlab).
Records are more flexible than tuples because the order fiétte
does not matter in a record. For exampied = 0, lab = 0} iS
equivalent to{1ab = 0, id = 0}. Note that a tuplgid, 1lab) is
equivalent to arecor¢lt = id, 2 = lab}.

First of all, let us mention that when compiling the updated
code with SML/NJ v.110.72, one obtains a type error report fo
each function defined in the structure@ The report concerning the
compare function is as follows (where the first line has been split

thatx is declared as a unary datatype constructor and occurs at ajnto two lines to fit in the column):

nullary position in a pattern):

(..datatype (..) = x of (..)
Lfnox o= (LL)LL)

This is because the unconfirmed binder generated’fooc-
currence in the fn-expression turns into an accessor atreoms

solving & being declared as a datatype constructor) and this ac-

17

test-prog.sml:14.1-31.4
Error: value type in structure doesn’t match signature spec

name: compare
spec: ?.Id.idlab * ?.Id.idlab -> order
actual: (int * int) * (int * int) -> order

Note that the reported region is the entire structiae

2010-8-19

Figure 14 Slicing algorithm

—
. (node, 1, sly (tree, 1)),

(SL1) sl({node, I, tree), 1) =

(SL2) sly((dot, {treeq, ..., trees)), 1) = (dot, flat((sla(treeq, 1), . ..
(SL3) sla((dot, {treeq, ..., treen)), 1) = (dot, flat((sla(treeq, 1), . ..
(SL6) sl ((treeq, ..., treen), 1) = (sl (tree1,)7 .

(SL7) sla((treeq, ..., treen), 1) = (sly(tree1, 1), .

(node, 1, tidy (sl (tree, 1))),
(getDot (node), flat(sl, (tree,

if (1 € 1andgetDot(node) # dot8) or isClass(sly (tree(0), 1), {pat, atpat})

1))), otherwise
ssha(treen, 1))
ysla(treen, 1))))
., sli(treen, 1))

., sla(treen, 1))

if 1 € 1 andgetDot(node) = dotS

(SL4) sy ({node, I, tree), 1) = sl({node, I, tree), T)
(SL5) sly({node, 1, t_’m) = sl({node, I, tree), 1)
(SL8) sl (id, 1) =id

(SL9) sly(id, 1) = (dotE, ())

Figure 15Using TES to modify user data types

(a) Structure defining labelled identifiers

(b) Type error obtained after a type change (c) Program obtained after solving all the type errors

signature ID = sig File Edit Options Buffers Tools Errors SML File Edit Options Buffers Tools Errors SML Help
type id [*] signature ID = sig [=] signature ID = sig
type lab type id type i
type idlab type lab .
type idlab idlab
val compare : idlab * idlab -> order Widlab EEOEEES order = : idlab * idlab -> order
val cons : id -> lab -> idlab : id -> lab -> idlab : id -> lab -> idlab
A N 4 : idlab -> id : idlab -> id
val gotld : idlab -> id : idlab > lab : idlab - lab
val getlLab : idlab -> lab : idlab -> id -> idlab : idlab -> id -> idlab
val updId : idlab -> id -> idlab : idlab -> lab -> idlab : idlab -> lab -> idlab
val updLab : idlab -> lab -> idlab end
end structire Id @ 10 = struct ure Id : ID = struct
type id = int = int
structure Id : ID = struct :"Pe Llab f”_‘; A _-:): Sitat = 1’,‘; R E—
type id = int YpEddlab={3d [id) &b [lab} | type idlab = {id : id, lab : lab}
type lab = int filll compare W[(id1, LabL)piidzl) tab2il B fun compare ({id, lab}, {id = id', lab = lab'}} =
type idlab = id * lab case Int.compare (idl, id2) of case Int.compare (id, id') of
H EQUAL => Int.compare (labl, lab2) i EQUAL => Int.compare {lab, lab')
= X ==X
fun compare ((idl, labl), (id2, lab2)) = F 2=

case Int.compare (idl, id2) of fun cons id lab = {id, lab) fun cons 1d lab = {id = id, lab = lab}
EQUAL => Int.compare (labl, lab2) . fun getId (idlab : idlab) = #id idlab
| x =>x fun getrd (id, lab) = id fun getLab (idlab : idlab)} = #lab idlab
fun getlab {id, lab) = lab
. - (4 fun updId idlab id = cons id (getLab idlab)
fun cons id lab (id, lab) fun updId { , lab) id = cons id lab FunDudeab idlab lab = cons (getId idlab) lab
& 2 end|
. . fun updiab (id, _)} lab = cons id lab [#] ©&nd
fun getId (id, lab) = id e e T test-prog.sml ALL (31,3) b e e 4
fun getLab (id, lab) = lab =] {SML-TES) SLICING FINISHED WITH STATUS: slicer worked OK, 2
E‘ € program is typable
. . --:--- test-prog.sml ALl (28,0) (SML)----1
fun updId (., lab) id = cons id lab ==
fun updLab (id, .) lab = cons id lab

end

C. Extensions to handle more of SML

Let us now present some extensions of our TES in order to bandl
features such as local declarations, type functions orasiges.
Some of these features were already used in the examplesi@dov
so far. We will now formally present how to handle them.

Some syntactic forms will sometimes need to be redefined. In
this section, we will sometimes write =+ y to mean that in the
sets, syntactic forms of the forms are replaced by syntactic forms
of the formy.

In contrast, Fig. 15b presents the highlighting that oneaioist
when running our TES on the updated piece of code. The error
in focus (highlighted with a darker red) shows that the paatan
of compare is a pair of pairs. The second pair (equivalent to a
record with two fields named and 2) clashes with the type of
compare’s second parameter given in the signatupe which is
idlab, declared as a record with field names and 1ab in the
structure1d. In the parameter ofompare, the second pair has its
elements surrounded by grey boxes. We do so, because tuples d
not have explicitly written field names. The first grey boxrsunds
the first element of a pair that corresponds to a record whee t
element would be in field with field name(and similarly for the
second box). Note that the number of boxes indicates thg @irit
the tuple. In addition to the highlighting, we also reporype error
slice and the following message for this type error:

C.1 Local declarations

External syntax. First, let us extend our external syntax with local
declarations as follows:

dec = -+ | locall dect in deco end
Record clash, the fieldgd,lab} conflict with {1,2}
For example,
This error is not context dependent, so no context depeydenc ‘l’al x = true _
. ocal val x = 1 in val y = x end
is reported. val z = x + 1

The light pink corresponds to slices other than the focused o
One can then start solving the errors one at a time by jusingdit
the highlighted portions of code, to get from a well-typedgram
to another well-typed program (see Fig. 15c).

is untypable becauses last occurrence is bound to its first occur-
rence and not to its second (assuming tha the one from the
Standard ML basis library).

18 2010-8-19

Let us present another example:

val x = true
local val x = 1 in val y = x end
val z = fn w => (w y, W x)

Only the declaratiorz differs from the previous example. This
piece of code is also untypable becatudes a monomorphic type
and is applied tg which is an integer and which is a Boolean.
This example will be reused later in this section.

Constraint syntax. We extend environments with local environ-
ments as follows:

e=---|locesines

The meaning of such an environment is that it builds an envi-
ronmente; which depends om; and only exports the binders of
e2 (only e2’s binders can be accessed from outside the local envi-
ronment). Such environments differ from environments effthrm
e1;e2 because an environment of the forTtes builds a new en-
vironment from bothe; and e; and exports both the binders ef
(not shadowed by.) andex.

Environments of the fornje] are not enough to handle local
declarations because they do not allow partially exportingen-
vironment. The requirement imposed by local declaratienhat
only e; andez should be able to accesss binders. Unfortunately,
[e1;e2] does not expore,’s binders, ande; |;e2 does not allowne,’s
accessors to refer tq 's binders. The solution was to introduce en-
vironments of the form.oc e; in es.

Note that these environments are not only used to generate

constraints for local declarations, they are also used ¢p, lsandle
bindings of external type variables (see Sec. C.2). In Sege4
allow binding occurrences of explicit type variables to&davarger
scope than they should, which is harmless in the tiny languag
of Sec. 4, but needs to be (and is) fixed to work for full SML in
Sec. C.2.

Constraint generation. We extend our constraint generator with
the following rule:

l

(G19) locall deci in deco end (ev=eq1);locev’ iney <=

decy > e1 A deca > ea Adja(er, ez, ev)

Because our initial constraint generation algorithm gatesr
new forms of constraints, we extend thg forms as follows (see
Sec. A.3):

eg ::=---| loc eg, in eg,

The forms generated by our initial constraint generatoriare
fact more restricted than that, but we already anticipagefeims
generated by further extensions later, e.g., for type fonst

Constraint solving. We extend our constraint solver as follows:

(L1) solve({u, e), d,loc e1 in ez) — succ({(u”, eo)),
if solve((u,e), d, e1) —* succ((u’, e’))
andsolve((u’, e’),d, e) —* succ({u", e"))
anddiff(e’, e’”’) = Mseq; -+ - se;,
andep = e;ef;---sep,

(L2) solve({u, €), d,loc e1 in e3) — err(er),
if solve((u, e), d, e1) —* succ((u’, e’))
andsolve({u,e’), d, e2) —* err(er)

(L3) solve({u, e), d,loc e1 in e3) — err(er),
if solve((u,e),d, e1) —* err(er)

Constraint filtering (Minimisation and enumeration). We
extend our filtering function as follows:

fi|t(loc el in 62,11,72) = loc fi|t(e1,il,72) infi|t(61jl,72)

19

Slicing. Finally, our slicing algorithm does not need to be extended
but we need to update the tree syntax for programs as follows:

Prod ::= .-+ | decLoc

We also need to extend theTree function that associates trees
of the formtree to terms of the formterm as follows:

toTree(locall decy in deca end)
= ({dec,decLoc), [, (toTree(decy), toTree(dec2)))

Minimality. Let us illustrate what would happen if we were not
generating an extra labelled environment variable in @&9).
Consider the last example presented above. With our cusyest
tem, we would obtain a type error slice involving the locat-de
laration itself in addition to the nested declarationsk@ndy. If

we were not to label the environment variable in rg@&9) or if

we were to use; instead ofev' in the local constraint (and omit
ev=e; Which becomes useless), then we would obtain a type error
slice that would look like:

true

1

X
fow=>(..wy..wx..)..)

(..val x
..val x
..val y
..val z

which is typable and therefore not a minimal type error stitéhe
piece of code presented above: both bound occurrencesacé
bound tox’s second declaration.

C.2 Type declarations
External syntax. First, let us extend our external syntax with type
functions as follows:
Dec ::=--- | type dn L ty
For example,
type ’a t = ’a -> ’a -> ’a
datatype ’a u =U of ’a t

val x = U (fn x => x)

is untypable because is applied to the identity function which
cannot have the typaa -> ’a -> ’a.

Constraint syntax. We extend our constraint system with type
functions:

¢ € TypFunVar (type function variables)
0 € TypFun d

T €ElTy

¢ € Constraint :

var € Var

Let ¢aum be a distinguished dummy type function variable. We
redefineDumVar to beDumVar = {Qaun, €Vdun, dgun; Paun }-

We then have to change the binders and accessors for type
constructors:

tte=p B | te=0 Tte=8 Aecessorn, +e=¢
Constraint generation. Fig. 16 modifies our rules for datatype
names(G15), datatype declaration&13) and type constructions
(G8), and defines a new rulg20) for type function declarations.
Note the use of local environments (of the folroc e; in e2) in
rules (G13) and (G20), used to handle binding occurrences of
explicit type variables.

Because our initial constraint generation algorithm gatesr
new forms of constraints, we extend thdorms as follows (see
Sec. A.3):

|¢)a

2010-8-19

Figure 16 Constraint generation rules for type functions

(G8) ty te! (o, (tte = @)(a/' L 6 - a)se)
(G15) tv tc! + (o, o, Ltc L Ad . a, Lty L a’)
(G13) datatype dn Lebo ev:((alé o 'y);(alé a2);e1;loc ef inpoly

(G20) type dn L ty > ev:((aléaz);loc e} in (e2;e1));ev!

< ty > (o, e) Adja(e,a’, @)
< a#d
(e2));ev! < dn > (1,0, e1, e]) A cb > (a2, e2) A dja(er, e2, 7, ev)

< dn > (a1, af, e, e]) Aty > (a2, e2) Adja(er, e2, ev)

We also replace the initially generated type constructodéis
as follows:

l

lte =

; !
y LebBind,yye = A, o

Constraint solving. Because we replaced our binders for type
constructors, we need to modify our environment applicats
follows ((EA1) and(EA3) are the same as before but repeated here,
and(EA2) differs by the replacement gf by 6):

(EA1) (e';lvid < Ve 7)(vid) = Vai. ¢

(EA2) (¢/;1id <= &) (id) — 2,

(EA3) (e’;1id’ < z)(id) = ¢e/(id), if id # id’ orz € IdStatus
We also extend unifiers as follows:

u € Unifier :={fi U UfsUf1| fi €TyVar — ITy
A f2 € TyConVar — ITyCon
A f3 € EnvWar — Env
A fa € TypFunVar — TypFun}

if = of the formr, e, oré

build(u, 6 - T)

Because we added types of the fatnr, we need to update our
type building function with the following cases:

7' {a > build(u, 7)}],
= { if build(u, 6) = (Aa. 7/)¢

Qlgum, Otherwise
build(u, Aa. 7) = A build({a} 9 u,)

Our building function builds internal types of the forén-
by first building the type function. If building the type futian
leads to a type function variable then our building functigives
up building the application and returns the dummy type \deia
aaum- This behaviour is correct in our system because the canstra
generation rule(G8) is the only rule generating type function
applications and it constraing before generating the application
¢ - a. Thus, at constraint solving, when dealing with- o, the
constraints o will already have been dealt with.

Fig. 17 extends our constraint solver with two new rules to
handle our new internal types of the fofn 7.

Constraint filtering (Minimisation and enumeration). We
update our filtering function to handle the semantics of tgpe-
structors, by replacingoDumVar(u) = dauw DY:

toDumVar(0) = ¢aun

Slicing. Because we have changed our constraint generation rule
for dn’s, we need to replace the dot termdiatName as follows:

DatName

— —
dot-e(pt) =2~2M dot-n(pt)

We define the new constraint generation rule for terms of the
—
form dot-n(pt) as follows:
7ptn>) + <O(,O/, [61; T ;en}, E) <=
@)

Finally, our slicing algorithm does not need to be extendetd b
we need to update the tree syntax for programs as follows:

Prod ::
Dot ::

dot-n((pty,...
pty > erA---Apt, > e, Adja(er,..

<y €n,

-+ | decTyp
-+ | dotN

20

We also need to modify thgetDot function that associates dot
markers to node kinds as follows (the function now returds
marker and not @dotE marker anymore when applied tdatname
node):

getDot(({datname, prod)) = dotN

We also need to extend theTree function that associates trees
of the formtree to terms of the formterm as follows:

toTree(type dn L ty)

= ((dec, decTyp), [, (toTree(dn), toTree(ty)))
toTree(dot-n({pty,...,pt,)))

= (dotN, (toTree(pt,),...,toTree(pt,)))

C.3 Signatures

This section shows how to design a type error slicer that lesnd
some signature related features. This section deals wiitle veype,
datatype and structure specifications. It does not deal inilade
or sharing specifications, and does not deal with type ratédiss
(where clauses) either. Type realisations and includeifspegtons
are “almost fully” supported by our implementation. We ajsu-
tially support sharing specifications in our implementatio

Some kinds of errors are not handled by the system presented
in this section. For example we do not handle unmatched srror
when an identifier is specified in a signature but not declaresd
structure constrained by the signature. These errors wiltibalt
with in Sec. C.4. Another kind of error which is not dealt with
this section is when a type constructor is defined as a typaifum
in a structure and as a datatype in the structure’s signafiven
though this kind of error is handled by our implementation e
have not yet written the details.

External syntax. First, let us extend our external syntax with
signatures as follows:

sigid € Sigld (signature identifiers)
sigdec € SigDec ::= signature sigid L sigerp
—
| dot-d(pt)
sigexp € SigExp = sigidl | sigl specy - - - spec,, end
—
| dot-s(pt)
spec € Spec n=val vid :! ty
| type dn'
| datatype dn L ed
| structure sid :! sigexp
—
| dot-d(pt)
cd € ConDesc ::= vid! | vid of ! ty
—
| dot-e(pt)
id eld =...| sigid

- | sexp :! sigexp | sexp :>! sigexp
sdec | sigdec
- ;topdec,,, wheren > 0

sexp € StrExp
topdec € TopDec ::
prog € Program ::= topdecy; - -
The symbol:> is used for opaque constraints antbr translu-
cent constraints. The structuseap :>! sigexp is the structure
sexp constrained by the signatukggexp where each okigexp’s
specifications has to be matched by onesafp’s declarations
(and similarly for sezp :' sigeazp). The structuresezp can de-
clare more identifiers than are specifiedsigezp. In the structure
sexp :>' sigezp, only the identifiers specified imigezp can be

2010-8-19

Figure 17 Constraint solving rules for type functions

(S9) solve({u, e),g, 01 - T1=02 - T2) — solve({u, e), d, build(u, 61 - 71)=build(u, 02 - 12))

(S10) solve((u, €), d, T1=T72)
if {1,702} ={6 7,7} andr is of the formrz—74 or 75 p

— solve((u, e), d, 7=build(u, § - 7))

accessed fromexp (only the sigexp part from sexp is visible to
the outside world). The difference betweesrp :>' sigezp and
sexp :' sigexp is that in the first one ifsigexp specifies a type
constructorte then insexp :>' sigexp it is not constrained by its
declaration insezp, whereas irsezp :! sigezp the type constructor
would be constrained by its declarationsiexp. Opaque signatures
are used to abstract types from structures and are usualigrped
over translucent ones for this reason.
Let us now present an example involving an opaque signature:

signature s = sig val x : ’a end
(EXl) structure S = struct val x = 1 end
structure T = S :> s

This piece of code is untypable because the type variabie
more general than the typat. Types of declarations in structures
have to be at least as general as the corresponding specifcat
signatures. This kind of error will be referred atoa generalerror
henceforth.

Constraint syntax. We now extend our constraint system to han-
dle signatures:

bind € Bind =---| lsigid=e

acc € Accessor ::=--- | Tsigid=ev

T €lTy = |t

€ l1TyCon |t

e € Env n=--- | eriex | er:>e2

We also extend the form of the explicit type variable bindess
follows:

Ltv=a B, | ty=7

We add the explicit type variables to the internal type set an
extend the explicit type variable binders to internal typesause
we want to allow explicit type variables to bind explicit gypari-
ables and not only internal type variables. This helps ¢atctoo
generalerrors as presented above.

We also add the explicit type variables to the internal type
constructor set because, in order to help catzhgeneralerrors,
we do not generalise the external type variables occurrisgvalue
specification in a signature until we match the signaturarasga
a structure. Inside a signature, an explicit type varialehien
considered as a constant type. To such a constant type waaeso
an internal type constructor which is the explicit type ghte itself.
Let us explain our reason for doing so using the followingcpie
of code (the same g&X1) where we replaceda by bool in x’s
specification):

signature s = sig val x : bool end
(EXZ) structure S = struct val x = 1 end
structure T = S :> s

Given this piece of code, our enumeration algorithm would fin
the type error thak is specified as a Boolean i which is the
signature constraining, and thatx is declared as an integer &
The issue is that our minimisation algorithm would everjualy
to slice out the typ@oo1l in x’s specification. This would result in
x having a type scheme of the fori{a}. « in its specification
This type scheme is more general thart which is x's type in
its declaration. If we were to generalise the explicit typeiables
occurring in value specifications, we would also generagetype
schemev{a}. « for x’s specification in([EX1). We then would not
be able to distinguish between a type scheme which is gelguine
too general (in(EX1)) and a type scheme which is too general

21

because some information has been discarded EX2) where
bool has been filtered out). In order to avoid that, explicit type
variables occurring in a signature are not generalised wvgi
match the signature against a structure.

Because we extended our internal types, we also need todexten
our building function as follows:

build (u, tv) = i

Constraint generation. Fig. 18 presents the new constraint
generation rules for the syntactic forms introduced abdvele
(G24) uses the functiontvBind which is defined as follows:

tBind(ty,) = (Ltvs fo1;--3itv, = fv,) such that
{tv1,...,tvn} is the set of external type variables occurring in
ty and where ifi < j thentv; does not occur on the left @b, in

ty. This function is used to generate explicit type variableders
for explicit type variables occurring in value specificatsosuch as
in the specificatioral £ : *a -> ’a, for which we would gener-

ate a binder of the form’a="a.

Note that rulegG21), (G22) and(G23) for signature declara-
tions and expressions are similar to ru{€46), (G17) and(G18),
defined in Fig. 7, for structure declarations and expressi®ule
(G24) is a simplified version of rul¢G12) for recursive value dec-
larations (defined in Fig. 7), where the expression is reguaay
an external type and where the pattern is reduced to a siagjie v
identifier. Note that even though explicit type variableswdng
in a signature are not generalised until the signature i<eat
against a structure, rulgzG24) generates @oly environment to
generalise internal type variables that are unconstraioedo con-
straint filtering. The novelty in this rule, as described &b the
necessity to bind the explicit type variables occurringhia exter-
nal type. Rulg G25) is similar to rule(G20) defined in Fig. 16, but
instead of binding the specified type constructor to an iatetype
computed from an external type, it generates a new type manst
tor name. Such a name might then be renamed during constraint
solving when matching a signature against a structure. FG2&)
is similar to rule(G13) defined in Fig. 16 and rulgG26) is similar
to rule (G16) defined in Fig. 7. The constraint generation rules for
constructor descriptions are the same as the ones for cotwtr
declarations. Finally, rule§G28) and(G29) are the most interest-
ing rules. They are the ones generating our new environnants
the formse; :e» (generated by rul€G28) for transparent signature
constraints) and;i:>e» (generated by ruléG29) for opaque sig-
nature constraints).

Because our initial constraint generation algorithm gatesr
new forms of constraints, we extend tlignd and eg forms as
follows (see Sec. A.3):

ietv €IETyVar ==a | fv
lbind € LabBind ::= - - - | Lsigid = ev
eg € GenEnv =] eviieva | evi:>eva
An ietv (used below) can either be an internal (“1”) or an
external (“E”) type variable.
We also replace the initially generated external type ‘deia
binders as follows:

LabBind,

Lty L a Lty L ietv

Constraint solving. Let us extend unification states and error
kinds as follows:

2010-8-19

Figure 18 Constraint generation rules for signatures

N 0 N Lo . .
[Signature declarations| (G21) signature sigid 4 sigexp > ev'=(e;(Lsigid = ev));ev’! < sigexp > (ev, e) Adja(e, ev’)

[Signature expressions| (G22) sigid! + (ev, 1 sigid L ev)

sen)))

/
.y en,ev,ev)

(G23) sig! specy - - - spec,, end > {ev, (evé ev');(ev'=(e1;---
< specy > e1 A--- A spec,, > en Adja(er,..
(G24) val vid :! ty > (ev=poly(loc tvBind(ty,) in (e;lvid < {a,v))));evt < ty > (o, e) Adja(e, ev)
(G25) type dn' + (ev:((ozé o 7y);e));evt < dn > (a,ad’,e, e’y Adja(e, €/, ev,)
) < sigexp > (ev, e) Adja(e, ev’)
) l

(G26) structure sid :' sigexp > (ev'=(e;(Isid L ev)));ev’t
G27) datatype dn L cd > (ev= aléo/ ¥); aléag ;e1;1loc ef inpoly(ez2)));ev
1 1

< dn > (a1,0a), e1, e]) A cd > (az, e2) Adja(er, e2, 7, ev)

< . l . .
[Structure expressions| (G28) sezp :! sigezp + (ev, e2;e1;(ev= evi:evz)) < sexp > (ev1, e1) A sigexp > (eva, e2) A dja(er, e, ev)

. ! . .
(G29) sexp :>! sigexp > (ev, ez;e1;(ev=ev1:>ev2)) <= sexp > (ev1, e1) A sigexp > (eva, e2) A dja(er, ez, ev)

Programs|

(G30) topdecy ; - - - s topdec,, + e1;---;en

< topdec; > e1 A--- A topdec,, > en Adja(er, ..., en,ev)

tfm € TypFunMap

= TyConName — TypFun
state € State =

| prematchLA,E, e1,e2)
| match(4, d, tfm, e1, e2)
| suce(A4, tfm)

ek € ErrKind
| TyVarClash(tv1, tva)

| TooGeneral (1, pu2)

Type functions of the formfm are used to gather the type func-
tions defined in a structure, to then apply them to the typesge
ated for a signature constraint. Roughly speaking, wherirgphn
environment of the forna; : e; or of the forme; :> ez, the type func-
tions defined ire; (related to a structure) are gathered and applied
to ez (related to a signature) using thepTFM function defined
below. This step is required because our initial constrgarier-
ation algorithm might generates different type constructames
for two type constructors that might turn our to be the sanpety
constructor. For example, in the following (typable) pieéeode

signature s
structure S

sig datatype ’a t = T end
struct datatype ’a t = T end :

= s

Our initial constraint generation algorithm will generateo dis-
tinct type constructor names for the two occurrence.@ut, when
checking that the signaturg matches the structurg these two
type constructor names have to be equated. This is done tacext
ing the one defined in the structure and by then renaming tke on
from the signature into the one from the structure.

Error kinds of the fornTooGeneral (11, u2) are for type errors
as the one described aboted generalerrors), where a signature
constrains a structure and is more general than the steuduror
kinds of the formTyVarClash(tv1, tv2) are for type errors such
that the one in the following piece of code:

signature s = sig val £ : ’a -> ’b end
structure S = struct val rec £ = fn x => x end
structure T = S :> s

In this piece of codef is specified in the signature as a
function where its argument’s type can differ from its baltype.
In the structures, the functiont is declared as the identity function
and so its argument’s type has to be the same as its body’s type
Finally s is constrained by. Therefore, we report an explicit type
variable clash betweena and *b. This is a special kind ofoo
generalerrors.

Rules (SM4) and (SM5) of the extension of our constraint
solver defined below in Fig. 20, make use of the functippTFM
that applies type functions (extracted from a structurea tiype
or an environment (related to a signature) and which is defase
follows:

22

7' [{a v appTFM(7, tfm)}],

if tfm(p) = Aa. 7’
Qdum, If tfm(p) € Var
undefined, if is of the formy/@4
appTFM(7, tfm) u, otherwise
= appTFM(71, tfm)—appTFM(712, tfm)
= Va.appTFM(T, tfm)

appTFM(T p, tfm)

appTFM
appTFM

T1 -T2, tfm)
Va. T, tfm)

(
appTFM(Aa. 7, tfm) = Aa. appTFM(T, tfm)
appTFM(e1;e2, tfm) = appTFM(e1, tfm);appTFM(e2, tfm)
appTFM(lid=z, tfm) = lid=appTFM(z, tfm)
appTFM(z¢, tfm) = appTFM(z, tfm)¢

app TFM(z, tfm) = z, if none of the above applies

Let us definetyvars and nonDumVars that are used by some
functions and predicates defined below. The functirars is de-
fined as followstyvars(x) is the set of syntactic forms belonging to
TyVar and occurring inc whateverr is. The functiomonDumVars
is defined as followsnonDumVars(z) = vars(x) \ DumVar.

Rule (SC2) of the extension of our constraint solver defined
below in Fig. 20 uses the predicatdstract which is used to
rename the type constructor names declared in an envirdramen
defined as follows:

(A e, {m}w- @ {yn}) 2L appTFM(e, tfm)
if dja(nonDumVars(A), v}, ..., Y, &1, .., 0n)
andifm = Ui, n3{vi — Aci. i)}

Fig. 19 defines our algorithmgenExTyVar that generalises ex-
plicit type variables in environments. It also uses renasiof the
form rentv defined as follows:

rentv € RenTv ::= {rentv € TyVar — ITyVar |
rentv is injective
A dja(dom(rentv), ran(rentv))}

These renamings are applied using té€T v function which is
defined as follows:

renTv(a, rentv)
renTv(fv, rentv)
renTv(T p, rentv)
renTv (-T2, rentv)

ey
rentv(tv)

renTv(T, rentv) p

renTv(71, rentv)—renTv(T2, rentv)

renTv(7%, rentv) = renTv(r, rentv)?

This function is partially defined. It is not defined on typds o
the formé - + because theses forms cannot occur in environments
in “solved” forms. Moreover when applying:nTv to an internal
type and a renaming of explicit type variables, then theiekpype
variables occurring in the internal type have to be the doroéthe
renaming. This is always the case when calliagTv in Fig. 19.

Fig. 20 extends our constraint solver to deal with our new
constraint terms.

2010-8-19

Figure 19 Generalisation of explicit type variables

(A, e1;ep) EENETWVar, o1t & (A, ep) EETVAL o and(Ase], eo) ENETYVar, of

(4, Lid=e) enExTyVar, | g—e¢! & (4 e) genExTyVar, o/

(A, Lvid=T) EenBTWVAr, | bid=Vap. renTv(T, rentv) & tyvars(7) = dom(rentv) andagp = ran(rentv) anddja(nonDumVars(A), @)

(A, lvid=Va. 1) EenEXTWVAr, | pid= V(@ Uap). renTv(T, rentv) < tyvars(T) = dom(rentv) andagy = ran(rentv) anddja(nonDumVars(A), &)
d\ gen ExTyVa roo/d genExTyVar

(A, e) BNV, o (A e) BT e

(A

) genExTyVar if none of the above applies

Rule (S10), originally defined in Sec. C.2, is updated to handle We now need the filtering of unlabelled environment variable

explicit type variables as internal types. because we now allow unlabelled environment variables twiroc
Rules(S11)-(S13) are to handle our new cases of internal types within environments of the forma; :e; or e;:>e».
and internal type constructors. Because explicit type variables can now bind internal tygresb

Rule (B1) is redefined so that it builds up the semantics of notonly internal type variables, we also need to update tiarifig
binders. The reason is that when checking if a signaturelmeatc function by replacingoDumVar(a) = cawm by:
a structure, we want the corresponding environments fullit bp.
Building the binders when solving them allows having a sivall
building function, as the one we currently have, that doeseed
to go down structure or signature binders.

toDumVar(7) = aiqun

Slicing. We extend our tree syntax for programs as follows:

Rules (SM1)-(SM13) check whether a signature matches a Class ::=- - - | sigdec | sigexp | spec
structure. These rules are used for both translucent arglepzon- Prod : =|

i = * 1 = ror sigdecDec
straints. Ifmatch(4, d, tfm, e1, e2) —* match(A', d , tfm/, e1, e3) | sigexpSig

using ruleg('SM1)-(SM13) thene; = ej.
Rule (SM4) checks that a type scheme from the signature does
not allow generating types that the corresponding typeraehia

| specVal | specTyp | specDat | specStr
strexpTr | strexpl
P pUp

the structure cannot generate. Before checking that, tteed We als_o extend our functiogetDot that associates dot markers
type functions are applied to the type extracted from thelibig to node kinds as follows:

coming from the signaturer(). This is where the instantiation getDot((sigdec, prod)) = dotD

of a signature is performed in our system. Finally, expligipe getDot(({sigexp, prod)) = dotS

variables occurring in the generated binder are genedaliShe getDot((spec, prod)) = dotD

generated type scheme is built from and not fromr, in case Finally, Fig. 21 extends our functiotoTree that transforms a
the binding from the signature is a dummy binding. If the lnigd termterm into a treetree.

from the signature was a dummy binding and the corresponding _
binding from the structure was not a dummy binding, then we do C.4 Reporting unmatched errors

not want to generate an unlabelled non-dummy binding thaltlco There s a kind of error involving signatures that is not Heddy

therefore lead to a type error because this type error migt hot the constraint solver as defined above: the “unmatchedtsrro
be dependent on the label associated to the specificatiavhich For example, in
the binder has been generated (the specification would npatie
of the reported error)_ signature s = sig val fool : int end
Rules (SM6) and (SM11) gather type functions defined by seructure 8 - struct val foo = 1 val bar = 2 end
the structure. These type functions are applied to the gigma ’
during the process of checking the matching (in ru®&M4) and the specificatiorfool from the signatures is not matched in the

(SM5)). Once again, extra care has to be taken when the binder structures, but s constrainss in T. This error could be solved in
from the signature is a dummy binder, so that the algorithssdo many ways, such as: (1) one could replaéeel by foo in s, (2) one

not generate a non-dummy binder. could replacetoo by fool in s, (3) one could constrais using a
The other(SM1) rules are fairly straightforward. different signature, (4) one could birdor s to other expressions.
Rule (SC5) is just so that the same mechanism can be used for For this error we would like to report thabol specified ins is
opaque and translucent signatures. not any offoo or bar declared irs, buts constrains.
Rule (SC1) for translucent signature just checks that the signa- For that we need to be able to check that indegd is not any
ture matches the structure. It does not need further cortipnte- of the declarations dof.
cause the resulting structure is computed while checkiagrthtch- With the system as described above, we cannot report such
ing. errors because we do not have any way of knowing whether an

Rule (SC3) for opaque signatures checks that the signature environment is constituted by the binders correspondinglitthe
matches the structure and generates a new structure basbd on declarations of a structure. As a matter of fact, this is rassible

signature. The generated structure is the signature whermter- with the current system because of the way constraint filgecan
nal type constructor names are renamed and where the éxpfiei replace environment variables and binders-hy
variables are generalised. We will now show how to extend our system to report such
errors.
Constraint filtering (Minimisation and enumeration). We Constraint syntax. We extend our environment with a new empty
extend our filtering function as follows: environment as follows:
Envi=---]0O
fl|t(61 62,l1,l2) —fl|t(61,l1,lz) fl|t(61,l1,lz) . i . . .
filt(e1:>e2, 11, I2) = filt(e1, 11, l2):>filt(e1, 11, I2) The meaning of'the enwro_nme@llles in between the meaning
filt(ev, 71, 1) — e of @ and the meaning of environment variables.

23 2010-8-19

Figure 20 Constraint solving for signature related constraints

Some kinds of errors are not handled by the system presamtbiisection, although our implementation handles thesnniore information please refer to
the introductory paragraph of this section (Sec. C.3).

equality simplificatign _
(S10) solve((u, e), d, 71=72) — solve((u, e), d, 7=build(u, 0 - 7/)) if {71, 72} = {0 - 7/, 7} andr is of the formr3—4, 73 p, OF {v
(511) solve(A, d, fv1=iva) — err((TyVarClash(tvy, twa),d)), if tvg # tva

(S12) solve(A, d, 11=m2) — solve(A4, d, tv=p), if ({r1,72} = {tv,7>7'} andu = ar)

or {71, 72} = {tv, 7 u}), for sometv, 7,7/,
(S13) solve(A, d, u1=p2) — err({TooGeneral (u1, u2), d)), it {p1,p2} € {{tv,ar}, {tv, v}}, for sometv and~y
binders

(B1) solve({u, e, d, Lid=x) — succ({(u, e);(Lid < build(u, z)))

signature constraints

(SC1) solve({u, e), d, e1:€2) — succ(4), if prematch({u, e), d, e1, e2) —* succ(A4, tfm),
(SC2) solve((u, e), d, e1:e2) — err(er), if prematch((u, e), d, e1, ea) —* err(er),
(SC3) solve({u, €),d, e1:>e2) — succ((u’, e;ey)), if prematch({u, e), d, e1, e2) —* succ((v', '), tfm)
and((u/, ¢'), build(u, e), dom(fm)) 22, of and((u’, e’), e}) genExTyVar, el
(SC4) solve({u, e),d, e1:>e2) — err(er), if prematch({u, €), d, e1, e2) —* err(er)
(SC5) prematch({u, e), d, e1, e2) — state, if match({u, e, d, @, build(u, e1), build(u, e2)) —* state
structure/signature matching
(SM1) match(A,d, tfm, e,) — succ(4, tfm)
(SM2) match(A4, d, tfm, e, e1;e2) — match(4’, d, tfm/, e, e2),
if match(A, d, tfm, e, e1) —* succ(A’, tfm')
(SM3) match(4, d, tfm, e, e1;e2) — err(er),
if match(A4, d, tfm, e, e1) —* err(er)
(SM4) match(A,d, tfm, e, lvid=o1) — succ(4;eg, tfm),

if e(vid) = o2 andVi € {1, 2}. (o0; = Va,. 7; or (0; = 7; and@; = Q)
andr] = appTFM(71, ¢fm) andsolve(A, d, 7{=72) —* succ((v/, ¢’))

and7 = build(u’, 7]) and({u’, e’), Lvid 2 V(@1 Udz) Nvars(r).) EenExmvar, o

(SM5) match(A,d, tfm, e, lvid=o1) — err(er),
if e(vid) = o9 andVi € {1,2}. (0; = Va,.; of (o = 1; anda; = @)
andsolve(A, d,appTFM(7y, tfm)=72) —* err(er)
(SM6) match(4, d, tfm, e, Ltc=01) — succ(4;(Ltc 2 0%), tfm’),
if e(tc) = 02 and (if6; € DumVar thend), = 0; elsed), = O5*("1))
and (if6; = Aa. (ay)? thentfm’ = tfmB{y — 04} elsetfm’ = tfm)
(SM7) match({u1, e1), d, tfm, e, Lsid=eg) — succ({uz, e1;(lsid 2 diff(e1, e2))), tfm'),
if e(sid) = e} andmatch({u1, e1), d, tfm, e}, eg) —* succ({uz, ez2), tfm’)
(SM8) match(A, d, tfm, e, lsid=ep) — err(er),
if e(sid) = e}y andmatch(A, d, tfm, e}, eg) —* err(er)
(SM9) match(A, d, tfm, e, lvid=isy) — succ(A4;(lvid L vid), tfm),
if efvid] = is2 anddeps(is2) = d’ and Golve(A, d,is1=is2) —* succ(A’) orstrip(is1) = v)
(SM10) match(A, d, tfm, e, Lvid=isy) — err(er),
if e[vid] = is2 andstrip(is1) # v andsolve(4, d, is1=1is2) —* err(er)

(SM11) match(4, d, tfm, e, Lid=x) — succ(4;(lid=toDumVar(z)), tfm’),

if e(id) is undefined and (it = Aa. (« «1)3/ thentfm’ = tfmB{y — aam} elsetfm’ = tfm)
(SM12) match(A, d, tfm, e, ev) — succ(4;ev, tfm)
(SM13) match (A4, d, tfm, e, e’gl) — match(A, d U d, tfm, e, e’)

24 2010-8-19

Figure 21 Extension of our slicing algorithm with signatures

. . . P
Signature declarations toTree(signature sigid = sigexp) =

toTree(sigid')
toTree(sig! spec; - - - spec,, end)

Signature expressions

toTree(val vid :! ty)
toTree(type dn')

Specifications

o~~~ o~~~ o~ o~~~

toTree(structure sid :' sigexp)

toTree(sexp :! sigexp)
toTree(sexp :>! sigexp)

Structure expressions

(
(
(
(
toTree(datatype dn L cd)
(
(
(
Programs toTree(topdecy ; - - - ;topdec,,) =

(
(
(
(spec, specDat),
(
(
(

(sigdec, sigdecDec), I, (sigid, toTree(sigezp)))

(sigexp, sigexpld), [, (sigid))

sigexp, sigexpSig), [, (toTree(spec;), ..., toTree(spec,,)))
spec, specVal), [, (vid, toTree(ty)))

spec, specTyp), [, (toTree(dn)))

L
I, (toTree(dn),toTree(cd)))
L

spec, specStr), [, (sid, toTree(sigezp)))

strexp, strexpTr), [, (toTree(sexp), toTree(sigezp)))
strexp, strexpOp), [, (toTree(sexp), toTree(sigezp)))

dotD, (toTree(topdec), . .. ,toTree(topdec,,)))

The difference betweem and® is that the second one will be
used to indicate that we filtered out an environment whichthas
potential to bind (either an environment variable or a bih@ad
not just, say, an equality constraint.

The difference betwee® and an environment variable is that
in an environment of the form;e, ® does not shadow.

Constraint solving. The extra environmen® will be allowed to
exist within unification contexts. Given a unification staife A
occurs in it, thenA is of the form(u, e) wheree = [;e1;- - - ;en
where eache; can either be an environment variable, a labelled
binder or®.

Because® can occur in unification contexts, we extend our
environment application functions as follows:

(e;0)(id) = e(id)
(e;0)[id] = e[id]

Let us extend error kinds as follows:
ek € ErrKind ::= - - - | unmatched(id, id)

Fig. 22 extends our constraint solver with rules to handle un
matched errors: rul¢SM11) replaces the previous rulgSM11)
from Fig. 20 and rulegSM14) and(N2) are new.

Rules(SM11) and(SM14) make use of the predicatemplete
(similar tohiding) which is defined as follows:

(e of the formlid Lz

andz ¢ DumVar U {a})
or (e of the formes ez

andvi € {1, 2}. complete(e;))
ore=7[

complete(e) &

A “solved” environment (occurring in a unification context)
is said to be complete if it is not composed by an environment
variable, a filtered binder or a dummy binder.

Rule (SM14) makes use of the functiogetBinders which
gathers the identifiers bound in its argument:

getBinders(e1;e2)
getBinders(@)

getBinders(lid 2 z) = {id}

= getBinders(e1) U getBinders(e2)
=9

Constraint filtering (Minimisation and enumeration). We
add a new rule to filte® and update the filtering of labelled envi-
ronment as follows:

el iflely \72

dum(e),if 1 € 13

o, if 11y Ulyande € Var UBind

O, otherwise

filt(®,11,12) = 0O

fi|t(el,il,72) =

25

Slicing. We also need to modify our slicing algorithm. Consider
the following piece of code:

signature s = sig val x : int val y : bool end
structure S : s struct val x = 1 val y = true end
structure T :> s struct val x = 1 val y true end
val u = let open T val z = y open S

in fn w => (w z, W x)

end

where in the fn-expressior, is they from T andx comes from
S via the structure opening. The structugeandT have the same
structure body constrained by the same signatyrbut s has a
translucent signature whiles signature is opaque.

This piece of code is untypable becauskas a monomorphic
type and is applied te which is the Booleas defined int, and it
is also applied ta which is an integer defined i

With our current slicing algorithm, one of the type errorcsli
we obtain would be as follows:

(..signature s = sig val x : (..) val y : bool end
..structure S : s struct val x = 1 end
..structure T :> s = (..)

..{..open T..val z = y..open S..fn w => (..w

Z.o.W Xo.).).

which is not minimals does not match because is not declared
ins.

The problem comes from our tidying of declarations in stioet
expressions. We therefore need to update our tidying fancd
that it does not discard empty dot declarations:

tidy(() = () o
tidy(((dotD, tree1), (dotD, treea))Qtree)

= tidy({(dotD, free1 @irecs))@iree),

if Viree € ran(@l). —declares(tree)
tidy((tree)@@) = (tree)@tidy(@), if none of the above applies

With this new tidy function, we would then obtain a slice as
follows:

bool end
1 end

.y val y
.) val x =

(..signature s = sig val x : (.
..structure S : s = struct (.
..structure T :> s = (..)

..(..open T..val z = y..open S..fn w => (..W Z..W X..)..)..)

We also have to replace our constraint generation rule for do
declarations, in order to generate markers of discardedilnin

dot-d({pty,. .., pty)) + [e1; - -sen];O <=
pt; > et A---Apt, > en Adja(er, ..., en)

However, this modification is not enough because binders are
generated foeb’s, pat’s, anddn’s.

For example, we would like to generate a marker of discarded
binder for the following declarationiatatype ’a t = (..).

2010-8-19

Figure 22 Constraint solving rules handling unmatched errors

Some kinds of errors are not handled by the system presamtbiisection, although our implementation handles thesnniore information please refer to

the introductory paragraph of Sec. C.3.
structure/signature matching -

(SM11) match(A, d, tfm, e, lid=x) — succ(A;(lid 2 y), tfm'),

if e(id) is undefined anehcomplete(e) andy = toDumVar(z)

and (ifz = Aa. ay thentfm’ = tfmB{y — qaum} elsetfm’ = tfm)
(SM14) match(A, d, tfm, e, lid=x) — err((unmatched(id, id), d)), if e(id) is undefined andomplete(e) and whereid = getBinders(e)

(SM15) match(A, d, tfm, e, ®)
empty
(N2)

— succ(4;O, tfm)

solve(A4,d,®) — succ(4;0)

First, let us replace the dot terms fob's. We need to do so
because we want to generate markers of discarded bindsr$oonl

This highlighting shows thatoo andbar are not matched in the

cb dot terms, but not for expressions and types. We replacethes structures, but also suppose thatmight not be the matching for

dot terms as follows:
dot-e(ﬁ) LonBind, dot-c(ﬁ)

We redefine the constraint generation rules for the forms
—_— b d . .
dot-n(pt) anddot-p(pt), and we introduce a new constraint gen-

. —
eration rule for the formdot-c(pt) as follows:

dot-n((pty,...,pt,)) > (@ a,[e1; - sen]sO, @)

< pt; et A---Apt, > en Adjaler, ..., en,a,a)
dot-p({paty, ..., pat,)) > (o, e1; - ;en;O)

< paty > e1 A---Apat, > en Adja(er, ..., en,)
dot-c((pty,...,pt,)) » (e, [e1; - ;en];0)

< pty >erA---Apt, > en Adjaler, ..., en,a)

We add a new dot marker to the gt as follows:
Dot ::=--- | dotC
Finally, we extend theoTree function as follows:

toTree(dot-n({pty,...,pt,))) =
(dotC, (toTree(pty), ..., toTree(pt,)))

C.5 Further extensions

We are currently extending the formal presentation of ouST&
handle features such as functors, non-recursive valuaudgidns,
type annotations, or long identifiers. These features awsady
handled by our implementation and we invite the reader tattry
and read its source code for more details on how the featuees a
handled.

D. Extensions for a better error handling
D.1 Merged minimal slices

With the constraint solver as defined above, our TES wouldntep
two minimalunmatchedype error slices for the following piece of
code:

structure S =
signature s =
structure T =

struct val (fool, barr, x, y) = (1, 2, 3, 4) end
sig val foo : int val bar : int val x : int end
S :>s

One of the type error is that the specificatiosv in s is not
matched in the structure (that declaresoo1, barr, x andy), but
s constrainss in T. The other error is similar but concerns the
specificatiorbar.

This is another typical example where finding and reporting
merged minimal error slices would be useful (see Sec. 2&, th
presents another example of merged minimal error slices)tte
example above, instead of the two reports described aboge, w
would prefer a highlighting that would look like:

structure S =
signature s =
structure T =

struct val (f6ol, barr, x, §) E (1, 2, 3) end
sig val foo : int val bar : int val x : int end
S :>s

26

foo Of bar asx is specified in the signature Note thatx is still
reported because we can't knowxifn the structures is definitely
not the matching of, e.gfpo in the signature.

Note that we do not want to find the two minimal error reports
and then merge them into a single report, but we directly want
generate the merged error.

We could obtain this slice by altering the part of our coristra
solver defined in Fig. 20 and Fig. 22.

First, we want unmatched error kinds to be as follows instead
(we replace the previous form by this new one):

ek € ErrKind ::= - - - | unmatched (id1, ids2, id3)

For the highlighting presented above, the error kind wohkeht
be unmatched(id1, idz, ids), Whereid; is the set of identifiers
highlighted in dark grey (the identifiers specifiedsithat are not
declared ins), id» is the set of identifiers highlighted with the
darkest grey (the identifiers declaredsrthat are not specified in
s) andids is the set of identifiers highlighted in light grey (the
identifiers both specified is and declared iig).

Then, when checking if a signature matches a structure deror
to gather (1) the identifiers that are specified in the sigedtut not
declared in the structure, (2) the identifiers that are adedlan the
structure but not specified in the signature, and (3) thetifilers
that are both specified in the signature and declared in thetste,
we extend our “match” states as follows:

unm € Unmatched ::= (id1, id2)

state € State =
| match(4, d, tfm, unm, e1, e2)
| succ(A4, tfm, unm)

Finally, Fig. 23 updates the rules defined in Fig. 20 and F2g. 2
to handle the reporting of merged unmatched errors. R#€3%),
(SC2), (SC3) and(SC4) are as before and are not repeated here.
Rules(SC6) and(SM16) are new and replace ru[&M14).

The main difference between this new algorithm and the one
presented in Fig. 20 and Fig. 22, is that our new algorithrheyat
the identifiers that are both specified in the signature awcthded
in the structure (rule§SM4), (SM6), and(SM7)) and also gathers
the identifier that are not matched in the structure ((S111)). If
there exists such an identifier, it means that there is an tofrad
error. We then wait to check the matching of the entire sigrat
against the structure to finally report all such unmatchediifiers
in a single error report (rule&SC6) and(SM16)).

Note that such type error reports (for unmatched errors}tiite
imperfect. For example, the highlighting above does nowstiat
{fool, barr, x, y} is precisely the set of identifiers declared in the
structures. Similarly the highlighting does not show th@too, bar,

x} is precisely the set of identifiers specified in the signasui&e
could then consider the following convention when hightigh a
type error: if all the identifiers declared in a structure pesified in

2010-8-19

Figure 23 Constraint solving to handle merged unmatched errors

Some kinds of errors are not handled by the system presamtbiisection, although our implementation handles thesnniore information please refer to
the introductory paragraph of Sec. C.3.

signature constraints

(SC5) prematch({u, €), d, e1, e2) — succ(A’, tfm), if build(u, e1) = e}’ andbuild(u, e2) = e/
andmatch((u,), d, @, (@,), et ell) —* succ(A’, tfm, unm)
and wnm = (&, id2) or ~complete(e}’;el))

(SC6) prematch({u, €), d, e1, e2) — err({ek, d)), if build(u, e1) = e}’ andbuild(u, e2) = e/
andmatch((u, e), &, 3, (D, D), ef, e}) —=* succ(A’, tfm, unm)
andunm = (id1, id2) andid; # @ andcomplete(e]’;e})

andek = unmatched(id1, getBinders(e]’) \ id2, id2)

(SC7) prematch({u, e), d, e1, e2) — err(er), if match((u, €), d, &, (&, @), build(u, e1), build(u, e2)) —* err(er)
structure/signature matching
(SM1) match(A,d, tfm, unm, e, @) — succ(4, tfm, unm)
(SM2) match(A4, d, tfm, unm, e, e1;e2) — match(A’, d, tfm/, unm/, e, e2),
if match(A, d, tfm, unm, e, e1) —* succ(A’, tfm’, unm’)
(SM3) match(A, d, tfm, unm, e, e1;e2) — err(er),

if match(A4, d, tfm, unm, e, e1) —* err(er)

(SM4) match(A,d, tfm, (id1,id2), e, Lvid=c1) — succ(A;eo, tfm, (id1, id2 U {vid})),
if e(vid) = o2 andVi € {1, 2}. (0; = Va,. 7; or (o0; = 7; and@; = Q)
andr] = appTFM(7, tfm) andsolve(A4, d, 7j=72) —* succ({v’, €))

and7 = build(u’, 7]) and({u’, e’), Lvid L V(@1 Udz) Nvars(r).) EenBxmvar, o
(SM5) match(A, d, tfm, unm, e, Lvid=o1) — err(er),

if e(vid) = o9 andVi € {1,2}. (o0; = Va,.; of (o = 1; anda; = @)

andsolve (A4, d,appTFM(71, tfm)=12) —* err(er)

(SM6) match(A4, d, tfm, (id1, id2), e, Ltc=01) — succ(4;(Lte 2 0%), tfm', (id1, id2 U {tc})),
if e(tc) = 02 and (if1 € DumVar thend}, = 6; elsed), = 657°*V))
and (if6; = Aa. (ay)? thentfm’ = tfmB{y — 04} elsetfm’ = tfm)

(SM7) match({u1, e1), d, tfm, (id1,id2), e, Lsid=ep) — succ({uz, e1;(lsid 2 diff(e1, 2))), tfm, (id1, id2 U {sid})),
if e(sid) = e])
andmatch((u1, e1), d, tfm, (&, D), e}, e0) —* succ({uz, e2), tfm’, unm’)
and wnm’ = (D, idz2) or ~complete(ef;eo))
(SM16) match(A, d, tfm, unm, e, L sid=eg) — err({unmatched(id1, getBinders(e)) \ id2, id2), d)),
if e(sid) = e
andmatch(A, d, tfm, (@, @), e}, e0) —* succ(A’, tfm/, (id1,id2)) andid, # @ andcomplete(el;en)
(SM8) match(A4, d, tfm, unm, e, Lsid=ep) — err(er),
if e(sid) = e} andmatch(A, d, tfm, e}, eg) —* err(er)

(SM9) match(4, d, tfm, unm, e, Lvid=is1) — succ(A;(lvid 4 vid), tfm, unm),
if e[vid] = is2 anddeps(is2) = d’ and golve(A, d,is1=is2) —* succ(A’) orstrip(is1) = v)
(SM10) match(A, d, tfm, unm, e, Lvid=is1) — err(er),
if e[vid] = is2 andstrip(is1) # v andsolve(4, d, is1=1is2) —* err(er)
(SM11) match(A, d, tfm, (id1, id2), e, lid=x) — succ(A;(Lid=toDumVar(z)), tfm’, (id1 U {id}, id2)),
if e(id) is undefined and (it = Aa. (« y)d/ thentfm’ = tfmB{y — aam} elsetfm’ = tfm)
(SM12) match(4, d, tfm, unm, e, ev) — succ(4;ev, tfm, unm)
(SM13) match(4, d, tfm, unm, e, e’dl) — match(A, d U E/, tfm, unm, e, e’)

a signature are involved in the reported error and this mfdion
is necessary for the error to occur then we highlight the llan
spaces (if any) preceding the correspondinag, type, datatype
andstructure keywords.

We would then obtain the following highlighting which is & bi
more informative than the one presented above:

struct val (fool, barr, x,) = (1, 2, 3) end
sig val foo : int val bar : int val x : int end
S :>s

structure S
signature s
structure T

27 2010-8-19

