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Abstract

Existing compilers for many languages have confusing type error
messages.Type error slicing(TES) helps the programmer by iso-
lating the part of a program contributing to a type error, butunfor-
tunately TES was initially done for a tiny toy language. Extending
TES to a full programming language is extremely challenging, and
for SML we needed a number of innovations and generalisations.
Some issues would be faced for any language, and some are SML-
specific but representative of the complexity of language-specific
issues likely to be faced for other languages. We solve both kinds
of issues and present a simple, general constraint system for pro-
viding type error slices for ill-typed programs. Our constraint sys-
tem elegantly and efficiently handles features like the intricateopen
SML feature. We show how the simple clarity of type error slices
can demystify language features known to confuse users.

We also provide in an appendix a case study on how to use our
TES to help modifying user data types, and extend the core lan-
guage presented in the main body of this report to handle moreof
the implementation of our system. These extensions allow handling
local declarations, type declarations and some uses of signatures.

1. Introduction

Higher-order type inference. SML is a higher-order function-
oriented imperative programming language. SML (and similar lan-
guages like OCaml, Haskell, etc.) has polymorphic types allowing
considerable flexibility, and almost fully automatic type inference,
which frees the programmer from writing explicit types. We say
“almost fully” because some explicit types are required in SML,
e.g., as part of datatype definitions, module types, and typeanno-
tations sometimes needed in special circumstances. Milner’s W
algorithm [8] is the original type-checking algorithm of the func-
tional core of ML (variables, abstractions, applications and poly-
morphic let-expressions). W implementations generally give error
messages relative to the syntax tree node the algorithm was visiting
when unification failed, and this is often unsatisfactory.

Moving the error spot. Following W, other algorithms try to get
better locations by arranging that untypability will be discovered
when visiting a different syntax tree node. For example, Leeand Yi
proved that the folklore algorithm M [18] finds errors “earlier” than
W and claimed that their combination “can generate strictlymore
informative type-error messages than either of the two algorithms
alone can”. Similar claims are made for W′ [20] and UAE [30].
McAdam observes that W suffers a left-to-right bias and tries
to eliminate it using “unification of substitutions”. Yang claims
that UAE’s primary advantage is that it also eliminates thisbias.
However, all the algorithms mentioned above retain a left-to-right
bias in handling of let-bindings and they all blame only one syntax
tree node for each type error when in fact a node set is at fault.

When only one node is reported as the error site, this node is
often far away from the actual programming error. The situation
is made worse because which node is blamed depends on inter-
nal implementation details, i.e., the tree node traversal order and

which constraints are accumulated and solved at different times in
the traversal. The confusion is worsened because these algorithms
usually exhibit in error messages (1) an internal representation of
the program subtree at the blamed location which often has been
transformed substantially from what the programmer wrote,and (2)
details of inferred types which were not written by the programmer
and which are anyway erroneous and therefore confusing.

Other improved error reporting systems. Attempting to solve
this problem, constraint-based type inference algorithms[22, 23,
24] separate the two following processes: the generation oftype
constraints for a given term and their unification. Many works are
based on this idea to improve error reporting (a probably incom-
plete list includes [15, 10, 11, 9, 25, 26, 27]). Independently from
this separation, there exist many different approaches toward im-
proving error reporting [32]: error explanation systems [2, 31] and
error reporting systems [28]. Another approach to type error re-
porting is the one of Lerner et al. [19] or Hage and Heeren [12]
suggesting changes to perform in the untypable code to solvetype
errors.

Type error slicing. Haack and Wells [11] noted that “Identifying
only one node or subtree of the program as the error location makes
it difficult for programmers to understand type errors. To choose
the correct place to fix a type error, the programmer must find all
of the other program points that participate in the error.” They
locate type errors atprogram sliceswhich include all parts of an
untypable piece of code where changes can be made to fix the error
and exclude the parts where changes cannot fix the error.

Haack and Wells gave their method oftype error slicing(TES)
for a tiny subset of SML barely larger than theλ-calculus. The TES
of Haack and Wells generates constraints for SML code, enumer-
ates minimal unsatisfiable subsets of the constraint set, and then
computes type error slices. Generation and solving of constraints
are not interleaved. To identify program slices responsible for type
errors, each constraint is labeled by the location responsible for its
generation. Error slices are portions of a program where allsub-
terms with no responsibility for the error are elided (e.g.,replaced
by dots). Slices can also be shown by highlighting the sourcecode.
These slices are intended to contain all and only the information
needed to solve the type errors.

The method of Haack and Wells meets the following crite-
ria [32] for good type error reports: it reports only errors for ill-
typed code (correct), it reports no more than the conflicting por-
tions of code (precise), it reports short messages (succinct), it does
not report internal information such as internal types generated dur-
ing type inference (a-mechanical), it reports only code written by
the programmer which has not been transformed as happens with
existing SML implementations (source-based), it does not privi-
lege any location over the others (unbiased), and it reports all the
conflicting portions of code (comprehensive).

Slicing for a full language. We aim toward a TES method that
(1) covers the full SML language, (2) is practical on real programs,
and (3) has a simple and general design. As would happen for any
programming language, we encountered challenges.
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One challenge was avoiding a combinatorial explosion in the
number of constraints. Naive constraint generation could duplicate
the environment of a polymorphic declaration such as in SML’s let-
expressions. Our solution is related to a constraint systemby Pot-
tier and Rémy [24, 23] although it has evolved significantlybeyond
that, especially to handle the challenge of SML’sopendeclaration.
The most interesting constraints in their constraint system are “let-
constraints” (generated for let-bindings). They are to some extent
inspired by constraint-based type systems such as the one byOder-
sky, Sulzmann and Wehr [22] (and mainly by the type schemes
used in that system). As explained by Pottier such constraints “al-
low building a constraint of linear size” [23]. We have generalised
the structure of these constraints to deal with sequences ofdiverse
(both polymorphic and monomorphic) identifier declarations (for
values, types, structures, and signatures), and we developed a com-
patible slicing machinery. Our new constraint system replaced the
type duplicating approach of Haack and Wells and gained scalabil-
ity at the cost of losing compositional analysis.

Another major challenge was SML’sopenfeature which splices
the declarations of a structure into the current environment. This
feature has been criticized in the literature [13, 3, 4, 1]. Harper
writes [13]: “it is hard to control its behaviour, since it incorporates
the entire body of a structure, and hence may inadvertently shadow
identifiers that happen to be also used in the structure”. Blume
writes [3]: “Programs are not only read by analysis tools; human
read them as well. A language construct like open that serves
to confuse the analysis tool is also likely to confuse the human
reader”. Our TES provides useful type error reports whenopenis
involved, clarifying otherwise obscure type errors, and enhancing
the usability ofopen. To handle errors involvingopen, we designed
a simple and general machinery of “constrained environments”
(definition in Sec. 4.2, example in Sec. 2.2) which goes well beyond
what is supported by Pottier and Rémy’s let-constraints.

Another challenge is SML’s value identifier statuses. In SML, a
value identifier can be a value variable (the only status considered
by Haack and Wells), a datatype constructor, or an exceptioncon-
structor (omitted in this paper’s formalism). For example,if identi-
fier c has value variable status in the context,fn c => (c 1, c())

has a unique minimal error which is thatc has a monomorphic type
but is applied to two expressions with different types:int andunit.
However, this error would not exist if the code was preceded by,
e.g.,datatype t = c because the fn-binding would not bindc, but
instead there would be a minimal error thatc is declared as a nullary
datatype constructor and is applied to an argument inc 1. To com-
pute correct type error slices, we annotate constraints by context
dependencies on identifier statuses. For the fn-binding presented
above we generate during unification constraints relating the occur-
rences ofc annotated by the dependency thatc is a value variable
and not a datatype constructor. These constraints are not generated
if a context confirms thatc must be a datatype constructor. The con-
straints but not the context dependency are generated if a context
confirms thatc cannot be a datatype constructor. When handling
incomplete programs, we report conditional errors (warnings) that
assume a sensible default truth status for the dependencies.

Later sections detail solving these and other challenges.

2. Key motivating examples

This section gives motivating examples of TES. Type error slices
are highlighted with very light grey. Dark grey highlights error
end points(e.g., the sources of conflicting types constrained to be
equal). A color version has been made available.

2.1 Datatypes, pattern matching and type functions.Fig. 1
shows how TES is important for intricate errors. The code declares
the datatypet and the functiontrans to deal with user defined

Figure 1 Datatypes, pattern matching and type functions

datatype (’a, ’b, ’c) t = Red of ’a * ’b * ’c
| Blue of ’a * ’b * ’c

| Pink of ’a * ’b * ’c
| Green of ’a * ’b * ’b

1

| Yellow of ’a * ’b * ’c

| Orange of ’a * ’b * ’c
fun trans (Red (x, y, z)) = Blue (y, x, z)

| trans (Blue (x, y, z)) = Pink (y, x, z)
| trans (Pink (x, y, z)) = Green (y, x, z)

| trans (Green (x, y, z)) = Yellow (y, x, z)
2 3

| trans (Yellow (x, y, z)) = Orange (y, x, z)
| trans (Orange (x, y, z)) = Red (y, x, z)

type (’a, ’b) u = (’a, ’a, ’b) t * ’b
5val x = (Red (2, 2, false), true)

val y : (int, bool) u = (trans (#1 x), #2 x)
4

Figure 2 Chainedopens and nested structures

structure S = struct

structure Y = struct
structure A = struct val x = false end
structure X = struct val x = false end

structure M = struct val x = true end
end

open Y
val m = M.x
val x = if m then true else false

end
structure T = struct

structure X = struct val x = 1 end
open S

open X
val y = if m then 1 else x

end

colours. This function is then applied to an instance of a colour (the
first element in the pairx). Assume that our programming error is
that we wrote’b instead of’c in Green’s definition at location1©.
SML/NJ (version 110.72) reports a type constructor clash at4©:

operator domain: (int,int,int) t
operand: (int,int,bool) t

in expression:
trans ((fn {1=<pat>,...} => 1) x)

The reported code does not resemble our code and is far away
from the programming error location. SML/NJ gives the same error
message if, instead of the error described above, we writex instead
of z in the right-hand-side of any branch oftrans. This means with
SML/NJ one must check the entire program to find the error.

Fig. 1 shows one of the type error slices reported by our type er-
ror slice, highlighted in the code. This error is context-dependent: it
assumes thaty andz are value variables and not datatype construc-
tors. The programming error location being in the slice, we track it
down by considering only the highlighted portions of code, starting
from the clashing types on the last line. The type(int, bool) u

constrains the type oftrans’s application and the highlighted por-
tion of trans is when applied to aGreen object. At 1©, Green’s
second and third arguments are constrained to be of the same type.
At 2©, y is incidentally constrained to be of the same type asz. At
3©, becausey andz are respectively the first and third arguments of
Yellow and usingYellow’s definition, we infer that the type of the
application ofYellow to its three arguments (returned bytrans) is
t where its first and third parameters have to be equal. At4© and
5© we can see thattrans is constrained to return at where its first
(int) and third (bool) parameters differ.

2.2 Chained opens and nested structures. Fig. 2 presents a
type error involving nestedopens leading to intricate type errors.
Let us describe what the code was meant to do. In the structureT,
we declare a structureX declaring an integerx. We then open the
structureS to access the Booleanm. We then openX to access the
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integerx. Finally, if m is true then we return1 otherwise we returnx.
Unfortunately, this piece of code is untypable and SML/NJ reports
the following error message which blamesy’s body:

Error: types of if branches do not agree [literal]

then branch: int
else branch: bool

in expression:
if m then 1 else x

The programming error here, as our type error slice explains
clearly, is that openingS causesS’s declarations to shadow the
current typing environment. BecauseY is opened inS, the three
structuresA, X and M are part ofS’s declarations. Hence, when
openingS in T, the structureX which was in our current typing
environment is shadowed by the one defined inY. One can solve this
programming error by replacing “open S open X” by “ open S X”.

Our type error slice rules outx’s declarations inX and S and
clearly shows whyx does not have the expected type. SML/NJ’s
report leaves us to track downx’s binding by hand.

2.3 Merged minimal error slices. We have found cases need-
ing the display of many minimal errors at once. One important
case is in record field name clashes where, e.g., the highlighting
val {foo,bar} = {fool=0,bar=1} reports two minimal errors at
once: thatfool is not in{foo, bar} andfoo is not in{fool, bar}.
This merged error is preferable over the minimal errors because of
the explosion in the number of minimal slices. Light grey highlights
the fields that are common to different minimal slices. For merged
slices minimality is understood as follows: retain a singledark grey
field name in one of the two clashing records and all field namesin
the other.

3. Mathematical definitions and notations

Let i, j, n, m be metavariables ranging overN, the set of natu-
ral numbers. If a metavariablev ranges over a classC , then the
metavariablesvx (where x can be anything) and the metavari-
ablesv ′, v ′′, etc., also range overC . Let s range over sets. Ifv
ranges overs, then letv range overP(s), the power set ofs. Let
dj(s1, . . . , sn) (“disjoint”) hold iff for all i , j ∈ {1, . . . , n}, if
i 6= j thensi∩sj = ∅. Lets1⊎s2 bes1∪s2 if dj(s1, s2) and unde-
fined otherwise. LetR range over binary relations (we writeLx , yM
for a pair). Given a relationR let dom(R) = {x | Lx, yM ∈ R} and
ran(R) = {y | Lx, yM ∈ R}. Let s ⊳− R = {Lx , yM ∈ R | x 6∈ s}.
Let f range over functions, lets → s ′ = {f | dom(f ) ⊆ s ∧
ran(f ) ⊆ s ′}, and letx 7→ y be an alternative notation forLx , yM
used when writing some functions. A tuplet is a function such that
dom(t) ⊂ N and if 1 ≤ k ∈ dom(t) thenk − 1 ∈ dom(t). Let
t range over tuples. We write the tuple{0 7→ x0, . . . ,n 7→ xn} as
〈x0, . . . , xn〉. We define the appending〈x1, . . . , xi〉@〈y1, . . . , yj〉
of two tuples as the tuple〈x1, . . . , xi, y1, . . . , yj〉. If v ranges over
s, −→v is defined to range overtuple(s) = {t | ran(t) ⊆ s}.

4. Technical design of our TES

The different modules of our TES are: constraint generation
(Sec. 4.3), constraint solving (Sec. 4.4), minimisation (Sec. 4.5),
enumeration (Sec. 4.5), and slicing (Sec. 4.6). Sec. 4.8 discusses
minimality, Sec. 4.7 defines the overall algorithm of our type slicer,
and Sec. 4.9 discusses the principles of our approach.

4.1 External syntax. Fig. 3 (upper half) defines our external syn-
tax which is a subset of the SML syntax. Many syntactic forms are
annotated with labels (l ). These labels are generated by our TES to
track locations responsible for inferences made during analysis. To
provide a visually convenient place for labels, expressionapplica-
tions are surrounded by⌈ ⌉ which are not seen by programmers but
are part of an internal representation used to avoid confusion with

( ) as part of SML syntax. Value identifiers (vid ) are subscripted
to distinguish between occurrences in expressions (vid l

e), datatype
constructor definitions (vid l

c), and patterns (vid l
p).

4.2 Constraint syntax. Constraint terms. Fig. 3 (lower half)
defines our constraint terms.

In addition to distinguishing identifier classes (VId for value
identifiers,TyCon for type constructor names, etc.), SML assigns
statuses within the value identifier class to distinguish value vari-
ables, datatype constructors, and exception constructors. Because
SML has no lexical distinction between, e.g., a datatype construc-
tor and a value variable, a value identifier’s status cannot always be
inferred from any context smaller than the entire program.

In our constraint system, an identifier status can either be a
raw status (ris) or a raw status annotated with dependencies (is).
The v status is for value variables (e.g., the recursive functionf

in val rec f = fn x => x is a value variable and not a datatype
constructor). Statusesc andd are for unary and nullary datatype
constructors respectively (e.g.,c in datatype ’a t = C of ’a and
d in datatype ’a t = D). Statusu is for unconfirmed context-
dependent statuses (e.g., infn x => x, the identifierx could be a
value variable or a nullary datatype constructor). Statusp is for
unresolvable statuses such as inlet open S in fn x => x end,
wherex could be declared as a value variable as well as a datatype
constructor in the free structureS. Finally, statusa is similar to
a variable as it can be any status (used by our constraint filtering
functionfilt defined in Fig. 8 in Sec. 4.4 to generate dummy envi-
ronments that cannot participate in type errors).

Some syntactic forms, calleddependent forms, are annotated
by dependencies:〈x, d〉. A dependencyd can be a labell or
a value identifiervid . During analysis, if a dependencyd is a
label l , the annotated syntactic form depends on the program node
labelled by l . For example, if the dependent equality constraint

τ1 =
d∪{l}
==== τ2 is generated for the annotated code⌈exp atexp⌉l ,

then the equality constraintτ1= τ2 depends on the application
root node of⌈exp atexp⌉l . If d is a value identifiervid , then the
syntactic form depends onvid ’s status in the code being av or u.
Because identifiers’ statuses are resolved during constraint solving,
such dependencies (value identifiers) are only generated during
constraint solving and not during initial constraint generation. For
example, if constraint solving generates the dependent equality

constraintτ1=
d∪{vid}
=====τ2, then the equality constraintτ1=τ2 needs to

be satisfied only ifvid cannot be a datatype constructor. Letstrip
be the function that strips off the outer dependencies (not nested
under another constructor than the dependency constructor) of any
syntactic form:strip(x) = strip(y) if x = 〈y, d〉 andx otherwise.

An internal type of the formτ µ is called atype construction
and is built from an internal type constructorµ and its argument
τ (such as the polymorphic list type’a list, where’a is an ex-
plicit type variable in SML). We only allow type constructors to
take one parameter in this paper and so we only allow internaltype
constructors to take one parameter in our constraint system. The
internal type constructorar is used during constraint solving to
represent the arrow type constructor so that we can generatetype
constraints between the arrow type constructor and any other unary
type constructor. This is necessary to compute the necessary por-
tions of code when generating type errors. A type scheme can either
be a universal quantification or an internal type.

We use� to represent bindings (as in�id=x that associates
the semanticsx to the binding occurrenceid ) and� to constrain
the semantics of non-binding occurrences (also called accessors) of
identifiers (as in�id=x that constrainsid ’s semantics to bex). A
binder of the form��vid=α, is an unconfirmed binder that can either
be confirmed to be a binder of a value variable at constraint solving
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Figure 3 External syntax and constraint system
external syntax (what the programmer sees, plus labels)

l ∈ Label (labels)
vid ∈ VId (value identifiers)
sid ∈ StrId (structure identifiers)
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

ty ∈ Ty ::= tv l | ty1
l
→ ty2 | ty tcl

cb ∈ ConBind ::= vid l
c | vid of l ty

dn ∈ DatName ::= tv tcl

dec ∈ Dec ::= val rec pat
l
= exp | datatype dn

l
= cb | openl sid

atexp ∈ AtExp ::= vid l
e | let

l dec in exp end

exp ∈ Exp ::= atexp | fn pat
l
⇒ exp | ⌈exp atexp⌉l

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | vid l atpat

sdec ∈ StrDec ::= dec | structure sid
l
= sexp

sexp ∈ StrExp ::= sid l | structl sdec1 · · · sdecn end

constraint terms (syntax of entities used internally by the type error slicerand which the programmer never sees)
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈ Dependency ::= l | vid

ris ∈ RawIdStatus ::= v | c | d | u | p | a

is ∈ IdStatus ::= ris | 〈is, d〉

µ ∈ ITyCon ::= δ | γ | ar | 〈µ, d〉

τ ∈ ITy ::= α | τ µ | τ1�τ2 | 〈τ, d〉
σ ∈ Scheme ::= τ | ∀α. τ

bind ∈ Bind ::= �tc=µ | �sid=e | �tv=α | �vid=σ | �vid=is | ��vid=α

acc ∈ Accessor ::= �tc=δ | �sid=ev | �tv=α | �vid=α | �vid=ris

c ∈ Constraint ::= µ1=µ2 | e1=e2 | τ1=τ2 | is1=is2

e ∈ Env ::= � | ev | bind | acc | c | poly(e) | e2;e1 | 〈e, d〉

extra metavariables mostly used in side conditions
id ∈ Id ::= vid | sid | tv | tc var ∈ Var ::= α | δ | ev dep ∈ Dependent ::= 〈τ, d〉 | 〈µ, d〉 | 〈e, d〉 | 〈is, d〉

time, and so be turned into a binder of the form�vid=α or be
turned into an accessor�vid=α if it turns out thatvid is a datatype
constructor. This mechanism is further illustrated in Sec.4.4.

The keystone of our constraint system is the constrained en-
vironmente1;e2 wheree1 constrainse2. The environmente1;e2

builds a new environment from its two components where refer-
ences of the form�id (accessors) ine2 can depend on occurrences
of �id (binders) ine1. For example, in�vid=σ;�vid=α, α is con-
strained to beσ through the binding ofvid . The motivation for
these environments is to have a general mechanism to build envi-
ronments for sequential declarations.

In addition to a constrained environment of the forme1;e2, an
environment can also be an empty environment�, an environment
variableev , a binderbind associating static semantics to identi-
fiers, an accessor to look identifiers’ static semantics up inenvi-
ronments, an equality constraintc, a special formpoly(e) (ex-
plained below) which grantse the possibility to be polymorphic,
or a conditional environment〈e, d〉 depending ond . Environments
are special kinds of constraint (on internal types, internal type con-
structors, environments and statuses).

Let e1; · · · ;en be� if n = 0 and(e1; · · · ;en−1);en if n > 0.

“Atomic” syntactic forms. Let atoms(x) be the set of syntactic
forms belonging toVar ∪ TyConName ∪ Dependency and occur-
ring in x whateverx is. We define the following functions:

vars(x) = atoms(x) ∩ Var (set of variables)
labs(x) = atoms(x) ∩ Label (set of labels)
deps(x) = atoms(x) ∩ Dependency (set of dependencies)

Freshness of variables. We use distinguished dummy variables:
DumVar = {αdum, ev dum, δdum}. Each use of a dummy variable acts
like a fresh variable. These variables are used to generate dummy
environments and constraints. For example, the equality constraint
ev dum=e means that the environmente must be solved and does
not constrain any other environment. The relationdja ensures the
freshness of the generated variables and type constructor names:
dja(x1, . . . , xn)⇔dj(f (x1), . . . , f (xn), DumVar), wheref (x) =
atoms(x) \ VId. This also ensures that each label occurs at most
once in a labelled program.

Syntactic sugar. We write 〈x, d〉 for 〈x, {d}〉. Let y be ad or
a d . We writexy for 〈x, y〉. We writex1 =

y
== x2 for 〈x1=x2, y〉,

and similarly for bind ’s and acc’s. We write �vid =
y
== 〈σ, is〉

for �vid =
y
== is;�vid =

y
== σ, and�vid =

y
== 〈α, ris〉 for �vid =

y
==

ris;�vid =
y
== α We write [e] for (evdum= e). Such a constraint

defines a local environmente which is not visible from outside the
constraint. This is used for local bindings by rules(G2) and(G4)
of our constraint generation algorithm defined in Fig. 4.

4.3 Constraint generation. Value bindings. At constraint gen-
eration (Fig. 4), in the pattern rule(G5), we generate monomor-
phic, unconfirmed binders of the form��vid=α where no type
variable is yet quantified over. These binders are monomorphic
because in SML, e.g., the type of a recursive function such as
f in the let-expressionlet val rec f = fn x => f x in f end,
is monomorphic within its definition (f’s first and second occur-
rences’ types are equal) and generalised into a polymorphicfor all
type scheme when typing the declaration (f’s third occurrence’s
type is an instance of the generalisation off’s first occurrence’s
type). An environmente is then turned into a polymorphic one dur-
ing constraint solving (usingtoPoly defined in Fig. 6 in Sec. 4.4)
if marked as follows:poly(e). Such forms are generated by the
recursive value declaration rule(G12) and the datatype declaration
rule (G13). In (G5) again, the binder is unconfirmed and no status
constraint is generated (as opposed to, e.g., rule(G10) which forces
the analysed identifier to be a nullary datatype constructor) because
in SML, e.g., infn x => x, without any more context, the identi-
fier x could be a value variable or a datatype constructor. The status
of x is then unknown. Because recursive functions are forced to be
value variables (v) even when in the scope of a datatype constructor
binding,toV (used by(G12)) generates a status constraint:

toV(e1;e2) = toV(e1);toV(e2)

toV(��vid =
l
== α) = (�vid =

l
== 〈α, v〉)

toV(e) = e, if none of the above applies

As explained in Sec. 4.4, at constraint solving, an unconfirmed
binder of the form��vid=α eventually turns into a binder of the
form �vid=α or an accessor of the form�vid=α. (In some cases,
a status constraint is also generated from an unconfirmed binder.)

Algorithm. Fig. 4 defines our constraint generator. At initial con-
straint generation, the only labelled environments are equality con-
straints (c), binders (bind ), accessors (acc), and environment vari-
ables (ev ).

In rule (G12) for recursive function declarations, the environ-
menttoV(e1) generated for the pattern part of the declaration con-
strains the environmente2 generated for the expression part. This
order is necessary to handle the recursivity of such declarations.
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Figure 4 Constraint generation rules

Expressions (G1) vid l
e -⊲ 〈α, �vid =

l
== α〉

(G2) letl dec in exp end -⊲ 〈α, [e1;e2;(α=
l
== α2)]〉 ⇐⇐⇐ dec -⊲ e1 ∧∧∧ exp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

(G3) ⌈exp atexp⌉l -⊲ 〈α, e1;e2;(α1=
l
== α2�α)〉 ⇐⇐⇐ exp -⊲ 〈α1, e1〉 ∧∧∧ atexp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

(G4) fn pat
l
⇒ exp -⊲ 〈α, [(ev=e1);ev l ;e2;(α=

l
== α1�α2)]〉 ⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α, ev)

Patterns (G5) vid l
p -⊲ 〈α, ��vid =

l
== α〉 (G6) vid l atpat -⊲ 〈α2, α1=

l
== α�α2;�vid =

l
== 〈α1, c〉;e〉 ⇐⇐⇐ atpat -⊲ 〈α, e〉 ∧∧∧ dja(e, α1, α2)

Types (G7) tv l -⊲ 〈α, �tv =
l
== α〉 (G8) ty tcl -⊲ 〈α′, (�tc =

l
== δ);(α′=

l
== α δ);e〉 ⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ dja(e, α′, δ)

(G9) ty1
l
→ ty2 -⊲ 〈α, e2;e1;(α=

l
== α1�α2)〉 ⇐⇐⇐ ty1 -⊲ 〈α1, e1〉 ∧∧∧ ty2 -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Constructor bindings (G10) vid l
c -⊲ 〈α, �vid =

l
== 〈α, d〉〉

(G11) vid of l ty -⊲ 〈α1, e;α2=
l
== α�α1;�vid =

l
== 〈α2, c〉〉 ⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ dja(e, α1, α2)

Declarations (G12) val rec pat
l
= exp -⊲ (ev=poly(toV(e1);e2;(α1=

l
== α2)));ev l ⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

(G13) datatype dn
l
= cb -⊲ (ev=((α1=

l
== α2);e1;poly(e2)));ev l ⇐⇐⇐ dn -⊲ 〈α1, e1〉 ∧∧∧ cb -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

(G14) openl sid -⊲ (�sid =
l
== ev);ev l

Datatype names (G15) tv tcl -⊲ 〈α′, (α′=
l
== α γ);(�tc =

l
== γ);(�tv =

l
== α)〉 ⇐⇐⇐ α 6= α′

Structure declarations (G16) structure sid
l
= sexp -⊲ (ev ′=(e;(�sid =

l
== ev)));ev ′l ⇐⇐⇐ sexp -⊲ 〈ev , e〉 ∧∧∧ dja(e, ev ′)

Structure expressions (G17) sid l -⊲ 〈ev , �sid =
l
== ev〉

(G18) structl sdec1 · · · sdecn end -⊲ 〈ev , (ev=
l
== ev ′);(ev ′=(e1; · · · ;en))〉 ⇐⇐⇐ sdec1 -⊲ e1 ∧∧∧ · · · ∧∧∧ sdecn -⊲ en ∧∧∧ dja(e1, . . . , en, ev , ev ′)

In rule(G13) for datatype declarations, the environmente1 gen-
erated for the declared type constructor constrains the environment
poly(e2) generated for the datatype constructor of the declared
type constructor. This order is necessary to handle the recursivity
of such datatype declarations (indatatype nat = z | s of nat,
the second occurrence ofnat refers to its first occurrence).

Rule (G14) for structure opening (as for rules(G4), (G12),
(G13) and(G16)) labels an environment variable, so that a sliced
out declaration does not shadow its environment. Without this label,
the environment variable would be a constraint that always have to
be satisfied. With the label, the environment variable is a constraint
that has to be satisfied only when the declaration is not sliced out.
The link between the environment variable and the structureto open

is made via the labelled accessor�sid =
l
== ev .

Rule(G18) for structure expressions (as for rules(G4), (G12),
(G13) and (G16)) generates unlabelled equality constraints. An
unlabelled equality constraint such as a constraint of the form
ev ′=(e1; · · · ;en) generated by(G18) needs to be unlabelled be-
cause each of theei is not dependent on the analysed structure ex-
pression itself but is dependent on the corresponding declaration
packed together with other declarations in the structure expression.
The information related to the analysed structure expression, car-
ried by the unlabelled constraint is the fact that a sequenceof decla-
rations (corresponding to the constrained environmente1; · · · ;en)
is packed into a structure. This information depends on the anal-
ysed structure expression via the extra labelled equality constraint

ev=
l
== ev ′. In (G4), (G12), (G13) and(G16), we use labelled envi-

ronment variables of the formev l .

4.4 Constraint solving. Syntax. Fig. 5 defines the syntactic
forms used by our constraint solver (Fig. 7) where one unification
step is defined by the relation→, where→∗ is its reflexive and
transitive closure. To each state of a unification computation (ex-
cept the errors), a unification context∆ = 〈u, e〉 is associated. In a
statesolve(〈u, e〉, d , e ′), 〈u, e〉 is the context in whiche ′ must be
solvable for the algorithm to succeed. Let〈u, e〉(var) beu(var),
let 〈u, e〉;e ′ be〈u, e;e ′〉, and letu1⊞u2 beu1 ∪ (DumVar ⊳− u2)
if dj(dom(u1), dom(u2)), and undefined otherwise.

Given constraints (of the forme), our constraint solver either
succeeds withsucc(∆) returning its current unification context∆,

or fails with err(er) returning an error which can be (seeek in
Fig. 5) a type constructor clash, a circularity error or a status clash
(discussed below with thecompatible relation). The application of
a renamingren to an internal typeτ is defined as usual and, is
denotedτ [ren]. Renamings are used to instantiate type schemes.

Environment application. Constraint solving maintains a type
environment (e in ∆) where some parts might be shadowed and
so inaccessible. For example, inbind2;ev ;bindd

1 , the usable part
is bind1 andev shadowsbind2 because an environment variable
stands for any environment and could potentially bind any identi-
fier. During unification, noc or acc occurs in thee stored in a∆
because they are transformed into unifiersu (rules(U3) and(U4)
in Fig. 7). Similarly, thepoly(e) and ��vid=α forms are elimi-
nated. Concerning�, we never add it to a unification context∆
while unifying constraints, but we always start a unification process
with the initial unification context〈∅,�〉. Thus, during unification
if ∆ = 〈u, e〉 thene is of the form�;e1 · · · ;en, where eachei is

either anev or a�id =
d
== x. Let the predicatehiding be defined as

follows: hiding(e) be true iff e ∈ Var or e is of the forme1;e2

andhiding(ei) for i = 1 or i = 2. Let hiding(〈u, e〉) be true iff
hiding(e). We define the applicatione(id) as follows:

(EA1) (e′;�id =
d
== ∀α. τ)(id) = ∀α. τd

(EA2) (e′;�id =
d
== x)(id) = xd , if x of the formτ , µ or e

(EA3) (e′;�id ′ =
d
== x)(id) = e′(id), if id 6= id ′ or x ∈ IdStatus

We defineeJidK to access value identifiers’ statuses:

(EAIS1) (e′;�id =
d
== is)JidK = isd

(EAIS2) (e′;�id ′ =
d
== x)JidK = e′JidK, if id 6= id ′ or x 6∈ IdStatus

For example,(�vid =
d3

== σ;�vid =
d2

== v;�sid =
d1

== e)(vid) = σ

but (�vid =
d3

== σ;�vid =
d2

== v;evd ;�sid =
d1

== e)(vid) and(�vid =
d3

==

σ;�vid =
d2

== v;�sid =
d1

== e)(tc) are undefined.
Let ∆(id) = e(id) and∆JidK = eJidK, where∆ = 〈u, e〉.

Context dependencies solving. Context dependencies are
solved during unification. An unconfirmed binder of the form
��vid=α is then either turned into a binder of the form�vid=α or
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Figure 5 Syntactic forms used by the constraint solver

er ∈ Error ::= 〈ek , d〉
∆ ∈ UnifEnv ::= 〈u, e〉

u ∈ Unifier = {f1 ∪ f2 ∪ f3 | f1 ∈ ITyVar → ITy ∧ f2 ∈ TyConVar → ITyCon ∧ f3 ∈ EnvVar → Env}
ek ∈ ErrKind ::= tyConsClash(µ1, µ2) | statusClash(is1, is2) | circularity

state ∈ State ::= solve(∆, d , e) | succ(∆) | err(er)
ren ∈ Ren = {ren ∈ ITyVar → ITyVar | ren is injective∧ dj(dom(ren), ran(ren))}

an accessor of the form�vid=α by one of these rules:(B2)-(B5).
These rules make use of the functionifNotDum which is defined
as follows:ifNotDum(αdum, is) = a and ifNotDum(α, is) = is
if α 6∈ DumVar. This function is required to ensure that a dummy
binder cannot bind something else than a dummy status. Rule(B2)
discards binders generated under unsatisfied context dependencies,
e.g., inlet datatype t = x in fn x => x end, x’s second occur-
rence does not bindx’s third occurrence because ofx’s declaration
as a datatype constructor. The unconfirmed binder is then turned
into an accessor. In all three other rules, the unconfirmed binder is
turned into a confirmed one. Rule(B3) validates context depen-
dencies, e.g., inval rec x = fn x => x, x is confirmed to be a
value variable,x’s second occurrence being in the scope ofx’s first
occurrence which is a recursive function and so in SML is forced
to be a value variable and not a datatype constructor. Rule(B4)
generates context dependencies, e.g., infn x => x, becausex can
be a value variable as well as a datatype constructor thenx’s sec-
ond occurrence is bound tox’s first occurrence under the context
dependency thatx is not a datatype constructor. Rule(B5) gener-
ates dummy environments when there is not enough information
to check whether a context dependency is satisfied or not, e.g., in
let open S in fn x => x end, if S is free, it might declarex as a
datatype constructor or as a recursive function. Thus, we donot al-
low x to be a monomorphic binding but we still generate a dummy
binding to catch status clashes (e.g., if instead of the second x we
had fn (x y) => y wherex is a unary datatype constructor, we
would then havex occurring in patterns both at a nullary position
and a unary position).

Status compatibility. Two identifier statuses are incompati-
ble iff a unary datatype constructor, occurring in a pattern, is
bound to a (context-dependent or independent) value variable as
in let val rec f = fn x => x in fn (f x) => x end wheref’s
first occurrence is a value variable andf’s second occurrence is a
unary datatype constructor (taking an argument in a pattern); or if a
value variable in a pattern (not applied) is bound to a unary datatype
constructor as inlet datatype t = x of int in fn x => x end.

compatible(is1, is2) ⇔{is1, is2} 6∈ {{c, v}, {c, u}, {c, p}}

Status compatibility is checked by constraint solving rules (S6)
and (S7) (in Fig. 7). Compatibility is only defined on raw sta-
tuses because constraint solving rule(S8) removes dependencies
on (among other things) statuses.

Building of constraint terms. The constraint solver usesbuild
to build, w.r.t. a given unifier, polymorphic types (Fig. 6),check
circularity errors (in order not to generate a unifier where,e.g.,
α = τ�α), and build environment:

build(u, var) =


build(u, x), if u(var ) = x
var , otherwise

build(u, τ µ) = build(u, τ) build(u, µ)
build(u, τ1�τ2) = build(u, τ1)�build(u, τ2)

build(u, xd) = build(u, x)d

build(u, x) = x, if none of the above applies

As explained at the end of this Section, types have to be built
up when generating polymorphic environments for efficiencyis-
sues. Because SML does not allow infinite types, we also usebuild
to detect circularity issues. During unification, before augmenting
any unification context, we check if it would allow allow generat-

ing infinite types (see rule(U1) of our unification algorithm de-

fined in Fig. 7). For example, given the unifier{α1 7→ α
d1

2 , α2 7→

〈αd3

3 �α
d4

4 , d2〉}, we do not allow its augmentation with, e.g.,

{α3 7→ 〈αd6

5 �α
d7

1 , d5〉} because it would allow generating infi-
nite types.

Environment extraction. The function diff is used by rules
(U4), (P1) and (P2) of our constraint solver to extract envi-
ronments generated during unification. It allows, when solving
an environment, getting back its “solved version” once all of its
constraints have been dealt with. By “solved version” of an envi-
ronmente, we mean the sequence of environments that has been
added to the unification context of the state in which the unifi-
cation process was when it started to solvee. For example, if
solve(〈u, e〉, d , e0) →∗

succ(〈u ′, e ′〉) then e ′ = e;e1 · · · ;en

anddiff(e, e ′) = �;e1 · · · ;en which is the “solved version” ofe0.

diff(e, e) = �
diff(e1, e2;e3) = diff(e1, e2);e3, if e1 6= (e2;e3)

Polymorphic environments. Fig. 6 definestoPoly which is used
by rule (P1) of our constraint solver to generate a polymorphic
environment by quantifying the type variables not occurring in the
types of the monomorphic bindings of the unification environment
of the current state.

In Fig. 6, τ is the type from which we want to generate a
type scheme. First, we build up the type, using the unifier of the
unification context of the current state (u), to obtain the typeτ ′.
The setτ is the set of types of the monomorphic bindings for
which, the binding currently being generalised, is in the scope. The
setα is the set of type variables that are allowed to be quantified
over because they do not depend on the types of the monomorphic
bindings. Finally,d

′
is the set of dependencies “explaining” why

the type variables not inα but occurring inτ ′ (the type variables
occurring inτ ′ and also depending on the monomorphic bindings)
are not allowed to be quantified over.

Let us illustrate how this mechanism works with the fn-expression
exp: fn x => let val rec f = fn z => x z in f end. The con-
straint generation algorithm generates an environment of the form
poly(e1) for the recursive declarationval rec f = fn z => x z.
When solving the constraints generated forexp, the constraint
solver eventually appliestoPoly to a unification context〈u, e〉 and

a binding of the form�f =
d
== α1 (which is the “solved version” of

e1). Building upα1 results in a typeτ ′ of the form〈αd2

2 �α
d3

3 , d1〉.
Becausex’s type is monomorphic, a monomorphic binding of the

form �x =
d1

== α0 occurs ine (the only monomorphic binding occur-
ring in e) and so we build aτ (see Fig. 6) of the form{τ0} where

τ0 is obtain building upα0 and is of the form〈αd5

2 �α
d6

3 , d4〉
(equivalent toτ ′ up to dependencies becausef η-reduces tox). We
therefore build aα (see Fig. 6) of the form∅ becauseα2 andα3

both occur inτ ′. We also build ad
′
of the formd4∪d5∪d6 which

is the set of “reasons” for not allowingα2 andα3 to be inα (set of
type variables that are allowed to be generalised over when build-
ing the type scheme returned bytoPoly). Finally, e is augmented

with �f =
d
== ∀∅. 〈αd2

2 �α
d3

3 , d1 ∪ d
′
〉.
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Figure 6 Monomorphic to polymorphic environment

toPoly(〈u, e〉, �vid =
d
== 〈τ, is〉)

= 〈u, e;(�vid =
d
== 〈∀α. τ ′d

′

, is〉)〉
where

8
>><
>>:

τ ′ = build(u, τ)
τ = {τ0 | ∃vid. τ1 = e(vid) ∧ τ0 = build(u, τ1)}}
α = (vars(τ ′) ∩ ITyVar) \ (vars(τ ) ∪ {αdum})

d
′
= {d | τ0 ∈ τ ∧ d ∈ deps(τ0) ∧ ¬dj(vars(τ0) ∩ ITyVar, vars(τ ′) \ (α ∪ {αdum}))}

When solving constraints generated by our constraint generator,
toPoly is only applied tobindd ’s resulting from the solving of an
environment wrapped bypoly which in turn is only used to wrap
environments built from: dependencies, a unique monomorphic
binding and equality constraints.

Extracting the monomorphic type variables of a binding’s type
is an expansive computation. We only perform it once per polymor-
phic binding by, provided a unification context, first building the
type of a given binding and by then looking up in the environment
(in the unification context) which type variables cannot be quanti-
fied over because they are monomorphic. When accessing the type
of a polymorphic binding we then only have to generate an instance
of its type scheme (see rule(A1) of our unification algorithm).

Algorithm. Fig. 7 defines our constraint solver.
The accessor rule(A4) can also be used to report free identi-

fiers. Ifsolve(∆, d , �id=x) → succ(∆) and¬hiding(∆) then it
means that there is no binder forid and so that it is a free identifier.

Free identifiers are in any case important to report, but it ises-
pecially vital for structure identifiers inopendeclarations. In our
approach, a free opened structure is considered as potentially re-
defining its entire context. Hence,val x = 1 open S val y = x 1

is typable becausex’s first occurrence is hidden by the declaration
open S. This might be confusing ifS was not reported as being free.
Let us explain how a free opened structure hides its context.Given
a declarationopen S, our constraint generation algorithm gener-

ates an environment of the form(�S =
l
== ev);ev l where l is the

label labelling the declaration. BecauseS is free, rule(A4) applies
when solving�S=ev . The environment variableev is then not con-
strained to anything. Hence when solvingev , rule(V2) applies and
∆;ev (from the right-hand-side of rule(V2)) results in the hiding
of ∆ by ev : all the binders in∆ are hidden byev .

Let the relationsisErr andsolvable be defined as follows:

e −isErr−−→ er ⇔ solve(〈∅, �〉, ∅, e) →∗ err(er)
solvable(e) ⇔∃∆. solve(〈∅, �〉, ∅, e) →∗ succ(∆)
solvable(sdec) ⇔∃e. sdec -⊲ e ∧ solvable(e)

4.5 Minimisation and enumeration. Extraction of environ-
ment labels. Given an environmente, lBinds extracts the labels
labelling binders (bind ) occurring ine. It is used during the first
phase of our minimisation algorithm which consists in trying to
remove entire sections of code (datatype declarations, functions,
structures, . . . ) by “disconnecting” accessors from their binders:

lBinds(e) = {l | bind l occurs ine}

Constraint filtering. Fig. 8 defines our constraint filtering func-
tion filt, used to check the solvability of constraints in which some
constraints are discarded. It is only applied to constraints generated
by our constraint generator. This is why we only filter environment
equality constraints of the formev=e and not of the general from
e1=e2. In filt(e, l1, l2), l1 is the label set for which we want to keep
the annotated environments (first case of the filtering rule for e l ),
andl2 is the label set for which we do not want to keep the equality
constraints and accessors but for which we want to turn the binders
into dummy ones and keep the environment variables (second case
of the filtering rule fore l ). The environments annotated by labels
that are not inl1 ∪ l2 are then discarded (third case of the filter-
ing rule fore l ). In the context of constraint filtering, label sets are

sometimes called filters. Being able to distinguish betweenbinders
to discard (not labelled by a label inl1 ∪ l2) and binders to turn
into dummy ones (labelled by a label inl2) is necessary because
during minimisation, throwing away any environment might result
in different bindings in the filtered constraints (corresponding to a
different SML code). For example, removing the binder labelled by

l2 in (�x =
l1
== 〈τ1, is1〉);(�x =

l2
== 〈τ2, is2〉);(�x =

l
== τ) would result in

x’s accessor being bound tox’s first binder instead of its second.
Similarly, removing the binding labelled by the label associated to
f’s second occurrence in the environment generated for

let val rec f = fn x => x 1

in let val rec f = fn x => x + 1 in f true end
end

would result inf’s third occurrence to be bound to its first
occurrence and so to the enumeration algorithm to find a type error
that does not exist in the original piece of code. When a binding is
labelled by a label froml2, it becomes a dummy unlabelled one that
cannot be involved in any error and it results that the same holds for
its accessors.

Minimisation algorithm. Fig. 9 defines our minimisation algo-
rithm: the relationmin that uses the relation→test to test if a la-
bel can be removed from a slice and where→∗

test is its reflexive
and transitive closure. It consists of two main phases. The first one
(〈e, labs(er) \ l , labs(er) ∩ l〉 →∗

test 〈e, l1, ∅〉) tries to remove
entire sections of code at once by turning bindings into dummy
ones usinglBinds. In a fine-grained second phase (〈e,∅, l1〉 →

∗
test

〈e, l2, ∅〉) the algorithm tries to remove the remaining labels (l1)
one at a time.

A step of our unification algorithm is as follow:〈e, l1, {l} ⊎
l2〉 →test 〈e, l3, l4〉 wherel3 and l4 depend on the solvability of
filt(e, l1 ∪ l2, {l}). The setl1 ∪ l2 ∪{l} is the label set of the error
that the minimisation algorithm is minimising and{l} ⊎ l2 is the
label set yet to try to discard. The environmentfilt(e, l1∪l2, {l}) is
obtained frome by filtering out the constraints that are not labelled
by l1∪l2∪{l} and by turning the binders labelled byl into dummy
ones. If the obtained filtered environment is solvable it means thatl
is necessary andl3 = l1 ∪ {l} and l4 = l2. If it is unsolvable
(solving the filtered environment failed and we obtained a new
smaller error), it means thatl is unnecessary for an error to occur
and that any environment labelled byl can be completely filtered
out in the next step. The label setsl3 and l4 are then restricted to
the newly found error (see rule(M1)).

Environments (bindings, environment variables, ...) can be com-
pletely filtered out from one step to another because our constraint
generator and solver, together ensure that if a binder is turned into a
dummy one then none of its accessors will be part of any error.This
invariant could explicitly be enforced during constraint solving by
adding side conditions to rules(A1)-(A3) checking if the types of
the accessed identifiers are not dummy variables (DumVar).

Enumeration algorithm. Fig. 9 also defines our enumeration al-
gorithm: the relation→e where→∗

e is its reflexive and transitive
closure. Enumerating the minimal type errors in a piece of code
consists of trying to solve diverse results of filtering the constraints
generated for the piece of code. The tested filters (label sets) form
the search space which is built while searching for errors. The enu-
meration algorithm starts with a unique filter: the empty set, to
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Figure 7 Constraint solver

equality constraint reversing

(R) solve(∆, d , x=y) → solve(∆, d , y=x),
if y ∈ s andx 6∈ s, wheres = Var ∪ Dependent

equality simplification

(S1) solve(∆, d , x=x) → succ(∆)

(S2) solve(∆, d , τ µ=τ ′ µ′) → solve(∆, d , (µ=µ′);(τ=τ ′))

(S3) solve(∆, d , τ1�τ2=τ3�τ4) → solve(∆, d , (τ1=τ3);(τ2=τ4))

(S4) solve(∆, d , τ1=τ2) → solve(∆, d , µ=ar) if {τ1, τ2} = {τ µ, τ3�τ4} for someµ, τ , τ3 andτ4
(S5) solve(∆, d , µ1=µ2) → err(〈tyConsClash(µ1, µ2), d〉), if µ1 6= µ2 and{µ1, µ2} ∈ {{γ, γ′}, {γ, ar}} for someγ andγ′

(S6) solve(∆, d , is1=is2) → err(〈statusClash(is1, is2), d〉), if ¬compatible(is1, is2)

(S7) solve(∆, d , is1=is2) → succ(∆), if compatible(is1, is2) andis1, is2 ∈ RawIdStatus

(S8) solve(∆, d , xd
′

=y) → solve(∆, d ∪ d
′
, x=y)

unifier access/updating Rules(U1) through(U6) have also these common side conditions:var 6= x andy = build(u, x)

(U1) solve(〈u, e〉, d, var=x) → err(〈circularity, d ∪ deps(y)〉), if var ∈ vars(y) \ (dom(u) ∪ Env) andvar 6= strip(y)

(U2) solve(〈u, e〉, d, var=x) → succ(〈u, e〉), if var ∈ vars(y) \ (dom(u) ∪ Env) andvar = strip(y)

(U3) solve(〈u, e〉, d, var=x) → succ(〈u⊞{var 7→ xd}, e〉), if var 6∈ vars(y) ∪ dom(u) ∪ Env

(U4) solve(〈u, e〉, d, var=x) → succ(〈u′⊞{var 7→ diff(e, e′)d}, e〉), if var ∈ Env \ dom(u) andsolve(〈u, e〉, d , x) →∗ succ(〈u′, e′〉)

(U5) solve(〈u, e〉, d, var=x) → err(er), if var ∈ Env \ dom(u) andsolve(〈u, e〉, d , x) →∗ err(er)

(U6) solve(〈u, e〉, d, var=x) → solve(〈u, e〉, d , z=x), if u(var ) = z

constrained environments

(C1) solve(∆, d , e1;e2) → solve(∆′, d , e2), if solve(∆, d , e1) →∗ succ(∆′)

(C2) solve(∆, d , e1;e2) → err(er), if solve(∆, d , e1) →∗ err(er)

dependent/empty/variables

(D) solve(∆, d , ed
′

) → solve(∆, d ∪ d
′
, e)

(N) solve(∆, d , �) → succ(∆)

(V) solve(〈u, e〉, d , ev) → succ(〈u, e;build(u, ev)〉)
binders
(B1) solve(∆, d , �id=x) → succ(∆;(�id =

d
== x))

(B2) solve(∆, d , ��vid=α) → solve(∆, d, �vid=〈α, ifNotDum(α, u)〉), if strip(∆JvidK) ∈ {c, d}

(B3) solve(∆, d , ��vid=α) → succ(∆;(�vid =
d∪d

′

==== α)), if ∆JvidK = is andstrip(is) = v anddeps(is) = d
′

(B4) solve(∆, d , ��vid=α) → succ(∆;(�vid =
d∪{vid}
====== 〈α, ifNotDum(α, u)〉)), if strip(∆JvidK) = u or (¬hiding(∆) and∆JvidK undefined)

(B5) solve(∆, d , ��vid=α) → succ(∆;(�vid =
d
== 〈αdum, ifNotDum(α, p)〉)), if strip(∆JvidK) ∈ {a, p} or (hiding(∆) and∆JvidK undefined)

accessors

(A1) solve(∆, d , �vid=α) → solve(∆, d , τ [ren ]=α), if ∆(vid) = ∀α. τ anddom(ren) = α anddja(vars(〈∆, α〉) \ {αdum}, ran(ren))

(A2) solve(∆, d , �vid=ris) → solve(∆, d , is=ris), if ∆JvidK = is

(A3) solve(∆, d , �id=var) → solve(∆, d , x=var), if ∆(id) = x andx is not of the form∀α. τ

(A4) solve(∆, d , �id=x) → succ(∆), if (x ∈ IdStatus and∆JidK undefined) or (x 6∈ IdStatus and∆(id) undefined)

polymorphic environments

(P1) solve(〈u1, e1〉, d , poly(e)) → succ(toPoly(〈u2, e1〉, e′)), if solve(〈u1, e1〉, d , e) →∗ succ(〈u2, e2〉) anddiff(e1, e2) = �;e′

(P2) solve(〈u1, e1〉, d , poly(e)) → succ(〈u2, e2〉), if solve(〈u1, e1〉, d , e) →∗ succ(〈u2, e2〉) anddiff(e1, e2) = �

(P3) solve(〈u1, e1〉, d , poly(e)) → err(er), if solve(〈u1, e1〉, d , e) →∗ err(er)

Figure 8 Constraint filtering

filt(e l , l1, l2) =

8
<
:

e l , if l ∈ l1 \ l2
dum(e), if l ∈ l2
�, otherwise

filt(ev=e, l1, l2) = (ev=filt(e, l1, l2))

filt(e1;e2, l1, l2) = filt(e1, l1, l2);filt(e2, l1, l2)

filt(poly(e), l1, l2) = poly(filt(e, l1, l2))

filt(�, l1, l2) = �

dum(�id=x) = (�id=toDumVar(x))
dum(��id=x) = (��id=toDumVar(x))
dum(ev) = evdum

dum(c) = �
dum(acc) = �

toDumVar(σ) = αdum

toDumVar(µ) = δdum
toDumVar(e) = evdum

toDumVar(α) = αdum

toDumVar(is) = a

Figure 9 Minimisation and enumeration algorithms
minimisation
(M1) 〈e, l1, {l} ⊎ l2〉 →test 〈e, l1 ∩ d , l2 ∩ d〉, if filt(e, l1 ∪ l2, {l}) −isErr−−→ 〈ek , d〉

(M2) 〈e, l1, {l} ⊎ l2〉 →test 〈e, l1 ∪ {l}, l2〉, if solvable(filt(e, l1 ∪ l2, {l}))

(M3) 〈e, er〉 −min−−→ er ′, if lBinds(e) = l and〈e, labs(er) \ l , labs(er) ∩ l〉 →∗
test 〈e, l1, ∅〉 and〈e, ∅, l1〉 →∗

test 〈e, l2, ∅〉 andfilt(e, l2, ∅) −isErr−−→ er ′

enumeration EnumState ::= enum(e) | enum(e, er , l) | errors(er)

(E1) enum(e) →e enum(e, ∅, {∅})
(E2) enum(e, er , ∅) →e errors(er)

(E3) enum(e, er , l ⊎ {l}) →e enum(e, er , l), if solvable(filt(e, labs(e), l))

(E4) enum(e, er , l ⊎ {l}) →e enum(e, er ∪ {〈ek , d〉}, l
′
∪ l),

if filt(e, labs(e), l) −isErr−−→ er and〈e, er〉 −min−−→ 〈ek , d〉

andl
′
= {l ∪ {l} | l ∈ d ∧ ∀l0 ∈ l . l0 6⊆ l ∪ {l}}

solve all the generated constraints. Then, when an error is found
and minimised, the labels of the error are used to build new filters

(seel
′

in rule (E4)). Once all the filters are exhausted the enu-

meration algorithm stops. The found errors are then all the mini-
mal type errors of the analysed piece of code (see rule(E2)). For
example, assume thatsdec -⊲ e for an untypable given piece of
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code sdec. Then, the first enumeration state is (see rule(E1)):
enum(e, ∅, {∅}) where the first empty set is the set of found er-
rors (empty at the beginning) and where the second empty set is
the first filter. Becausesdec is untypable, the constraint solver fails
and returns a type errorer . The minimisation algorithm minimises
er and returns a minimal errorer ′ such thater ′(1) ⊆ er(1). The
errorer ′ can beer if it was already in a minimal form when found
by the enumerator. New filters are then computed based on the fil-
ter used to find this new error (∅ in our example) and the new error
itself (er ′): {{l} | l ∈ er ′(1)}. The enumeration keeps search-
ing for errors using this updated search space: the new stateis
enum(e, {er ′}, {{l} | l ∈ er ′(1)}). For the next step, one of the
{l} wherel ∈ er ′(1) will be picked as the filter to try to find an-
other error. When a filter leads to a solvable filtered environment,
the filter is discarded (rule(E3)) otherwise the filter is used to up-
date the search space as explained above (rule(E4))

4.6 Slicing. The last phase of our TES consists in the compu-
tation of a minimal type error slice from an untypable piece of
code and a minimal error found by the enumeration algorithm.The
nodes labelled by the labels not involved in the error are discarded
and replaced by “dot” terms. For example, if we remove the node
associated to the labell2 (the unit expression) in⌈1l1 ()l2⌉l3 then
we obtain⌈1l1 dot-e(∅)⌉l3 , displayed as1 〈..〉 in our implemen-
tation. Dots are used as a visually convenient way to show that
information has been discarded. Fig. 10 extends our syntax and
constraint generator to “dot” terms. Our constraint generator is ex-
tended to dot terms so that every piece of (our extended) syntax
can be type checked (by generating constraints and by then solving
the constraints), which is needed to state our minimality criteria in
Sec. 4.8. We callslice, any syntactic form that can be produced us-
ing the grammar rules defined in Fig. 3 and Fig 10 combined. We
call type error slice, any slice for which our constraint generation
algorithm (defined in Fig 4 and Fig. 10 combined) only generates
unsolvable constraints. Let us restrict our slice definitions to struc-
ture declarations. Formally, a slice is asdec and a type error slice
is asdec such that¬solvable(sdec).

Flattening. Turning nodes not participating in errors into dot
nodes is not enough. Our slicing algorithm uses two tidying func-
tions flat and tidy. The flattening functionflat flattens sequences
of parts (pt ). For example, flattening〈..1..〈..()..〉..〉 results
in 〈..1..()..〉. Not all nested dot terms are flattened: in order
not to mix up bindings in a slice, we do not allow a declara-
tion to be anept (expression term as opposed to a declaration)
and only allow ept ’s to be flattened, so that declarations can-
not escape the scope defined by a dot term. For example, we
do not flatten 〈..val x = ()..〈..val x = 1..〉..x + 1..〉 to
〈..val x = ()..val x = 1..x + 1..〉 because they have differ-
ent semantics: the first slice is not typable but the second is. Let
flat be defined as follows (wherex can be any ofe, p, s, d):

flat(〈〉) = 〈〉

flat(〈pt 〉@
−→
pt ) =

−→
ept@flat(

−→
pt ), if pt = dot-x(

−→
ept)

〈pt〉@flat(
−→
pt ), otherwise

The function tidy tidies sequences of structure declarations
(sdec) when slicing structure expressions:

tidy(〈〉) = 〈〉

tidy(〈dot-d(
−→
ept), dot-d(

−→
pt )〉@

−−→
sdec)

= tidy(〈dot-d(
−→
ept@

−→
pt )〉@

−−→
sdec)

tidy(〈dot-d(∅)〉@
−−→
sdec)

= tidy(
−−→
sdec), if

−−→
sdec not of the formdot-d(

−→
ept)@

−−→
sdec′

tidy(〈sdec〉@
−−→
sdec)

= 〈sdec〉@tidy(
−−→
sdec), if none of the above applies

Algorithm. Our slicing algorithm can be presented in a simple
fashion if our syntax forms defined in Fig. 3 and Fig. 10 are
regarded as abstract syntax trees. In such a treetree , leaves are
identifiers id and otherwise a node is labelled by a node kind
node and a labell (denotednode l 〈tree1, . . . , treen〉). Using this
notation, we define out slicing functionsl in Fig. 11.

4.7 Overall algorithm for Type Error Slicing. First, given a
SML structure declarationsdec, our constraint generation algo-
rithm defined in Fig. 4 generates constraints structured in an en-
vironmente. Then, type errors ofe are enumerated using the enu-
meration algorithm defined in Fig. 9. Once an error is found bythe
enumeration algorithm, it is minimised using the minimisation al-
gorithm also defined in Fig. 9. Then a slice is computed from the
minimised error and the original piece of code using the slicing
algorithm defined in Fig. 11. Both enumeration and minimisation
rely on the constraint solver defined in Fig. 7. The computed type
error slices are finally reported to the user. In addition to atype er-
ror slice, a type error report also includes a highlighting of the slice
in the SML user code, a message explaining the kind of the error
(see Fig. 5), and a set of identifier status context dependencies. For-
mally, our overall algorithmtes is defined as follows:

tes(sdec) = {〈sdec′, ek , vid〉 | sdec -⊲ e
∧ enum(e) →∗ errors(er)
∧ 〈ek , l ∪ vid〉 ∈ er

∧ sl(sdec, l) = sdec′}

4.8 Minimality. Let us informally define the functionbindings
on environments. This function uses a modified version of our
constraint solver that keeps track of the bindings generated by the
accessor rules ((A1)-(A3)). Given a piece of code,bindings, us-
ing the constraint generation algorithm, generates an environment,
filters out all the labelled equality constraint in the generated en-
vironment, runs the modified constraint solver on the filtered envi-
ronment, and finally returns the recorded bindings. For example,
if exp is let val x = true in let val x = 1 in x end end,
and the labelli is associated to theith occurrence ofx then
bindings(exp) = {〈l2, l3〉}.

We define the sub-slice relation as follows:sdec1 ⊑l sdec2 iff
sl(sdec2, l) = sdec1 andbindings(sdec1) ⊆ bindings(sdec2).

We saysdec2 is a minimal type error slice ofsdec1 iff sdec2 ⊑l

sdec1, ¬solvable(sdec2) and for allsdec′ if sdec′ ⊑
l
′ sdec2 and

sdec′ 6= sdec2 for somel
′
thensolvable(sdec′).

We consider minimality as a design principle for our TES even
though minimal slices do not always seem to be the correct answer
to type error reporting. For example for record field name clashes,
we do not want to provide minimal slices, as presented in Sec.2.3.

For the subset of our TES presented in the present paper, we
believe the following holds: a slicesdec′ is a minimal slice ofsdec
iff 〈sdec ′, ek , vid〉 ∈ tes(sdec). We do not formally prove this
statement for diverse reasons. First, our TES is constantlybeing
updated and proving the minimality of one of its versions would not
guaranty the minimality of the others. Then, as mentioned above,
minimality is only a design principle. Let us finally stress that we
feel improving the range and quality of our slices is more important
than ensuring their minimality in particular.

4.9 Design principles. While developing our type error slicer
we discovered, developed, and followed the following principles.
Constraint termsare those pieces of syntax that can occur anywhere
inside a constraint. In our system, this is anyis, µ, τ , σ, or e.

1. Each syntactic sort of constraint terms should have a case
ranging over an infinite variable set. This allows incomplete infor-
mation in every possible place in constraints, which allowscon-
sidering every possible way of slicing away parts of the program

9 2010-8-19



Figure 10Extension of our syntax and constraint generator to “dot” terms
extension of the syntax

pt ∈ Part ::= ept | sdec
ept ∈ ExpPart ::= exp | ty | sexp | pat

Ty ::= · · · | dot-e(
−→
pt )

ConBind ::= · · · | dot-e(
−→
pt )

DatName ::= · · · | dot-e(
−→
pt )

Dec ::= · · · | dot-d(
−→
pt )

AtExp ::= · · · | dot-e(
−→
pt )

Exp ::= · · · | dot-e(
−→
pt )

AtPat ::= · · · | dot-p(
−→
pat )

Pat ::= · · · | dot-p(
−→
pat )

StrDec ::= · · · | dot-d(
−→
pt )

StrExp ::= · · · | dot-s(
−→
pt )

extension of the constraint generator
Parts ept -⊲ e ⇐⇐⇐ ept -⊲ 〈var , e〉

Declarations dot-d(〈pt1, . . . , ptn〉) -⊲ [e1; · · · ;en] ⇐⇐⇐ pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en)

Patterns dot-p(〈pat1, . . . , patn〉) -⊲ 〈α, e1; · · · ;en〉 ⇐⇐⇐ pat1 -⊲ e1 ∧∧∧ · · · ∧∧∧ patn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

Structure expressions dot-s(〈pt1, . . . , ptn〉) -⊲ 〈ev , [e1; · · · ;en]〉 ⇐⇐⇐ pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en, ev)

Expressions/Types/Constructor bindings/Datatype names
dot-e(〈pt1, . . . , ptn〉) -⊲ 〈α, [e1; · · · ;en]〉 ⇐⇐⇐ pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

Figure 11Slicing algorithm
node ∈ Node ::= tyV | tyC | tyA | cbN | cbU | dn | decV | decD | decO | expI | expL | expF | expA | patI | patA | sdec | sexpI | sexpS

The node kinds correspond to the cases of the external syntaxgrammar. In particular,sexpS is the kind for a structure expression of the form
structl sdec1 · · · sdecn end. In (SL3) and (SL7), x is chosen depending on the argument provided to the slicing function. For example, in(SL3), if
node = sexpS thenx is s.

(SL1) sl(node l 〈tree1, . . . , treen〉, l) = node l 〈sl1(tree1, l), . . . , sl1(treen, l)〉, if l ∈ l andnode 6= sexpS

or sl1(tree1, l) = node ′l′ −−→tree wherenode ′ ∈ {patI, patA}

(SL2) sl(node l 〈tree1, . . . , treen〉, l) = node l tidy(〈sl1(tree1, l), . . . , sl1(treen, l)〉), if l ∈ l andnode = sexpS

(SL3) sl(node l 〈tree1, . . . , treen〉, l) = dot-x(flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)), if none of the above applies

(SL4) sl1(node l −−→tree, l) = sl(node l −−→tree, l) (SL6) sl1(id , l) = id

(SL5) sl2(node l −−→tree, l) = sl(node l −−→tree, l) (SL7) sl2(id , l) = dot-x(〈〉).

syntax tree. This is essential to get precise type error slices that
include all relevant details and exclude the irrelevant.

For us, this means the sortsµ, τ , ande have the variable casesδ
α, andev . Our implementation has a variable case of raw identifier
statuses (ris) which is omitted from this paper to save space.

2. Each syntactic sort of constraint terms should have a depen-
dency annotation case. This allows precise blame tracking,which
in turn enables precise slicing, which we already motivate above.

For us, this means the sortsis, µ, τ , ande have the dependency
cases〈is, d〉, 〈µ, d〉, 〈τ, d〉, and 〈e, d〉. We omit type scheme
dependencies (σ) because handling schemes is already complex
and only dependencies on plain types (τ ) are needed in this paper.

3. In our system, when processing a program syntax tree node,
a constraint generation rule will return a main result (either a type
or an environment) and in some cases also an environment result
(used for constraints and bindings when the main result is not an
environment). The rule may connect information from the results
for the node’s subtrees to the other subtrees or to the node’sresults.

The principle is that these connections should generally bevia
constraints that carry the syntax tree node’s label and thatare
“shallow”, i.e., contain only connection details and not constraints
from program subtrees. Fresh variables should be used as needed.
This allows a program syntax node to be “disconnected” for type
errors that depend on the node’s details, while still keeping type
errors that arise solely due to connections between environment
accessors and bindings that pass through the node.

A good example in our system is rule(G18) that handles struc-
tures (SML’s modules). The environment for the structure isbuilt
by the unlabelled constraintev ′=(e1; · · · ;en). This “deep” con-
straint holds a complex structure in order to pack together ase-
quence of environments from the declarations making up a struc-
ture body. The structure environment is connected to the main result

by the labelled shallow constraintev=
l
== ev ′.

4. Duplicating constraints should be unnecessary.
This seems obvious, but some previous constraint formalisms

seem to be too weak to allow the needed sharing. Again, we use the
example of rule(G18), where our system allows the environment

for the structure can be written as the sequential composition of
the environments for the component declarations:e1; · · · ;en. Here
the environmente1 from the first declaration is available both in
the subsequent declarations and also in the result (provided its
bindings are not shadowed). A previous version of our systemhad
a weaker constraint system with let-constraints similar tothose
of Pottier and Rémy [24], and the best solution we could devise
required duplicating the environments for the pattern portion of
each declaration, which resulted in an exponential slowdown.

5. Dependencies must be propagated during constraint solving
exactly when needed. If dependencies are not propagated to places
they should be, minimization will over-minimize producingnon-
errors. This can be detected. More insidiously, propagating depen-
dencies where they are unneeded will keep alive unneeded parts
of error slices much longer during minimization, resultingin se-
rious slowdowns. Because correct results are eventually produced,
detecting such bugs is harder so this issue requires great care.

For example, an earlier version of our constraint solver copied
dependencies from declarations in a structure to the structure’s
result, forcing the minimizer to remove each declaration one at a
time. Debugging was hard because only speed suffered.

More generally, the constraint solver should be designed to
produce error slices (before minimization) that are as close to
minimal as can be reasonably achieved. If constraint solving yields
a non-minimal error slice, then solving steps must have annotated
a constraint with a location on which it does not uniquely depend.

5. Implementation details

5.1 Supported features. Our TES handles most SML fea-
tures, e.g., structures, signatures, datatype replications (handled
like open), operator and constant overloading, many uses of func-
tors, etc. We also handle imperative features such as exceptions and
the value polymorphism restriction. We also slice context-sensitive
syntax errors, which comes naturally from handling identifier sta-
tuses and doing context-independent type checking, e.g.,x occur-
ring twice in the pattern infn (x, x) => x is an error only ifx has
value variable status. We do not yet handle fixity changes. Type
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Figure 12Highlighting of an SML type error in Emacs

and structure sharing is incomplete. Some errors involvingequality
types and flexible record patterns are not reported.

5.2 Performance. Our implementation is currently usable for
small projects (a few thousand lines) and is steadily improving. Our
latest constraint system and solver is 10 to 100 times fasterin many
cases than before we switched to using constrained environments
(e2;e1). Our previous TES version was already enormously faster
than the original by Haack and Wells due to avoiding duplication
of polymorphic types.

5.3 User interface. An Emacs interface (and a preliminary one
for Vim) highlights slices in the edited source code. There is also
a terminal command-line interface. Figure 12 presents a screenshot
of the type error presented in Sec. 2.1 highlighted in Emacs.The
light pink corresponds to slices other than the focused one.

5.4 The Standard ML basis library. Our examples have used
operators like:: and+. For now, we allow defining the Standard
ML basis in a file, and we provide a file declaring a portion of
the basis. For the future, we have begun implementing a way to
use library types extracted from a running instance of SML/NJ, but
there are still technical challenges to overcome.

6. Related work
6.1 Methods making use of slices.After the first version of
TES presented by Haack and Wells, many researchers began to
present type errors as program slices obtained from unsolvable sets
of constraints.

Neubauer and Thiemann [21] use flow analysis to compute
type dependencies for a small ML-like language to report type
errors. Their system uses discriminative sum types and can analyze
any term. Their first step (“collecting phase”) labels the studied
term and infers type information. This analysis generates aset of
program point sets. These program points are directly stored in
the discriminative sum types. A conflicting type (“multivocal”) is
then paired with the locations responsible for its generation. Their
second step (“reporting phase”) consists in generating error reports
from the conflicts generated during the first phase. Slices are built
from which highlighting are produced. An interesting detail is that a
type derivation can be viewed as the description of all type errors in
an untypable piece of code, from which another step then computes
error reports.

Similar to ours is work by Stuckey, Sulzmann and Wazny [27,
29] (based on earlier work without slices [25, 26]). They do type
inference, type checking and report type errors for the Chameleon
language (a modified Haskell subset). Chameleon includes alge-
braic data types, type-class overloading, and functional dependen-
cies. They code the typing problem into a constraint problemand
attach labels to constraints to track program locations andhighlight
parts of untypable pieces of code. First they compute a minimal un-
satisfiable set of generated constraints from which they select one

of the type error locations to provide their type explanation. They
finally provide a highlighting and an error message depending on
the selected location. They provide slice highlighting butusing a
different strategy from ours. They focus on explaining conflicts in
the inferred types at one program point inside the error location set.
It is not completely clear, but they do not seem to worry much about
whether the program text they are highlighting is exactly (no more
and no less) a complete explanation of the type error. For example,
they do not highlight applications because “they have no explicit
tokens in the source code”. It is then stated: “We leave it to the user
to understand when we highlight a function position we may also
refer to its application”. This differs from our strategy because we
think it is preferable to highlight all the program locations respon-
sible for an error even if these are white spaces. Moreover, they do
not appear to highlight the parts of datatype declarations relevant
to type errors.

When running on a translation of the code presented in Sec. 2.1
into Haskell, ChameleonGecko outputs the error report partially
displayed below (the rest of the output seems to be internal infor-
mation computed during unification). This highlighting identifies
the same error location as SML/NJ and would not help solve the
error.

ERROR: Type error; conflicting sites:
y = (trans x1, x2)

Significantly, because they handle a Haskell-like language, they
face challenges for accurate type error location that are different
from the ones for SML.

Gast [9] generates “detailed explanations of ML type errorsin
terms of data flows”. His method is in three steps: generationof
subtyping constraints annotated by reasons for their generation;
gathering of reasons during constraint unification; transformation
of the gathered reasons into explanations by data flows. He provides
a visually convenient display of the data flows with arrows in
XEmacs. Gast’s method (which seems to be designed only for a
small portion of OCaml) can be considered as a slicing method
with data flow explanations.

Braßel [7] presents a generic approach (implemented for the
language Curry) for type error reporting that consists in two dif-
ferent procedures. The first one tries to replace portions ofcode by
dummy terms that can be assigned any type. If an untypable piece
of code becomes typable when one of its subtrees has been replaced
by a dummy term then the process goes on to apply the same strat-
egy inside the subtree. The second procedure consists in theuse of
a heuristic to guide the search of type errors. The heuristicis based
on two principles: it will always “prefer an inner correction point
to an outer one” and will always “prefer the point which is located
in a function farther away in the call graph from the functionwhich
was reported by the type checker as the error location”. Braßel’s
method does not seem to compute proper slices but instead singles
out different locations that might be the cause of a type error inside
a piece of code.

6.2 Significant non-slicing type explanation methods.Heeren
et al. designed a method used in the Helium project [15, 14, 16, 12]
to provide error messages for the Haskell language relying on a
constraint-based type inference. First, a constraint graph is gener-
ated from a piece of code. For an ill-typed piece of code, a conflict-
ing path called an inconsistency is extracted from the constraint
graph. Such a conflicting path is a structured unsolvable setof type
constraints. Heuristics are used to remove inconsistencies. To each
type constraint is associated a trust value and depending onthese
values and the defined heuristics, some constraints are discarded
until the inconsistency is removed. They also propose some “pro-
gram correcting heuristics” used to search for a typable piece of
code from an untypable one. Such a heuristic is for example the
permutation of parameters which is a common mistake in program-
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ming. Their approach has been used with students learning func-
tional programming. Using pieces of code written by students and
their expertise of the language they refined their heuristics. This ap-
proach differs from ours by privileging locations over others by the
use of some heuristics. They do not compute minimal slices and
highlightings.

We present below the most interesting part of the error report
obtained using Helium on a translation of the code presentedin
Sec. 2.1 into Haskell. It is reported thatx1 andtrans don’t have the
expected types. The application, which is at the end of the code, is
then blamed when our programming error is at the very beginning
of the code.

(16,6): Type error in application
expression : trans x1

term : trans
type : T a a a -> T a a a
does not match : T Int Int Bool -> T Int Int Bool

Compilation failed with 1 error

They have also recently tackled the task to report type errors
for Java [5, 6]. Error reports provided by usual compilers can be of
little help, especially in the presence of generics. El Boustani and
Haage try to do a better job by keeping track of more information
during type checking. Having more information at hands when
analysing an untypable piece of code allows a more global view of
its type errors and leads to more informative error reports.The main
difference between type error reporting for SML and for Javais that
in Java “types are instantiated based on local information only and
not through a long and complicated sequence of unifications”[5].

Lerner, Flower, Grossman and Chambers [19] present type error
messages by constructing well-typed programs from ill-typed ones
using different techniques (like Heeren et al. [12]), e.g.,switching
two parameters. Automatically conceived modifications to the ill-
typed piece of code are checked for typability. They target Caml,
and also developed a prototype for C++. The new typable generated
code is presented as possible code that the programmer mighthave
intended. It could be interesting to study the combination of this
with TES.

7. Conclusion

7.1 Summary of contributions.
1. We solve a previous efficiency problem of TES (combina-

torial explosion of the number of generated constraints) and also
support features such as declaration sequences, structures, andopen
with the techniques of constrained environments and environment
variables.

2. We solve SML’s identifier status ambiguity (value variable
vs. datatype constructor) while also computing minimal type error
slices by using type constraints with context dependencieson iden-
tifier statuses.

3. We solve many other problems to provide clear and helpful
type error slices for many different kinds of SML errors, which
have been carefully designed to provide just the information the
programmer needs.

4. This paper reports for a stripped-down core of SML the
essential technical details of the TES machinery that solvethe
trickiest of the above-mentioned problems, and discusses some
implementation issues.

5. We have an implementation that covers most of the SML
language. A web demo is available, and there are downloadable
packages for Ubuntu (covering also some other Debian-based
systems) and CentOS (covering also some other Red-Hat-based
systems). The web site is:http://www.macs.hw.ac.uk/ultra/
compositional-analysis/type-error-slicing. We also have an-
other implementation that faithfully implements just thispaper.

7.2 Future work. We have already implemented some merging
of minimal slices and are extending this idea to other kind oferrors
than record clashes, such as for unmatched signature specifications.

In the near future, we plan to finish extending our TES to the full
SML language. This includes finishing handling the key feature of
functors and less vital features such as flexible records or equality
types, which can cause errors we currently do not detect.

We also plan to extend our ideas to other languages such as the
F# programming language or the C++ template language.

Finally, we have done user evaluations and begun designing
proper scientific experiments to compare the effectivenessin im-
proving the productivity of real users of TES vs. more traditional
type error messages.
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A. Additional details for Section 4
A.1 Details for Section 4.1 (External syntax)

Remark about syntactic restrictions on our external syntax.
Note that we do not enforce all the syntactic restrictions ofthe SML
syntax. For example, in SML, in a recursive declaration suchas

val rec pat
l
= exp, the expressionexp must be afn-expression.

A.2 Details for Section 4.2 (Constraint syntax)

Comparison with Pottier and Rémy’s let-constraints. Our
constraint system has evolved through many versions. One ear-
lier version of our constraint system had a kind of constraint that
was very close to the let-constraints1 of systems of Pottier and
Rémy [24, 23]. Pottier and Rémy define one system [24] that is
an instance of HM(X) [22], and Pottier defines a very similar sys-
tem [23] as a variation of the Damas/Milner type system. In our
discussion, we will collectively refer to these two systemsas the
PR (Pottier/Rémy) system and ignore their technical differences,
although our presentation will follow more closely the presentation
of Pottier and Rémy [24].

In PR, a constraint can, among other things, be a let-constraint,
a subtyping constraint, a type scheme instantiation constraint, a
conjunction of constraints, or the constant (and satisfied)true

constraint. A PR let-constraint looks likelet id :σ̇ in C where
σ̇ ranges over type schemes, andC ranges over constraints. In
PR, type schemes are of the form∀X [C ].T whereX is a type
variable set,C is a constraint, andT is a type. We borrow for our
discussion two abbreviations that Pottier and Rémy define:(1) the
form ∀X .T stands for the type scheme∀X [true].T , and (2) the
form let id :T in C stands forlet id :∀∅.T in C .

The idea of let-constraints is that a constraint of the form

let id :∀X [C ].T in (id = T1 ∧ id = T2 )

is (roughly) equivalent to a constraint of this form:

(∃X .(C ∧ T = T1 )) ∧ (∃X .(C ∧ T = T2 )) ∧ (∃X .C )

The key point is that one can get the effect of making the appropri-
ate number of copies ofC andT while keeping the size of the con-
straint proportional to the program size. The constraints will need
to be copied and each copy solved independently, but each copy
can be solved immediately before the next copy is made, avoid-
ing an exponential increase in the amount of memory used during
constraint solving. To get the full benefit of this, an implementa-
tion should be eager in simplifyingC and calculatingT as much
as possible before making any copies. (In our application, it could
be good to also be lazy in simplifying and calculating only those
portions ofC andT that are actually needed by the uses ofid , be-
cause our type error slicer needs to spend most of its time finding
minimal portions of unsatisfiable constraints. We leave investigat-
ing this idea for future work.)

In our latest system, the equivalent of let-constraints canbe rep-
resented as a special case of what our system supports. Informally,
a let-constraint of the formlet id :∀X [C1].T in C2 generated for a
SML recursivelet-binding would be represented in our system by
(using a combination of rules(G2) and(G12) in Fig. 4)

[poly((�id=〈τ, v〉);e1);e2]

whereCi is represented byei and T is represented byτ . (Let-
constraints generated for other SML forms would not necessarily
get the same representation.) There is no explicit representation of
X in the representation in our system; instead the correct setof

1 Technically, the let-constraints of Pottier and Rémy are based on their
more primitive def-constraints.

type variables that can be quantified is calculated bytoPoly which
generates type schemes when it handles environments of the form
poly(e) (see Fig. 6).

We now give an example comparing the constraints that would
be generated for SML recursive value declarations in the PR system
and our system. Consider the SML expression

let val rec f = fn z => exp1 in exp2

whereexp1 andexp2 are two sub-expressions. The constraint gen-
erated in PR for this let-expression would be

let f:∀XY [let f:X → Y in let z:X in C1].X → Y in C2

whereX andY are internal type variables, whereXY is PR nota-
tion for the set{X , Y }, whereCi for i ∈ {1, 2} is the constraint
generated forexpi, and whereY is the result type ofexp1. Due to
the way let-constraints declare a local environment, the PRsystem
needs two binders forf. The outer one polymorphically binds the
occurrences off in exp2 and the inner one monomorphically binds
the occurrences off in exp1.

Some of the differences between PR and our system can be
seen when comparing how this example is handled. Our constraint
generator builds roughly2 the following constraint (technically, an
environment) for the example let-expression:

[poly(�f=〈α1�α2, v〉;[(��z=α1);e1]);e2]

In contrast to how PR handles this example, only one binder for
f is needed in our system. Two features of our system interact to
allow this. First, in a constrained environment (e1;e2), the bindings
from e1 are available ine2, but also form part of the result (except
where bindings ine2 shadow them). Second, in an environment of
the formpoly(e), thepoly operator changes the status of binders
in the result from the status they had internally. In the example
constraint (environment) above,f’s binder is monomorphic within
the scope of thepoly operator (ine1) and polymorphic outside (in
e2).

There is a sense in which what the PR system does is similar
to what would happen in our system if thepoly operator worked
on just single types or single bindings rather than entire environ-
ments. It is significant that we can form environments of the form
poly(�vid=〈τ, is〉;e1);e2, in which the type forvid is available
monomorphically ine1 and polymorphically ine2.

The differences between the PR system and our system gain
greater significance when we consider how to handle the SML
module system. The most basic construct of the module systemis
what forms the body of a structure, namely a sequence of declara-
tionsdec1 · · · decn. For this discussion, assume eachdeci declares
exactly one identifierxi. Consider how declaration sequences can
be handled by the PR system and our system. PR can handle such
a sequence with nested let-constraints as follows:

let x1:σ̇1 in (· · · let xn:σ̇n in C0 · · · )

The constraints must be nested as indicated because eachxi is only
visible in the “in” part of the corresponding let-constraint, where an
identifier binding occurrence is visible when constraints can refer
to it. In contrast, our system handles the same declaration sequence
with the environment

e1; · · · ;en

2 We have omitted labels and simplified a bit. The actual constraint that is
generated (still omitting labels though) is

[(ev2=poly(�f=〈α1, v〉;[(ev1=(��z=α2));ev1;e1;c1];c2));ev2;e2;c3]

wherec1 = (α3=α2�α4), c2 = (α1=α3), c3 = (α5=α6), 〈α4, e1〉
is generated forexp1, 〈α6, e2〉 is generated forexp2, andα5 is the type of
the entire let-expression.
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whereei is the environment generated for the declarationdeci for
eachi ∈ {1, . . . , n}.

The importance of the difference becomes clearer when we
consider how to represent full structures and structure bindings.
Take the above example declaration sequence and wrap it up in
a structure definition:

structure sid = struct dec1 · · · decn end

A structure expression packs into a unit a sequence of declarations.
The normal scope of the declarations ends at the end of the struc-
ture, and subsequent access to the declarations must go through the
structure itself, which must first be bound to a name via either a
structure declaration like above or a functor application.When per-
forming type inference for SML structure expressions, it ismost
natural and straightforward that the type inferred for a structure
will be a sequence of individual mappings from declared names to
their types3. Such sequences are often calledenvironments. It seems
clear that any type inference method will need to handle environ-
ments.

The PR system has never been extended to handle ML-style
structures4, but let us imagine how it might be extended to do this.
First, let us point out that Pottier and Rémy allow abbreviating the
above example of nested let-constraints as follows:

let Γd in C0, whereΓd = x1:σ̇1; · · · ; xn:σ̇n

Let us call this constraintCd where the “d” means “declarations”.
Given an SML structure definition, this kind of constraint can
represent the constraints required for typability of the sequence of
declarations in the structure body, and it is the only easy way to do
so in the context of the PR system.

Now, how do we represent the connection of the structure’s
body to the structure’s name? The immediately (and naively)ob-
vious idea is to extend PR with let-constraints of a form similar to
let sid :Γs in C , wheresid is a structure identifier, andΓs is an en-
vironment (the type of a structure). Let us call this new constraint
Cs. This is not enough, because there needs to be some way to
connect the constraintCd to the environmentΓs. In fact, the envi-
ronmentΓd insideCd is just what we need, but there is no easy way
to get at it, because there is no mechanism in PR for generating an
environment from a constraint. The easiest thing to do is to nest the
entire constraintCs inside the constraintC0 inside ofCd, because
the types of thexi’s are not accessible from outsideCd, but this
seems like turning the program inside out, because the entire rest
of the program must be nested inside the scope of the constraints
for just the structure’s body.

So one might then want to extend the PR constraint system with
an exporting mechanism and generate a constrained environment
of the form [Cd].Γs for the structure expression whereCd would
export the type schemes of thexis and whereΓs would refer
to these exported type schemes. But, all this technicality really
shouldn’t be needed becauseΓd is already the environment that
we would want to generate for the structure expression.

The way our constraint system achieves that is by instead of
having only one mechanism (the let-constraints) to bind identifiers
and to restrict their scope (let-constraints define a local scope), it
has two separate mechanisms: one for bindings that does not re-
strict the scope of the binders (we obtain this behaviour by having
binding constraints of form�id=x and by having our general con-

3 The order of the sequence is important because a type scheme for one
value identifier in a structure can refer to a type constructor name defined
by the structure, while at the same time a type scheme for a different value
identifier can use the same type constructor name to refer to adefinition
outside the structure.
4 François Pottier told us this on 2010-08-09.

strained environments formse1;e2 where the accessors occurring
in e2 can depend on the binders occurring ine1), and another one
for constraining the scope of a type environment (obtained thanks
to our environments of the form[e]). The environment we generate
for the structure expression presented above is then similar to the
environmentΓd.

A.3 Details for Section 4.3 (Constraint generation)

An additional view of the constraints generated initially.
Our constraint generator (Fig. 4) only generates restricted forms
of environments (eg where “g” stands for “generation”). Let us
present these restricted forms, wheret is a restriction ofτ , and
the other forms are restrictions ofe (where “p” stands for “poly”
and “l” for “labelled”):

t ∈ ShallowTypes ::= α | α δ | α γ | α1�α2

lbind ∈ LabBind ::= �tc =
l
== γ | �sid =

l
== ev | �tv =

l
== α

| �vid =
l
== α | �vid =

l
== ris | ��vid =

l
== α

lc ∈ LabCs ::= ev1=
l
== ev2 | α=

l
== t

lacc ∈ LabAcc ::= accl

lev ∈ LabEnvVar ::= ev l

eip ∈ InPolyEnv ::= lacc | lc | eip1;eip2

ep ∈ PolyEnv ::= �vid =
l
== 〈α, ris〉 | ep;eip | eip;ep

eg ∈ GenEnv ::= � | lev | lbind | lacc | lc | ev=eg
| poly(ep) | eg1;eg2

The rules of our constraint generator either return environments
e (rules(G12)-(G14),(G16)) or constrained variables of the form
〈var , e〉 wheree constrainsvar . In such a constrained variable,
var is in some cases an internal type variableα (rules (G1)-
(G11),(G15)) and in some other cases an environment variableev
(rules (G17)-(G18)). We chose not to have a constructor of con-
strained types that would build an internal type from an environ-
ment and an internal type (ase1;e2 builds a constrained environ-
ment from two environments), as it simplifies the presentation of
our system by not having deep type structures. Such a system with
constrained types could be investigated. Having chosen to return
pairs of the form〈α, e〉 for expressions, we then decided to follow
the same pattern for structure expressions and return pairsof the
form 〈ev , e〉 instead of returning constrained environments of the
form e;ev .

A.4 Details for Section 4.4 (Constraint solving)

An additional view of the environments generated at con-
straint solving. During constraint solving (see Fig. 7), a unifica-
tion context of the form〈u, e〉 is maintained. Such an environment
e has a restricted form as follows (it is of the formes):

sbind ∈ SolvBind ::= �tc=µ | �sid=es | �tv=α
| �vid=σ | �vid=is

esrhs ∈ SolvEnvRHS ::= ev | sbindd | es1;es2

es ∈ SolvEnv ::= � | �;esrhs

Moreover, if 〈u, e〉 occurs in a unification statestate and ev
occurs ine then ev 6∈ dom(u). It is also the case that, for any
environment variableev , if ev ∈ dom(u) thenu(ev) ∈ SolvEnv.

We sometimes call an environment of the formes, a “solved”
environment.

Improvement of the generation of polymorphic environ-
ments. Fig. 6 definestoPoly which is used by rule(P1) of our
constraint solver to generate a polymorphic environment from a
monomorphic one by quantifying the type variables not occurring
in the types of the monomorphic bindings of the current unifica-
tion context. In this figureτ is the set of types of the monomorphic
bindings from the current unification context. The setα is the set
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of type variables occurring inτ ′ (the type that we want to gener-
alise to afor all type scheme) that can be generalised and quantified
over. The dependencies in the dependency setd

′
are the reasons for

not generalising the type variables occurring inτ ′ that are not inα
(these dependencies are the reasons why some type variablesare
not allowed to be quantified over).

The computation ofd
′

and our constraining ofτ ′ with d
′
, even

though a correct approximation (that cannot generate falseerrors
and that will eventually allow obtaining minimal type errors), could
be refined, thereby speeding up minimisation. We will now present
how this can be done.

Let us first define two functionsgetDepsVar andputDepsVar.
The applicationgetDepsVar(α, τ, ∅) will result in the dependency
set occurring inτ on the paths from its root node to any occurrence
of α. The applicationputDepsVar(τ, α, d) will result in the con-
straining of the occurrences of the type variableα in τ with the
dependency setd . The functiongetDepsVar is defined as follows:

getDepsVar(α, α′, d) =


d , if α = α′

∅, otherwise
getDepsVar(τ µ, α, d) = getDepsVar(τ, α, d)

getDepsVar(τ1�τ2, α, d) = ∪2
i=1getDepsVar(τi, α, d)

getDepsVar(τd , α, d
′
) = getDepsVar(τ, α, d ∪ d

′
)

The functionputDepsVar is defined as follows:

putDepsVar(α, α′, d) =


αd , if α = α′

α, otherwise
putDepsVar(τ µ, α, d) = putDepsVar(τ, α, d) µ

putDepsVar(τ1�τ2, α, d) = τ ′
1�τ ′

2

where fori ∈ {1, 2}, τ ′
i = putDepsVar(τi, α, d)

putDepsVar(τd , α, d
′
) = putDepsVar(τ, α, d

′
)d

Let us now present another way of constrainingτ ′ in Fig. 6
(different from constraining it withd

′
). In the following,τ ′, τ and

α are the same as in Fig. 6. First,

{α1, . . . , αn} = (vars(τ ′) ∩ ITyVar) \ (α ∪ {αdum})

is the set of type variables that are not allowed to be quantified in
the generated type scheme. Then,

∀i ∈ {1, . . . , n}. d i = {d | τ0 ∈ τ∧d ∈ getDepsVar(τ0, αi, ∅)}

is the set of reasons forαi for not being quantified over. Finally,

∀i ∈ {1, . . . , n}. τ
′
i = putDepsVar(τ ′

i−1, αi, d i)

where τ ′
0 = τ ′. The functiontoPoly would then generate the

following type scheme:∀α. τ ′
n.

A.5 Details for Section 4.5 (Minimisation and enumeration)

Clarification on the domain of the constraint filtering func-
tion. Note that our filtering function (Fig. 8) is not defined on all
environments. These forms on which the function is defined cor-
respond to the ones generated by our constraint generator (defined
in Sec. A.3). When applied to unlabelled equality constraints on
environments, our filtering function is only applied to unlabelled
equality constraints of the formev=e because our constraint gen-
erator only generates variables as the left-hand-side of anequality
constraint on environments. Similarly, we only apply our filtering
function on constrained environments of the forme l (constrained
by a unique label).

The intended meaning of a labelled constraint is that it only
must hold if the condition represented by the label is true. The
machinery of this paper is designed to implement this intended
semantics.

Given that, we then allow our filtering function to entirely dis-
card labelled equality constraints, bindings, accessors and environ-

ment variables because when generated, these forms are always
shallow. As a matter of fact, by definition, the right-hand-side of
an accessor can only be a variable (var ) or a raw status (ris).
When generated, the right-hand-side of a binding is either avari-
able (var ), a type constructor name (γ), or a raw status (ris). Con-
cerning the generated equality constraints, by shallow we mean alc
constraint as defined in Sec. A.3. The non-shallow generatedequal-
ity constraints are the non-labelled ones generated by rules (G4),
(G12), (G13), (G14), (G16) and(G18). Because these constraints
are not labelled, they are then never filtered out but the filtering
function is recursively called on the right-hand-sides of these con-
straints as they can be non shallow.

Further explanations on minimisation and binding discard-
ing. A step of the first phase of our minimisation algorithm is as
follows: we test if we can remove a labell associated to a binder
bind from the slice we want to minimise (and still obtain a type
error slice) by first filtering the constraints of the original piece of
code as follows:filt(e, l , {l}), to obtaine ′ and wheree is the envi-
ronment generated for the original piece of code andl is the label
set labelling the current slice. In order not to mix up the bindings,
the binderbind associated tol is then replaced by a non labelled
dummy binder that cannot participate to any error but that still acts
as a binder. If we then solvee ′ and obtain an error then no label
labelling (ine ′) an accessor to (the dummy version of) our binder
bind will occur in the found error (we give below an informal argu-
ment as why none of these accessors will be part of the new error).
The bindings in this new error are then not mixed up. The found
error is then the new slice to try to minimise further and nexttime
the constraints will be filtered w.r.t. this slice, the bindingbind will
be completely thrown away (as well as the other constraints not
participating in the new error).

Note that filtering itself does not prevent bindings to get mixed
up because, for example, filtering allows throwing away the binder
generated for the second occurrence ofx in fn x => fn x => x

while not throwing away the binder generated for the first occur-
rence ofx and not throwing away its accessor. However, we give
below an informal argument as why we never filter a binder with-
out filtering its accessor.

Let us now explain why when our unification algorithm returns
an error, the error does not involve accessors to dummy binders or
accessors without their corresponding binders.

According to rules(A1)-(A4), during unification the label la-
belling an accessor only gets recorded in a unification context if the
accessed identifier is in the type environment stored in the unifica-
tion context in the current state. In the environment (1) either the
accessed identifier has a non labelled dummy static semantics (re-
sulting from filtering) and then, according to rules(U3), (U4) and
(S7), the label of the accessor does not get recorded into the unifi-
cation environment. Given an accessor�id=x, according to rules
(A1)-(A3), a constraint of the formvar=x wherevar ∈ DumVar
comes from the corresponding binder andx ∈ Var or of the form
a=x wherex ∈ RawIdStatus, is generated. Then(U3), (U4) or
(S7) applies and the newly generated constraint is discarded with-
out generating anything. (2) Or the accessed identifier has alabelled
non dummy static semantics and both the label associated to the
binder and the one associated the bound occurrence will always
occur together in the unification context.

This is why we believe that an identifier occurring at a non-
binding position in a piece of code (an accessor) only occursin a
slice if it is bound and its binder occurs in the slice as well.

This argument would be enough if only the rules(G1), (G7),
and(G17) were generating accessors because each of them gener-
ates a unique labelled accessor. This is unfortunately not the case
for the rules(G6) and(G8). These rules generate labelled accessors
as well as labelled equality constraints. We might then think that
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these labelled equality constraints can participate in an error with-
out having the accessor and its binder participating. We could then
potentially have the label of an identifier occurring at a bound po-
sition participate in an error without having its binding occurrence
participate. We do not believe so. First, let us point out that this
issue could be fixed by enforcing in our labelled syntax that each
identifier must be labelled by a unique label that does not label any
larger piece of syntax. This enforcement can be considered as a de-
sign principle concerning the labelled syntax, that was notfollowed
for clarity purposes. Let us now explain why it works even without
the enforcement described above. Let us first consider(G6). The
type returned by the rule (the typeα2 in (G6)) does not directly
occur on the left or right-hand-side of the generated constraint. For
α2 (which is the link with the context of the pattern) to be con-
strained to be equal to a type, firstα1 has to be constrained to be
equal to a type. The only way forα1 to be constrained is to solve
the generated accessor which would result in the case of an error
in having the binder of the identifier participate in the error. The
same reasoning applies to(G8). The type returned by the rule (α′)
is constrained to be equal toα δ which at this stage can be equal
to any other type. This is true because we have the internal type
constructorar which corresponds to the arrow type constructor�.
Without this type constructorar, during unification we could infer
thatα δ cannot be an arrow type (of the formτ1�τ2) and generate
an error. Because of that, we would obtain:

〈..datatype ’a t = U of ’a

..datatype 〈..〉 = T of 〈..〉 t

..val rec g = fn 〈..〉 => 〈..〉
..〈..val rec h = fn U x => T x

..h (U g)..〉..〉

as a minimal slice for:

structure S = struct
datatype ’a t = U of ’a

datatype ’a t = T of ’a t
val rec g = fn v => v

val rec f = fn v => let val rec h = fn U x => T x
in h (U g)
end

end

In the first slicet’s occurrence inT’s declaration is not bound to
the same occurrence oft as in the original code.

But because we allowα δ to be equal to any type as long as
δ is not constrained to be equal to a type constructor name or to
ar we then need to resolve the accessor generated in rule(G8) to
obtain a type error if any. For the piece of code presented above
we then obtain the following minimal type error slice instead of the
one displayed above:

〈..datatype ’a t = U of ’a

..datatype ’a t = T of 〈..〉 t

..val rec g = fn 〈..〉 => 〈..〉
..〈..val rec h = fn U x => T x

..h (U g)..〉..〉

This type error slice differs from the previous one by the pres-
ence of the second binding occurrence oft in the slice.

Because of the invariant that if a binder is filtered out then
its bound occurrences are also filtered out, we can then easily
compute the free identifiers thanks to rule(A4) which is the rule
for an accessor for which no binder exists in the current unification
environment (free identifier) or for which the binder is hidden.

We could also enforce this invariant by (1) ensuring that identi-
fiers are labelled independently from any other piece of syntax (as
explained above), (2) ensuring that at constraint generation, if a la-
bel l labels an accessor then it does not label any other constraint,
and (3) discarding accessors when the corresponding binders are
dummy binders (binding a dummy variable or the statusa).

Alternatively, we could enforce this invariant by adding anextra
component to unification contexts as follows:〈u, e, l〉, where l
indicates the labels that are not allowed to participate in an error. If
an error is found involving a label inl then this error is not reported.

A.6 Details on Section 4.6 (Slicing)

An alternative formal presentation of the slicing algorithm.
We will now provide an alternative generic definition of the external
syntax presented in Fig. 3. We also extend our algorithm to “dot”
terms. (This alternative definition is not the one presentedin the
main body of this paper for readability issues.) First we define
abstract syntax trees as follows:

class ∈ Class ::= ty | conbind | datname | dec | atexp
| exp | atpat | pat | strdec | strexp

prod ∈ Prod ::= tyVar | tyArr | tyCon
| conbindOf | datnameCon
| decRec | decDat | decOpn
| atexpLet | expFn
| strdecDec | strdecStr
| strexpId | strexpSt
| vid | app

dot ∈ Dot ::= dotE | dotP | dotD | dotS
node ∈ Node ::= 〈class, prod〉

tree ∈ Tree ::= 〈node , l ,
−−→
tree〉 | 〈dot ,

−−→
tree〉 | id

A node in a treetree can either be a labelled node of the form
〈node, l ,

−−→
tree〉, an unlabelled “dot” node of the form〈dot ,

−−→
tree〉,

or a leaf of the formid .
Let aterm be any term that can be derived from Fig. 3:

term ∈ Term ::= ty | cb | dn | dec | atexp | exp
| atpat | pat | sdec | sexp

Fig. 13 defines the functiontoTree that associates atree to each
term .

We are now going to redefine out flattening and tidying func-
tions, and our slicing algorithm. First, we need a mechanism
to distinguish between declarations and non-declarations, simi-
lar to the distinction betweenExpPart and Part \ ExpPart. Let
isClass(tree , class) be true iff tree = 〈〈class, prod〉, l ,

−−→
tree〉 and

class ∈ class, used to check the class of the root node of a tree.
Let declares(tree) be true iff isClass(tree , {dec, strdec}).

Let us redefine our flattening functionflat:

flat(〈〉) = 〈〉

flat(〈tree〉@
−−→
tree) =

8
>>>><
>>>>:

〈tree1, . . . , treen〉@flat(
−−→
tree),

if tree = 〈dot , 〈tree1, . . . , treen〉〉
and(∀i ∈ {1, . . . , n}. ¬declares(treei)

or
−−→
tree = 〈〉)

〈tree〉@flat(
−−→
tree), otherwise

We slightly altered our flattening function from the one defined
in Sec. 4.6, by adding the condition “or

−−→
tree = 〈〉”. As a matter

of fact, the condition “∀i ∈ {1, . . . , n}. ¬declares(tree i)” is there
to ensure that bindings are not mixed up as explained in Sec. 4.6.
However, flattening the last dot term (if it actually is a dot term)
cannot mix up the bindings because there is no identifier leftto
bind. Therefore, flattening〈..val x = 1..〈..val x = true..〉..〉
would lead to〈..val x = 1..val x = true..〉. We do not believe
that this is an improvement of the function because we have not
found a concrete example where this situation occurs.

We also redefine our function that tidies sequences of declara-
tions in structure expressions as follows:
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Figure 13From terms to trees

Types toTree(tv l ) = 〈〈ty, tyVar〉, l , 〈tv〉〉

toTree(ty1
l
→ ty2) = 〈〈ty, tyArr〉, l , 〈toTree(ty1), toTree(ty2)〉〉

toTree(ty tcl ) = 〈〈ty, tyCon〉, l , 〈toTree(ty), tc〉〉

Constructor bindings toTree(vid l
c) = 〈〈conbind, vid〉, l , 〈vid〉〉

toTree(vid of l ty) = 〈〈conbind, conbindOf〉, l , 〈vid , toTree(ty)〉〉

Datatype names toTree(tv tcl ) = 〈〈datname, datnameCon〉, l , 〈tv , tc〉〉

Declarations toTree(val rec pat
l
= exp) = 〈〈dec, decRec〉, l , 〈toTree(pat ), toTree(exp)〉〉

toTree(datatype dn
l
= cb) = 〈〈dec, decDat〉, l , 〈toTree(dn), toTree(cb)〉〉

toTree(openl sid) = 〈〈dec, decOpn〉, l , 〈sid〉〉

Expressions toTree(vid l
e) = 〈〈atexp, vid〉, l , 〈vid〉〉

toTree(letl dec in exp end) = 〈〈atexp, atexpLet〉, l , 〈toTree(dec), toTree(exp)〉〉

toTree(fn pat
l
⇒ exp) = 〈〈exp, expFn〉, l , 〈toTree(pat ), toTree(exp)〉〉

toTree(⌈exp atexp⌉l ) = 〈〈exp, app〉, l , 〈toTree(exp), toTree(atexp)〉〉

Patterns toTree(vid l
p) = 〈〈atpat, atpatVid〉, l , 〈vid〉〉

toTree(vid l atpat) = 〈〈pat, app〉, l , 〈vid , toTree(atpat)〉〉

Structure declarations toTree(structure sid
l
= sexp) = 〈〈strdec, strdecStr〉, l , 〈sid , toTree(sexp)〉〉

Structure expressions toTree(sid l ) = 〈〈strexp, strexpId〉, l , 〈sid〉〉
toTree(structl sdec1 · · · sdecn end) = 〈〈strexp, strexpSt〉, l , 〈toTree(sdec1), . . . , toTree(sdecn)〉〉

Dot terms toTree(dot-e(〈pt1, . . . , ptn〉)) = 〈dotE, 〈toTree(pt1), . . . , toTree(ptn)〉〉
toTree(dot-d(〈pt1, . . . , ptn〉)) = 〈dotD, 〈toTree(pt1), . . . , toTree(ptn)〉〉
toTree(dot-p(〈pat1, . . . , patn〉)) = 〈dotP, 〈toTree(pat1), . . . , toTree(patn)〉〉
toTree(dot-s(〈pt1, . . . , ptn〉)) = 〈dotS, 〈toTree(pt1), . . . , toTree(ptn)〉〉

tidy(〈〉) = 〈〉

tidy(〈〈dotD,
−−→
tree1〉, 〈dotD,

−−→
tree2〉〉@

−−→
tree)

= tidy(〈〈dotD,
−−→
tree1@

−−→
tree2〉〉@

−−→
tree),

if ∀tree ∈ ran(
−−→
tree1). ¬declares(tree)

tidy(〈〈dotD, ∅〉〉@
−−→
tree) = tidy(

−−→
tree), if none of the above applies

tidy(〈tree〉@
−−→
tree) = 〈tree〉@tidy(

−−→
tree), if none of the above applies

We also need the functiongetDot that generates a dot marker
(a term inDot) from a node kindnode:

getDot(〈ty, prod 〉) = dotE
getDot(〈conbind, prod 〉) = dotE
getDot(〈datname, prod 〉) = dotE
getDot(〈dec, prod 〉) = dotD
getDot(〈atexp, prod 〉) = dotE
getDot(〈exp, prod 〉) = dotE
getDot(〈atpat, prod 〉) = dotP
getDot(〈pat, prod 〉) = dotP
getDot(〈strdec, prod 〉) = dotD
getDot(〈strexp, prod 〉) = dotS

This function is, among other things, used by rule(SL1) when
discarding a labelled node and so generating a new dot node.

Fig. 14 redefines our slicing algorithm. Note that rule(SL9)
generates the dot markerdotE, but we could have used any of
the terms inDot because the flattening functionflat discards such
terms. The functionssl1 and sl2 are defined on trees but also on
sequences of trees in rules(SL6) and (SL7). Patterns are treated
specially because in our system we do not add the label associated
to the fn-expression to the following type error slice (the error being
that x is declared as a unary datatype constructor and occurs at a
nullary position in a pattern):

〈..datatype 〈..〉 = x of 〈..〉
..fn x => 〈..〉..〉

This is because the unconfirmed binder generated forx’s oc-
currence in the fn-expression turns into an accessor at constraint
solving (x being declared as a datatype constructor) and this ac-

cessor can directly refer tox’s binder without using any constraint
labelled by the label associated to the fn-expression.

B. Case study: modify user data types using TES.
Our TES is generally of great help when coding in SML. It is
particularly helpful when one wants to modify a user data type
in a well-typed program. Let us consider the very simple program
provided in Fig. 15a where we define a structureId to deal with
labelled identifiers (see the typeidlab). In this structure we define
some functions to handle labelled identifiers such as a function to
compare two labelled identifiers (compare), or a function to build a
labelled identifier from a label and an identifier (cons).

Now, let us change the typeidlab, for a more convenient type:
type idlab = {id : id, lab : lab} which is a record type con-
taining two fields, one namedid of typeid and a second one named
lab of typelab. Records are usually preferred over tuples because
they are more flexible and meaningful thanks to the field names.

For example, one can access the field namedid in an expression
x of type idlab (the new typeidlab) as follows:#id(x:idlab).
Records are more flexible than tuples because the order of thefields
does not matter in a record. For example,{id = 0, lab = 0} is
equivalent to{lab = 0, id = 0}. Note that a tuple(id, lab) is
equivalent to a record{1 = id, 2 = lab}.

First of all, let us mention that when compiling the updated
code with SML/NJ v.110.72, one obtains a type error report for
each function defined in the structureId. The report concerning the
compare function is as follows (where the first line has been split
into two lines to fit in the column):

test-prog.sml:14.1-31.4

Error: value type in structure doesn’t match signature spec
name: compare

spec: ?.Id.idlab * ?.Id.idlab -> order

actual: (int * int) * (int * int) -> order

Note that the reported region is the entire structureId.
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Figure 14Slicing algorithm

(SL1) sl(〈node , l ,
−−→
tree〉, l) =

8
><
>:

〈node , l , sl1(
−−→
tree, l)〉, if (l ∈ l andgetDot(node) 6= dotS) or isClass(sl1(

−−→
tree(0), l), {pat, atpat})

〈node , l , tidy(sl1(
−−→
tree , l))〉, if l ∈ l andgetDot(node) = dotS

〈getDot(node), flat(sl2(
−−→
tree, l))〉, otherwise

(SL2) sl1(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉

(SL3) sl2(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉

(SL6) sl1(〈tree1, . . . , treen〉, l) = 〈sl1(tree1, l), . . . , sl1(treen, l)〉

(SL7) sl2(〈tree1, . . . , treen〉, l) = 〈sl2(tree1, l), . . . , sl2(treen, l)〉

(SL4) sl1(〈node , l ,
−−→
tree〉, l) = sl(〈node , l ,

−−→
tree〉, l)

(SL5) sl2(〈node , l ,
−−→
tree〉, l) = sl(〈node , l ,

−−→
tree〉, l)

(SL8) sl1(id , l) = id

(SL9) sl2(id , l) = 〈dotE, 〈〉〉

Figure 15Using TES to modify user data types
(a) Structure defining labelled identifiers

signature ID = sig

type id
type lab

type idlab

val compare : idlab * idlab -> order

val cons : id -> lab -> idlab
val getId : idlab -> id

val getLab : idlab -> lab
val updId : idlab -> id -> idlab

val updLab : idlab -> lab -> idlab
end

structure Id : ID = struct
type id = int

type lab = int
type idlab = id * lab

fun compare ((id1, lab1), (id2, lab2)) =
case Int.compare (id1, id2) of

EQUAL => Int.compare (lab1, lab2)
| x => x

fun cons id lab = (id, lab)

fun getId (id, lab) = id
fun getLab (id, lab) = lab

fun updId ( , lab) id = cons id lab

fun updLab (id, ) lab = cons id lab
end

(b) Type error obtained after a type change (c) Program obtained after solving all the type errors

In contrast, Fig. 15b presents the highlighting that one obtains
when running our TES on the updated piece of code. The error
in focus (highlighted with a darker red) shows that the parameter
of compare is a pair of pairs. The second pair (equivalent to a
record with two fields named1 and 2) clashes with the type of
compare’s second parameter given in the signatureID, which is
idlab, declared as a record with field namesid and lab in the
structureId. In the parameter ofcompare, the second pair has its
elements surrounded by grey boxes. We do so, because tuples do
not have explicitly written field names. The first grey box surrounds
the first element of a pair that corresponds to a record where the
element would be in field with field name1 (and similarly for the
second box). Note that the number of boxes indicates the arity of
the tuple. In addition to the highlighting, we also report a type error
slice and the following message for this type error:

Record clash, the fields{id,lab} conflict with{1,2}

This error is not context dependent, so no context dependency
is reported.

The light pink corresponds to slices other than the focused one.
One can then start solving the errors one at a time by just editing
the highlighted portions of code, to get from a well-typed program
to another well-typed program (see Fig. 15c).

C. Extensions to handle more of SML
Let us now present some extensions of our TES in order to handle
features such as local declarations, type functions or signatures.
Some of these features were already used in the examples provided
so far. We will now formally present how to handle them.

Some syntactic forms will sometimes need to be redefined. In
this section, we will sometimes writex −s−_ y to mean that in the
sets, syntactic forms of the formx are replaced by syntactic forms
of the formy.

C.1 Local declarations

External syntax. First, let us extend our external syntax with local
declarations as follows:

dec ::= · · · | locall dec1 in dec2 end

For example,

val x = true
local val x = 1 in val y = x end
val z = x + 1

is untypable becausex’s last occurrence is bound to its first occur-
rence and not to its second (assuming that+ is the one from the
Standard ML basis library).
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Let us present another example:

val x = true

local val x = 1 in val y = x end
val z = fn w => (w y, w x)

Only the declarationz differs from the previous example. This
piece of code is also untypable becausew has a monomorphic type
and is applied toy which is an integer andx which is a Boolean.
This example will be reused later in this section.

Constraint syntax. We extend environments with local environ-
ments as follows:

e ::= · · · | loc e1 in e2

The meaning of such an environment is that it builds an envi-
ronmente2 which depends one1 and only exports the binders of
e2 (only e2’s binders can be accessed from outside the local envi-
ronment). Such environments differ from environments of the form
e1;e2 because an environment of the forme1;e2 builds a new en-
vironment from bothe1 ande2 and exports both the binders ofe1

(not shadowed bye2) ande2.
Environments of the form[e] are not enough to handle local

declarations because they do not allow partially exportingan en-
vironment. The requirement imposed by local declarations is that
only e1 ande2 should be able to accesse1’s binders. Unfortunately,
[e1;e2] does not exporte2’s binders, and[e1];e2 does not allowe2’s
accessors to refer toe1’s binders. The solution was to introduce en-
vironments of the formloc e1 in e2.

Note that these environments are not only used to generate
constraints for local declarations, they are also used to, e.g., handle
bindings of external type variables (see Sec. C.2). In Sec. 4we
allow binding occurrences of explicit type variables to have a larger
scope than they should, which is harmless in the tiny language
of Sec. 4, but needs to be (and is) fixed to work for full SML in
Sec. C.2.

Constraint generation. We extend our constraint generator with
the following rule:

(G19) locall dec1 in dec2 end -⊲ (ev=e1);loc ev l in e2 ⇐⇐⇐
dec1 -⊲ e1 ∧∧∧ dec2 -⊲ e2 ∧∧∧ dja(e1, e2, ev)

Because our initial constraint generation algorithm generates
new forms of constraints, we extend theeg forms as follows (see
Sec. A.3):

eg ::= · · · | loc eg1 in eg2

The forms generated by our initial constraint generator arein
fact more restricted than that, but we already anticipate the forms
generated by further extensions later, e.g., for type functions.

Constraint solving. We extend our constraint solver as follows:

(L1) solve(〈u, e〉, d , loc e1 in e2) → succ(〈u′′, e0〉),
if solve(〈u, e〉, d , e1) →∗ succ(〈u′, e′〉)

andsolve(〈u′, e′〉, d , e2) →∗ succ(〈u′′ , e′′〉)
anddiff(e′, e′′) = �;e′

1; · · · ;e′
n

ande0 = e;e′
1; · · · ;e′

n

(L2) solve(〈u, e〉, d , loc e1 in e2) → err(er),
if solve(〈u, e〉, d , e1) →∗ succ(〈u′, e′〉)

andsolve(〈u′, e′〉, d , e2) →∗ err(er)
(L3) solve(〈u, e〉, d , loc e1 in e2) → err(er),

if solve(〈u, e〉, d , e1) →∗ err(er)

Constraint filtering (Minimisation and enumeration). We
extend our filtering function as follows:

filt(loc e1 in e2, l1, l2) = loc filt(e1, l1, l2) in filt(e1, l1, l2)

Slicing. Finally, our slicing algorithm does not need to be extended
but we need to update the tree syntax for programs as follows:

Prod ::= · · · | decLoc

We also need to extend thetoTree function that associates trees
of the formtree to terms of the formterm as follows:

toTree(locall dec1 in dec2 end)
= 〈〈dec, decLoc〉, l , 〈toTree(dec1), toTree(dec2)〉〉

Minimality. Let us illustrate what would happen if we were not
generating an extra labelled environment variable in rule(G19).
Consider the last example presented above. With our currentsys-
tem, we would obtain a type error slice involving the local dec-
laration itself in addition to the nested declarations ofx andy. If
we were not to label the environment variable in rule(G19) or if
we were to usee1 instead ofev l in the local constraint (and omit
ev=e1 which becomes useless), then we would obtain a type error
slice that would look like:

〈..val x = true
..val x = 1

..val y = x

..val z = fn w => 〈..w y..w x..〉..〉

which is typable and therefore not a minimal type error sliceof the
piece of code presented above: both bound occurrences ofx are
bound tox’s second declaration.

C.2 Type declarations

External syntax. First, let us extend our external syntax with type
functions as follows:

Dec ::= · · · | type dn
l
= ty

For example,

type ’a t = ’a -> ’a -> ’a
datatype ’a u = U of ’a t

val x = U (fn x => x)

is untypable becauseU is applied to the identity function which
cannot have the type’a -> ’a -> ’a.

Constraint syntax. We extend our constraint system with type
functions:

φ ∈ TypFunVar (type function variables)
θ ∈ TypFun ::= φ | Λα. τ | 〈θ, d〉
τ ∈ ITy ::= · · · | θ · τ
c ∈ Constraint ::= · · · | θ1=θ2

var ∈ Var ::= · · · | φ

Let φdum be a distinguished dummy type function variable. We
redefineDumVar to beDumVar = {αdum, ev dum, δdum, φdum}.

We then have to change the binders and accessors for type
constructors:

�tc=µ −Bind−−_ �tc=θ �tc=δ −Accessor−−−−_ �tc=φ

Constraint generation. Fig. 16 modifies our rules for datatype
names(G15), datatype declarations(G13) and type constructions
(G8), and defines a new rule(G20) for type function declarations.
Note the use of local environments (of the formloc e1 in e2) in
rules (G13) and (G20), used to handle binding occurrences of
explicit type variables.

Because our initial constraint generation algorithm generates
new forms of constraints, we extend thet forms as follows (see
Sec. A.3):

t ::= · · · | φ · α
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Figure 16Constraint generation rules for type functions

(G8) ty tcl -⊲ 〈α′, (�tc =
l
== φ);(α′=

l
== φ · α);e〉 ⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ dja(e, α′, φ)

(G15) tv tcl -⊲ 〈α, α′, �tc =
l
== Λα′. α, �tv =

l
== α′〉 ⇐⇐⇐ α 6= α′

(G13) datatype dn
l
= cb -⊲ ev=((α1=

l
== α′

1 γ);(α1=
l
== α2);e1;loc e′

1 in poly(e2));ev l ⇐⇐⇐ dn -⊲ 〈α1, α′
1, e1, e′

1〉 ∧∧∧ cb -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

(G20) type dn
l
= ty -⊲ ev=((α1=

l
== α2);loc e′

1 in (e2;e1));ev l ⇐⇐⇐ dn -⊲ 〈α1, α′
1, e1, e′

1〉 ∧∧∧ ty -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

We also replace the initially generated type constructor binders
as follows:

�tc =
l
== γ −LabBind−−−−_ �tc =

l
== Λα. α′

Constraint solving. Because we replaced our binders for type
constructors, we need to modify our environment application as
follows ((EA1) and(EA3) are the same as before but repeated here,
and(EA2) differs by the replacement ofµ by θ):

(EA1) (e′;�vid =
d
== ∀α. τ)(vid) = ∀α. τd

(EA2) (e′;�id =
d
== x)(id) = xd , if x of the formτ , e, or θ

(EA3) (e′;�id ′ =
d
== x)(id) = e′(id), if id 6= id ′ or x ∈ IdStatus

We also extend unifiers as follows:
u ∈ Unifier ::= {f1 ∪ f2 ∪ f3 ∪ f4 | f1 ∈ ITyVar → ITy

∧ f2 ∈ TyConVar → ITyCon
∧ f3 ∈ EnvVar → Env
∧ f4 ∈ TypFunVar → TypFun}

Because we added types of the formθ ·τ , we need to update our
type building function with the following cases:

build(u, θ · τ) =

8
<
:

τ ′d [{α 7→ build(u, τ)}],

if build(u, θ) = (Λα. τ ′)d

αdum, otherwise
build(u, Λα. τ) = Λα. build({α} ⊳− u, τ)

Our building function builds internal types of the formθ · τ
by first building the type function. If building the type function
leads to a type function variable then our building functiongives
up building the application and returns the dummy type variable
αdum. This behaviour is correct in our system because the constraint
generation rule(G8) is the only rule generating type function
applications and it constrainsφ before generating the application
φ · α. Thus, at constraint solving, when dealing withφ · α, the
constraints onφ will already have been dealt with.

Fig. 17 extends our constraint solver with two new rules to
handle our new internal types of the formθ · τ .

Constraint filtering (Minimisation and enumeration). We
update our filtering function to handle the semantics of typecon-
structors, by replacingtoDumVar(µ) = δdum by:

toDumVar(θ) = φdum

Slicing. Because we have changed our constraint generation rule
for dn ’s, we need to replace the dot terms inDatName as follows:

dot-e(
−→
pt ) −DatName−−−−−_ dot-n(

−→
pt )

We define the new constraint generation rule for terms of the
form dot-n(

−→
pt ) as follows:

dot-n(〈pt1, . . . , ptn〉) -⊲ 〈α, α′, [e1; · · · ;en], �〉 ⇐⇐⇐
pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

Finally, our slicing algorithm does not need to be extended but
we need to update the tree syntax for programs as follows:

Prod ::= · · · | decTyp
Dot ::= · · · | dotN

We also need to modify thegetDot function that associates dot
markers to node kinds as follows (the function now returns adotN

marker and not adotE marker anymore when applied to adatname
node):

getDot(〈datname, prod 〉) = dotN

We also need to extend thetoTree function that associates trees
of the formtree to terms of the formterm as follows:

toTree(type dn
l
= ty)

= 〈〈dec, decTyp〉, l , 〈toTree(dn), toTree(ty)〉〉
toTree(dot-n(〈pt1, . . . , ptn〉))

= 〈dotN, 〈toTree(pt1), . . . , toTree(ptn)〉〉

C.3 Signatures

This section shows how to design a type error slicer that handles
some signature related features. This section deals with value, type,
datatype and structure specifications. It does not deal withinclude
or sharing specifications, and does not deal with type realisations
(where clauses) either. Type realisations and include specifications
are “almost fully” supported by our implementation. We alsopar-
tially support sharing specifications in our implementation.

Some kinds of errors are not handled by the system presented
in this section. For example we do not handle unmatched errors:
when an identifier is specified in a signature but not declaredin a
structure constrained by the signature. These errors will be dealt
with in Sec. C.4. Another kind of error which is not dealt within
this section is when a type constructor is defined as a type function
in a structure and as a datatype in the structure’s signature. Even
though this kind of error is handled by our implementation but we
have not yet written the details.

External syntax. First, let us extend our external syntax with
signatures as follows:

sigid ∈ SigId (signature identifiers)

sigdec ∈ SigDec ::= signature sigid
l
= sigexp

| dot-d(
−→
pt )

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end

| dot-s(
−→
pt )

spec ∈ Spec ::= val vid :l ty

| type dn l

| datatype dn
l
= cd

| structure sid :l sigexp

| dot-d(
−→
pt )

cd ∈ ConDesc ::= vid l
c | vid of l ty

| dot-e(
−→
pt )

id ∈ Id ::= · · · | sigid
sexp ∈ StrExp ::= · · · | sexp :l sigexp | sexp :>l sigexp
topdec ∈ TopDec ::= sdec | sigdec
prog ∈ Program ::= topdec1; · · · ;topdecn, wheren ≥ 0

The symbol:> is used for opaque constraints and: for translu-
cent constraints. The structuresexp :>l sigexp is the structure
sexp constrained by the signaturesigexp where each ofsigexp’s
specifications has to be matched by one ofsexp ’s declarations
(and similarly for sexp :

l sigexp). The structuresexp can de-
clare more identifiers than are specified insigexp. In the structure
sexp :>

l sigexp, only the identifiers specified insigexp can be
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Figure 17Constraint solving rules for type functions

(S9) solve(〈u, e〉, d , θ1 · τ1=θ2 · τ2) → solve(〈u, e〉, d , build(u, θ1 · τ1)=build(u, θ2 · τ2))
(S10) solve(〈u, e〉, d , τ1=τ2) → solve(〈u, e〉, d , τ=build(u, θ · τ ′))

if {τ1, τ2} = {θ · τ ′, τ} andτ is of the formτ3�τ4 or τ3 µ

accessed fromsexp (only thesigexp part from sexp is visible to
the outside world). The difference betweensexp :>

l sigexp and
sexp :

l sigexp is that in the first one ifsigexp specifies a type
constructortc then insexp :>l sigexp it is not constrained by its
declaration insexp, whereas insexp :

l sigexp the type constructor
would be constrained by its declaration insexp. Opaque signatures
are used to abstract types from structures and are usually preferred
over translucent ones for this reason.

Let us now present an example involving an opaque signature:

(EX1)
signature s = sig val x : ’a end
structure S = struct val x = 1 end

structure T = S :> s

This piece of code is untypable because the type variable’a is
more general than the typeint. Types of declarations in structures
have to be at least as general as the corresponding specifications in
signatures. This kind of error will be referred as atoo generalerror
henceforth.

Constraint syntax. We now extend our constraint system to han-
dle signatures:

bind ∈ Bind ::= · · · | �sigid=e
acc ∈ Accessor ::= · · · | �sigid=ev

τ ∈ ITy ::= · · · | btv
µ ∈ ITyCon ::= · · · | etv
e ∈ Env ::= · · · | e1:e2 | e1:>e2

We also extend the form of the explicit type variable bindersas
follows:

�tv=α −Bind−−_ �tv=τ

We add the explicit type variables to the internal type set and
extend the explicit type variable binders to internal typesbecause
we want to allow explicit type variables to bind explicit type vari-
ables and not only internal type variables. This helps catching too
generalerrors as presented above.

We also add the explicit type variables to the internal type
constructor set because, in order to help catchtoo generalerrors,
we do not generalise the external type variables occurring in a value
specification in a signature until we match the signature against
a structure. Inside a signature, an explicit type variable is then
considered as a constant type. To such a constant type we associate
an internal type constructor which is the explicit type variable itself.
Let us explain our reason for doing so using the following piece
of code (the same as(EX1) where we replaced’a by bool in x’s
specification):

(EX2)
signature s = sig val x : bool end
structure S = struct val x = 1 end

structure T = S :> s

Given this piece of code, our enumeration algorithm would find
the type error thatx is specified as a Boolean ins, which is the
signature constrainingS, and thatx is declared as an integer inS.
The issue is that our minimisation algorithm would eventually try
to slice out the typebool in x’s specification. This would result in
x having a type scheme of the form∀{α}. α in its specification
This type scheme is more general thanint which is x’s type in
its declaration. If we were to generalise the explicit type variables
occurring in value specifications, we would also generate the type
scheme∀{α}. α for x’s specification in(EX1). We then would not
be able to distinguish between a type scheme which is genuinely
too general (in(EX1)) and a type scheme which is too general

because some information has been discarded (in(EX2) where
bool has been filtered out). In order to avoid that, explicit type
variables occurring in a signature are not generalised until we
match the signature against a structure.

Because we extended our internal types, we also need to extend
our building function as follows:

build(u, btv) = btv

Constraint generation. Fig. 18 presents the new constraint
generation rules for the syntactic forms introduced above.Rule
(G24) uses the functiontvBind which is defined as follows:

tvBind(ty , l) = (�tv1 =
l
== ctv1; · · · ;�tvn =

l
== dtvn) such that

{tv1, . . . , tvn} is the set of external type variables occurring in
ty and where ifi < j thentv j does not occur on the left oftv i in
ty . This function is used to generate explicit type variable binders
for explicit type variables occurring in value specifications such as
in the specificationval f : ’a -> ’a, for which we would gener-

ate a binder of the form�’a= b’a.
Note that rules(G21), (G22) and(G23) for signature declara-

tions and expressions are similar to rules(G16), (G17) and(G18),
defined in Fig. 7, for structure declarations and expressions. Rule
(G24) is a simplified version of rule(G12) for recursive value dec-
larations (defined in Fig. 7), where the expression is replaced by
an external type and where the pattern is reduced to a single value
identifier. Note that even though explicit type variables occurring
in a signature are not generalised until the signature is matched
against a structure, rule(G24) generates apoly environment to
generalise internal type variables that are unconstraineddue to con-
straint filtering. The novelty in this rule, as described above is the
necessity to bind the explicit type variables occurring in the exter-
nal type. Rule(G25) is similar to rule(G20) defined in Fig. 16, but
instead of binding the specified type constructor to an internal type
computed from an external type, it generates a new type construc-
tor name. Such a name might then be renamed during constraint
solving when matching a signature against a structure. Rule(G27)
is similar to rule(G13) defined in Fig. 16 and rule(G26) is similar
to rule(G16) defined in Fig. 7. The constraint generation rules for
constructor descriptions are the same as the ones for constructor
declarations. Finally, rules(G28) and(G29) are the most interest-
ing rules. They are the ones generating our new environmentsof
the formse1:e2 (generated by rule(G28) for transparent signature
constraints) ande1:>e2 (generated by rule(G29) for opaque sig-
nature constraints).

Because our initial constraint generation algorithm generates
new forms of constraints, we extend thelbind and eg forms as
follows (see Sec. A.3):

ietv ∈ IETyVar ::= α | btv
lbind ∈ LabBind ::= · · · | �sigid =

l
== ev

eg ∈ GenEnv ::= · · · | ev1:ev2 | ev1:>ev2

An ietv (used below) can either be an internal (“I”) or an
external (“E”) type variable.

We also replace the initially generated external type variable
binders as follows:

�tv =
l
== α −LabBind−−−−_ �tv =

l
== ietv

Constraint solving. Let us extend unification states and error
kinds as follows:
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Figure 18Constraint generation rules for signatures

Signature declarations (G21) signature sigid
l
= sigexp -⊲ ev ′=(e;(�sigid =

l
== ev));ev ′l ⇐⇐⇐ sigexp -⊲ 〈ev , e〉 ∧∧∧ dja(e, ev ′)

Signature expressions (G22) sigid l -⊲ 〈ev , �sigid =
l
== ev〉

(G23) sigl spec1 · · · specn end -⊲ 〈ev , (ev=
l
== ev ′);(ev ′=(e1; · · · ;en))〉

⇐⇐⇐ spec1 -⊲ e1 ∧∧∧ · · · ∧∧∧ specn -⊲ en ∧∧∧ dja(e1, . . . , en, ev , ev ′)

Specifications (G24) val vid :l ty -⊲ (ev=poly(loc tvBind(ty, l) in (e;�vid =
l
== 〈α, v〉)));ev l ⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ dja(e, ev)

(G25) type dn l -⊲ (ev=((α=
l
== α′ γ);e));ev l ⇐⇐⇐ dn -⊲ 〈α, α′, e, e′〉 ∧∧∧ dja(e, e′, ev , γ)

(G26) structure sid :l sigexp -⊲ (ev ′=(e;(�sid =
l
== ev)));ev ′l ⇐⇐⇐ sigexp -⊲ 〈ev , e〉 ∧∧∧ dja(e, ev ′)

(G27) datatype dn
l
= cd -⊲ (ev=((α1=

l
== α′

1 γ);(α1=
l
== α2);e1;loc e′

1 in poly(e2)));ev l

⇐⇐⇐ dn -⊲ 〈α1, α′
1, e1, e′

1〉 ∧∧∧ cd -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

Structure expressions (G28) sexp :l sigexp -⊲ 〈ev , e2;e1;(ev=
l
== ev1:ev2)〉 ⇐⇐⇐ sexp -⊲ 〈ev1, e1〉 ∧∧∧ sigexp -⊲ 〈ev2, e2〉 ∧∧∧ dja(e1, e2, ev)

(G29) sexp :>l sigexp -⊲ 〈ev , e2;e1;(ev=
l
== ev1:>ev2)〉 ⇐⇐⇐ sexp -⊲ 〈ev1, e1〉 ∧∧∧ sigexp -⊲ 〈ev2, e2〉 ∧∧∧ dja(e1, e2, ev)

Programs (G30) topdec1; · · · ;topdecn -⊲ e1; · · · ;en ⇐⇐⇐ topdec1 -⊲ e1 ∧∧∧ · · · ∧∧∧ topdecn -⊲ en ∧∧∧ dja(e1, . . . , en, ev)

tfm ∈ TypFunMap = TyConName → TypFun
state ∈ State ::= · · ·

| prematch(∆, d , e1, e2)

| match(∆, d , tfm, e1, e2)
| succ(∆, tfm)

ek ∈ ErrKind ::= · · ·
| TyVarClash(tv1, tv2)
| TooGeneral(µ1, µ2)

Type functions of the formtfm are used to gather the type func-
tions defined in a structure, to then apply them to the types gener-
ated for a signature constraint. Roughly speaking, when solving an
environment of the forme1:e2 or of the forme1:>e2, the type func-
tions defined ine1 (related to a structure) are gathered and applied
to e2 (related to a signature) using theappTFM function defined
below. This step is required because our initial constraintgener-
ation algorithm might generates different type constructor names
for two type constructors that might turn our to be the same type
constructor. For example, in the following (typable) pieceof code

signature s = sig datatype ’a t = T end
structure S = struct datatype ’a t = T end : s

Our initial constraint generation algorithm will generatetwo dis-
tinct type constructor names for the two occurrence oft. But, when
checking that the signatures, matches the structureS, these two
type constructor names have to be equated. This is done by extract-
ing the one defined in the structure and by then renaming the one
from the signature into the one from the structure.

Error kinds of the formTooGeneral(µ1, µ2) are for type errors
as the one described above (too generalerrors), where a signature
constrains a structure and is more general than the structure. Error
kinds of the formTyVarClash(tv1, tv2) are for type errors such
that the one in the following piece of code:

signature s = sig val f : ’a -> ’b end
structure S = struct val rec f = fn x => x end

structure T = S :> s

In this piece of code,f is specified in the signatures as a
function where its argument’s type can differ from its body’s type.
In the structureS, the functionf is declared as the identity function
and so its argument’s type has to be the same as its body’s type.
Finally S is constrained bys. Therefore, we report an explicit type
variable clash between’a and ’b. This is a special kind oftoo
generalerrors.

Rules (SM4) and (SM5) of the extension of our constraint
solver defined below in Fig. 20, make use of the functionappTFM
that applies type functions (extracted from a structure) toa type
or an environment (related to a signature) and which is defined as
follows:

appTFM(τ µ, tfm) =

8
>>><
>>>:

τ ′[{α 7→ appTFM(τ, tfm)}],
if tfm(µ) = Λα. τ ′

αdum, if tfm(µ) ∈ Var

undefined, ifµ is of the formµ′d∪d

appTFM(τ, tfm) µ, otherwise
appTFM(τ1�τ2, tfm) = appTFM(τ1, tfm)�appTFM(τ2, tfm)
appTFM(∀α. τ, tfm) = ∀α. appTFM(τ, tfm)
appTFM(Λα. τ, tfm) = Λα. appTFM(τ, tfm)
appTFM(e1;e2, tfm) = appTFM(e1, tfm);appTFM(e2, tfm)
appTFM(�id=x, tfm) = �id=appTFM(x, tfm)

appTFM(xd , tfm) = appTFM(x, tfm)d

appTFM(x, tfm) = x, if none of the above applies

Let us definetyvars andnonDumVars that are used by some
functions and predicates defined below. The functiontyvars is de-
fined as follows:tyvars(x) is the set of syntactic forms belonging to
TyVar and occurring inx whateverx is. The functionnonDumVars
is defined as follows:nonDumVars(x) = vars(x) \ DumVar.

Rule (SC2) of the extension of our constraint solver defined
below in Fig. 20 uses the predicateabstract which is used to
rename the type constructor names declared in an environment and
defined as follows:

〈∆, e, {γ1} ⊎ · · · ⊎ {γn}〉 −
abstract−−−−→ appTFM(e, tfm)

if dja(nonDumVars(∆), γ′
1, . . . , γ′

n, α1, . . . , αn)
andtfm = ∪i∈{1,...,n}{γi 7→ Λαi. αi γ′

i}

Fig. 19 defines our algorithmgenExTyVar that generalises ex-
plicit type variables in environments. It also uses renamings of the
form rentv defined as follows:

rentv ∈ RenTv ::= {rentv ∈ TyVar → ITyVar |
rentv is injective

∧ dja(dom(rentv), ran(rentv))}

These renamings are applied using therenTv function which is
defined as follows:

renTv(α, rentv) = α

renTv( btv , rentv) = rentv(tv)
renTv(τ µ, rentv) = renTv(τ, rentv) µ
renTv(τ1�τ2, rentv) = renTv(τ1, rentv)�renTv(τ2, rentv)

renTv(τd , rentv) = renTv(τ, rentv)d

This function is partially defined. It is not defined on types of
the formθ · τ because theses forms cannot occur in environments
in “solved” forms. Moreover when applyingrenTv to an internal
type and a renaming of explicit type variables, then the explicit type
variables occurring in the internal type have to be the domain of the
renaming. This is always the case when callingrenTv in Fig. 19.

Fig. 20 extends our constraint solver to deal with our new
constraint terms.
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Figure 19Generalisation of explicit type variables

〈∆, e1;e2〉 −
genExTyVar−−−−−−→ e′

2;e
′
2 ⇔ 〈∆, e1〉 −

genExTyVar−−−−−−→ e′
1 and〈∆;e′

1, e2〉 −
genExTyVar−−−−−−→ e′

2

〈∆, �id=e〉 −genExTyVar−−−−−−→ �id=e′ ⇔ 〈∆, e〉 −genExTyVar−−−−−−→ e′

〈∆, �vid=τ〉 −genExTyVar−−−−−−→ �vid=∀α0. renTv(τ, rentv) ⇔ tyvars(τ) = dom(rentv) andα0 = ran(rentv) anddja(nonDumVars(∆), α0)

〈∆, �vid=∀α. τ〉 −genExTyVar−−−−−−→ �vid=∀(α ∪ α0). renTv(τ, rentv) ⇔ tyvars(τ) = dom(rentv) andα0 = ran(rentv) anddja(nonDumVars(∆), α0)

〈∆, ed 〉 −genExTyVar−−−−−−→ e′d ⇔ 〈∆, e〉 −genExTyVar−−−−−−→ e′

〈∆, e〉 −genExTyVar−−−−−−→ e, if none of the above applies

Rule(S10), originally defined in Sec. C.2, is updated to handle
explicit type variables as internal types.

Rules(S11)-(S13) are to handle our new cases of internal types
and internal type constructors.

Rule (B1) is redefined so that it builds up the semantics of
binders. The reason is that when checking if a signature matches
a structure, we want the corresponding environments fully built up.
Building the binders when solving them allows having a shallow
building function, as the one we currently have, that does not need
to go down structure or signature binders.

Rules (SM1)-(SM13) check whether a signature matches a
structure. These rules are used for both translucent and opaque con-
straints. Ifmatch(∆, d , tfm, e1, e2) →

∗
match(∆′, d

′
, tfm ′, e ′

1, e
′
2)

using rules(SM1)-(SM13) thene1 = e ′
1.

Rule(SM4) checks that a type scheme from the signature does
not allow generating types that the corresponding type scheme in
the structure cannot generate. Before checking that, the gathered
type functions are applied to the type extracted from the binding
coming from the signature (τ1). This is where the instantiation
of a signature is performed in our system. Finally, explicittype
variables occurring in the generated binder are generalised. The
generated type scheme is built fromτ1 and not fromτ2 in case
the binding from the signature is a dummy binding. If the binding
from the signature was a dummy binding and the corresponding
binding from the structure was not a dummy binding, then we do
not want to generate an unlabelled non-dummy binding that could
therefore lead to a type error because this type error might then not
be dependent on the label associated to the specification forwhich
the binder has been generated (the specification would not bepart
of the reported error).

Rules (SM6) and (SM11) gather type functions defined by
the structure. These type functions are applied to the signature
during the process of checking the matching (in rules(SM4) and
(SM5)). Once again, extra care has to be taken when the binder
from the signature is a dummy binder, so that the algorithm does
not generate a non-dummy binder.

The other(SMi) rules are fairly straightforward.
Rule(SC5) is just so that the same mechanism can be used for

opaque and translucent signatures.
Rule(SC1) for translucent signature just checks that the signa-

ture matches the structure. It does not need further computation be-
cause the resulting structure is computed while checking the match-
ing.

Rule (SC3) for opaque signatures checks that the signature
matches the structure and generates a new structure based onthe
signature. The generated structure is the signature where the inter-
nal type constructor names are renamed and where the explicit type
variables are generalised.

Constraint filtering (Minimisation and enumeration). We
extend our filtering function as follows:

filt(e1:e2, l1, l2) = filt(e1, l1, l2):filt(e1, l1, l2)
filt(e1:>e2, l1, l2) = filt(e1, l1, l2):>filt(e1, l1, l2)

filt(ev , l1, l2) = ev

We now need the filtering of unlabelled environment variables
because we now allow unlabelled environment variables to occur
within environments of the forme1:e2 or e1:>e2.

Because explicit type variables can now bind internal typesand
not only internal type variables, we also need to update our filtering
function by replacingtoDumVar(α) = αdum by:

toDumVar(τ) = αdum

Slicing. We extend our tree syntax for programs as follows:

Class ::= · · · | sigdec | sigexp | spec
Prod ::= · · ·

| sigdecDec
| sigexpSig
| specVal | specTyp | specDat | specStr
| strexpTr | strexpOp

We also extend our functiongetDot that associates dot markers
to node kinds as follows:

getDot(〈sigdec, prod〉) = dotD
getDot(〈sigexp, prod〉) = dotS
getDot(〈spec, prod 〉) = dotD

Finally, Fig. 21 extends our functiontoTree that transforms a
termterm into a treetree .

C.4 Reporting unmatched errors

There is a kind of error involving signatures that is not handled by
the constraint solver as defined above: the “unmatched” errors.

For example, in

signature s = sig val fool : int end

structure S = struct val foo = 1 val bar = 2 end
structure T = S :> s

the specificationfool from the signatures is not matched in the
structureS, but s constrainsS in T. This error could be solved in
many ways, such as: (1) one could replacefool by foo in s, (2) one
could replacefoo by fool in S, (3) one could constrainS using a
different signature, (4) one could binds or S to other expressions.

For this error we would like to report thatfool specified ins is
not any offoo or bar declared inS, buts constrainsS.

For that we need to be able to check that indeedfool is not any
of the declarations ofS.

With the system as described above, we cannot report such
errors because we do not have any way of knowing whether an
environment is constituted by the binders corresponding toall the
declarations of a structure. As a matter of fact, this is not possible
with the current system because of the way constraint filtering can
replace environment variables and binders by�.

We will now show how to extend our system to report such
errors.

Constraint syntax. We extend our environment with a new empty
environment as follows:

Env ::= · · · | ⊙

The meaning of the environment⊙ lies in between the meaning
of � and the meaning of environment variables.
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Figure 20Constraint solving for signature related constraints
Some kinds of errors are not handled by the system presented in this section, although our implementation handles them. For more information please refer to
the introductory paragraph of this section (Sec. C.3).

equality simplification

(S10) solve(〈u, e〉, d , τ1=τ2) → solve(〈u, e〉, d , τ=build(u, θ · τ ′)) if {τ1, τ2} = {θ · τ ′, τ} andτ is of the formτ3�τ4, τ3 µ, or btv
(S11) solve(∆, d , ctv1= ctv2) → err(〈TyVarClash(tv1, tv2), d〉), if tv1 6= tv2

(S12) solve(∆, d , τ1=τ2) → solve(∆, d , etv=µ), if (({τ1, τ2} = { btv , τ�τ ′} andµ = ar)
or {τ1, τ2} = {btv , τ µ}), for sometv , τ , τ ′, µ

(S13) solve(∆, d , µ1=µ2) → err(〈TooGeneral(µ1, µ2), d〉), if {µ1, µ2} ∈ {{ etv , ar}, { etv , γ}}, for sometv andγ

binders
(B1) solve(〈u, e〉, d , �id=x) → succ(〈u, e〉;(�id =

d
== build(u, x)))

signature constraints

(SC1) solve(〈u, e〉, d , e1:e2) → succ(∆), if prematch(〈u, e〉, d , e1, e2) →∗ succ(∆, tfm),
(SC2) solve(〈u, e〉, d , e1:e2) → err(er), if prematch(〈u, e〉, d , e1, e2) →∗ err(er),
(SC3) solve(〈u, e〉, d , e1:>e2) → succ(〈u′, e;e′′

2 〉), if prematch(〈u, e〉, d , e1, e2) →∗ succ(〈u′, e′〉, tfm)

and〈〈u′, e′〉, build(u, e2), dom(tfm)〉 −abstract−−−−→ e′
2 and〈〈u′, e′〉, e′

2〉 −
genExTyVar−−−−−−→ e′′

2

(SC4) solve(〈u, e〉, d , e1:>e2) → err(er), if prematch(〈u, e〉, d , e1, e2) →∗ err(er)

(SC5) prematch(〈u, e〉, d , e1, e2) → state, if match(〈u, e〉, d , ∅, build(u, e1), build(u, e2)) →∗ state

structure/signature matching

(SM1) match(∆, d , tfm, e, �) → succ(∆, tfm)

(SM2) match(∆, d , tfm, e, e1;e2) → match(∆′, d , tfm′, e, e2),
if match(∆, d , tfm, e, e1) →∗ succ(∆′, tfm′)

(SM3) match(∆, d , tfm, e, e1;e2) → err(er),
if match(∆, d , tfm, e, e1) →∗ err(er)

(SM4) match(∆, d , tfm, e, �vid=σ1) → succ(∆;e0, tfm),
if e(vid) = σ2 and∀i ∈ {1, 2}. (σi = ∀αi. τi or (σi = τi andαi = ∅))
andτ ′

1 = appTFM(τ1, tfm) andsolve(∆, d , τ ′
1=τ2) →∗ succ(〈u′, e′〉)

andτ = build(u′, τ ′
1) and〈〈u′, e′〉, �vid =

d
== ∀(α1 ∪ α2) ∩ vars(τ). τ〉 −genExTyVar−−−−−−→ e0

(SM5) match(∆, d , tfm, e, �vid=σ1) → err(er),
if e(vid) = σ2 and∀i ∈ {1, 2}. (σi = ∀αi. τi or (σi = τi andαi = ∅))
andsolve(∆, d , appTFM(τ1, tfm)=τ2) →∗ err(er)

(SM6) match(∆, d , tfm, e, �tc=θ1) → succ(∆;(�tc =
d
== θ′2), tfm

′),

if e(tc) = θ2 and (if θ1 ∈ DumVar thenθ′2 = θ1 elseθ′2 = θ
deps(θ1)
2 )

and (if θ1 = Λα. (α γ)d
′

thentfm′ = tfm⊞{γ 7→ θ′2} elsetfm ′ = tfm)

(SM7) match(〈u1, e1〉, d , tfm, e, �sid=e0) → succ(〈u2, e1;(�sid =
d
== diff(e1, e2))〉, tfm

′),
if e(sid) = e′

0 andmatch(〈u1, e1〉, d , tfm, e′
0, e0) →∗ succ(〈u2, e2〉, tfm

′)

(SM8) match(∆, d , tfm, e, �sid=e0) → err(er),
if e(sid) = e′

0 andmatch(∆, d , tfm, e′
0, e0) →∗ err(er)

(SM9) match(∆, d , tfm, e, �vid=is1) → succ(∆;(�vid =
d
′

== vid), tfm),
if eJvidK = is2 anddeps(is2) = d

′
and (solve(∆, d , is1=is2) →∗ succ(∆′) or strip(is1) = v)

(SM10) match(∆, d , tfm, e, �vid=is1) → err(er),
if eJvidK = is2 andstrip(is1) 6= v andsolve(∆, d , is1=is2) →∗ err(er)

(SM11) match(∆, d , tfm, e, �id=x) → succ(∆;(�id=toDumVar(x)), tfm′),

if e(id) is undefined and (ifx = Λα. (α γ)d
′

thentfm′ = tfm⊞{γ 7→ αdum} elsetfm′ = tfm)
(SM12) match(∆, d , tfm, e, ev) → succ(∆;ev , tfm)

(SM13) match(∆, d , tfm, e, e′d
′

) → match(∆, d ∪ d
′
, tfm, e, e′)
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Figure 21Extension of our slicing algorithm with signatures

Signature declarations toTree(signature sigid
l
= sigexp) = 〈〈sigdec, sigdecDec〉, l , 〈sigid , toTree(sigexp)〉〉

Signature expressions toTree(sigid l ) = 〈〈sigexp, sigexpId〉, l , 〈sigid〉〉
toTree(sigl spec1 · · · specn end) = 〈〈sigexp, sigexpSig〉, l , 〈toTree(spec1), . . . , toTree(specn)〉〉

Specifications toTree(val vid :l ty) = 〈〈spec, specVal〉, l , 〈vid , toTree(ty)〉〉

toTree(type dn l ) = 〈〈spec, specTyp〉, l , 〈toTree(dn)〉〉

toTree(datatype dn
l
= cd) = 〈〈spec, specDat〉, l , 〈toTree(dn), toTree(cd)〉〉

toTree(structure sid :l sigexp) = 〈〈spec, specStr〉, l , 〈sid , toTree(sigexp)〉〉

Structure expressions toTree(sexp :l sigexp) = 〈〈strexp, strexpTr〉, l , 〈toTree(sexp), toTree(sigexp)〉〉
toTree(sexp :>l sigexp) = 〈〈strexp, strexpOp〉, l , 〈toTree(sexp), toTree(sigexp)〉〉

Programs toTree(topdec1; · · · ;topdecn) = 〈dotD, 〈toTree(topdec1), . . . , toTree(topdecn)〉〉

The difference between� and⊙ is that the second one will be
used to indicate that we filtered out an environment which hasthe
potential to bind (either an environment variable or a binder) and
not just, say, an equality constraint.

The difference between⊙ and an environment variable is that
in an environment of the form⊙;e, ⊙ does not shadowe.

Constraint solving. The extra environment⊙ will be allowed to
exist within unification contexts. Given a unification state, if ∆
occurs in it, then∆ is of the form〈u, e〉 wheree = �;e1; · · · ;en

where eachei can either be an environment variable, a labelled
binder or⊙.

Because⊙ can occur in unification contexts, we extend our
environment application functions as follows:

(e;⊙)(id) = e(id)
(e;⊙)JidK = eJidK

Let us extend error kinds as follows:

ek ∈ ErrKind ::= · · · | unmatched(id , id)

Fig. 22 extends our constraint solver with rules to handle un-
matched errors: rule(SM11) replaces the previous rule(SM11)
from Fig. 20 and rules(SM14) and(N2) are new.

Rules(SM11) and(SM14) make use of the predicatecomplete
(similar tohiding) which is defined as follows:

complete(e) ⇔

8
>>><
>>>:

(e of the form�id =
d
== x

andx 6∈ DumVar ∪ {a})
or (e of the forme1;e2

and∀i ∈ {1, 2}. complete(ei))
or e = �

A “solved” environment (occurring in a unification context)
is said to be complete if it is not composed by an environment
variable, a filtered binder or a dummy binder.

Rule (SM14) makes use of the functiongetBinders which
gathers the identifiers bound in its argument:

getBinders(e1;e2) = getBinders(e1) ∪ getBinders(e2)
getBinders(�) = ∅

getBinders(�id =
d
== x) = {id}

Constraint filtering (Minimisation and enumeration). We
add a new rule to filter⊙ and update the filtering of labelled envi-
ronment as follows:

filt(e l , l1, l2) =

8
>><
>>:

e l , if l ∈ l1 \ l2
dum(e), if l ∈ l2
⊙, if l 6∈ l1 ∪ l2 ande ∈ Var ∪ Bind
�, otherwise

filt(⊙, l1, l2) = ⊙

Slicing. We also need to modify our slicing algorithm. Consider
the following piece of code:

signature s = sig val x : int val y : bool end
structure S : s = struct val x = 1 val y = true end

structure T :> s = struct val x = 1 val y = true end
val u = let open T val z = y open S

in fn w => (w z, w x)

end

where in the fn-expression,z is the y from T and x comes from
S via the structure opening. The structuresS andT have the same
structure body constrained by the same signatures, but S has a
translucent signature whileT’s signature is opaque.

This piece of code is untypable becausew has a monomorphic
type and is applied toz which is the Booleany defined inT, and it
is also applied tox which is an integer defined inS.

With our current slicing algorithm, one of the type error slice
we obtain would be as follows:

〈..signature s = sig val x : 〈..〉 val y : bool end

..structure S : s = struct val x = 1 end

..structure T :> s = 〈..〉

..〈..open T..val z = y..open S..fn w => 〈..w z..w x..〉..〉..〉

which is not minimal:s does not matchS becausey is not declared
in S.

The problem comes from our tidying of declarations in structure
expressions. We therefore need to update our tidying function so
that it does not discard empty dot declarations:

tidy(〈〉) = 〈〉

tidy(〈〈dotD,
−−→
tree1〉, 〈dotD,

−−→
tree2〉〉@

−−→
tree)

= tidy(〈〈dotD,
−−→
tree1@

−−→
tree2〉〉@

−−→
tree),

if ∀tree ∈ ran(
−−→
tree1). ¬declares(tree)

tidy(〈tree〉@
−−→
tree) = 〈tree〉@tidy(

−−→
tree), if none of the above applies

With this new tidy function, we would then obtain a slice as
follows:

〈..signature s = sig val x : 〈..〉 val y : bool end

..structure S : s = struct 〈..〉 val x = 1 end

..structure T :> s = 〈..〉

..〈..open T..val z = y..open S..fn w => 〈..w z..w x..〉..〉..〉

We also have to replace our constraint generation rule for dot
declarations, in order to generate markers of discarded binders:

dot-d(〈pt1, . . . , ptn〉) -⊲ [e1; · · · ;en];⊙ ⇐⇐⇐
pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en)

However, this modification is not enough because binders are
generated forcb’s, pat ’s, anddn ’s.

For example, we would like to generate a marker of discarded
binder for the following declaration:datatype ’a t = 〈..〉.
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Figure 22Constraint solving rules handling unmatched errors
Some kinds of errors are not handled by the system presented in this section, although our implementation handles them. For more information please refer to
the introductory paragraph of Sec. C.3.

structure/signature matching
(SM11) match(∆, d , tfm, e, �id=x) → succ(∆;(�id =

d
== y), tfm′), if e(id) is undefined and¬complete(e) andy = toDumVar(x)

and (ifx = Λα. α γ thentfm′ = tfm⊞{γ 7→ αdum} elsetfm′ = tfm)
(SM14) match(∆, d , tfm, e, �id=x) → err(〈unmatched(id , id), d〉), if e(id) is undefined andcomplete(e) and whereid = getBinders(e)

(SM15) match(∆, d , tfm, e,⊙) → succ(∆;⊙, tfm)

empty

(N2) solve(∆, d ,⊙) → succ(∆;⊙)

First, let us replace the dot terms forcb’s. We need to do so
because we want to generate markers of discarded binders only for
cb dot terms, but not for expressions and types. We replace these
dot terms as follows:

dot-e(
−→
pt ) −ConBind−−−−_ dot-c(

−→
pt )

We redefine the constraint generation rules for the forms
dot-n(

−→
pt) anddot-p(

−→
pt ), and we introduce a new constraint gen-

eration rule for the formsdot-c(
−→
pt ) as follows:

dot-n(〈pt1, . . . , ptn〉) -⊲ 〈α, α′, [e1; · · · ;en];⊙, �〉
⇐⇐⇐ pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en, α, α′)

dot-p(〈pat 1, . . . , patn〉) -⊲ 〈α, e1; · · · ;en;⊙〉
⇐⇐⇐ pat1 -⊲ e1 ∧∧∧ · · · ∧∧∧ patn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

dot-c(〈pt1, . . . , ptn〉) -⊲ 〈α, [e1; · · · ;en];⊙〉
⇐⇐⇐ pt1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ptn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

We add a new dot marker to the setDot as follows:

Dot ::= · · · | dotC

Finally, we extend thetoTree function as follows:

toTree(dot-n(〈pt1, . . . , ptn〉)) =
〈dotC, 〈toTree(pt1), . . . , toTree(ptn)〉〉

C.5 Further extensions

We are currently extending the formal presentation of our TES to
handle features such as functors, non-recursive value declarations,
type annotations, or long identifiers. These features are already
handled by our implementation and we invite the reader to tryit
and read its source code for more details on how the features are
handled.

D. Extensions for a better error handling
D.1 Merged minimal slices

With the constraint solver as defined above, our TES would report
two minimalunmatchedtype error slices for the following piece of
code:

structure S = struct val (fool, barr, x, y) = (1, 2, 3, 4) end

signature s = sig val foo : int val bar : int val x : int end
structure T = S :> s

One of the type error is that the specificationfoo in s is not
matched in the structureS (that declaresfool, barr, x andy), but
s constrainsS in T. The other error is similar but concerns the
specificationbar.

This is another typical example where finding and reporting
merged minimal error slices would be useful (see Sec. 2.3, that
presents another example of merged minimal error slices). For the
example above, instead of the two reports described above, we
would prefer a highlighting that would look like:

structure S = struct val (fool, barr, x, y) = (1, 2, 3) end

signature s = sig val foo : int val bar : int val x : int end
structure T = S :> s

This highlighting shows thatfoo andbar are not matched in the
structureS, but also suppose thatx might not be the matching for
foo or bar asx is specified in the signatures. Note thatx is still
reported because we can’t know ifx in the structureS is definitely
not the matching of, e.g.,foo in the signatures.

Note that we do not want to find the two minimal error reports
and then merge them into a single report, but we directly wantto
generate the merged error.

We could obtain this slice by altering the part of our constraint
solver defined in Fig. 20 and Fig. 22.

First, we want unmatched error kinds to be as follows instead
(we replace the previous form by this new one):

ek ∈ ErrKind ::= · · · | unmatched(id1, id2, id3)

For the highlighting presented above, the error kind would then
be unmatched(id1, id2, id3), whereid1 is the set of identifiers
highlighted in dark grey (the identifiers specified ins that are not
declared inS), id2 is the set of identifiers highlighted with the
darkest grey (the identifiers declared inS that are not specified in
s) and id3 is the set of identifiers highlighted in light grey (the
identifiers both specified ins and declared inS).

Then, when checking if a signature matches a structure, in order
to gather (1) the identifiers that are specified in the signature but not
declared in the structure, (2) the identifiers that are declared in the
structure but not specified in the signature, and (3) the identifiers
that are both specified in the signature and declared in the structure,
we extend our “match” states as follows:

unm ∈ Unmatched ::= 〈id1, id2〉
state ∈ State ::= · · ·

| match(∆, d , tfm,unm, e1, e2)
| succ(∆, tfm,unm)

Finally, Fig. 23 updates the rules defined in Fig. 20 and Fig. 22
to handle the reporting of merged unmatched errors. Rules(SC1),
(SC2), (SC3) and(SC4) are as before and are not repeated here.
Rules(SC6) and(SM16) are new and replace rule(SM14).

The main difference between this new algorithm and the one
presented in Fig. 20 and Fig. 22, is that our new algorithm gathers
the identifiers that are both specified in the signature and declared
in the structure (rules(SM4), (SM6), and(SM7)) and also gathers
the identifier that are not matched in the structure (rule(SM11)). If
there exists such an identifier, it means that there is an unmatched
error. We then wait to check the matching of the entire signature
against the structure to finally report all such unmatched identifiers
in a single error report (rules(SC6) and(SM16)).

Note that such type error reports (for unmatched errors) arestill
imperfect. For example, the highlighting above does not show that
{fool, barr, x, y} is precisely the set of identifiers declared in the
structureS. Similarly the highlighting does not show that{foo, bar,
x} is precisely the set of identifiers specified in the signatures. We
could then consider the following convention when highlighting a
type error: if all the identifiers declared in a structure or specified in
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Figure 23Constraint solving to handle merged unmatched errors
Some kinds of errors are not handled by the system presented in this section, although our implementation handles them. For more information please refer to
the introductory paragraph of Sec. C.3.

signature constraints

(SC5) prematch(〈u, e〉, d , e1, e2) → succ(∆′, tfm), if build(u, e1) = e′′
1 andbuild(u, e2) = e′′

2

andmatch(〈u, e〉, d , ∅, 〈∅, ∅〉, e′′
1 , e′′

2 ) →∗ succ(∆′, tfm, unm)

and (unm = 〈∅, id2〉 or¬complete(e′′
1 ;e′′

2 ))
(SC6) prematch(〈u, e〉, d , e1, e2) → err(〈ek , d〉), if build(u, e1) = e′′

1 andbuild(u, e2) = e′′
2

andmatch(〈u, e〉, ∅, ∅, 〈∅, ∅〉, e′′
1 , e′′

2 ) →∗ succ(∆′, tfm, unm)

andunm = 〈id1, id2〉 andid1 6= ∅ andcomplete(e′′
1 ;e′′

2 )

andek = unmatched(id1, getBinders(e′′
1 ) \ id2, id2)

(SC7) prematch(〈u, e〉, d , e1, e2) → err(er), if match(〈u, e〉, d , ∅, 〈∅, ∅〉, build(u, e1), build(u, e2)) →∗ err(er)

structure/signature matching

(SM1) match(∆, d , tfm, unm, e, �) → succ(∆, tfm,unm)

(SM2) match(∆, d , tfm, unm, e, e1;e2) → match(∆′, d , tfm′, unm ′, e, e2),
if match(∆, d , tfm, unm, e, e1) →∗ succ(∆′, tfm ′,unm ′)

(SM3) match(∆, d , tfm, unm, e, e1;e2) → err(er),
if match(∆, d , tfm, unm, e, e1) →∗ err(er)

(SM4) match(∆, d , tfm, 〈id1, id2〉, e, �vid=σ1) → succ(∆;e0, tfm, 〈id1, id2 ∪ {vid}〉),
if e(vid) = σ2 and∀i ∈ {1, 2}. (σi = ∀αi. τi or (σi = τi andαi = ∅))
andτ ′

1 = appTFM(τ1, tfm) andsolve(∆, d , τ ′
1=τ2) →∗ succ(〈u′, e′〉)

andτ = build(u′, τ ′
1) and〈〈u′, e′〉, �vid =

d
== ∀(α1 ∪ α2) ∩ vars(τ). τ〉 −genExTyVar−−−−−−→ e0

(SM5) match(∆, d , tfm, unm, e, �vid=σ1) → err(er),
if e(vid) = σ2 and∀i ∈ {1, 2}. (σi = ∀αi. τi or (σi = τi andαi = ∅))
andsolve(∆, d , appTFM(τ1, tfm)=τ2) →∗ err(er)

(SM6) match(∆, d , tfm, 〈id1, id2〉, e, �tc=θ1) → succ(∆;(�tc =
d
== θ′2), tfm′, 〈id1, id2 ∪ {tc}〉),

if e(tc) = θ2 and (if θ1 ∈ DumVar thenθ′2 = θ1 elseθ′2 = θ
deps(θ1)
2 )

and (if θ1 = Λα. (α γ)d
′

thentfm′ = tfm⊞{γ 7→ θ′2} elsetfm ′ = tfm)

(SM7) match(〈u1, e1〉, d , tfm, 〈id1, id2〉, e, �sid=e0) → succ(〈u2, e1;(�sid =
d
== diff(e1, e2))〉, tfm

′, 〈id1, id2 ∪ {sid}〉),
if e(sid) = e′

0

andmatch(〈u1, e1〉, d , tfm, 〈∅, ∅〉, e′
0, e0) →∗ succ(〈u2, e2〉, tfm

′,unm ′)

and (unm ′ = 〈∅, id2〉 or ¬complete(e′
0;e0))

(SM16) match(∆, d , tfm, unm, e, �sid=e0) → err(〈unmatched(id1, getBinders(e′
0) \ id2, id2), d〉),

if e(sid) = e′
0

andmatch(∆, d , tfm, 〈∅, ∅〉, e′
0, e0) →∗ succ(∆′, tfm′, 〈id1, id2〉) andid1 6= ∅ andcomplete(e′

0;e0)

(SM8) match(∆, d , tfm, unm, e, �sid=e0) → err(er),
if e(sid) = e′

0 andmatch(∆, d , tfm, e′
0, e0) →∗ err(er)

(SM9) match(∆, d , tfm, unm, e, �vid=is1) → succ(∆;(�vid =
d
′

== vid), tfm,unm),
if eJvidK = is2 anddeps(is2) = d

′
and (solve(∆, d , is1=is2) →∗ succ(∆′) or strip(is1) = v)

(SM10) match(∆, d , tfm, unm, e, �vid=is1) → err(er),
if eJvidK = is2 andstrip(is1) 6= v andsolve(∆, d , is1=is2) →∗ err(er)

(SM11) match(∆, d , tfm, 〈id1, id2〉, e, �id=x) → succ(∆;(�id=toDumVar(x)), tfm′, 〈id1 ∪ {id}, id2〉),

if e(id) is undefined and (ifx = Λα. (α γ)d
′

thentfm′ = tfm⊞{γ 7→ αdum} elsetfm′ = tfm)
(SM12) match(∆, d , tfm, unm, e, ev) → succ(∆;ev , tfm, unm)

(SM13) match(∆, d , tfm, unm, e, e′d
′

) → match(∆, d ∪ d
′
, tfm, unm, e, e′)

a signature are involved in the reported error and this information
is necessary for the error to occur then we highlight the blank
spaces (if any) preceding the correspondingval, type, datatype
andstructure keywords.

We would then obtain the following highlighting which is a bit
more informative than the one presented above:

structure S = struct val (fool, barr, x, y) = (1, 2, 3) end
signature s = sig val foo : int val bar : int val x : int end

structure T = S :> s
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