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Abstract

Type systems were invented in the early 1900s to provide foundations for Math-

ematics where types were used to avoid paradoxes. Type systems have then been

developed and extended throughout the years to serve different purposes such as ef-

ficiency or expressiveness. The λ-calculus is used in programming languages, logic,

mathematics, and linguistics. Intersection types are a kind of types used for building

semantic models of the λ-calculus and for static analysis of computer programs.

The confluence property was used to prove the λ-calculus’ consistency and the

uniqueness of normal forms. Confluence is useful to show that logics are sensibly

designed, and to make equality decision procedures for use in theorem provers.

Some proofs of the λ-calculus’ confluence are based on syntactic concepts (reduction

relations and λ-term sets) and some on semantic concepts (type interpretations).

Part I of this thesis presents an original syntactic proof that is a simplification of

a semantic proof based on a sound type interpretation w.r.t. an intersection type

system. Our proof can be seen as bridging some semantic and syntactic proofs.

Expansion is an operation on typings (pairs of type environments and result

types) in type systems for the λ-calculus. It was introduced to prove that the prin-

cipal typing property (i.e., that every typable term has a strongest typing) holds

in intersection type systems. Expansion variables were introduced to simplify the

expansion mechanism. Part II of this thesis presents a complete realisability se-

mantics w.r.t. an intersection type system with infinitely many expansion variables.

This represents the first study on semantics of expansion. Providing sound (and

complete) realisability semantics allows one to study the algorithmic behaviour of

typed λ-terms through their types w.r.t. a type system. We believe such semantics

will cast some light on the not yet well understood expansion operation.

Intersection types were used in a type error slicer for the SML programming

language. Existing compilers for many languages have confusing type error messages.

Type error slicing (TES) helps the programmer by isolating the part of a program

contributing to a type error (a slice). TES was initially done for a tiny toy language

(the λ-calculus with polymorphic let-expressions). Extending TES to a full language

is extremely challenging, and for SML we needed a number of innovations. Some

issues would be faced for any language, and some are SML-specific but representative

of the complexity of language-specific issues likely to be faced for other languages.

Part III of this thesis solves both kinds of issues and presents an original, simple,

and general constraint system for providing type error slices for ill-typed programs.

We believe TES helps demystify language features known to confuse users.
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shared inside and outside university. I would like to thank all the members of the

type error slicing projects, and especially John, Mark, and Scott for making of our

shared office a great place to work. I would also like to thank them for all our chess

and go games. I would like to thank my hockey teammates and especially Mike and

Ham. I would not have survived without our weekly trainings. Finally, I would like

to thank any other people I may have forgotten in these acknowledgements.



Contents

1 Mathematical definitions and notations 1

2 Introduction 3

2.1 History of the λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Structure of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The untyped λ-calculus and some of its variants . . . . . . . . . . . . 5

2.3.1 Sets of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Reduction relations . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Important λ-calculi . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.4 Residuals, developments, confluence and normalisation . . . . 8

2.4 Some notable typed λ-calculi . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 The simply typed λ-calculus . . . . . . . . . . . . . . . . . . . 9

2.4.2 Intersection type systems . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 ML-like programming languages . . . . . . . . . . . . . . . . . 13

2.5 Some methods of reasoning involving λ-calculi . . . . . . . . . . . . . 14

2.5.1 Realisability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Contributions and structure of this thesis . . . . . . . . . . . . . . . . 16

I A new proof method of the confluence of the λ-calculus 18

3 The confluence property and its main proofs 19

3.1 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 1936: Church and Rosser [24] . . . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1

Mathematical definitions and

notations

Natural numbers

Let i, j,m, n, p, q be metavariables ranging over N, the set of natural numbers.

Metavariables

If a metavariable v ranges over a class C , then the metavariables vx (where x can

be anything) and the metavariables v′, v′′, etc., also range over C .

Sets

Let s range over sets. If v ranges over s , then let v range over P(s), the power set

of s .

Disjunction

Let dj(s1, . . . , sn) (“disjoint”) hold iff for all i, j ∈ {1, . . . , n}, if i 6= j then si∩sj = ∅.

Let s1 ⊎ s2 be s1 ∪ s2 if dj(s1, s2) and undefined otherwise.

Relations

Let Lx, yM be the pair of x and y. If rel is a binary relation (a pair set), let (x rel y)

iff Lx, yM ∈ rel , let the inverse of rel be rel−1 defined as {Lx, yM | Ly, xM ∈ rel}, let

dom(rel) = {x | Lx, yM ∈ rel}, let ran(rel) = {y | Lx, yM ∈ rel}, let s⊳ rel = {Lx, yM ∈

rel | x ∈ s}, and let s⊳− rel = {Lx, yM ∈ rel | x 6∈ s}.

Functions

Let f range over functions (a special case of binary relations), let s → s′ = {f |

dom(f ) ⊆ s ∧ ran(f ) ⊆ s′}, and let x 7→ y be an alternative notation for Lx, yM used

when writing some functions. Let f1 + f2 = f2 ∪ (dom(f2)⊳− f1). Let f1⊞f2 be f1 ∪ f2

if f1 ∪ f2 is a function and undefined otherwise. If f1, f2 ∈ s1 → P(s2) then let

f1 ⋒ f2 = {x 7→ f1 ∪ f2 | x ∈ dom(f1) ∩ dom(f2)} ∪ dom(f2)⊳− f1 ∪ dom(f1)⊳− f2.

Tuples

A tuple t is a function such that dom(t) ⊂ N and if 1 ≤ j ∈ dom(t) then j −

1 ∈ dom(t). Let t range over tuples. If v ranges over s then let −→v range over

1



Chapter 1. Mathematical definitions and notations

tuple(s) = {t | ran(t) ⊆ s}. We write the tuple {0 7→x0, . . . , n 7→xn} as 〈x0, . . . , xn〉.

Let @ append tuples: 〈x1, . . . , xi〉@〈y1, . . . , yj〉 = 〈x1, . . . , xi, y1, . . . , yj〉. Given n

sets s1, . . . , sn, let s1 × · · · × sn be {〈x1, . . . , xn〉 | ∀i ∈ {1, . . . , n}. xi ∈ si}. Note

that s1 × · · · × sn ⊆ tuple(s1 ∪ · · · ∪ sn).

Inference rules

An inference rule is a pair premises/conclusion which states that if the premises are

true then the conclusion must be true as well. In the literature, an inference rule is

often written as follows:

y1 · · · yn

x (r)

which means that if yi for all i ∈ {1, . . . , n} are true then x is true. This rule is

named (r). Such a rule is sometimes written as follows:

(r) y1 ∧∧∧ · · · ∧∧∧ yn ⇒⇒⇒ x

In this document we also sometimes write such a rule as follows:

(r)x ⇐⇐⇐ y1 ∧∧∧ · · · ∧∧∧ yn

The rule name is sometimes omitted in such rules.
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Chapter 2

Introduction

2.1 History of the λ-calculus

In the nineteenth century, due to the lack of precision of natural languages and the

discovery of some controversial results in analysis [79], mathematicians and logicians

became interested in a more precise formalisation of Mathematics. Frege [138, 79]

was the first to set solid logic foundations. He, among other things, presented a

formalisation of the concept of a function. The development of formal systems by

Frege and his contemporaries led to the discovery of some paradoxes. The paradox in

Frege’s work, found by Russell [121], was due to the problem of self-reference. This

problem is inherent to the fact that any function can be applied to any function (in

particular to itself). In order to solve this problem, Russell [121] defined a theory

of types where types are used to restrict the application of functions.

One of the great achievements in the movement led by Frege, Russell, Curry, etc.,

aiming at the formalisation of Mathematics has been the design of the λ-calculus1 by

Church [21]. In 1932, Church [21] introduced a system for “the foundation of formal

logic”, which was a formal system for logic and functions. The set of terms of this

system was defined as a superset of the set of terms of the λI-calculus. In addition,

Church introduced two sets of postulates. The first one called “rules of procedure”

allowed, among other things, dealing with conversion of λ-terms (these rules are

presented in Sec. 3.2). The second set contained the “formal postulates” which were

logical axioms. However, this system and some of its subsystems turned out to

be inconsistent as shown by Kleene and Rosser [91]. Nevertheless, the subsystem

dealing only with functions turned out to be a “successful model for computable

functions” [5]: the actual λ-calculus is a generalisation of this earlier system.

This earlier system led to the actual λ-calculus. Church defined the computable

functions as the λ-definable ones. Also, it turned out that the set of computable

functions defined by Turing via his machines is equivalent to the set of λ-definable

1Barendregt [5], Rosser [120], and Cardone and Hindley [18] provide extensive introductions to
the λ-calculus.
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functions [136] and also to Gödel’s recursive functions [51]. These proposals are

nowadays often referred as Church-Turing’s thesis or as Church’s thesis. As ex-

plained by Kleene [90], it is called a thesis and not a theorem because “it proposes

to identify a somewhat vague intuitive concept with a concept phrased in exact

mathematical terms, and thus is not susceptible of proof”.

As Barendregt stresses in the introduction of his book [5], this theory presents

functions as rules, and not as sets of pairs, in order to deal with their computational

aspects. As explained by Kamareddine, Laan, Nederpelt [79], the λ-calculus turned

out to be a generalisation of the definition of functions given, e.g., by Russell [144]

(“propositional functions”). The λ-calculus is nowadays used in programming lan-

guages, logic, mathematics, and linguistics.

The λ-calculus allows one to compute thanks to rules often referred to as re-

duction or conversion rules. These rules were extensively studied and one of the

main result was the proof of the confluence of β-reduction [24] which is the main

computation rule of the λ-calculus. Confluence is the property that was originally

used to prove, among other things, the consistency the λ-calculus (the theory built

upon β-reduction and α-conversion) because it allows one to prove that there ex-

ists at least two closed different λ-terms. Confluence is sometimes referred to as

the Church-Rosser property. It was also originally used to prove the uniqueness of

normal forms [24].

In the early 1940s, Church added simple types, which are the types built upon

ground types and the arrow type constructor, to the λ-calculus in a system with

logical axioms to deal with logic and functions [23]. Church’s approach was to

directly annotate λ-terms: type-free λ-terms are replaced by typed λ-terms. Curry

followed another approach. He considered the combinatory logic [31] which is a type-

free calculus that can be regarded as a variant of the λ-calculus. His type system

associates types with type-free terms via a typing relation [30, 31]. As explained by

Barendregt [6], these two “approaches to typed lambda calculus correspond to two

paradigms in programming”. In a system à la Curry, given a type-free λ-term, if a

type can be associated with the term w.r.t. the typing relation of the system then

a type inference algorithm can infer a type for the term. It is also the case for ML-

like programming languages such as SML [106, 107] or for Haskell-like programming

languages [77].

Since the introduction of these systems by Church and Curry, various type sys-

tems for the λ-calculus have been developed and extended to serve different purposes

such as efficiency or expressiveness. For example, the type systems of the λ-cube [6]

allow one to express concepts such as polymorphism (which means that terms can

have more than one type), type constructors (e.g., SML datatypes), dependent types

(which means that types are depending on terms). There are several advantages of

having a notion of types in a programming language. For example, they allow:
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checking static correctness, e.g., find type inconsistencies; efficient implementations

by generating information used for optimisations at compilation, e.g., “the type of

a data determines its memory size and layout” [100]; modularity, e.g., thanks to

signatures in SML or interfaces in Java.

Let us mention that there is a strong connection between type theory and proof

theory known as the Curry-Howard isomorphism [76, 123]. This isomorphism allows

one to consider, e.g., simple types as propositions. As a matter of fact, there is a

correspondence between the minimal propositional logic and the simply typed λ-

calculus (other such correspondences exit). The Curry-Howard isomorphism is often

referred to as the proofs-as-programs, formulae-as-types correspondence.

2.2 Structure of this Chapter

The rest of this introduction is structured as follows. Sec. 2.3 introduces the untyped

λ-calculus and some of its variants: the λI-calculus and the λη-calculus. We also

introduce properties of λ-calculi such as the confluence property. Sec. 2.4 presents

notable typed λ-calculi: the simply typed λ-calculus, some intersection type systems,

and the Hindley-Milner type system. Sec. 2.5 presents two methods of reasoning

involving λ-calculi (or similar functional systems): realisability and reducibility.

Finally, Sec. 2.6, summarises the contributions of the present thesis as well as its

structure.

2.3 The untyped λ-calculus and some of its vari-

ants

The λ-calculus and its variants are defined on term sets and reduction relations.

First, Sec. 2.3.1 presents various term sets and Sec. 2.3.2 some reduction relations.

Then, Sec. 2.3.3 introduces different λ-calculi of interest based on these terms sets

and reduction relations. Finally, Sec. 2.3.4 presents properties of λ-calculi such as

confluence and normalisation.

2.3.1 Sets of terms

Let x, y, z range over Var, a countable infinite set of term variables (or just variables).

The set of terms of the λ-calculus is defined as follows:

M,N, P,Q,R ∈ Λ ::= x | (λx.M) | (MN)

We assume the usual convention for parentheses and omit them when no confusion

arises. In particular, we write MM0 · · ·Mn instead of (· · · ((MM0)M1) · · ·Mn−1)Mn.
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let rel be a binary relation on Λ.

M rel M
(refl) M rel N

N rel M
(sym)

M1 rel M2 M2 rel M3

M1 rel M3
(tr)

P rel Q

λx.P rel λx.Q
(abs)

Q rel Q′

PQ rel PQ′ (app1)
P rel P ′

PQ rel P ′Q
(app2)

Figure 2.1 Closure rules

We call a term of the form (λx.M) a λ-abstraction (or just abstraction) and a term

of the form MN an application.

We write fv(M) for the set of the free variables occurring in M . The function fv

is defined as follows:

fv(x) = {x}

fv(λx.M) = fv(M) \ {x}

fv(MN) = fv(M) ∪ fv(N)

We say that a term is closed if no free variable occurs in it, i.e., M is closed iff

fv(M) = ∅. Let closed(M) be true iff M is closed.

Fig. 2.1 present some closure rules in Λ: rule (refl) is the reflexive closure rule

(w.r.t. Λ), rule (sym) is the symmetric closure rule, rule (tr) is the transitive closure

rule, and rules (abs), (app1), and (app2) are the compatible closure rules.

The α-conversion is the symmetric, reflexive (w.r.t. Λ), transitive, and compati-

ble closure of the following rule (for readability issues, we define substitution below):

λx.M =α λy.M [x := y], where y does not occur in M

We take terms modulo α-conversion.

The substitution of the free occurrences of a x by N in M , denoted M [x := N ],

is defined by recursion on M as follows:

x[y := M ] =

{
M, if x = y

x, otherwise

(λx.N)[y := M ] =λz.N [x := z][y := M ], if z 6∈ fv(λx.N) ∪ fv(y) ∪ fv(M)

(N1N2)[y := M ] =N1[y := M ]N2[y := M ]

We let M [x1 := N1, . . . , xn := Nn] be the simultaneous substitution of Ni for all

free occurrences of xi in M for i ∈ {1, . . . , n}.

The term set ΛI , which is a subset of Λ, is defined as follows: for each x ∈ Var,

x is in ΛI , if x ∈ fv(M) and M ∈ ΛI then (λx.M) is in ΛI and if M,N ∈ ΛI then

(MN) is in ΛI .
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2.3.2 Reduction relations

The β-reduction, i.e., the binary relation →β, is the main evaluation process of the

λ-calculus. It is defined as the compatible closure of the following rule:

(β) : (λx.M)N →β M [x := N ]

The βI-reduction, i.e., the binary relation→βI , is a restriction of the β-reduction

defined as the compatible closure of the following rule:

(βI) : (λx.M)N →βI M [x := N ], where x ∈ fv(M)

The h-reduction, i.e., the binary relation →h, is also a restriction of the β-

reduction defined as the least relation closed by rule (app2) (defined in Fig. 2.1) and

the following rule:

(h) : (λx.M)N →h M [x := N ]

This reduction is called the weak head reduction.

The η-reduction, i.e., the binary relation→η is defined as the compatible closure

of the following rule:

(η) : λx.Mx→η M , where x 6∈ fv(M)

This reduction expresses the concept of extensionality in the λ-calculus (see Baren-

dregt’s book [5]). The idea behind the η-reduction is that λx.Mx where x 6∈ fv(M)

and M are computationally equivalent in the sense that they compute the same

result when applied to the same argument.

The βη-reduction, denoted →βη, is defined as the relation: →β ∪ →η.

For r ∈ {β, βI, h, η}, the term on the left-hand-side of the rule (r) is called a

r-redex (or just redex when no ambiguity arises) and the one on the right-hand-side

is called r-contractum (or just contractum when no ambiguity arises). Note that

βI-redexes and h-redexes are β-redexes. A βη-redex is either a β-redex or an η-redex

(and similarly for βη-contractums).

Note that the relation →βI is a subset of the relation →β. Let r ∈ {β, βI, h}.

If (λx.M)N →r M [x := N ] and x ∈ fv(M) then (λx.M)N is called a I-redex,

otherwise it is called a K-redex. Therefore, βI-redexes are all I-redexes.

Let r ∈ {β, βI, h, η, βη}. We define the equivalence relation =r as the symmetric,

reflexive (w.r.t. Λ) and transitive closure of the following rule:

M =r N if M →r N

We use →∗
r to denote the reflexive (w.r.t. Λ) and transitive closure (rules (refl)
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and (tr) as defined in Fig. 2.1) of →r. If M →∗
r N then we say that M reduces to

N or that there is a r-reduction from M to N . Also, N is called a reduct of M . If

the r-reduction from M to N is in k steps, i.e., if there exists M1, . . . ,Mk such that

M →r M1 →r · · · →r Mk and Mk = N , we write M →k
r N . A term (λx.M ′)N ′ is a

direct r-reduct of (λx.M)N iff M →∗
r M

′ and N →∗
r N

′.

2.3.3 Important λ-calculi

The theory λ consists of the equations M = N between λ-terms such that M =β N .

The λI-calculus is defined in different ways in the literature. It is defined by

Church [21] on the term set Λ and the reduction relation →βI
2. It is defined by

Barendregt [5] on the term set ΛI and the reduction→βI
3. We could also consider the

term set ΛI and the reduction→β. The three corresponding theories are equivalent,

and are all called λI.

The λη-calculus is defined on the term set Λ and the→βη reduction relation. The

corresponding theory is called λη. This theory is built upon the λ-terms and the

equivalence relation stemming from the βη-reduction, i.e., the relation =βη. When

considering the βη-reduction without ambiguity, we sometimes write λ-calculus in-

stead of λη-calculus.

2.3.4 Residuals, developments, confluence and normalisa-

tion

A β-residual of a β-redex is an occurrence of the propagation of the redex through

a β-reduction (it is defined, e.g, by Barendregt [5, Def. 11.2.4]). For instance

the two occurrences of (λx.x)y in ((λx.x)y)((λx.x)y) are residuals of the redex

(λx.x)((λx.x)y) in (λx.xx)((λx.x)((λx.x)y)) w.r.t. the following reduction:

(λx.xx)((λx.x)((λx.x)y)) →β (λx.xx)((λx.x)y)→β ((λx.x)y)((λx.x)y)

Although, to the best of our knowledge the definition of β-residuals is a well

established concept, it does not seem to be the case for βη-residuals. Different

definitions can be found in the literature: the βη-residuals as defined by Curry and

Feys [31] or the λ-residuals as defined by Klop [92].

A development is the reduction of an initial set of redexes in a term and of its

residuals w.r.t. the reduction. A development is said to be complete if all the redexes

of the initial set of redexes and their residuals have been reduced.

The confluence property is detailed below in Sec. 3. Let us mention here that it

is a property satisfied by the λ-calculus (w.r.t. the β-reduction) which states that if

2Church [21] defines abstractions as follows: “if x is a variable and M is well-formed then λx[M]
is well-formed”.

3Barendregt [5] defines the theory λI as follows: “The theory λI (“the λI-calculus”) consists
of equations between λI-terms provable by the axioms and rules of λ restricted to ΛI .”
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a term reduces to two different terms then these two terms can reduce to the same

term, i.e., for each M1, if M1 →
∗
β M2 and M1 →

∗
β M3 then there exists M4 such

that M2 →
∗
β M4 and M3 →

∗
β M4. Developments have often been used to prove the

confluence of the λ-calculus. The confluence of the λ-calculus was first proved by

Church and Rosser in 1936 [24]. Therefore, this property is often referred to as the

the Church-Rosser property and will sometimes be abbreviated as CR in this thesis.

A term is a normal form if it cannot be reduced further. Normal forms w.r.t.

the β-reduction are of the following form: λx1. . . . λxm.yM1 . . .Mn where n,m ≥ 0

and where each Mi is a normal form. We say that a term M is weakly normalisable

(abbreviated as WN) if there exists a reduction from M to a normal form. We

say that a term M is strongly normalisable (abbreviated as SN) if each reduction

starting from M terminates in a normal form. The strong normalisation property is

sometimes referred to in the literature as the termination property. The confluence

of the λ-calculus was originally used to prove the uniqueness of normal forms [24].

2.4 Some notable typed λ-calculi

To avoid introducing too many notations, in this section we reuse some metavariables

to range over different sets in different subsections. For example, σ is defined in

Sec. 2.4.1 to range over simple types, in Sec. 2.4.2 to range over intersection types,

and in Sec. 2.4.3 to range over type schemes. In order to avoid any confusion, when

reused outside these sections, we will specify from which system they are taken from.

Throughout this document we follow Carlier and Wells [20] and write type judge-

ments as M : 〈Γ ⊢ U〉, where Γ is a type environment and U a type, instead of

Γ ⊢M : U (meaning that the triple 〈M,Γ, U〉 belongs to the typing relation ⊢).

2.4.1 The simply typed λ-calculus

Russell [121] first introduced types to avoid paradoxes in his formal system. Russell

type theory enforced a hierarchy of types that precludes the self-reference issue to

occur. Types are nowadays largely used in programming languages to, e.g., ensure

a certain “safety” property on programs. For example, often one wishes to forbid

a function on integers to be applied to, say, a string, because among other things

the application does not have a well defined meaning. Therefore, types can then

be used, among other things, to restrict the application of functions. As mentioned

above, type systems have several advantages, such as efficiency or modularity.

One of the notable type systems that followed Russell’s idea of using types to

avoid the self-reference issue was the simply typed λ-calculus. Church writes [23]:

“The simple theory of types was suggested as a modification of Russell’s ramified

theory of types by Leon Chwistek in 1921 and 1922 and by F. P. Ramsey in 1926”.
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Church [23] provides his own “formulation of the simple theory of types” based on the

λ-calculus. This formulation is nowadays one of the two widely known formulations

along with Curry’s one. Let us first focus on Church’s version of the simply typed

λ-calculus.

Church [23] defines two ground types ι and o where ι is said to be the type of

individuals and o the type of propositions. Moreover, if σ and τ are types then

σ�τ is a type. Church uses α and β to range over simple types, but we shall not

use his notation because of the use of α and β in conversion rule names. Moreover,

Church writes (στ) instead of σ�τ . Once again we do not use his notation, but

instead use the more common arrow notation. Then, Church defines his typed λ-

calculus by defining a well-formedness relation on typed formulae. Along with this

well-formedness relation, Church defines a notion of type assignment. A subset of

the well-formed formulae (Church also considers extra typed constants for negation,

conjunction and universal quantification) is as follows: each typed variable xσ is

well-formed and has type σ, if M is well-formed and has type τ then λxσ.M is

well-formed and has type σ�τ , and if M is well-formed and has type σ�τ and N is

well-formed and has type σ then MN is well-formed and has type τ .

Let us now present Curry’s version of the simply typed λ-calculus but in the λ-

calculus setting as presented by Barendregt [6] rather than in the combinatory logic

setting. First, let us define the set SimpleTy of simple types and the set SimpleTyEnv

of simple type environments as follows:

a ∈TyVar (countable infinite set of type variables)

σ, τ ∈ SimpleTy ::= a | σ�τ

Γ ∈ SimpleTyEnv = Var→ SimpleTy

The simply typed λ-calculus à la Curry can then be defined as the binary relation

⊢
�

which is the smallest relation closed by the following rules:

Γ(x) = σ

x ⊢� 〈Γ, σ〉

M ⊢� 〈Γ, σ�τ〉 N ⊢� 〈Γ, σ〉

MN ⊢� 〈Γ, τ〉

M ⊢� 〈Γ ∪ {x 7→σ}, τ〉

λx.M ⊢� 〈Γ, σ�τ〉

The simply typed λ-calculus satisfies CR and SN [5], and is denoted λ→.

2.4.2 Intersection type systems

Coppo and Dezani [26] introduced intersection type systems to type more terms

than in the simply typed λ-calculus and to characterise normalisable terms. Pot-

tinger [117] was the first to achieve such a characterisation. The word “intersection”

in “intersection type” comes from the fact that, if types are interpreted by sets (a set-

theoretical semantics), usually, an intersection type is interpreted by the intersection

of sets. The authors proved that each typable term in their system is normalisable

(in WN) and that the normalisable terms of the λI-calculus all have a type in their

system. Also, their system restricted to the λI-calculus satisfies subject reduction
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and expansion (βI-equivalent terms can be typed with the same type). Without

this restriction their system satisfies only subject reduction (if a term is typable in

their systems then all the reducts of this terms are typable with the same type).

Coppo, Dezani and Venneri [28] defined another intersection type system that we

shall call CDV4 which satisfied both subject reduction and expansion w.r.t. the β-

reduction. They also obtain a characterisation of the normalisable terms (in WN) in

their system. Similarly, Krivine [96] characterises the strongly normalisable terms

by the terms typable in his system D and characterises the weakly normalisable

terms by a subset of the terms typable in his system DΩ.

Let ⊓ be the intersection type constructor. Intuitively, if a term M can be

assigned a type σ ⊓ τ then it can usually be assigned the type σ as well as the

type τ . An intersection type can be seen as a list of types that can be assigned

to a term. They are used to express a finitary kind of polymorphism where types

(usages of terms) are listed rather than obtained via quantification. For example,

a program of type (σ�σ) ⊓ (τ�τ) can be a program computing a term of type

σ from a term of type σ as well as a program computing a term of type τ from

a term of type τ . The same code can be used for the two types σ�σ and τ�τ .

The polymorphism of an intersection type is said to be finitary as opposed to the

infinitary parametric polymorphism [124, 17] supported by for all type schemes

such as in system F [49, 50], because a program to which is assigned an intersection

type works “uniformly” (the same code is used for different types) on the finite list

of types given by the intersection. These kinds of polymorphism contrasts with

the “ad-hoc” polymorphism which is, e.g., the polymorphism of overloading (e.g.,

given an overloaded operator, different functions might be used for different types

on which the operator is overloaded). The universal quantifier “∀” is well known to

express polymorphism as in system F designed by Girard [49, 50]. As explained by

Carlier and Wells [20] there are many advantages in using intersection types over

the ∀ quantifier, such as:

• Urzyczyn [137, Theorem 3.1], found a term which is not typable in the sys-

tem Fω: (λx.z(x(λf.λu.fu))(x(λv.λg.gv)))(λy.yyy) but which turns to be ty-

pable in the rank-35 restriction of intersection types.

• Wells [142] proved that type inference in system F is undecidable. Kfoury

and Wells [88] defined an intersection type system for which every finite-rank

restriction has a decidable type inference.

4Coppo, Dezani and Venneri presented in the same paper [28] two different type systems, the
second one being a restriction of the first one. Their second system is similar to the one of their
earlier system [27]. Sometimes CDV is used to refer to their first system [4] and sometimes to refer
to their second system [20]. We shall refer to CDV as their first system.

5The notion of rank is, e.g., explained by Carlier and Wells [20].
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• Wells [143] proved that system F does not have principal typings6 for all terms.

Kfoury and Wells [88] proved that every finite-rank restriction of their inter-

section type system has principal typings.

Since Coppo and Dezani first intersection type system, many other intersection

type systems have been designed. Barendregt, Coppo, and Dezani [8] designed the

BCD intersection type system, proposed a term and type interpretations where terms

are interpreted in λ-models [73], and proved the soundness and completeness of their

semantics w.r.t. the BCD system. These two results allows them to obtain that the

interpretation of a term is in the interpretation of a type iff the term is typable by

the type in BCD. Their proof is based on the construction of a particular model of

the λ-calculus called filter model where filters are type sets closed under some rules

such that intersection introduction, i.e., if σ and τ are types in a filter then σ ∩ τ

has to be in the filter as well, where ∩ is their notation for the intersection type

constructor. They prove that their filter model is a λ-model. Hindley [69] proved a

similar result but using a term models which interprets terms by terms.

Some intersection type systems involve a constant type often written ω as a 0-ary

version of the intersection types. This type expresses a universality in the sense that

this type does not contain any information. When types are interpreted by subsets

of a certain set (the domain of the model), this type is usually interpreted by the

universe of discourse (the whole domain itself).

Let us present Krivine’s system D [96]. We will use a slightly different notation.

For example, Krivine uses ∧ as the intersection type constructor. We use the symbol

⊓ instead. The set TyVar of type variables is the same as in Sec. 2.4.1. First, let

us define the set InterTy of intersection types and the set InterTyEnv of intersection

type environments as follows:

σ, τ ∈ InterTy ::= a | σ�τ | σ ⊓ τ

Γ ∈ InterTyEnv = Var→ InterTy

The intersection type system D can be defined as the binary relation ⊢D which

is the smallest relation closed by the following rules:

Γ(x) = σ

x ⊢D 〈Γ, σ〉

M ⊢D 〈Γ, σ�τ〉 N ⊢D 〈Γ, σ〉

MN ⊢D 〈Γ, τ〉

M ⊢D 〈Γ ⊎ {x 7→ σ}, τ〉

λx.M ⊢D 〈Γ, σ�τ〉

M ⊢D 〈Γ, σ〉

M ⊢D 〈Γ, σ ⊓ τ〉

M ⊢D 〈Γ, τ〉

M ⊢D 〈Γ, σ ⊓ τ〉

M ⊢D 〈Γ, σ〉 M ⊢D 〈Γ, τ〉

M ⊢D 〈Γ, σ ⊓ τ〉

6Wells [143] explains that “a typing t is defined to be principal in some system S for program
fragment M if and only if t is at least as strong as all other typings for M in S, where a typing t1
is defined to be stronger than typing t2 if and only if the set of terms that can be assigned t1 in S
is a subset of the set of terms that can be assigned t2 in S”.
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2.4.3 ML-like programming languages

ML is a higher-order impure functional programming language7 originally designed,

as part of a proof system called LCF (Logic for Computable Functions), to perform

proofs of facts within PPλ (Polymorphic Predicate λ-calculus), a formal logical

system [52, 53]. ML is a typed programming language based on the λ-calculus

with let-expressions which allow one to generate local bindings. Let-expressions

are usually more or less of the form let x = exp1 in exp2 where exp1 and exp2 are

expressions. Such a let-expression binds x to exp1 in exp2. Nowadays ML is used

to refer to a collection of programming languages which share common features,

such as SML or Caml. As explained by Milner et al., Standard ML (SML) [106,

107] is the result of the re-design and extension of ML. SML has formally defined

static and dynamic semantics [106, 107]. Also, SML (and similar programming

languages such as OCaml, Haskell, etc.) has polymorphic types allowing considerable

flexibility, and almost fully automatic type inference, which frees the programmer

from writing many explicit types. We say “almost fully” because some explicit types

are required in SML, e.g., as part of datatype definitions, module types, and type

annotations sometimes needed in special circumstances8. Milner’s W algorithm [32]

is the original type-checking algorithm of the functional language core ML, which

is the λ-calculus extended with polymorphic let-expressions. Given an expression e

and a type environment Γ covering the free variables of e, if e is typable then W

outputs a type σ of e and a substitution sub. The type σ is the principal type of e

w.r.t. the application of sub to Γ. If e is not typable, an error is reported.

Let us now present Damas and Milner’s type system [32, 33], also known as the

Hindley-Milner type system and therefore called HM. First we define the set of terms

of core ML as follows:

e ∈MLExp ::= x | (λx.e) | (e1e2) | (let x = e1 in e2)

The set TyVar of type variables is the same as in Sec. 2.4.1. Let us now define

the set HMTy of simple types, the set HMTyScheme of type schemes, and the set

HMTyEnv of type environments as follows:

ι ∈PrimitiveTy (countable infinite set of primitive types)

τ ∈HMTy ::= a | ι | τ1�τ2

σ ∈HMTyScheme ::= τ | ∀a. σ

Γ∈HMTyEnv = Var→ HMTyScheme

7ML has functional as well as imperative programming features: functions are first-class objects
and expressions can have side effects (e.g., references, exceptions). Therefore, we say that ML is an
imperative functional-like programming language, or an impure functional programming language.

8Explicit types are sometimes required, e.g., for “flexible” record patterns as in the function
fn {x,...} => x, which would be used to select a field named x in any record that contains at
least a field named x.
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Damas and Milner write ∀a1 · · · an. τ for the type scheme ∀a1. · · · ∀an. τ . They

also define the relation > on type schemes as follows: σ > σ′ iff σ = ∀a1 · · · an. τ

and σ′ = ∀a ′
1 · · · a

′
m. τ

′ and τ ′ = [τi/ai]τ for some types τ1, . . . , τn and the a ′
i do not

occur free in σ, where [τi/ai]τ is Damas and Milner’s notation for the simultaneous

substitution of each occurrences of ai by τi, for i ∈ {1, . . . , n}, in τ . Damas and

Milner call σ′, a generic instance of σ.

The HM type system can be defined as the binary relation ⊢HM which is the

smallest relation closed by the following rules:

Γ(x) = σ

x ⊢HM 〈Γ, σ〉
(TAUT)

e ⊢HM 〈Γ, σ〉 a does not occur free in Γ

e ⊢HM 〈Γ,∀a. σ〉
(GEN)

e ⊢HM 〈Γ, σ1〉 σ1 > σ2

e ⊢HM 〈Γ, σ2〉
(INST)

e1 ⊢HM 〈Γ, τ1�τ2〉 e2 ⊢HM 〈Γ, τ1〉

e1e2 ⊢HM 〈Γ, τ2〉
(COMB)

e ⊢HM 〈Γ + {x 7→ τ1}, τ2〉

λx.e ⊢HM 〈Γ, τ1�τ2〉
(ABS)

e1 ⊢HM 〈Γ, σ〉 e2 ⊢HM 〈Γ + {x 7→σ}, τ〉

let x = e1 in e2 ⊢HM 〈Γ, τ〉
(LET)

2.5 Some methods of reasoning involving λ-calculi

In this section we discuss two closely related methods of reasoning involving λ-

calculi (or similar functional systems): realisability which is a method originally

developed to provide semantics to intuitionistic systems dealing with arithmetic,

and reducibility which is a semantic method based on type interpretation to prove

the normalisation of functional theories.

2.5.1 Realisability

Kleene’s original realisability method [89] was a “systematic method of making the

constructive content of arithmetical sentences explicit” [135]. His method associates

Gödel numbers of partial recursive functions with sentences of the first order in-

tuitionistic arithmetic. This system is Heyting arithmetic, often referred to as the

theory HA which is the intuitionistic predicate logic with equality, natural numbers,

and the primitive recursive functions [135, Ch. 3]. Informally, there exists a Gödel

number of a recursive function that realises a formula if the formula is true in HA.

Such a number is called a realiser and can be seen as “a witness for the construc-

tive truth” [74] of the realised formula. For example, Kleene [89] defines, among

other things, that “If a realizes A, then 20 · 3a realizes A ∨ B. Also, if b realizes

B, then 21 · 3b realizes A ∨ B”, where A and B are closed formulae and where · is

the multiplication function on natural numbers. A realizer of a disjunction encodes

the information that for a disjunction A ∨ B to be true one has to either be able

to provide a proof of A or a proof of B. Implications are realised as follows: “The

formula A ⊃ B is realized by the Gödel number e of a partial recursive function

φ such that, whenever a realizes A then φ(a) realizes B” [89], where A and B are
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closed formulae and where ⊃ is the logical implication symbol. Van Oosten [113] ex-

plains that Kleene “wished to give some precise meaning to the intuition that there

should be a connection between Intuitionism and the theory of recursive functions”.

However, Rose [119] disproved Kleene’s intuition that realisability mirrors intuition-

istic reasoning. Realisability was found useful, among other things, “for proving

underivability and relative consistency results of intuitionistic formal systems” [38].

Variants of Kleene’s realisability, often referred to as “recursive” or “numerical”

realisability, have been developed throughout the years. Kreisel’s modified realisabil-

ity [95] is such a variant. Asperti and Tassi [3] explain that modified realisability is

a variant of Kleene’s realisability “essentially providing interpretations of HAω into

itself”. Van Oosten [113] explains that “HAω is “Gödel’s T with predicate logic””.

Gödel’s system T can be regarded as an extension of the simply typed λ-calculus

with natural numbers and recursion. Asperti and Tassi add that with the modified

realisability interpretations “each theorem is realized by a typed function of system

T”. For example, “if the type of realizers of A is σ, and the type of realizers of B is

τ , the type of realizers of A→ B is (σ ⇒ τ)” [113], where ⇒ is the functional type

constructor.

Kreisel was not the only one interested in realisability and nowadays there exist

many notions of realisability used in various areas. Van Oosten [113] writes about

realisability: “Quite apart from the huge amount of literature to cover, there is the

task of creating unity where there is none. For Realizability has many faces, each of

them turned towards different areas of Logic, Mathematics and Computer Science”.

Similarly, Hofstra [75] writes: “In the area of research known as realizability, we have

the interesting phenomenon that there are many different realizability definitions,

but no definition of realizability. What this means is that we have many instances

of realizability interpretations [..] but that there is no clear answer to the question

of what constitutes a notion of realizability.”9

Realisability in general is closely related to the Curry-Howard isomorphism.

Sørensen and Urzyczyn [123] write (where “this interpretation” refers to Kleene’s

realisability semantics): “One can see the Curry-Howard isomorphism [..] as a syn-

tactic reflection of this interpretation. It shows that a certain notation system for

denoting certain recursive functions coincides with a system for expressing proofs.”

2.5.2 Reducibility

Reducibility is a method based on realisability semantics [89], developed by Tait [130]

in order to prove the normalisation of some functional theories. The idea of Tait’s

reducibility method is to interpret types by λ-term sets closed under some properties.

Since its introduction, this method has gone through a number of improvements and

9We use “[..]” in quotes to show that parts of citations have been omitted.
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generalisations to prove properties of the λ-calculus and to characterise properties

of the λ-calculus w.r.t. type systems. For example, Girard [50] designed a similar

method based on reducibility candidates which are sets of λ-terms satisfying some

properties. Also, Krivine [96] uses reducibility to prove the strong normalisation

of the terms of his intersection type system called system D. Koletsos [93] uses

reducibility to prove that the set of simply typed λ-terms satisfies CR w.r.t. β-

reduction (for more details on CR see Sec. 3.1 and for more details on Koletsos’

proof see Sec. 3.6). Gallier [44, 43, 45, 46] also uses reducibility to, e.g., characterise

sets of λ-terms closed under some properties in terms of typability in type systems

such as the intersection type system D. Although it is well known that β-reduction

satisfies CR, reducibility proofs of CR are in line with proofs of SN and hence, one

can establish both SN and CR for some calculus using the same method.

2.6 Contributions and structure of this thesis

The present thesis is composed of three parts all revolving around intersection type

systems and the study of some of their aspects. Part I emerged from the study

of intersection type systems to prove properties of the untyped λ-calculus. Part II

constitutes a study of the semantics of intersection type systems. Part III evolved

from a system using intersection types as a tool for doing type error reporting and

type inference. Let us now detail each of the three parts and their contributions.

Part I is based on a publication by Kamareddine and Rahli [84]. It presents two

proofs of the confluence of the λ-calculus using a purely syntactic method, i.e., not

based on type interpretations. These two proofs share the same proof scheme. The

first proof is w.r.t. β-reduction and the second one is w.r.t. βη-reduction. These two

syntactic proofs are derived from a semantic one based on sound type interpretation

w.r.t. an intersection type system. Various simplifications to the original method

led to the simplification of the considered type system and finally to its discarding.

It turned out that in this case intersection types constitute a powerful tool unnec-

essary to prove the confluence of the λ-calculus: only a small portion of the initially

considered intersection type system was necessary to prove the confluence of the

λ-calculus.

Part II is based on three papers by Kamareddine, Nour, Rahli, and Wells: a

workshop paper [83], a conference paper [82] and a journal paper submitted to

Fundamenta Informaticae [81]. It presents a complete realisability semantics w.r.t.

a type system with infinite number of expansion variables. It also describes the

steps that led us to this semantics. Expansion is a powerful operations on typings in

type systems for the λ-calculus. Unfortunately, to the best of our knowledge, there

has been no study of semantics of intersection type systems with expansion. Our

semantics provides a first step in the study of the semantics of intersection types
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with expansion and therefore in the study of the semantics of expansion.

Part III is based on a technical report by Rahli, Wells and Kamareddine [118].

It presents a type error slicer (TES) for the SML language. Modern programming

languages such as SML, Haskell, or OCaml rely on type systems which allow (almost

fully) automatic type inference, freeing programmers from explicitly writing types.

Also, these type inference algorithms allow one to detect some programming errors at

an early stage (at compile-time). As a matter of fact, types are used to automatically

check the well-defined behaviour of pieces of code, for a certain notion of behaviour.

Unfortunately, it is well known that type error reports provided by compilers for

higher-order programming languages such as SML can be intricate. An issue being

that programmers tend to lose their time by trying to decipher type error reports

and by manually tracking down their type errors. TES helps the programmer by

isolating the part of an ill-typed program contributing to a type error (a slice). The

presentation of our TES is divided into two major parts. In a first part, we present a

core of our TES. We present a new, original, and simple constraint language and its

use in a type error slicer for a small subset of SML which contains interesting core

and module features such that datatypes and open declarations. In a second part we

present other interesting features of our TES necessary to handle more of the SML

programming language, such as some signatures and functors. We also discuss issues

w.r.t. the implementation of our TES. Concerning this part, we have achieved both:

(1) the formalisation of a type error slicer for SML which handles many interesting

features of the language; (2) and an implementation of our TES which handles most

of the SML language. Note that the first version of TES developed by Haack and

Wells [56, 57] for a tiny core language (the λ-calculus augmented with polymorphic

let-expressions) made use of intersection types. It turned out that their system was

not scalable on real size programs. To solve this issue, we have moved on to a TES

that makes use of for all type schemes instead of intersection types. Interestingly,

one of our latest innovation was to reintroduce the use of intersection types in order

to handle SML’s functors.

These three parts are not presented in chronological order. The first project

we have carried out was the study of a semantics of expansion. We have then

developed a proof method to prove the confluence of the λ-calculus. This was part

of a larger project aiming at studying general methods to prove properties of the

λ-calculus using reducibility. Last but not least, we have developed a type error

slicer for the SML language. This last project represents the major contribution to

the present document. The three parts do not rely on one another. These three

parts are presented in an incremental complexity order. Part I concerns only the

untyped λ-calculus. In Part II we add types to the untyped λ-calculus. We consider

intersection types. Finally, in Part III we consider a more complicated polymorphic

type system: a variant of a portion of SML’s type system.
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Part I

A new proof method of the

confluence of the λ-calculus
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Chapter 3

The confluence property and its

main proofs

3.1 Confluence

The confluence property is a property satisfied by the λ-calculus stating that if

M1 =β M2 then there exists M3 such that M1 →
∗
β M3 and M2 →

∗
β M3. It can

equivalently be defined as follows: if M1 →
∗
β M2 and M1 →

∗
β M3 then there exists

M4 such that M2 →
∗
β M4 and M3 →

∗
β M4. Confluence is not restricted to the λ-

calculus and can be more generally defined in the term rewriting systems setting [10].

We will however restrict ourselves to the context of the λ-calculus. The confluence

of the λ-calculus (w.r.t. the β-reduction) was first proved by Church and Rosser [24],

and is therefore often referred to as the Church-Rosser property. We will use the

terms confluence and Church-Rosser without distinction.

Confluence is also satisfied when considering βη-reduction instead of β-reduction.

Given a binary relation r on terms, if whenever M1 →
∗
r M2 and M1 →

∗
r M3,

there exists M4 such that M2 →
∗
r M4 and M3 →

∗
r M4, then we say that M1 satisfies

or has the Church-Rosser property. We also sometimes write that M1 has r-CR. We

define CRr = {M |M has r-CR}. Let CR = CRβ.

Confluence was among other things used to prove the consistency of the λ-

calculus and the uniqueness of normal forms as first proved by Church [22]. This

property has been extensively studied in the literature since its first proof. We

describe below some of its proofs. First, we show how it allows one to prove the

consistency of the λ-calculus.

3.2 Consistency

To the best of our knowledge, Church was the first one to provide a proof of the con-

sistency of the λ-calculus in 1935 [22]. Church considers the λI-calculus augmented
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Chapter 3. The confluence property and its main proofs

with a special symbol δ which is used in his paper as an equality test (a condi-

tional). Church considers a rule for α-conversion, two rules for β-conversion and

four rules related to the equality test. Church defines substitution as follows: “The

expression Sx
NM is used to stand for the result of substituting N for x throughout

M”. Church’s seven conversion rules are stated as follows (in these rules we use the

syntax of λ-terms as presented in Sec. 2.3.1 instead of using Church’s notation):

I To replace any part λx.R by λy.Sx
yR, where y is any variable which does not

occur in R.

II To replace any part (λx.M)N1 of a formula by Sx
NM , provided that the bound

variables in M are distinct both from x and from the free variables in N .

III To replace any part Sx
NM (not immediately following λ) of a formula by

(λx.M)N , provided that the bound variables in M are distinct both from

x and from the free variables in N .

IV To replace any part δ(M,N) of a formula by λf.λx.f(fx)2, where M and N

are in normal form and contain no free variables and M conv-I N3.

V To replace any part δ(M,N) of a formula by λf.λx.fx4, where M and N are

in normal form and contain no free variables and it is not true that M conv-I

N .

VI To replace any part λf.λx.f(fx) of a formula by δ(M,N), where M and N

are in normal form and contain no free variables and M conv-I N .

VII To replace any part λf.λx.fx of a formula by δ(M,N), where M and N are

in normal form and contain no free variables and it is not true that M conv-I

N .

Then Church defines an encoding of the natural numbers (except 0, because

Church considers a variant of the λI-calculus) into the λ-calculus. He chooses

λf.λx.fx to stand for 1, λf.λx.f(fx) for 2, etc. As a matter of fact, the natu-

ral numbers are defined as abbreviations for the corresponding λ-terms and used as

such below. Note that λf.λx.x usually stands for 0 but this term is not a λI-term.

Note also that Church uses a slightly different notation than the one defined in

Sec 2.3.1. For example, we write λf.λx.fx when Church writes λfx.f(x).

The first rule (rule I) corresponds to the α-conversion rule. The second rule

(rule II) corresponds to the β-reduction. The third rule (rule III) corresponds to the

1Church writes (λx.M)N as {λx.M}(N).
2The term λf.λx.f(fx) is the Church numeral 2.
3Church defines M conv-I N as follows: “We are using the notation M conv-I N to mean that

N is obtainable from M by a sequence of applications of Rule I.”, which is to check whether that
two expressions are α-convertible.

4The term λf.λx.fx is the Church numeral 1.
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β-extension which is the inverse of the β-reduction relation. The fourth and fifth

rules (rule IV and V) are to check whether two terms in normal forms are equivalent

modulo α-conversion. If two normal terms are equivalent modulo α-conversion then

δ is used to derive 2’s encoding. If they are different then δ is used to derive 1’s

encoding. In Church’s formalism, 1 stands for false and 2 stands for true. Church

stresses that this choice is arbitrary and that the “viewpoint taken is that formal

logic requires nothing of the ideas of true and false except that they be distinct”.

The two last rules (rules VI and VII) are the inverse rules of rules IV and V.

Church encodes the logical negation by the term: λx.6− [δ(x, 1) + 2× δ(x, 2)],

denoted by ∼ and where −, +, × are the usual encodings of addition, subtraction

and multiplication. He also defines an encoding of conjunction. Note that using

Church’s encoding of negation one obtains [22, Theorem IV]: ∼ 1 reduces to 2, i.e.,

the negation of false reduces to true; ∼ 2 reduces to 1, i.e., the negation of true

reduces to false; and ∼ n, such that n ≥ 3, reduces to 3 (because only 1 and 2 have

a logical content)5.

Church then proves that “There is no formula P such that both P and ∼ P are

provable” [22, Therorem VI].

This result is obtained using the Church-Rosser property and because the en-

codings of 1 and 2 are distinct closed λ-terms.

3.3 1936: Church and Rosser [24]

Church and Rosser aim at proving the following result [24, Theorem 1]:

if M =βIα N then there exists P such that M →∗
βIα P and N →∗

βIα P

where =βIα is =βI ∪ =α and M →βIα N iff M =α M
′, M ′ →βI N

′, and N ′ =α N .

Let us now describes the main lines of Church and Rosser’s proof.

Church and Rosser define residuals, developments and complete developments.

Then, they prove the developments’ termination as well as the complete devel-

opments’ confluence [24, Lemma 1]. These two results set the basis to prove the

Church-Rosser theorem.

They use another important result [24, Lemma 2] which states among other

things that if the reduction of a redex r in A1 results in B1, and A1 →βIα A2 →βIα

A3 →βIα · · · (a possibly infinite reduction), and for all k, Bk is the result of a

terminating sequence of contractions on the residuals of r in Ak then for all k,

Bk =βI Bk+1.

5Note that, e.g., the term λx.δ(x, 1) would not be a suitable encoding of the logical negation
because the negation of any natural number greater or equal to 3, which do not have any logical
content in Church’s formalism, would be convertible to 1 (i.e., false).
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They can then state the confluence of the λ-calculus w.r.t. the βIα-equivalence

relation. Proving this theorem consists in replacing the reductions A1 →βIα · · · →βIα

An and A1 →βIα B (“a peak with a single reduction”) by the reductions An →
∗
βIα C

and B →∗
βIα C (“a valley”). The point being that such a C can always be found.

Based on their first theorem (the confluence theorem), Church and Rosser ob-

tained another important result about normal forms: the uniqueness of the normal

forms modulo α-conversion [24, Corollary 2].

The last paragraph of Church and Rosser’s paper [24] is devoted to the untyped

λ-calculus (and not only the λI-calculus). The same results are claimed to be true

as well in this unrestricted setting but no proof is given.

3.4 1972: Tait and Martin-Löf [102, 5, 131]

The famous method developed by Tait and Martin-Löf is based on the parallel

reduction. A parallel reduction is a new reduction relation based on the β-reduction,

denoted ⇒β below, and defined as follows:

• x⇒β x

• λx.M ⇒β λx.M
′ if M ⇒β M

′

• MN ⇒β M
′N ′ if M ⇒β M

′ and N ⇒β N
′

• (λx.M)N ⇒β M
′[x := N ′] if M ⇒β M

′ and N ⇒β N
′

This parallel reduction also provides a definition of developments: M ⇒β M
′ is

a development. Note that because of the two last rules, this reduction leaves the

choice whether or not to reduce the occurrence of a redex.

For example, ((λx.x)(λx.x))(λx.x) ⇒β ((λx.x)(λx.x))(λx.x) is a parallel reduc-

tion, as well as ((λx.x)(λx.x))(λx.x)⇒β (λx.x)(λx.x). However, one cannot reduce

((λx.x)(λx.x))(λx.x) to λx.x via a parallel reduction (because (λx.x)(λx.x) is not

an abstraction).

This reduction is called “parallel” reduction because if a redex is formed during

a reduction, then the redex reduced during the reduction and the redex formed

during the reduction cannot both be reduced in a parallel reduction. For example,

the redex (λz.z)y, is formed during the reduction: (λx.xy)(λz.z) →β (λz.z)y. But

one cannot reduce (λx.xy)(λz.z) to y via a parallel reduction.

The Church-Rosser property is then proved to be satisfied w.r.t. this new reduc-

tion. This can be proved by an induction on terms or using the complete develop-

ments (i.e. a complete parallel reduction where the last rule of the definition of the

parallel reduction is used as much as possible). Finally, by proving the equivalence

between→∗
β and the transitive closure of⇒β they prove that the untyped λ-calculus

satisfies the Church-Rosser property (w.r.t. the β-reduction).
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3.5 1978: Hindley [68]

To the best of our knowledge Hindley was one of the first to provide a proof of the

finiteness of developments w.r.t. βη-reduction [68, Sec. 1]. Hindley [68] first starts

by giving a proof for the β-reduction (and not only for the βI-reduction as Church

and Rosser did [24]). His proof tends to be more precise than the former ones.

At that time, as claimed by Hindley, “all the proofs of the Church-Rosser theorem

for λ-calculi, slick or clumsy, turn out to be based on reductions of residuals, and

the finiteness property is one of the two main underlying facts which make all such

proofs work”. Note that it is not the case anymore that the finiteness result is

required to prove the Church-Rosser property [48, 94, 84].

In his introduction, Hindley claims that his proof of the finiteness of develop-

ments uses the confluence of the developments when others need the finiteness prop-

erty to prove confluence. To prove the finiteness result, Hindley provides a method

to transform any development of a term into another “equivalent” one (Hindley de-

fines a notion of equivalence between reductions) such that the length of the latter

one provides a bound of the length of the former one.

Though very similar to the proof provided by Church and Rosser, Hindley’s proof

is much more detailed. For example, the replacement of a sequence of reductions by

another one (the “equivalence” of two sequences of reductions) is left unproved by

Church and Rosser.

3.6 1985: Koletsos [93]

Koletsos proved the Church-Rosser property of the terms typable in the simply

typed λ-calculus using the reducibility method (see Sec. 2.5.2). Koletsos provides

an interpretation of types based on a predicate called “monovaluedness”. Koletsos

considered typed λ-terms as Church [23] does. In this section only, we consider →

and CR to be the relation →β and the set of (simply typed) terms satisfying the

Church-Rosser property.

Let 0 be a ground constant type. Following similar definitions [6], Koletsos

defines the set of simple types as follows: σ, τ, ρ ∈ Ty ::= 0 | σ → τ (Koletsos’

definition differs from other definition by the fact that he considers only one ground

type because only one is needed in his proof).

First, let us mention that Koletsos writes M(N) for the application of M to

N when we write (MN). We will use (MN) (or MN using the convention for

parentheses defined in Sec.2.3.1) instead of M(N) in this section.

We will now present a variant of Koletsos’ syntax of simply typed terms. We will

slightly depart from Koletsos’ definition because of some ambiguity in his language.

For example, Koletsos allows λx.x0→0x0 to be a valid term. The issue is that x0→0
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and x0 are two different terms and that there is an implicit type associated with

the abstracted x which is not explicitly stated. The above term is then ambiguous

because the abstracted x can only bind one of these: x0→0, x0, or xσ where σ 6∈ {0→

0, 0}. When defining his abstractions, Koletsos explains that an abstraction λx.M

of type σ�τ is built from a variable x of type σ and a term M of type τ . However,

x’s type is not made explicit in the abstraction. Church [23] enforces such abstracted

variables to be annotated by their type. We will therefore add type annotations to

abstracted (untyped) term variables. Instead of the above term we would then write

λx0→0.x0→0(x0) to bind the first occurrence of x in the application.

The set Var of term variables is the one defined in Sec. 2.3.1. Our variant of

Koletsos’ definition of the simply typed λ-terms is as follows (a and b are defined

to range over simply typed λ-terms): let xσ be a term of type σ; if a is a term of

type τ then let (λxσ.a) be a term of type σ → τ ; and if a is a term of type σ → τ

and b is a term of type σ then let (ab) be a term of type τ . Note that if σ 6= τ then

xσ and xτ are two different terms.

For each type ρ and term a of type ρ, the monovaluedness predicate is defined

by induction on ρ as follows:

MON0(a) iff a ∈ CR

MONσ→τ (a) iff a ∈ CR and for every term b of type σ, MONσ(b)⇒ MONτ (ab)

Koletsos’ method is equivalent to the one consisting in defining a type interpre-

tation as a function which associates with each type σ a term set JσK, such that

MONσ(a) iff a ∈ JσK, as is done in many other works following Koletsos’ [94, 84].

We now define a variant of Koletsos’ definition of substitution used, e.g., by his

first axiom (β-reduction) to generate his reduction relation: let axτ [b] be defined as

the replacing of all the free occurrences of xτ in a by b (Koletsos’ definition does

not involve the type annotation τ). Note that because b does not have to be of type

τ then axτ [b] is not always a simply typed λ-term. For example, (x0�0y0)x0�0 [y0] is

(y0y0) which is not a simply typed λ-term. Such a type restriction could be explicitly

enforced. However, substitution is only used when the substituted variable and the

term that substitutes the variable have the same type.

Then, Koletsos proves two important results:

• If a ∈ CR and (if for each λxσ.b such that a →∗ λxσ.b then MONρ(λxσ.b))

then MONρ(a).

• If a is a term of type σ and for every term b, MONτ (b) implies MONσ(axτ [b])

then MONτ→σ(λxτ .a).

The first result allows one to prove among other things that for each term variable

x and each type σ, MONσ(xσ). The second result proves the saturation [96] of the

type interpretation based on the monovaluedness predicate.
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Finally, using these results, Koletsos trivially obtains the confluence of the set

of simply typed λ-terms by an induction on the structure of terms.

3.7 1988: Shankar [122]

Shankar’s paper [122] is a notable paper because of the formalisation and proof of

the Church-Rosser property in the Boyer-Moore theorem prover6. Shankar’s proof is

similar to Tait and Martin-Löf’s one. In order not to have to deal with α-conversion,

the proof is carried out using the de Bruijn [34] notation for the λ-calculus (as is

often the case when using a theorem prover). The proof is then carried out into the

usual notation. Shankar claims that using the Boyer-Moore theorem prover some

of the proofs were proved automatically (“The proofs of several of the lemmas that

were proved automatically would tax most humans”).

3.8 1989: Takahashi [131]

Takahashi’s method is based on Tait and Martin-Löf’s parallel method. She proves

that the method extends easily to the βη-case. Even if different from the devel-

opments defined for example by Curry and Feys [31]7, Takahashi’s method (as for

Tait and Martin-Löf’s method) consists in defining a new parallel reduction (non

overlapping reductions) which is useful to develop a term without defining residuals.

The usual βη-reduction is then trivially proved to be the transitive closure of the

parallel βη-reduction. Then, the proof of the Church-Rosser property of the untyped

λ-calculus w.r.t. the parallel βη-reduction leads to the proof of the Church-Rosser

property of the untyped λ-calculus w.r.t. the βη-reduction. The Church-Rosser

property of the untyped λ-calculus w.r.t. the parallel βη-reduction is obtained using

complete developments (i.e., complete parallel βη-reductions which maximise the

number of redexes reduced in a parallel reduction): if M reduces to N by a parallel

βη-reduction then N reduces to P via a βη-parallel reduction where P is the unique

term (modulo α-conversion) obtained from M by a complete parallel βη-reduction.

3.9 2001: Ghilezan and Kunčak [48]

Ghilezan and Kunčak’s proof can be depicted by the diagram in Fig. 3.1. We present

the method and the different relations and functions it uses below. This method is

6The Boyer-Moore theorem prover is based on a first order, quantifier free logic of recursive
functions

7For example, if x 6∈ fv(λy.M) then λx.(λy.M)x reduces by a parallel βη-reduction to λy.M
by reducing the η-redex λx.(λy.M)x. Hence, (λx.(λy.M)x)N reduces by a parallel βη-reduction
to M [y := N ]. There is no corresponding development as defined by Curry and Feys, because
(λy.M)N is not a residual of (λx.(λy.M)x)N after reduction of the η-redex λx.(λy.M)x.
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Figure 3.1 The method of Ghilezan and Kunčak for the confluence of →I

thoroughly explained by Ghilezan and Kunčak [48] and Kamareddine and Rahli [84].

The method consists of the following steps:

• The formalisation of a development: →I (I in Fig. 3.1). A development is de-

fined as follows: all the redexes in a term are frozen8 using two “distinguished”

term variables (using the function Ψ); some of the frozen redexes are unfrozen

(using the reduction relation o); some of these unfrozen redexes are β-reduced;

all the redexes are unfrozen (the “distinguished” term variables are removed).

• The proof of the confluence of the developments using a simple embedding of

the developments into the simply typed λ-calculus and thanks to the proof

of typability of the frozen terms (where all the redexes are frozen) into the

simply typed λ-calculus. The confluence of the typable terms in the simply

typed λ-calculus is a well known result (see, e.g., Koletsos’ proof mentioned

in Sec. 3.6) and provides the confluence of the developments.

• As in many other approaches, β-reduction is proved to be the transitive closure

of developments. This provides the confluence of the untyped λ-calculus.

8Informally, we say that a redex (λx.M)N is frozen when it is transformed into another similar
term where the redex does not exist anymore and such that there exists a method to obtain back
the original term from its frozen version.
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This method provides an embedding of developments into the well known sim-

ply typed λ-calculus for which many properties have already been proved (such as

confluence or strong normalisation). The defined developments can easily be proved

to be equivalent to the usual ones as defined in Barendregt’s book [5]. The ad-

vantages of this method over the similar method of Barendregt [5, Sec. 11.2] which

uses a labelled calculus is that it does not make use of the finiteness of develop-

ments, does not introduce new symbols (Barendregt uses extra labelled λ’s to define

a new relation that uses the labels to distinguish between redexes to reduce or leave

unreduced) and is based on an already well known background: the simply typed

λ-calculus. We do not present Barendregt’s proof [5, Sec. 11.2] of the confluence

of his untyped λ-calculus using a labelled calculus, even though his proof is older

than Ghilezan and Kunčak’s proof, because the two proofs share the same steps

(proof schemes). We therefore concentrate on Ghilezan and Kunčak’s proof and

provide below (in Sec. 5.2.2) a short comparison with one of our own method [84]

(the method provided in Ch.4).

3.10 2007: Koletsos and Stavrinos [94]

Koletsos and Stavrinos’ proof is similar to Ghilezan and Kunčak’s proof. They

share the same proof scheme. However, Koletsos and Stavrinos’ result is based on

the embedding of their developments into Krivine’s intersection type system D [96]

instead of the simply typed λ-calculus (as in Ghilezan and Kunčak’s method [48]).

Their formalisation of developments is more complicated (and sophisticated) than

that of Ghilezan and Kunčak in the sense that they handle occurrences of redexes

explicitly (even though not fully formalised) when Ghilezan and Kunčak handle them

implicitly (without explicitly referring to instances of redexes). Also, their definition

of developments is simpler than that of Ghilezan and Kunčak in the sense that the

calculus on which developments are based, is simpler: Koletsos and Stavrinos use

one term variable to freeze redexes when Ghilezan and Kunčak use two.

3.11 2007: Kamareddine, Rahli and Wells [85]

We have adapted, extended and formalised the work done by Koletsos and Stavri-

nos [94]. We adapted it to the case of the λI-calculus and extended it to the case

of the λη-calculus, using a formal definition of occurrences of redexes (we dealt

with them formally and not intuitively as Koletsos and Stavrinos did [94]). In this

work we tried to use a definition of developments based on residuals which are as

close as possible to Klop’s λ-residuals [92]. We failed in formalising the concept of

λ-residuals as defined by Klop and came up with a new definition that we believe
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can be regarded as less restrictive than the “common” one as defined by Curry and

Feys [31] (called βη-residuals) and more restrictive than Klop’s one.

Let us now present the method we have used to prove the confluence of the

λ-calculus w.r.t. the λη-calculus. First, βη-redexes are explicitly defined as paths

in λ-terms. Then, developments are defined as a reduction relation between pairs

of a λ-term and a set of redexes in the term such that only the mentioned redexes

are allowed to be reduced. A single step of a development is then a pair of pairs as

follows: 〈〈M1, p1〉, 〈M2, p2〉〉 where p1 is a set of paths to redexes in M1, reducing

one of these redexes leads to M2, and p2 is the set of residuals of p1. Developments

are defined via an embedding into a parametric calculus (based on the λ-calculus)

where a distinguished variable (the parameter) is used to freeze some redexes. Our

embedding associates a term in our parametric language with each pair of a λ-term

and a set of redexes in the term. The frozen redexes are the ones that do not

occur in the redex set. We proved that the terms of this parametric calculus are all

typable in Krivine’s system D. We obtain that our parametric calculus is confluent

by first proving that each typable term in Krivine’s system D is in CRβη. We obtain

the confluence w.r.t. the βη-reduction of the terms typable in Krivine’s system D by

using a reducibility method where types are interpreted by saturated sets of λ-terms

(a set s is usually said to be saturated if whenever M [x := N ]M1 · · ·Mn ∈ s then

(λx.M)NM1 · · ·Mn ∈ s) and especially where type variables are interpreted by CRβη

(itself saturated). We can then prove the soundness of the type interpretation which

is that if a term is typable in system D then it is in the interpretation of the type

and because each type is interpreted by a subset of CRβη then each typable term is

in CRβη. From the confluence of our parametric calculus and using results on the

embedding of our developments into our parametric calculus, we prove the confluence

of our developments. Finally, we can prove that the reflexive and transitive closure of

our developments is equal to the reflexive and transitive closure of the βη-reduction,

which gives us the confluence of the λ-calculus w.r.t. the βη-reduction.

3.12 2008: Kamareddine and Rahli [84]

We then set out to simplify our method based on the intersection type system D [85]

by basing our approach on the simply typed λ-calculus instead and also by handling

redexes implicitly rather that explicitly. It turns our that formalising redex occur-

rences and reduction of redex occurrences involves heavy technicalities that are not

necessary to prove the confluence of the λ-calculus. We came up with a method

very similar to the method designed by Ghilezan and Kunčak [48]. Then, the ob-

servation that only a few of the types of the simply typed λ-calculus were needed

in the method led us to a first simplification. We then observed that instead of

introducing a type machinery, interpreting types by sets of λ-terms, and then prov-
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ing the soundness of the interpretation, we could obtain a much simpler result by

directly considering sets of λ-terms (the interpretations of the types and not the

types themselves). We therefore completely discarded the use of a type system from

our method. The side effect of the obtained method is that it is not based anymore

on the well known framework of the simply typed λ-calculus and it is therefore

not anymore a reducibility method (see Sec. 2.5.2). But since the power of this

framework turned out not to be needed, the advantage is that we removed from the

method the burden of the syntax coming along with the definition of the simply

typed λ-calculus. From a semantic method based on reducibility (we say a semantic

method because it involves interpreting types), we have obtained a simple syntactic

method (where no interpretation is needed anymore). The obtained method shares

some resemblance in its scheme with Barendregt’s method [5, Sec. 11.2]. However,

we believe our proof to be simpler for the same reasons that Ghilezan and Kunčak’s

method is simpler than Barendregt’s one (see Sec. 3.9). Our method is also simpler

than Barendregt, Bergstra, Klop and Volken’s method [7, 5]. It is also easily gener-

alisable into a new proof of CR for βη-reduction. Our simplification of a semantic

proof resulted in a syntactic proof which is projectable into a semantic method (by

interpreting sets of terms by types) and can therefore be used as a bridge between

syntactic and semantic methods.

Our method to prove the confluence of λ-calculus w.r.t. β- and βη-reductions is

detailed in Sec. 4.

3.13 Summary of the proof methods of the Church-

Rosser property

In the literature, most of the proof methods to establish the confluence of the λ-

calculus or its variants use the following scheme already detailed in the previous

sections:

• Provide a definition of developments.

• Prove the confluence of the defined developments.

• Prove the confluence of the considered calculus using a correspondence between

the reduction relation of the calculus and developments.

The simplest method is the syntactic method designed by Tait and Martin-Löf (see

Sec. 3.4). Their proof is based on a new reduction called parallel reduction. Let

us note that in their method the concept of residuals is not as clear as in our

formalisation of developments [84].
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The more difficult step is usually to prove the developments’ confluence. Earlier

works [48, 94] proved interesting embedding of developments into well known frame-

works such as the simply typed λ-calculus or system D, using known properties of

these systems (such as the Church-Rosser property). It is interesting to see that

some of these proofs can easily be extended to the βη-reduction [85, 84].
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From a semantic proof to a

syntactic one

Many CR proofs use the notion of developments [7, 48, 94, 85]. Both Koletsos and

Stavrinos [94] as well as Kamareddine and Rahli [85] use a complicated handling of

developments. On the other hand, Barendregt et al. [7], Ghilezan and Kunčak [48]

as well as our method presented below are based on some simpler and sufficient

notions of developments. These notions of developments are technically less involved

because, as in the so called method of parallel reductions [102, 131], they do not

deal with residuals. Because our method presented below does not make use of a

type system and does not deal with residuals, it can be regarded as a simplification

of Koletsos and Stavrinos’ method [94] as well as a simplification of Kamareddine,

Rahli and Wells’ method [85]. It can also be regarded as a simplification and a

generalisation of the work done by Barendregt et al. [7] because it does not involve

a new calculus and does not use the finiteness of developments, and also by Ghilezan

and Kunčak [48] because is does not make use of a type system.

Let us provide a detailed description of our method. Proofs can be found in

Appendix A.

4.1 Saturation, variable, abstraction properties

We consider the terms and reductions as presented in Sec. 2.3.

Def. 4.1.1 defines the three sets of terms SAT, VAR, and ABS.

Definition 4.1.1. Let the set SAT of the sets satisfying the saturation property be

defined as follows: SAT = {s ⊆ Λ |M [x := N ] ∈ s⇒⇒⇒ (λx.M)N ∈ s}.

Let the set VAR of the sets satisfying the variable property be defined as follows:

VAR = {s ⊆ Λ | (n ≥ 0 ∧ (∀i ∈ {1, . . . , n}. Mi ∈ s))⇒⇒⇒ xM1 · · ·Mn ∈ s}.

Let the set ABS of the sets satisfying the abstraction property be defined as

follows: ABS = {s ⊆ Λ |M ∈ s⇒⇒⇒ λx.M ∈ s}.
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Lemma 4.1.2 presents different well known results concerning the λ-calculus

(w.r.t. the β and the βη-reductions) as well as results concerning the sets SAT,

VAR, and ABS. Lemma 4.1.2.1 is a well known result concerning the β-reduction

as well as the βη-reduction. Lemmas 4.1.2.2 and 4.1.2.3 are well known results

regarding the free variables of the terms in a reduction (β as well as βη). Lem-

mas 4.1.2.4 and 4.1.2.5 characterise some βη-reductions. Lemma 4.1.2.6 provides a

characterisation of non-direct reduces of β-redexes. Lemma 4.1.2.7 characterise β

and βη-reductions of β-redexes. Finally, the main result is Lemma 4.1.2.8 which

states that the set of terms satisfying CR (w.r.t. β as well as βη) satisfies the satu-

ration property, the variable property and the abstraction property.

Lemma 4.1.2. Let r ∈ {β, βη}. The following hold:

1. If M →∗
r N and P →∗

r Q then M [x := P ]→∗
r N [x := Q].

2. fv(M [x := N ]) ⊆ fv((λx.M)N).

3. If M →∗
r N then fv(N) ⊆ fv(M).

4. If λx.M →∗
βη N then either N is of the form λx.M ′ such that M →∗

βη M
′ or

M →∗
βη Nx such that x 6∈ fv(N).

5. If x 6∈ fv(M) and Mx →∗
βη N then there exists P such that M →∗

βη P and

either N is of the form Px or P is of the form λx.N .

6. If n ≥ 0, Q is of the form (λx.M)N , Q →k
r P and P is not a direct r-reduct

of Q then (a) k ≥ 1, (b) if k = 1 then P = M [x := N ] and (c) there exists a

direct r-reduct (λx.M ′)N ′ of Q such that M ′[x := N ′]→∗
r P .

7. Let n ≥ 0 and (λx.M)N →∗
r P . There exists P ′ such that P →∗

r P ′ and

M [x := N ]→∗
r P

′.

8. a) CRr ∈ SAT b) CRr ∈ VAR c) CRr ∈ ABS

4.2 Pseudo Development Definitions

Remark 4.2.1. Various approaches to prove the Church-Rosser property, use a

function which freezes redexes in terms using new variables or constants [48, 94, 96].

We noted that this can lead to problems.

For example, Ghilezan and Kunčak [48] use two distinct term variables called

f and g and introduced as “predefined constants”. They then assume that “terms

from Λ do not contain constants f and g”. It is then not clear whether f and g

are supposed to be taken as not belonging to the untyped λ-calculus or whether

a new set Λ is defined to exclude terms involving f and g. The second seems to
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be the case. The issue is that their freezing function Ψ (similar to our function Ψc

defined below and which is used to prevent redexes from being reduced) is proved

to be a function from Λ to Λ0 where Λ0 is defined as follows: Λ0 = {M ∈ Λ |

∃x1, . . . , xn. Γ0, x1 : 0, . . . , xn : 0 ⊢ M : 0}, which is the set of terms in Λ which

are typable in simply typed λ-calculus, and where 0 is a ground type and Γ0 is a

predefined type environment assigning types to f and g. Hence, by their definition,

Λ0 ⊂ Λ. It is obvious that their function Ψ does not associate a term in Λ0 with

each term in Λ since Ψ adds some f and g to the terms (for example Ψ(xx) = fxx,

but fxx 6∈ Λ, so fxx 6∈ Λ0).

Moreover, typing environments (contexts) are defined as sets of type assignments

of the form x : ϕ where x is a term variable and ϕ is a simple type. Later, some

contexts are built with type assignments of the form f : ϕ, but f is not defined as a

term variable. More generally, the introduction of a new variable or a new constant

implies that the considered type system has to be defined on the new calculus.

This idea behind such variables is that when freezing the redexes of a term then

one wants to use a variable that does not occur in the term. However one cannot

use a unique variable from the set of term variables because one can always find a

term in which this variable occurs free. We solve this issue by defining parametrised

sets of λ-terms as well as parametrised freezing and unfreezing relations.

We call current redex any occurrence of a redex in a given term M . For example,

(λx.x)y is a current redex in (λx.x)yy. We call potential redex an application which

is not a current redex in a given term M but which is the occurrence of a redex

in the term obtained after at least one reduction step from M . For example, yx is

a potential redex in (λy.yx)(λz.z). As done by Krivine [96] and many others after

him [48, 94, 85], we use a term variables to freeze current or potential redexes in

terms. The parametrised calculi with parameter c, a term variable in Var, presented

in Def. 4.2.2 are the “frozen” calculi based on the λ-calculus where some reductions

are frozen by the use of c. For example, in Λβ
c , (λx.xy)(λz.z)→β (λz.z)y →β y, but

(λx.cxy)(λz.z)→β c(λz.z)y which does not reduce further. It is easy to see that for

all c ∈ Var, Λβ
c ⊂ Λβη

c ⊂ Λ. (We define a family of term sets for each c ∈ Var.)

Definition 4.2.2 (Λβ
c , Λβη

c ).

x , y ∈Varc = Var \ {c}

M ,N ,P ,Q ,R ∈Λβ
c ::= x | (λx .M ) | ((λx .M1)M2) | ((cM1)M2)

M ,N ,P ,Q ,R ∈Λβη
c ::= x | (λx .M ) | ((λx .M1)M2) | ((cM1)M2) | (cM )

In Λβ
c and Λβη

c ’s definitions (in the variable production rules), x ∈ Varc.

Because we let x, y range over Var and Varc, when it is ambiguous, we will make

explicit whether x is taken from Var or from Varc. The same goes for M,N, P,Q,R.
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Def. 4.2.3, introduces the freezing function which allows one to freeze the po-

tential redexes of a term. Unlike definitions in the literature [48, 94, 96, 85], our

function (the third clause below) does not freeze the current β-redexes. Further-

more, our definition does not freeze any of the current or potential η-redexes. For

example, in Λβη
c , M of the form λx.(λy.czx)z does not contain any η-redex but con-

tains a potential η-redex, since M →β λx.czx and λx.czx is an η-redex. As we will

see below, there is not need to freeze η-redexes.

Definition 4.2.3 (Ψc). The parametric freezing Ψc function is defined as follows:

1. Ψc(x) = x

2. Ψc(λx.N) = λx.Ψc(N), where x 6= c

3. If P is a λ-abstraction then Ψc(PQ) = Ψc(P )Ψc(Q)

4. If P is not a λ-abstraction then Ψc(PQ) = cΨc(P )Ψc(Q).

Note that we do not enforce that Ψc only applies to terms M such that c 6∈ fv(M).

For example, Ψc(c) = c 6∈ Λβ
c . We will see later that given a term M we only apply

function Ψc to M for a c 6∈ fv(M). The function Ψ is a function that takes two

parameters: a term variable and a term.

Def. 4.2.4 introduces the parametric reduction relation →c used to remove the

c’s from a term. This reduction can be regarded as a simplification of the reduction

→o defined by Ghilezan and Kunčak [48]. (We define a family of reduction relations

for each c ∈ Var.)

Definition 4.2.4 (→c). Let the c-reduction relation →c be the least compatible

relation on Λ closed under the rule:

(c) : cM →c M

As usual →∗
c is the reflexive and transitive closure of →c.

In Def. 4.2.5, we introduce our β-developments (the reduction relation →1) as

well as our βη-developments (the reduction relation →2).

Definition 4.2.5 (Developments: →1, →2). Let 〈d, r〉 ∈ {〈1, β〉, 〈2, βη〉}.

M →d N ⇔∃P. Ψc(M)→∗
r P ∧ P →

∗
c N ∧ c 6∈ fv(MN)

As usual,→∗
d is the reflexive and transitive closure of→d. (Note that→d is reflexive,

but in order not to have to introduce a new symbol for its transitive closure, we

consider →∗
d.)
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Developments are not parametric because a development of a term is obtained

by picking a variable that does not occur free in the term, by freezing the potential

redexes of the term using this free variable, by reducing the frozen term, and by

finally removing all occurrences of the picked free variable.

Def. 4.2.6 defines the parametric set of terms Ac built over the parameter c

using application. (We define a family of term sets for each c ∈ Var.) Such terms

contain only c’s and no abstraction. This set of terms is especially needed to state

Lemma 4.2.7.7. The particularity of such terms being that they can be completely

erased by the c-reduction when applied to a term (see Lemma 4.2.7.5).

Definition 4.2.6. d ∈ Ac ::= c | dd

Let us now provide some results on the reduction relation →c. Lemma 4.2.7.1

stresses the relation between the freezing function and the unfreezing relation →c:

one can always undo the freezing done by the freezing function using the unfreezing

relation. Using Lemmas 4.2.7.4 and 4.2.7.6, one can deduce that if one c-reduces a

term in Λβη
c then the reduct cannot be in Ac. For example, one cannot obtain c by

c-reducing a term in Λβη
c . Lemma 4.2.7.7 characterises c-reductions. Lemma 4.2.7.10

is a sort of weak confluence property w.r.t. →∗
c .

Lemma 4.2.7.

1. Ψc(M)→∗
c M .

2. If M →∗
c N then fv(M) \ {c} = fv(N) \ {c}.

3. fv(M) \ {c} = fv(Ψc(M)) \ {c}.

4. Λβ
c ∩ Ac = ∅ = Λβη

c ∩ Ac.

5. If d ∈ Ac then dM →∗
c M .

6. If M →∗
c N then M ∈ Ac iff N ∈ Ac.

7. Let M →∗
c N . If M = x then N = x. If M = λx.M1 then N = λx.N1

such that M1 →
∗
c N1. If M = M1M2 then either M1 ∈ Ac and M2 →

∗
c N or

N = N1N2 and M1 →
∗
c N1 and M2 →

∗
c N2.

8. If M →∗
c M

′, N →∗
c N

′ and x 6= c then M [x := N ]→∗
c M

′[x := N ′].

9. If c 6∈ fv(M) and M →∗
c N then M = N .

10. If M →∗
c N , M →∗

c P and c 6∈ fv(N) then P →∗
c N .

Proof.

1,8,10 By induction on the structure of M .
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3 Corollary of Lemma 4.2.7.1 and Lemma 4.2.7.2.

4 Let M ∈ Λβη
c . We prove by induction on the structure of M that M 6∈ Ac.

5 By induction on the structure of d.

6 ⇒) By induction on the length of the reduction M →∗
c d .

⇐) By induction on the reduction d →∗
c N .

7,9 By induction on the length of the reduction M →∗
c N .

4.3 A simple Church-Rosser proof for β-reduction

Koletsos and Stavrinos [94] gave a proof of the Church-Rosser property for the set of

terms typable in an intersection type system called system D [96] w.r.t. β-reduction

and showed that this can be used to establish the confluence of their β-developments

without using strong normalisation. Ghilezan and Kunčak [48] gave a proof of the

Church-Rosser property for the set of terms typable in the simply typed λ-calculus

w.r.t. β-reduction and showed that this can be used to establish the confluence of

their β-developments without using strong normalisation.

The first aim of the work presented in this section was to simplify the proof of

Koletsos and Stavrinos [94]. During this simplification, we obtained a proof that

bore some resemblance to the proof of Ghilezan and Kunčak [48]. A second simplifi-

cation of our proof started with the observation that in both proofs of Ghilezan and

Kunčak [48] and of Koletsos and Stavrinos [94] only a few types were really needed

and that one can actually completely get rid of the type system. We considered

two type interpretations based on the sets CRβ and CRβη and interpreted the few

needed types by sets of terms satisfying simple properties: saturation, variable and

abstraction (see Def. 4.1.1). Since the calculus used by Koletsos and Stavrinos to

prove the confluence of developments is simpler than the one used by Ghilezan and

Kunčak, a third simplification which led to our actual simple proof has been to come

back to the use of a calculus similar to the one used by Koletsos and Stavrinos as

well as Krivine [96] before them (see Def. 4.2.2). As mentioned above, our proof is

carried out in an untyped setting but one can relate the first part of the method to

a reducibility proof using, e.g., the type system D. Out proof can also be related to

Barendregt, Bergstra, Klop and Volken’s proof [7, 5].

The second aim of this section is to provide a framework for our main result:

the extension of our proof to βη-reduction where we give a purely syntactic proof of

Church-Rosser for βη-reduction (see Sec. 4.4) which is projectable into a semantic

proof (based on type interpretation).
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Lemma 4.3.1 states a result on Λβ
c which we call “soundness” because it is a

simplification of an earlier soundness result of a type interpretation (as part of a re-

ducibility method) such that the needed part of our type interpretation corresponds

to sets of terms satisfying the saturation, variable and abstraction properties pre-

sented in Def. 4.1.1.

Lemma 4.3.1 (Soundness). If M ∈ Λβ
c , fv(M ) \ {c} = {x1, . . . , xn}, for all i ∈

{1, . . . , n}, Mi ∈ s and s ∈ VAR ∩ SAT ∩ ABS then M [x1 := M1, . . . , xn := Mn] ∈

s.

Proof. By induction on the structure of M .

Using Lemma 4.3.1, we can prove that each term in Λβ
c has β-CR.

Corollary 4.3.2. Λβ
c ⊆ CR.

Proof. Let M ∈ Λβ
c and fv(M ) \ {c} = {x1, . . . , xn}. By Lemma 4.1.2.8, CR ∈

SAT ∩ VAR ∩ ABS and x1, . . . , xn ∈ CR. So by Lemma 4.3.1, M ∈ CR.

Lemma 4.3.3 states that the freezing function associates a term in the language

Λβ
c with each term of the untyped λ-calculus (in which c does not occur).

Lemma 4.3.3. If c 6∈ fv(M) then Ψc(M) ∈ Λβ
c .

Proof. By induction on the structure of M .

Let us now prove some result concerning the calculus based on Λβ
c and the β-

reduction. Lemma 4.3.4.2 states that terms in Λβ
c can only β-reduce to terms in

Λβ
c . Because frozen β-redexes can occur in terms in Λβ

c (e.g., c(λx.x)y ∈ Λβ
c ),

Lemma 4.3.4.3 states that each term in Λβ
c can always c-reduce to a version where

only its current β-redexes are frozen. Lemma 4.3.4.4 states that our c-reduction can

always remove all the c’s in a term in Λβ
c (termination of our c-reduction).

Lemma 4.3.4. Let M ,N ∈ Λβ
c and x ∈ Varc.

1. M [x := N ] ∈ Λβ
c .

2. If M →∗
β N then N ∈ Λβ

c .

3. If M →∗
c N and c 6∈ fv(N) then M →∗

c Ψc(N).

4. There exists N such that c 6∈ fv(N) and M →∗
c N .

Proof. Items 1, 3 and 4 are by induction on the structure of M . Item 2 is by

induction on the length of the derivation M →∗
β N .

Lemma 4.3.5 states that we can simulate any β-reduction of a term in Λβ
c from

any of its (partially or totally) “unfrozen” versions.
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Lemma 4.3.5.

1. If M1 ∈ Λβ
c , M1 →β N1 and M1 →

∗
c M2 then there exists N2 such that M2 →β

N2 and N1 →
∗
c N2.

2. If M1 ∈ Λβ
c , M1 →

∗
β N1 and M1 →

∗
c M2 then there exists N2 such that M2 →

∗
β

N2 and N1 →
∗
c N2.

Proof. 1. by induction on the structure of M1. 2. by induction on the length of the

reduction M1 →
∗
β N1 using Lemma 4.3.5.1.

Lemma 4.3.6 is a key lemma of simulating a reduction by developments. It states

that the reflexive and transitive closure of→β is equal to the reflexive and transitive

closure of →1.

Lemma 4.3.6. M →∗
β N ⇔M →∗

1 N .

Proof.

⇒) Let M →∗
β N . We prove that M →∗

1 N by induction on the size of the

reduction M →∗
β N .

⇐) Let M →∗
1 N . We prove that M →∗

β N by induction on the size of the

derivation M →∗
1 N .

Lemma 4.3.7 states the confluence of the β-developments.

Lemma 4.3.7.

1. If M →1 M1 and M →1 M2 then there exists M3 such that M1 →1 M3 and

M2 →1 M3.

2. If M →∗
1 M1 and M →∗

1 M2 then there exists M3 such that M1 →
∗
1 M3 and

M2 →
∗
1 M3.

Proof.

1 By definition, there exist P1, P2 such that Ψc(M) →∗
β P1, Ψc(M) →∗

β P2,

P1 →
∗
c M1, P2 →

∗
c M2 and c 6∈ fv(M) ∪ fv(M1) ∪ fv(M2). By Lemma 4.3.3,

Ψc(M) ∈ Λβ
c . So by Corollary 4.3.2, there exists P3 such that P1 →

∗
β P3 and

P2 →
∗
β P3. By Lemma 4.3.4.2, P1, P2, P3 ∈ Λβ

c . By lemma 4.3.4.4, there exists

M3 such that P3 →
∗
c M3 and c 6∈ fv(M3). By Lemma 4.3.4.3, P1 →

∗
c Ψc(M1)

and P2 →
∗
c Ψc(M2). By Lemma 4.3.5.2, there exist Q1, Q2 such that P3 →

∗
c

Q1, P3 →
∗
c Q2, Ψc(M1) →

∗
β Q1 and Ψc(M2) →

∗
β Q2. By Lemma 4.2.7.10,

Q1 →
∗
c M3 and Q2 →

∗
c M3. So M1 →1 M3 and M2 →1 M3.

2 By Lemma 4.3.7.1
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The confluence of the untyped λ-calculus w.r.t. β-reduction is now proved using

the confluence of the β-developments and the equality between →∗
β and →∗

1.

Theorem 4.3.8. Λ = CR.

Proof. CR ⊆ Λ is trivial, we only prove Λ ⊆ CR. Let M,M1,M2 ∈ Λ such

that M →∗
β M1 and M →∗

β M2. By Lemma 4.3.6, M →∗
1 M1 and M →∗

1 M2.

By Lemma 4.3.5.2, there exists M3 such that M1 →
∗
1 M3 and M2 →

∗
1 M3. By

Lemma 4.3.6, M1 →
∗
β M3 and M2 →

∗
β M3.

4.4 A simple Church-Rosser proof for βη-reduction

Now that we have stated the principal steps of our method to prove the Church-

Rosser property of the untyped λ-calculus w.r.t. β-reduction, we will generalise

it to βη-reduction following exactly the same steps and using the Λβη
c language.

This generalisation can be regarded both as a simplification and an extension of

methods by for example Ghilezan and Kunčak [48], Kamareddine and Rahli [85],

Barendregt [5, Sec. 11.2], and Barendregt et al. [7].

Lemma 4.4.1 states a result on Λβη
c which we call “soundness” for the same reason

as for the similar Lemma 4.3.1.

Lemma 4.4.1 (Soundness). If M ∈ Λβη
c , fv(M ) \ {c} = {x1, . . . , xn}, for all i ∈

{1, . . . , n}, Mi ∈ s and s ∈ SAT ∩ VAR ∩ ABS then M [x1 := M1, . . . , xn := Mn] ∈

s.

Proof. By induction on the structure of M .

Using lemma 4.4.1, we can now prove that each term in Λβη
c has βη-CR.

Corollary 4.4.2. Λβη
c ⊆ CRβη.

Proof. Let M ∈ Λβη
c and fv(M ) \ {c} = {x1, . . . , xn}. By Lemma 4.1.2.8, CRβη ∈

SAT ∩ VAR ∩ ABS and x1, . . . , xn ∈ CRβη. So by Lemma 4.4.1, M ∈ CRβη.

Lemma 4.4.3 states that for each term of the λ-calculus one can choose a variable

c that does not occur in the term and which can be used to freeze the term to obtain

a term in Λβη
c . This result is trivial because Λβ

c ⊂ Λβη
c .

Lemma 4.4.3. If c 6∈ fv(M) then Ψc(M) ∈ Λβη
c .

Proof. By Lemma 4.3.3, Ψc(M) ∈ Λβ
c . Since Λβ

c ⊂ Λβη
c then Ψc(M) ∈ Λβη

c .

Let us now prove some result concerning the calculus based on Λβη
c and the βη-

reduction. This lemma is similar to Lemma 4.3.4. Lemma 4.4.4.2 states that the

terms in Λβη
c can only βη-reduce to terms in in Λβη

c . Lemma 4.4.4.3 differs from

Lemma 4.3.4.3 by the fact that terms in Λβη
c can be of the form cM where M ∈ Λβη

c

while this is not possible in Λβ
c (and similarly for Lemma 4.4.4.4).
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Lemma 4.4.4. Let M ,N ∈ Λβη
c and x ∈ Varc.

1. M [x := N ] ∈ Λβη
c .

2. If M →∗
βη N then N ∈ Λβη

c .

3. If M →∗
c N and c 6∈ fv(N) then M →∗

c Ψc(N).

4. There exists N such that c 6∈ fv(N) and M →∗
c N .

Proof. Items 1, 3 and 4 are by induction on the structure of M . Item 2 is by

induction on the length of the derivation M →∗
βη N .

Lemma 4.4.5 states that we can simulate any βη-reduction of a term in Λβη
c from

any of its (partially or totally) “unfrozen” versions.

Lemma 4.4.5.

1. If M1 ∈ Λβη
c , M1 →βη N1 and M1 →

∗
c M2 then there exists N2 such that

M2 →βη N2 and N1 →
∗
c N2.

2. If M1 ∈ Λβη
c such that M1 →

∗
βη N1 and M1 →

∗
c M2 then there exists N2 such

that M2 →
∗
βη N2 and N1 →

∗
c N2.

Proof. 1. By induction on the structure of M1. 2. By Lemma 4.4.5.1.

Lemma 4.4.6 is a key lemma of the simulation method of a reduction by devel-

opments. It states that the reflexive and transitive closure of →βη is equal to the

reflexive and transitive closure of →2.

Lemma 4.4.6. M →∗
βη N ⇔M →∗

2 N .

Proof.

⇒) Let M →∗
βη N . We prove that M →∗

2 N by induction on the size of the

reduction M →∗
βη N .

⇐) Let M →∗
2 N . We prove that M →∗

βη N by induction on the size of the

derivation M →∗
2 N .

It is then easy to deduce the confluence of the βη-developments.

Lemma 4.4.7.

1. If M →2 M1 and M →2 M2 then there exists M3 such that M1 →2 M3 and

M2 →2 M3.

2. If M →∗
2 M1 and M →∗

2 M2 then there exists M3 such that M1 →
∗
2 M3 and

M2 →
∗
2 M3.
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Proof.

1 By definition, there exist P1, P2 such that Ψc(M) →∗
βη P1, Ψc(M) →∗

βη P2,

P1 →
∗
c M1, P2 →

∗
c M2 and c 6∈ fv(M) ∪ fv(M1) ∪ fv(M2). By Lemma 4.4.3,

Ψc(M) ∈ Λβη
c . So by Corollary 4.4.2, there exists P3 such that P1 →

∗
βη P3

and P2 →
∗
βη P3. By Lemma 4.4.4.2, P1, P2, P3 ∈ Λβη

c . By lemma 4.4.4.4,

there exists M3 such that P3 →
∗
c M3 and c 6∈ fv(M3). By Lemma 4.4.4.3,

P1 →
∗
c Ψc(M1) and P2 →

∗
c Ψc(M2). By Lemma 4.4.5.2, there exist Q1, Q2

such that P3 →
∗
c Q1, P3 →

∗
c Q2, Ψc(M1) →

∗
βη Q1 and Ψc(M2) →

∗
βη Q2. By

Lemma 4.2.7.10, Q1 →
∗
c M3 and Q2 →

∗
c M3. So M1 →2 M3 and M2 →2 M3.

2 Easy by Lemma 4.4.7.1.

The confluence of the untyped λ-calculus w.r.t. βη-reduction is then proved using

the confluence of the βη-developments and the equality between →∗
βη and →∗

2.

Theorem 4.4.8. Λ = CRβη.

Proof. CRβη ⊆ Λ is trivial, we only prove Λ ⊆ CRβη. Let M,M1,M2 ∈ Λ such

that M →∗
βη M1 and M →∗

βη M2. By Lemma 4.4.6, M →∗
2 M1 and M →∗

2 M2.

By Lemma 4.4.7.2, there exists M3 such that M1 →
∗
2 M3 and M2 →

∗
2 M3. By

Lemma 4.4.6, M1 →
∗
βη M3 and M2 →

∗
βη M3.

41



Chapter 5

Comparisons and conclusions

In this chapter we compare our method to two other methods (based on type sys-

tems) to prove confluence [48, 94]. We also compare our developments to those of

Tait and Martin-Löf. In this section and only in this section, we consider the con-

fluence property w.r.t. β-reduction. In Fig. 3.1 and 5.1, an arrow labelled with c, o

or β stands for →∗
c , →

∗
o or →∗

β respectively. An arrow labelled with Ψ or Ψc stands

for the application of the function with the same name to the term at the arrow’s

start.

5.1 Ghilezan and Kunčak’s method [48]

5.1.1 Highlighting of Ghilezan and Kunčak’s method

Fig. 3.1 presents Ghilezan and Kunčak’s proof method [48] for the confluence of

the untyped λ-calculus w.r.t. β-reduction. Their proof, based on the embedding

of the developments into λ→, uses the confluence w.r.t. another reduction →I (a

development) whose transitive closure is equal to →∗
β. The reduction →I is defined

as τ−1◦ →∗
β ◦τ where:

• The relation τ is defined as the composition →∗
o ◦Ψ.

• The relation →o is the compatible closure of the rule (o) : f(g(λx.M))N →o

(λx.M)N . This relation is their unfreezing relation.

• Ψ is recursively defined on the terms of the λ-calculus as follows: Ψ(x) = x,

Ψ(λx.M) = g(λx.Ψ(M)) and Ψ(MN) = fΨ(M)Ψ(N), where f and g are two

constants (see Remark 4.2.1). This function is their freezing function.

The relation τ allows one to freeze some β-redexes and the potential β-redexes (the

other applications) of a term. As a matter of fact, τ does more, because Ψ does

more by encapsulating the λ-abstractions using g. This technicality is needed by

Ghilezan and Kunčak to prove the typability of a defined set of terms in λ→. The
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reduction τ−1 is similar to our own unfreezing relation →c (see Def. 4.2.4) and to

Krivine’s erasure function [96], which “unfreezes” the redexes in a term.

5.1.2 Ghilezan and Kunčak’s simple and sufficient notion of

developments

By definition of M →I P (a development), there exist M1 and P1 such that

Ψ(M) →∗
o M1 →

∗
β P1 and Ψ(P ) →∗

o P1 (left part of Fig. 3.1). By definition of

M →I Q, there exist M2 and Q1 such that Ψ(M) →∗
o M2 →

∗
β Q1 and Ψ(Q)→∗

o Q1

(right part of Fig. 3.1). Because M1 can be different from M2, a confluence lemma

for the unfreezing relation reduction →o (mark 1© in Fig. 3.1) and a commutation

lemma for the reductions →∗
o and →∗

β (marks 2© and 3© in Fig. 3.1) are needed.

The central part of Fig. 3.1 (mark 4©) corresponds to the well known result of the

confluence of the terms typable in λ→. Koletsos [93] proved the confluence of their

frozen language using a reducibility method based on a type interpretation of the

types of the intersection type system D.

The reduction →I designed by Ghilezan and Kunčak [48] defines a development

without explicitly specifying the set of redexes allowed to be reduced by the devel-

opment (as done, e.g., by Barendregt et al. [7] which differs from other approaches

where redexes are explicitly handled like those of Barendregt [5, Sec. 11.2] or Hind-

ley [68]). Let us consider the reduction M →I P (unfolded above). First, the

function Ψ freezes all the redexes in M . Then, →∗
o allows one to unfreeze some of

the frozen redexes in Ψ(M) and therefore allows one to select a set of redexes in

M which are allowed to be reduced without explicitly naming them. The reduc-

tion M1 →
∗
β P1 reduces some of the allowed redexes and their residuals. Finally, in

Ψ(P ) →∗
o P1, P is the totally unfrozen version of P1 and the reduction →∗

o selects

the set of residuals of the set of redexes in M1 w.r.t. M1 →
∗
β P1 without explicitly

referring to them.

This implicit way of dealing with occurrences of redexes is simple and sufficient

enough to prove the confluence of the λ-calculus. Other approaches handle occur-

rences of redexes in a more complicated way. For example, Krivine [96] or Koletsos

and Stavrinos [94] deal with occurrences of redexes explicitly but only informally. It

turns out that a formalisation of their approaches is much more complicated than

it seems at first [85]. Ghilezan and Kunčak [48] do not face the same issue. The re-

duction →∗
o allows one to unfreeze some redexes without explicitly specifying them.

In Ghilezan and Kunčak’s approach, as in Barendregt et al.’s approach [7], a de-

velopment of a term is defined without explicit control on the set of occurrences of

reduced redexes. It turns our that in Church-Rosser proofs such a control is unnec-

essary. One only needs to be able to freeze potential redexes and therefore allow the

development of a term to reduce the current redexes of the term and their residuals.
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5.1.3 Comparison of Ghilezan and Kunčak’s method with

other methods

Although Ghilezan and Kunčak [48] consider a simpler definition of developments

than the “common” one (as defined by Barendregt [5]), their proof method scheme

is exactly the one followed by Koletsos and Stavrinos [94]. Koletsos and Stavrinos

consider the following “common” definition of developments: there exists a devel-

opment from M to N iff LM, s1M →
∗
d LN, s2M where M →∗

β N , s1 is a set of redexes

in M , s2 is the set of residuals of s1 in N , and →∗
d is a new (complex) reduction

relation based on →∗
β. Their proof of the confluence of developments uses, among

other things, the following claim: if LM, s1M →
∗
d LN, s2M then there exists s4 such

that LM, s1 ∪ s3M →
∗
d LN, s2 ∪ s4M, where s3 is a set of redexes of M . It is useful

to prove that if LM, s1M →
∗
d LM1, s

′
1M and LM, s2M →

∗
d LM2, s

′
2M are two develop-

ments of M then there exist s′′1 and s′′2 such that LM, s1 ∪ s2M→
∗
d LM1, s

′
1 ∪ s

′′
2M and

LM, s2 ∪ s1M →
∗
d LM2, s

′
2 ∪ s

′′
1M which allow one to develop the same redex set. This

corresponds to Ghilezan and Kunčak’s proof of →o’s confluence, which is useful to

obtain the reductions (Ψ(M) →∗
o M1 →

∗
o M3 →

∗
β P2 and Ψ(P ) →∗

o P1 →
∗
o P2) and

(Ψ(M)→∗
o M2 →

∗
o M3 →

∗
β Q2 and Ψ(Q)→∗

o Q1 →
∗
o Q2).

Let us now present some differences between Ghilezan and Kunčak’s method and

that of Barendregt et al.:

• Ghilezan and Kunčak do not use the finiteness of developments when Baren-

dregt et al. do;

• Ghilezan and Kunčak base their result on a well known result (the conflu-

ence of the simply typed λ-terms) to give a simple proof of the confluence of

developments when Barendregt et al. have to prove everything;

• Ghilezan and Kunčak do not really introduce new terms when Barendregt et al.

do: underlined terms are introduced to prove the confluence of developments.

Barendregt et al. also give a definition of developments without explicitly naming

occurrences of redexes (no occurrence set is explicitly defined), introducing among

other things, a second abstraction λ. There exists a simple correspondence between

the calculus with this second abstraction and the “frozen” calculus obtained via the

freezing function introduced by Krivine and reused in the present document as well

as in many other works [96, 48, 94, 85]. Informally, on can turn an underlined term

as defined by Barendregt et al. into one of our frozen terms (which can be obtained

using our function Ψc on λ-terms) by turning all the underlined λ-abstractions into

non-underlined λ-abstractions and by then applying Ψc on the obtained term. One

can turn a frozen term in Λβ
c , obtained by applying Ψc to a λ-term, into an underlined

term by underlining each λ such that the corresponding λ-abstraction is applied to a
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M

Ψc(M)

P P1 Q1 Q

Ψc(P ) Ψc(Q)

R1

P2 Q2

R

Ψc

1 1

c c

β β

β β

Ψc Ψc

β β

c c

c c

c
c c

1 1

1 2

3

Figure 5.1 Our method for the confluence of →1

term into an underlined one and by removing all occurrences of c. Their underlined

β-reduction corresponds then to the β-reduction in our frozen language.

5.2 Our method

5.2.1 Highlighting of our method

Fig. 5.1 presents our method to prove the confluence of the λ-calculus. By definition

of M →1 P (Def. 4.2.5), there exists P1 such that Ψc(M)→∗
β P1 and P1 →

∗
c P , such

that c 6∈ fv(M)∪fv(P )∪fv(Q) (mark 1© in Fig. 5.1). By definition of M →1 Q, there

exists Q1 such that Ψc(M) →∗
β Q1 and Q1 →

∗
c Q (mark 2© in Fig. 5.1). Moreover

P1 →
∗
c Ψc(P ) and Q1 →

∗
c Ψc(Q) (By Lemma 4.3.3 and Lemma 4.3.4). So, because P1

and Ψc(P ) might be different (as for Q1 and Ψc(Q)), as Ghilezan and Kunčak [48],

we need a commutation result for the reductions →∗
β and →∗

c (see Lemma 4.3.5).

Then, the whole diagram commutes because P2, R1 and Q2 all c-reduce to the same

term R (by Lemma 4.2.7.10 and lemma 4.3.4.3). As in Fig. 3.1, the central part

(mark 3© in Fig. 5.1) is due to the confluence of our frozen terms (typable in λ→ for

Ghilezan and Kunčak and typable in system D in our case even though we do not

use this fact).
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5.2.2 Comparison with Ghilezan and Kunčak’s developments

Our method is also based on a simple definition of developments, where first, all

current β-redexes are left unfrozen and where all potential β-redexes (all the other

applications) are frozen. In the present document we define two simple develop-

ments: →1 for the β case and →2 for the βη case. In that way, we do not need

Ghilezan and Kunčak’s reduction →∗
o to unfreeze some redexes in order to perform

some β-reductions. Even though we do not need this reduction relation, it does

not seem possible to get rid of the work done by this reduction. Indeed, our choice

implies the introduction of some other material which turns out to be similar to the

reduction →∗
o. Both methods need the introduction of similar material but used at

different places in our methods. The reduction→∗
o is used by Ghilezan and Kunčak

to unfreeze some redexes in order to allow some reductions to occur whereas we

use the reduction →∗
c to, among other things, unfreeze some redexes which become

frozen after some reductions.

As one can observe when comparing Fig. 3.1 and Fig. 5.1, because occurrences

of redexes are not explicitly handled in our methods, a freezing function can either

freeze all current redexes of terms or leave them all unfrozen. If all the redexes

are frozen, a reduction such as →o is needed before being able to perform some

reductions (seeq Figure 3.1). In this case some technical results are needed such as

the confluence of →o. If all current redexes are left unfrozen, because a term whose

current redexes are all unfrozen does not necessarily reduce to a term whose current

redexes are all unfrozen, some technical results on a reduction such as →o (in our

method, on the c-reduction) are also needed as explained above (see Figure 5.1).

5.2.3 Conclusions on our method

Finally, although our work derives from the one done by Koletsos and Stavrinos [94]

and Kamareddine, Rahli and Wells [85], it turned out that it is also a simplification

and generalisation of the work done by Ghilezan and Kunčak [48] and Barendregt

et al. [7]. Because our method resemble Ghilezan and Kunčak’s method the most,

we have adopted some of of their notations and focused on comparing our method

with theirs.

Thus, the two improvements of the present document can be regarded as the

simplification of the work done by Ghilezan and Kunčak [48] by getting rid of the

type machinery and the extension of the defined method to the βη-reduction.

As explained above, the main lines of our method are as follows:

• Defining simple developments;

• Proving the confluence of a simple calculus w.r.t. the considered reduction (β

or βη) using a method based on saturated sets (e.g., reducibility in Ghilezan
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and Kunčak’s method);

• Proving the confluence of the defined developments;

• Proving the equality between the reflexive and transitive closure of the devel-

opments and the reflexive and transitive closure of the considered reduction;

• Proving that the untyped λ-calculus satisfies CR w.r.t. a given reduction,

simulating the considered reduction using developments.

5.3 Comparison with Tait and Martin-Löf’s method

Tait and Martin-Löf’s proof [102, 5] (and its extensions by, e.g., example Taka-

hashi [131]) of the confluence of the untyped λ-calculus is, to the best of our knowl-

edge, the simplest. Our method started from the semantic framework (based on a

type interpretation) when we attempted to simplify and generalise existing seman-

tic proofs. It turned out that our simplification and generalisation of such semantic

proofs led to the method presented in this document which does not require types

anymore. Hence, the type interpretation and the reducibility argument are no longer

used in our method. Thus, our method shifted from the semantic camp to the purely

syntactic one. Nonetheless, our method can still be projected into a semantic method

(something that is not obvious for methods like those of Tait and Martin-Löf, and

Takahashi). We therefore consider our work to be a bridge between the syntactic

and semantic methods. There is another notable difference with our method: our

developments allow strictly more reductions than those of Takahashi (for both the

β and βη cases) as we establish in this section.

Definition 5.3.1 (Takahashi [131]). Let r ∈ {β, βη}. We define ⇒r as follows:

• M ⇒r M

• λx.M ⇒r λx.N if M ⇒r N

• MN ⇒r M
′N ′ if M ⇒r M

′ and N ⇒r N
′

• (λx.M)N ⇒r M
′[x := N ′] if M ⇒r M

′ and N ⇒r N
′

• λx.Mx⇒βη N if x 6∈ fv(M) and M ⇒βη N

Let us now prove that developments as defined by Takahashi (and Tait and

Martin-Löf for the β-case) are developments w.r.t. our notion of developments.

Lemma 5.3.2.

1. If M ⇒β N or M ⇒βη N then fv(N) ⊆ fv(M).
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2. Let M,N such that c 6∈ fv(M) ∪ fv(N). If M ⇒β N then M →1 N .

3. Let M,N such that c 6∈ fv(M) ∪ fv(N). If M ⇒βη N then M →2 N .

Proof. 2. Let M ⇒β N . The proof is by induction on the size of the derivation of

M ⇒β N and then by case on the last rule of the derivation.

3. LetM ⇒βη N . The proof is by induction on the size of the derivation ofM ⇒βη N

and then by case on the last rule of the derivation.

Remark 5.3.3.

1. We have M = (λx.xx)((λz.z)y) →1 y((λz.z)y) because by definition of a β-

development (→1): Ψc(M) = (λx.cxx)((λz.z)y) →β c((λz.z)y))((λz.z)y) →β

cy((λz.z)y) →c y((λz.z)y), where c 6∈ {x, y, z}. But, we do not have M ⇒β

y((λz.z)y).

2. We have M = λx.y((λz.z)x) →2 y because by definition of a βη-development

(→2): Ψc(M) = λx.cy((λz.z)x) →β λx.cyx →η cy →c y, where c 6∈ {x, y, z}.

But, we do not have M ⇒βη y.
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Introduction

6.1 Expansion

6.1.1 Introduction of the expansion mechanism

Expansion was introduced at the end of the 1970s as a crucial procedure for calcu-

lating principal typings for λ-terms in type systems with intersection types (see

Sec. 2.4.2), allowing support for compositional type inference. Coppo, Dezani,

and Venneri [27] introduced the operation of expansion on typings (pairs of a

type environment and a result type) for calculating the possible typings of a term

when using intersection types. As a simple example, there exists an intersection

type system S where the λ-term M = (λx.x(λy.yz)) can be assigned the typing

Φ1 = 〈{z 7→ a}, (((a�b)�b)�c)�c〉, which happens to be its principal typing in S.

The term M can also be assigned the typing Φ2 = 〈s{z 7→ a1⊓a2}, ((((a1�b1)�b1)⊓

((a2�b2)�b2))�c)�c〉, and an expansion operation can yield Φ2 from Φ1.

6.1.2 Expansion variables

Because the early definitions of expansion were complicated, E-variables were in-

troduced in order to make the calculations easier to mechanize and reason about.

For example, in System E [19], the typing Φ1 presented above is replaced by Φ3 =

〈{z 7→ ea}, ((e((a�b)�b))�c)�c〉, which differs from Φ1 by the insertion of the E-

variable e at two places (in both components of the Φ3), and Φ2 can be obtained from

Φ3 by substituting for e the expansion term E = (a := a1, b := b1)⊓(a := a2, b := b2).

Carlier and Wells [20] have surveyed the history of expansion and also E-variables.
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6.2 Type interpretation

6.2.1 Designing a space of meanings for expansion variables

In many kinds of semantics, a type T is interpreted by a second order function [T ]ν

that takes two parameters, the type T and also a valuation ν that assigns to type

variables the same kind of meanings that are assigned to types. To extend this idea

to types with E-variables, we need to devise some space of possible meanings for E-

variables. Given that a type eT can be turned by expansion into a new type S1(T )⊓

S2(T ), where S1 and S2 are arbitrary substitutions (which can themselves introduce

expansions), and that this can introduce an unbound number of new variables (both

E-variables and regular type variables), the situation is complicated. Because it is

unclear how to devise a space of meanings for expansions and E-variables, we instead

restrict ourselves to E-variables and develop a space of meanings for types that is

hierarchical in the sense that we can split it w.r.t. a certain concept of degree.

Although this idea is not perfect, it seems to go quite far in giving an intuition for

E-variables, namely that each E-variable occurring in a typing associated with a λ-

term, acts as a capsule that isolates parts of the λ-term. As future work, we wish to

come up with a higher order function that interprets types involving expansion terms

by sets of λ-terms. We believe this function would help regarding the substitution

mechanism introduced by expansion in terms of λ-expressions.

6.2.2 Our semantic approach

The semantic approach we use in the current document is a realisability semantics

in the sense that it is derived from Kreisel’s modified realisability and its variants,

where “a formula “x realizes A” can be defined in a completely straightforward way:

the type of the variable x is determined by the logical form of A” [113], x being the

code of a function. Our semantics is strongly related to the semantic argument

used in reducibility methods as used and developed by Tait [130] and many others

after him [96, 93, 44, 43, 45, 46]. Atomic types (e.g., type variables) are interpreted

as saturated sets of λ-terms, meaning that they are closed under β-expansion (the

inverse of β-reduction). Arrow types are interpreted by function spaces (see the

semantics provided by Scott in the open problems published in the proceedings of the

Lecture Notes in Computer Science symposium held in 1975 [13]) and intersection

types are interpreted by set intersections. Such a realisability semantics allows one

to prove soundness w.r.t. a type system S, i.e., the meaning of a type T contains

all closed λ-terms that can be assigned T in S. This has been shown useful for

characterising the behaviour of typed λ-terms [96]. One also wants to show the

converse of soundness which is called completeness, i.e., every closed λ-term in the

meaning of T can be assigned T in S.
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6.2.3 Completeness results

Hindley [70, 71, 72] was one of the first to investigate such completeness results

for a simple type system and he showed that all the types of that system have the

completeness property. He then generalised his completeness proof to an intersection

type system [69]. Using his completeness theorem based on saturated sets of λ-

terms w.r.t. βη-equivalence, Hindley showed that simple types were “realised”1 by

all and only the λ-terms which are typable by these types. Note that Hindley’s

completeness theorems were established with the sets of λ-terms saturated by βη-

equivalence. In the present document, our completeness result depends only on the

weaker requirement of β-equivalence, and we have managed to make simpler proofs

that avoid needing η-reduction, confluence, or SN (although we do establish both

confluence and SN for both β and βη).

6.2.4 Similar approaches to type interpretation

Recent work on realisability related to ours include that by Labib-Sami [97], Farkh

and Nour [40], and Coquand [29], although none of this work deals with intersection

types or E-variables. Similar work on realisability dealing with intersection types

includes that by Kamareddine and Nour [80], which gives a sound and complete

realisability semantics w.r.t. an intersection type system. This system does not

deal with E-variables and is therefore different from the three hierarchical systems

presented in this document.

6.3 Towards a semantics of expansion

Initially, we aimed to give a realisability semantics for a system of expansions pro-

posed by Carlier and Wells [20]. In order to simplify our study, we considered the

system with expansion variables but without the expansion rewriting rules (with-

out the expansion mechanism). In essence, this meant that the type syntax was:

T ∈ Ty ::= a | ω | T1�T2 | T1 ⊓ T2 | eT where a is a type variable ranging over

a countably infinite type variable set TyVar and e is an expansion variable ranging

over a countably infinite expansion variable set ExpVar, and that the typing rules

were as follows:

1We say that a λ-term M “realises” a type T if M is in T ’s interpretation. Hindley’s semantics
is not a realisability semantics but it bears some resemblance with modified realisability. One of
Hindley’s semantics is called “the simple semantics” and is based on the concept of model of the
untyped λ-calculus [73]. Our type interpretation is also similar to Hindley’s[69].
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x : 〈{x 7→ T} ⊢ T 〉
(var)

M : 〈∅ ⊢ ω〉
(ω)

M : 〈Γ ⊎ {x 7→ T1} ⊢ T2〉

λx.M : 〈Γ ⊢ T1�T2〉
(abs)

M1 : 〈Γ1 ⊢ T1�T2〉 M2 : 〈Γ2 ⊢ T1〉

M1M2 : 〈Γ1 ⊓ Γ2 ⊢ T2〉
(app)

M : 〈Γ1 ⊢ T1〉 M : 〈Γ2 ⊢ T2〉

M : 〈Γ1 ⊓ Γ2 ⊢ T1 ⊓ T2〉
(⊓)

M : 〈Γ ⊢ T 〉

M : 〈eΓ ⊢ eT 〉
(e-app)

To provide a realisability semantics for this system, we needed to define the

interpretation of a type to be a set of terms having this type. For our semantics

to be informative on expansion variables, we needed to distinguish between the

interpretation of T and eT . However, in the typing rule (e-app) presented above,

the term M is unchanged and this poses difficulties. For this reason, we modified

slightly the above type system by indexing the terms of the λ-calculus giving us the

following syntax of terms: M ::= xi | (MN) | (λxi.M) (where M and N need to

satisfy a certain condition before (MN) is allowed to be a term) and by slightly

changing our type rules and in particular rule (e-app):

M : 〈Γ ⊢ U〉

M+ : 〈eΓ ⊢ eU〉
(e-app)

In this new (e-app) rule, M+ isM where all the indices are increased by 1. Obviously

these indices needed a revision regarding β-reduction and the typing rules in order to

preserve the desirable properties of the type system and the realisability semantics.

For this, we defined the good terms and the good types and showed that these

notions go hand in hand (e.g., good types can only be assigned to good terms).

We developed a realisability semantics where each use of an E-variable in a

type corresponds to an index at which evaluation occurs in the λ-terms that are

assigned the type. This was an elegant solution that captured the intuition behind

E-variables. However, in order for this new type system to behave well, it was

necessary to consider λI-terms only (removing a subterm from M also removes

important information about M as in the reduction (λx.y)M →β y where M is

thrown away). It was also necessary to drop the universal type ω completely. This

led us to the introduction of the λIN-calculus and to our first type system ⊢1 for

which we developed a sound realisability semantics for E-variables.

However, although the first type system ⊢1 is crucial to understand the intuition

behind the indexing we propose, the realisability semantics we proposed was not

complete w.r.t. ⊢1 (subject reduction does not hold either). For this reason, we

modified our system ⊢1 by considering a smaller set of types (where intersections

and expansions cannot occur directly to the right of an arrow), and by adding

subtyping rules. This new type system ⊢2 has subject reduction. Our semantics

turned out to be sound w.r.t. ⊢2. As for completeness, we needed to limit the list

of expansion variables to a single element list. This completeness issue for ⊢2 comes

from the fact that the natural numbers as indexes do not allow one to differentiate
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between the types e1T and e2T if e1 6= e2. Again, we were forced to revise our type

system. We decided to restrict our λ-terms by indexing them by lists of natural

numbers (where each natural number represents a difference expansion variable).

We updated the type system ⊢2 in consequence to obtain the type system ⊢3 based

among other things on the following new (e-app) rule:

M : 〈Γ ⊢ U〉

M+i : 〈eΓ ⊢ eU〉
(e-app)

where i is the natural number associated with the expansion variable e and where

M+i is M where all the lists of natural numbers are augmented with i. This new

rule (e-app) allows us to distinguish the interpretations of the types e1T and e2T

when e1 6= e2. Furthermore, our λ-terms are constructed in such a way that K-

reductions do not limit the information on the reduced terms (as in the λIN-calculus,

β-reduction is not always allowed, and in addition we impose further restriction on

applications and abstractions). In order to obtain completeness in presence of the

ω-rule, we also consider ω indexed by lists. This means that the new calculus

becomes rather heavy but this seems unavoidable. It is needed to obtain a complete

realisability semantics where an arbitrary (possibly infinite) number of expansion

variables is allowed and where ω is present. The use of lists complicates matters

and hence, needs to be understood in the context of the first semantics where indices

are natural numbers rather than lists of natural numbers. In addition to the above,

we have considered three saturation notions (in line with the literature) illustrating

that these notions behave well in our complete realisability semantics.

6.4 Road map

Sec. 7.1 gives the syntax of the indexed calculi considered in this document: the

λIN-calculus, which is the λI-calculus with each variable annotated by a natural

number called a degree or index, and the λLN-calculus which is the full λ-calculus

(where K-redexes are allowed) indexed with finite sequences of natural numbers. We

show the confluence of β, βη and weak head h-reduction on our indexed λ-calculi.

Sec. 7.2 introduces the syntax and terminology for types used in both indexed cal-

culi. Sec. 7.3 introduces our three intersection type systems with E-variables ⊢i

for i ∈ {1, 2, 3}, where in the first one, the syntax of types is not restricted (and

hence subject reduction fails) but in the other two it is restricted but then the sys-

tems are extended with a subtyping relation. In Sec. 7.4.1 and Sec. 7.4.2 we study

the properties of our three type systems including subject reduction and expansion

with respect to our various reduction relations (β, βη, h). Sec. 8.1 introduces our

realisability semantics and show its soundness w.r.t. each of the three considered

type systems (and for each reduction relation). Sec. 8.2 establishes the challenges

54



Chapter 6. Introduction

of showing completeness of the realisability semantics designed for the first two sys-

tems. We show that completeness does not hold for the first system and that it

also does not hold for the second system if more than one expansion variable is

used, but does hold for a restriction of this system to one single E-variable. This is

already an important step in the study of the semantics of intersection type systems

with expansion variables since a single expansion variable can be used many times

and can occur nested. Sec. 8.3 establishes the completeness of a given realisability

semantics w.r.t. ⊢3 by introducing a special interpretation. We conclude in Sec. 9

and proofs are presented in Appendix B.
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The λIN and λLN calculi and

associated type systems

7.1 The syntax of the indexed λ-calculi

Definition 7.1.1 (Indices). We introduce two kinds of indices: natural numbers

for our first semantics and sequences of natural numbers for our second semantics.

Let LN = tuple(N). We let I , J , range over indices. The metavariables I and J will

range over N when considering the λIN-calculus and over LN when considering the

λLN-calculus (both these calculus are defined below). Let L,K ,R range over LN. We

sometimes write 〈n1, . . . , nm〉 as (n1, . . . , nm) or as (ni)1≤i≤m or as (ni)m. We denote

⊘ the empty sequence of natural numbers (⊘ stands for 〈〉). Let :: add an element

to a sequence: j :: (n1, . . . , nm) = (j, n1, . . . , nm). We sometimes write L1@L2 as

L1 :: L2. We define the relation � and � on LN as follows: L1 � L2 (or L2 � L1) iff

there exists L3 ∈ LN such that L2 = L1 :: L3.

Lemma 7.1.2. � is a partial order on LN.

The set Var is the same λ-term variable set as defined in Sec. 2.3.1.

We define below two indexed calculi: the λIN-calculus (whose set of terms isM1

as well as M2 for notational reasons) and the λLN-calculus (whose set of terms is

M3). As obvious, indices in λIN are simple but only allow the I-part of the calculus.

We let M,N, P,Q,R range over any of M1, M2, and M3 (we make explicit

when a term is taken from either one of these sets). We use = for syntactic equality.

We assume the usual definition of subterms (see Barendregt [5] and Krivine [96])

and the usual convention for parentheses and their omission (see Sec. 2.3.1). We

also consider in this part an extension of the function fv that gathers the indexed

λ-term variables occurring free in terms (redefined below).

The joinability M ⋄ N of terms M and N ensures that in any term in which

M and N occur, each variable has a unique index (note that it is more accurate to
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include this as part of the simultaneous inductions in Def. 7.1.4 and 7.1.7 defining

M1,M2, andM3, but for clarity, we define it separately here).

Definition 7.1.3 (Joinability ⋄). Let i ∈ {1, 2, 3}.

• Let M,N be terms of λIN (resp. λLN) and let fv(M) and fv(N) be the corre-

sponding free variables. We say that M and N are joinable and write M ⋄N

iff for all x ∈ Var, if xL1 ∈ fv(M) and xL2 ∈ fv(N) (where L1,L2 ∈ N (resp.

∈ LN)) then L1 = L2.

• If M ⊆Mi such that ∀M,N ∈ M . M ⋄N , we write ⋄M .

• If M ⊆Mi and M ∈Mi such that ∀N ∈ M . M ⋄N , we write M ⋄M .

Now we give the syntax of λIN, an indexed version of the λI-calculus where

indices (which range over N) help categorise the good terms where the degree of a

function is never larger than that of its argument. This amounts to having the full

λI-calculus at each index and creating new λI-terms through a mixing recipe. Note

that one could also define λIN by dividing Var into an countably infinite number of

sets and by defining a bijective function that associates a unique index with each of

these sets. We did not choose to do so because we believe explicitly writing down

indexes to be clearer.

Definition 7.1.4 (The set of terms M1 (also called M2)). The set of terms M1,

M2 (where M1 =M2), the set of free variables fv(M) of M ∈ M2 and the degree

deg(M) of a term M , are defined by simultaneous induction:

• If x ∈ Var and n ∈ N then xn ∈M2, fv(xn) = {xn}, and deg(xn) = n.

• If M,N ∈ M2 such that M ⋄N (see Def. 7.1.3) then MN ∈ M2, fv(MN) =

fv(M) ∪ fv(N) and deg(MN) = min(deg(M), deg(N)) (where min returns the

smallest of its arguments).

• If M ∈ M2 and xn ∈ fv(M) then λxn.M ∈ M2, fv(λxn.M) = fv(M) \ {xn},

and deg(λxn.M1) = deg(M1).

Let ix ∈ IVar2 ::= xn and IVar1 = IVar2. For each n ∈ N, let Mn
2 = {M ∈ M2 |

deg(M) = n}. Note that a subterm of M ∈ M2 is also in M2. Closed terms are

defined as in Sec. 2.3.1. Let closed(M) be true iff M is closed, i.e., iff fv(M) = ∅.

Here is now the syntax of good terms in the λIN-calculus.

Definition 7.1.5 (The set of good terms M ⊂M2).

1. The set of good terms M ⊂M2 is defined by:

• If x ∈ Var and n ∈ N then xn ∈M.
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• If M,N ∈M, M ⋄N , and deg(M) ≤ deg(N) then MN ∈M.

• If M ∈M and xn ∈ fv(M) then λxn.M ∈M.

Note that a subterm of M ∈M is also in M.

2. For each n ∈ N, we let M
n = M ∩Mn

2

Lemma 7.1.6.

1. (M ∈M and xn ∈ fv(M)) iff λxn.M ∈M.

2. (M1,M2 ∈M, M1 ⋄M2 and deg(M1) ≤ deg(M2)) iff M1M2 ∈M.

Now, we give the syntax of λLN. Note that in M3, an application MN is only

allowed when deg(M) � deg(N). This restriction did not exist in λIN (in M2’s

definition). Furthermore, we only allow abstractions of the form λxL.M in λLN

when L � deg(M) (a similar restriction holds in λIN since it is a variant of the

λI-calculus). The elegance of λIN is the ability to give the syntax of good terms,

which is not obvious in λLN.

Definition 7.1.7 (The set of termsM3). The set of termsM3, the set of free vari-

ables fv(M) and degree deg(M) of M ∈ M3 are defined by simultaneous induction:

• If x ∈ Var and L ∈ LN then xL ∈M3, fv(xL) = {xL}, and deg(xL) = L.

• If M,N ∈M3, deg(M) � deg(N), and M ⋄N (see Def. 7.1.3) then MN ∈M3,

fv(MN) = fv(M) ∪ fv(N) and deg(MN) = deg(M).

• If x ∈ Var, M ∈ M3, and L � deg(M) then λxL.M ∈ M3, fv(λxL.M) =

fv(M) \ {xL} and deg(λxL.M) = deg(M).

Let ix ∈ IVar3 ::= xL. Note that each subterm of M ∈ M3 is also in M3. Closed

terms are defined as in Sec. 2.3.1. Let closed(M) be true iff M is closed, i.e., iff

fv(M) = ∅.

In our systems, expansions change the degree of a term. Therefore we define

functions to increase and decrease indexes in terms. The next definitions turn terms

of degree n into terms of higher degrees and also, if n > 0, they can be turned

into terms of lower degrees. Note that both the increasing and the decreasing func-

tions are well behaved operations with respect to all that matters (free variables,

reduction, joinability, substitution, etc.).

Definition 7.1.8.

1. For each n ∈ N, letM≥n
2 = {M ∈ M2 | deg(M) ≥ n} andM>n

2 =M≥n+1
2 .

2. We define + (∈M2 →M2) and − (∈M>0
2 →M2) as follows:
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(xn)+ = xn+1 (M1M2)
+ = M1

+M2
+ (λxn.M)+ = λxn+1.M+

(xn)− = xn−1 (M1M2)
− = M1

−M2
− (λxn.M)− = λxn−1.M−

3. Let M ⊆M2. If ∀M ∈ M . deg(M) > 0, we write deg(M ) > 0. Also:

(M )+ = {M+ |M ∈M } If deg(M ) > 0, (M )− = {M− |M ∈ M }

4. We define M−n by induction on deg(M) ≥ n > 0. If n = 0 then M−n = M

and if n ≥ 0 then M−(n+1) = (M−n)−.

Definition 7.1.9. Let i ∈ N and M ∈ M3.

1. For each L ∈ LN, let:

ML
3 = {M ∈M3 | deg(M) = L} M≥L

3 = {M ∈M3 | deg(M) � L}

2. We define M+i as follows:

(xL)+i = xi::L (M1M2)
+i = M+i

1 M+i
2 (λxL.M)+i = λxi::L.M+i

3. If deg(M) = i :: L, we define M−i as follows:

(xi::L)−i = xL (M1M2)
−i = M−i

1 M−i
2 (λxi::L′

.M)−i = λxL′

.M−i

4. Let M ⊆M3. Let (M )+i = {M+i |M ∈ M }.

Note that (M 1 ∩M 2)
+i = (M 1)

+i ∩ (M 2)
+i.

Definition 7.1.10 (Substitution, alpha conversion, compatibility, reduction).

• Let M,N1, . . . , Nn be terms of λIN (resp. λLN) and I1, . . . , In ∈ N (resp. LN).

The simultaneous substitution M [xI1
1 := N1, . . . , x

In
n := Nn] of Ni for all free

occurrences of xIi

i in M , where i ∈ {1, . . . , n}, is defined as a partial substitu-

tion satisfying these conditions:

– ⋄M where M = {M} ∪ {Ni | i ∈ {1, . . . , n}}.

– ∀i ∈ {1, . . . , n}. deg(Ni) = Ii
1.

We sometimes write M [xI1
1 := N1, . . . , x

In
n := Nn] as M [(xIi

i := Ni)1≤i≤n] (or

simply M [(xIi
i := Ni)n]).

• In λIN (resp. λLN), we take terms modulo α-conversion given by: λxI .M =

λyI .(M [xI := yI ]) where ∀I ′. yI ′ 6∈ fv(M) (where I , I ′ ∈ N (resp. LN)).

1We can prove the following lemma: if M = {M} ∪ {Nj | j ∈ {1, . . . , n}} then we have (⋄M

and ∀j ∈ {1, . . . , n}. deg(Nj) = Ij) iff M [xI1
1 := N1, . . . , x

In

n := Nn] ∈Mi where i ∈ {1, 2, 3}.
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• Let i ∈ {1, 2, 3}. We say that a relation on Mi is compatible iff for all

M,N, P ∈Mi:

– (iabs): If M rel N and λxI .M, λxI .N ∈Mi then (λxI .M) rel (λxI .N).

– (iapp1): If M rel N and MP,NP ∈Mi then MP rel NP .

– (iapp2): If M rel N , and PM,PN ∈Mi then PM rel PN .

• Let i ∈ {1, 2, 3}. The reduction relation _β on Mi is defined as the least

compatible relation closed under the rule: (λxI .M)N _β M [xI := N ] if

deg(N) = I .

• Let i ∈ {1, 2, 3}. The reduction relation _η on Mi is defined as the least

compatible relation closed under the rule: λxI .MxI _η M if xI 6∈ fv(M).

• Let i ∈ {1, 2, 3}. The weak head reduction _h on Mi is defined as the least

relation closed by rule (iapp2) presented above and also by the following rule:

(λxI .M)N _h M [xI := N ] if deg(N) = I .

• Let _βη=_β ∪_η.

• For a reduction relation _r, we denote by _∗
r the reflexive (w.r.t. Mi) and

transitive closure of _r. We denote by ≃r the equivalence relation induced

by _∗
r (symmetric closure).

The next theorem states that reductions do not introduce new free variables and

preserve the degree of a term.

Theorem 7.1.11. Let i ∈ {1, 2, 3}, M ∈Mi, and r ∈ {β, βη, h}.

1. If M _∗
η N then fv(N) = fv(M) and deg(M) = deg(N).

2. If i = 3 and M _∗
r N then fv(N) ⊆ fv(M) and deg(M) = deg(N).

3. If i 6= 3 and M _∗
β N then fv(M) = fv(N), deg(M) = deg(N), and M ∈ M

iff N ∈ M.

Proof. 1. By induction on M _∗
η N . 2. Case r = β, by induction on M _∗

β N .

Case r = βη, by the β and η cases. Case r = h, by the β case. 3. By induction on

M _∗
β N .

Normal forms are defined as usual.

Definition 7.1.12 (Normal forms). Let i ∈ {1, 2, 3} and r ∈ {β, βη, h}.

• M ∈Mi is in r-normal form if there is no N ∈Mi such that M _r N .
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• M ∈Mi is r-normalising if there is an N ∈Mi such that M _∗
r N and N is

in r-normal.

Finally, the indexed lambda calculi are confluent w.r.t. β-, βη- and h-reductions:

Theorem 7.1.13 (Confluence). Let i ∈ {1, 2, 3}, M,M1,M2 ∈ Mi, and r ∈

{β, βη, h}.

1. If M _∗
r M1 and M _∗

r M2 then there is M ′ ∈Mi such that M1 _∗
r M

′ and

M2 _∗
r M

′.

2. M1 ≃r M2 iff there is a term M ∈Mi such that M1 _∗
r M and M2 _∗

r M .

Proof. We establish the confluence using the parallel reduction method. Full details

can be found Appendix B.

7.2 The types of the indexed calculi

Let us start by defining type variables and expansion variables.

Definition 7.2.1 (Type variables and expansion variables). We assume that a, b

range over a countably infinite set of type variables TyVar, and that e ranges over a

countably infinite set of expansion variables ExpVar = {e0, e1, . . . }.

With each expansion variable we associate a unique natural number which is the

subscript of the expansion variable. Instead of explicitly naming the elements in

ExpVar, we could also have considered a bijective function from expansion variables

to natural numbers in order to associate a unique natural number with each expan-

sion variable. We have decided not to do so for clarity reason. Our solution avoids

defining an extra function.

For λIN, we study two type systems (none of which has the ω-type). In the first,

there are no restrictions on where intersection types and expansion variables occur

(see set ITy1 defined below). In the second, intersections and expansions cannot

occur directly to the right of an arrow (see set ITy2 defined below).

Definition 7.2.2 (Types, good types and degree of a type for λIN).

• The type set ITy1 is defined as follows:

T,U, V,W ∈ ITy1 ::= a | U1�U2 | U1 ⊓ U2 | eU

The type sets Ty2 and ITy2 are defined as follows (note that Ty2 ⊆ ITy2 ⊆ ITy1):

T ∈Ty2 ::= a | U�T

U, V,W ∈ ITy2 ::=U1 ⊓ U2 | eU | T
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• We define a function deg (∈ ITy1 → N) by (hence deg is also defined on ITy2):

deg(a) = 0

deg(eU) = deg(U) + 1

deg(U�T ) = min(deg(U), deg(T ))

deg(U ⊓ V ) = min(deg(U), deg(V ))

• We define the set GITy which is the set of good ITy1 types as follow (this also

defines the set of good ITy2 types: GITy ∩ ITy2):

a ∈ TyVar ⇒⇒⇒ a ∈ GITy

U ∈ GITy ∧∧∧ e ∈ ExpVar ⇒⇒⇒ eU ∈ GITy

U, T ∈ GITy ∧∧∧ deg(U) ≥ deg(T )⇒⇒⇒U�T ∈ GITy

U, V ∈ GITy∧∧∧ deg(U) = deg(V )⇒⇒⇒U ⊓ V ∈ GITy

When U ∈ GITy, we sometimes say that U is good.

Let n ≤ m. Let ~ei(n:m)U or ~eLU where L = (in, . . . , im) denote ein . . . einU . Also,

let ~ei(n:m),jU denote e〈n,j〉 . . . e〈m,j〉U . We consider the application of an expansion

variable to a type (eU) to have higher precedence than ⊓ which itself has higher

precedence than �. In all our type systems, we quotient types by taking ⊓ to be

commutative (i.e., U1⊓U2 = U2⊓U1), associative (i.e., U1⊓(U2⊓U3) = (U1⊓U2)⊓U3)

and idempotent (i.e., U ⊓ U = U), by assuming the distributivity of expansion

variables over ⊓ (i.e., e(U1 ⊓ U2) = eU1 ⊓ eU2). We denote Un ⊓ . . . ⊓ Um by ⊓m
i=nU

(when n ≤ m).

The next lemma states when arrow, intersection and applications of expansion

variables to types are good.

Lemma 7.2.3.

1. On ITy1 (hence on ITy2), we have the following:

(a) (U, T ∈ GITy and deg(U) ≥ deg(T )) iff U�T ∈ GITy.

(b) (U, V ∈ GITy and deg(U) = deg(V )) iff U ⊓ V ∈ GITy.

(c) U ∈ GITy iff eU ∈ GITy.

2. On ITy2, we have in addition the following:

(a) If T ∈ Ty2 then deg(T ) = 0.

(b) If deg(U) = n then U is of the form ⊓m
i=1~ej(1:n),iVi such that m ≥ 1 and

∃i ∈ {1, . . . , m}. Vi ∈ Ty2.

(c) If U ∈ GITy and deg(U) = n then U is of the form ⊓m
i=1~ej(1:n),iTi such

that m ≥ 1 and ∀i ∈ {1, . . . , m}. Ti ∈ Ty2 ∩ GITy.

(d) U, T ∈ GITy iff U�T ∈ GITy (in ITy2 and ITy3).
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For λLN, we study a type system (with the universal type ω). In this type

system, in order to get subject reduction and hence completeness, intersections and

expansions cannot occur directly to the right of an arrow (see ITy3 below). Note

that the type sets ITy3 and Ty3 defined below are far more restricted than the type

sets considered for the λIN-calculus and that we do not have the luxury of giving a

separate syntax for good types. Note also that the definitions of degrees and types

are simultaneous (unlike for ITy2 and Ty2 where types were defined without any

reference to degrees).

Definition 7.2.4 (Types and degrees of types for λLN).

• We define the two sets of types Ty3 and ITy3 such that Ty3 ⊆ ITy3, and a

function deg (∈ ITy3 → LN) by simultaneous induction as follows:

– If a ∈ TyVar then a ∈ Ty3 and deg(a) = ⊘.

– If U ∈ ITy3 and T ∈ Ty3 then U�T ∈ Ty3 and deg(U�T ) = ⊘.

– If L ∈ LN then ωL ∈ ITy3 and deg(ωL) = L.

– If U1, U2 ∈ ITy3 and deg(U1) = deg(U2) then U1 ⊓U2 ∈ ITy3 and deg(U1 ⊓

U2) = deg(U1) = deg(U2).

– U ∈ ITy3 and ei ∈ ExpVar then eiU ∈ ITy3 and deg(eiU) = i :: deg(U).

Note that deg uses the subscript of expansion variables in order to keep track

of the expansion variables contributing to the degree of a type.

• We let T range over Ty3, and U, V,W range over ITy3. We quotient types

further by having ωL as a neutral (i.e., ωL ⊓U = U). We also assume that for

all i ≥ 0 and L ∈ LN, eiω
L = ωi::L.

All our type systems use the following definition (of course within the corre-

sponding calculus, with the corresponding indices and types):

Definition 7.2.5 (Environments and typings).

• Let k ∈ {1, 2, 3}. We define the three sets of type environments TyEnv1,

TyEnv2, and TyEnv3 as follows: Γ,∆ ∈ TyEnvk = Vark → ITyk. When writing

environments, we sometimes write x : y instead of x 7→ y. We sometimes

write {xI1
1 7→U1, . . . , x

In
n 7→Un} as xI1

1 : U1, . . . , x
In
n : Un or as (xIi

i : Ui)n. We

sometimes write () for the empty environment ∅. If dj(dom(Γ1), dom(Γ2)), we

write Γ1,Γ2 for Γ1 ∪ Γ2.

• We say that Γ1 and Γ2 are joinable and write Γ1 ⋄Γ2 iff (∀xI1 ∈ dom(Γ1). x
I2 ∈

dom(Γ2)⇒⇒⇒ I1 = I2).

• We say that Γ is OK and write ok(Γ) iff ∀xI ∈ dom(Γ). deg(Γ(xI )) = I .
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• Let Γ1 = Γ′
1⊎Γ′′

1 and Γ2 = Γ′
2⊎Γ′′

2 such that dj(dom(Γ′′
1), dom(Γ′′

2)), dom(Γ′
1) =

dom(Γ′
2), and ∀xI ∈ dom(Γ′

1). deg(Γ′
1(x

I )) = deg(Γ′
2(x

I )). We denote Γ1 ⊓ Γ2

the type environment {xI 7→Γ′
1(x

I ) ⊓ Γ′
2(x

I ) | xI ∈ dom(Γ′
1)} ∪ Γ′′

1 ∪ Γ′′
2. Note

that dom(Γ1 ⊓ Γ2) = dom(Γ1) ∪ dom(Γ2) and that, on environments, ⊓ is

commutative, associative and idempotent.

• In λIN (i.e., on TyEnv1 and TyEnv2), we define the set of good type envi-

ronments as follows: GTyEnv = {Γ | ∀xI ∈ dom(Γ). Γ(xI ) ∈ GITy}. If

Γ = (xni

i : Ui)m then let deg(Γ) = min(n1, . . . , nm, deg(U1), . . . , deg(Um)). Let

eΓ = {xn+1 7→ eΓ(xn) | xn ∈ dom(Γ)}. So e(Γ1 ⊓ Γ2) = eΓ1 ⊓ eΓ2.

• In λLN (i.e., on TyEnv3), if M ∈ M3 and fv(M) = {xL1

1 , . . . , x
Ln
n } then let

envø
M be the type environment (xLi

i : ωLi)n. For all ej ∈ ExpVar, let ejΓ =

{xj::L 7→ ejΓ(xL) | xL ∈ dom(Γ)}. Note that e(Γ1 ⊓ Γ2) = eΓ1 ⊓ eΓ2. If

Γ = (xLi

i : Ui)n and s = {L | ∀i ∈ {1, . . . , n}. L � Li ∧ L � deg(Ui)} then

deg(Γ) = L such that L ∈ s and ∀L′ ∈ s. L′ � L.

As we did for terms, we decrease the indexes of types and environments.

Definition 7.2.6 (Degree decreasing in λIN).

• If deg(U) > 0 then we inductively define the type U− as follows:

(U1 ⊓ U2)
− = U1

− ⊓ U2
− (eU)− = U

If deg(U) ≥ n then we inductively define the type U−n as follows:

U−0 = U U−(n+1) = (U−n)−

• If deg(Γ) > 0 then let Γ− = {xn−1 7→Γ(xn)− | xn ∈ dom(Γ)}.

If deg(Γ) ≥ n then we inductively define the type Γ−n as follows:

Γ−0 = Γ Γ−(n+1) = (Γ−n)−.

Definition 7.2.7 (Degree decreasing in λLN).

1. If deg(U) � L then U−L is inductively defined as follows:

U−⊘ = U (U1 ⊓ U2)
−i::L′

= U−i::L′

1 ⊓ U−i::L′

2 (eiU)−i::L′

= U−L′

We write U−i instead of U−(i).

2. If Γ = (xLi

i : Ui)m and deg(Γ) � L then by definition ∀i ∈ {1, . . . , m}. Li =

L :: L′
i∧L � deg(Ui), and we define Γ−L = (xL′

i : U−L
i )m. We write Γ−i instead

of Γ−(i).
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Let i ∈ {1, 2}. In ⊢1, U and T range over ITy1. In ⊢2, U ranges over ITy2 and T
ranges only over Ty2.

T ∈ GITy deg(T ) = n

xn : 〈(xn : T ) ⊢1 T 〉
(ax)

T ∈ GITy

x0 : 〈(x0 : T ) ⊢2 T 〉
(ax)

M : 〈Γ, (xn : U) ⊢i T 〉

λxn.M : 〈Γ ⊢i U�T 〉
(�I)

M1 : 〈Γ1 ⊢i U�T 〉 M2 : 〈Γ2 ⊢i U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢i T 〉
(�E)

M : 〈Γ ⊢i U〉

M+ : 〈eΓ ⊢i eU〉
(exp)

M : 〈Γ1 ⊢i U1〉 M : 〈Γ2 ⊢i U2〉

M : 〈Γ1 ⊓ Γ2 ⊢i U1 ⊓ U2〉
(⊓I)

M : 〈Γ ⊢2 U〉 Γ ⊢2 U ⊑ Γ′ ⊢2 U
′

M : 〈Γ′ ⊢2 U
′〉

(⊑)

The following relation ⊑ is defined on ITy2, TyEnv2, and Typing2:

Ψ ⊑ Ψ
(ref)

Ψ1 ⊑ Ψ2 Ψ2 ⊑ Ψ3

Ψ1 ⊑ Ψ3
(tr)

U2 ∈ GITy deg(U1) = deg(U2)

U1 ⊓ U2 ⊑ U1
(⊓E)

U1 ⊑ V1 U2 ⊑ V2

U1 ⊓ U2 ⊑ V1 ⊓ V2
(⊓)

U2 ⊑ U1 T1 ⊑ T2

U1�T1 ⊑ U2�T2
(�)

U1 ⊑ U2

eU1 ⊑ eU2
(⊑exp)

U1 ⊑ U2 yn 6∈ dom(Γ)

Γ, (yn : U1) ⊑ Γ, (yn : U2)
(⊑c)

U1 ⊑ U2 Γ2 ⊑ Γ1

Γ1 ⊢2 U1 ⊑ Γ2 ⊢2 U2
(⊑〈〉)

Figure 7.1 Typing rules / Subtyping rules for ⊢1 and ⊢2

7.3 The type systems ⊢1 and ⊢2 for λIN and ⊢3 for

λLN

In this section we introduce our three type systems ⊢i for i ∈ {1, 2, 3}, our inter-

section type systems with expansion variables. The system ⊢1 uses the ITy1 types

and the TyEnv1 type environments, and is for λIN. The system ⊢2 uses the ITy2

types and the TyEnv2 type environments, and is for λIN. The system ⊢3 uses the

ITy3 types and the TyEnv3 type environments, and is for λLN. In ⊢1, types are not

restricted and subject reduction (SR) fails. In ⊢2, the syntax of types is restricted

(see ITy2’s definition), and in order to guarantee SR for this type system (and hence

completeness later on), we introduce a subtyping relation which allows intersection

type elimination (which does not hold in the first type system). In ⊢3, the syntax

of types is restricted further (see ITy3’s definition) so that completeness holds with

an arbitrary number of expansion variables.

Definition 7.3.1 (The type systems). Let i ∈ {1, 2, 3}. The type system ⊢i uses

the set ITyi of Def. 7.2.2 (for i ∈ {1, 2}) and 7.2.4 (for i = 3). The typing rules of ⊢1

and ⊢2 are given on the left of Fig. 7.12. In ⊢1, U and T range over ITy1, and Γ range

2The type system ⊢1 is the smallest relation closed by the rules presented on the left of Fig. 7.1
(and similarly for ⊢2).
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U ranges over ITy3 and T Ty3.

x⊘ : 〈(x⊘ : T ) ⊢3 T 〉
(ax)

M : 〈envø
M ⊢3 ω

deg(M)〉
(ω)

M : 〈Γ, (xL : U) ⊢3 T 〉

λxL.M : 〈Γ ⊢3 U�T 〉
(�I)

M : 〈Γ ⊢3 T 〉 xL 6∈ dom(Γ)

λxL.M : 〈Γ ⊢3 ω
L�T 〉

(�′
I)

M1 : 〈Γ1 ⊢3 U�T 〉 M2 : 〈Γ2 ⊢3 U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉
(�E)

M : 〈Γ ⊢3 U〉

M+j : 〈ejΓ ⊢3 ejU〉
(exp)

M : 〈Γ ⊢3 U1〉 M : 〈Γ ⊢3 U2〉

M : 〈Γ ⊢3 U1 ⊓ U2〉
(⊓I)

M : 〈Γ ⊢3 U〉 Γ ⊢3 U ⊑ Γ′ ⊢3 U
′

M : 〈Γ′ ⊢3 U
′〉

(⊑)

The following relation ⊑ is defined on ITy3, TyEnv3, and Typing3.

Ψ ⊑ Ψ
(ref)

Ψ1 ⊑ Ψ2 Ψ2 ⊑ Ψ3

Ψ1 ⊑ Ψ3
(tr)

deg(U1) = deg(U2)

U1 ⊓ U2 ⊑ U1
(⊓E)

U1 ⊑ V1 U2 ⊑ V2 deg(U1) = deg(U2)

U1 ⊓ U2 ⊑ V1 ⊓ V2
(⊓)

U2 ⊑ U1 T1 ⊑ T2

U1�T1 ⊑ U2�T2
(�)

U1 ⊑ U2

eU1 ⊑ eU2
(⊑exp)

U1 ⊑ U2 yL 6∈ dom(Γ)

Γ, yL : U1 ⊑ Γ, yL : U2

(⊑c)
U1 ⊑ U2 Γ2 ⊑ Γ1

Γ1 ⊢3 U1 ⊑ Γ2 ⊢3 U2
(⊑〈〉)

Figure 7.2 Typing rules / Subtyping rules for ⊢3

over TyEnv1. In ⊢2, U range over ITy2, T range over Ty2, and Γ range over TyEnv1.

The typing rules of ⊢3 are given on the left of Fig. 7.2. In both figures, the last

clause makes use of a subtyping relation ⊑ which is defined on ITy2 in Fig. 7.1 and

on ITy3 in Fig. 7.2. These subtyping relations are extended to type environments

and typings (defined below).

We define the three typing sets Typing1, Typing2, and Typing3 as follows: Φ ∈

Typingi ::= Γ ⊢i U , where Γ ∈ TyEnvi and U ∈ ITyi.

Let Sorts = ∪3
i=1{Typingi,TyEnvi, ITyi} and let Ψ range over ∪s∈Sortss.

We say that Γ is ⊢i-legal if there exist M,U such that M : 〈Γ ⊢i U〉.

Let j ∈ {1, 2}. Let GTyping = {Γ ⊢j U | Γ ∈ GTyEnv ∧ U ∈ GITy}. If

Φ ∈ GTyping then we say that Φ is good. Let deg(Γ ⊢j U) = min(deg(Γ), deg(U)).

If s = {L | L � deg(Γ)∧L � deg(U)} then deg(Γ ⊢3 U) = L such that L ∈ s and

∀L′ ∈ s. L′ � L.

To illustrate how our indexed type system works, we give an example:

Example 7.3.2. Let L1 = (3) � L2 = (3, 2) � L3 = (3, 2, 1) � L4 = (3, 2, 1, 0) and

let a, b, c, d ∈ TyVar. Consider M,M ′, U as follows:
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M = λxL2.λyL1 .(yL1(xL2λuL3 .λvL4 .(uL3(vL4vL4)))) ∈M3

M ′ = λx2.λy1.(y1(x2λu3.λv4.(u3(v4v4)))) ∈M2

U = e3(e2(e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d)�(((e2d�a) ⊓ b)�a)) ∈ ITy2 ∩ ITy3

One can check that M : 〈() ⊢3 U〉 and M ′ : 〈() ⊢2 U〉. We simply give some steps

in the derivation of M : 〈() ⊢3 U〉 (note that the derivation of M ′ : 〈() ⊢2 U〉 only

differs from the derivation of M : 〈() ⊢3 U〉 by replacing everywhere ⊢3 by ⊢2 and

any list (n1, . . . , nk) by k for any k ≥ 0):

• v⊘v⊘ : 〈v⊘ : a ⊓ (a�b) ⊢3 b〉

• v(0)v(0) : 〈v(0) : e0(a ⊓ (a�b)) ⊢3 e0b〉

• u⊘ : 〈u⊘ : e0b�c ⊢3 e0b�c〉

• u⊘(v(0)v(0)) : 〈u⊘ : e0b�c, v
(0) : e0(a ⊓ (a�b)) ⊢3 c〉

• λv(0).u⊘(v(0)v(0)) : 〈u⊘ : e0b�c ⊢3 e0(a ⊓ (a�b))�c〉

• λu⊘.λv(0).u⊘(v(0)v(0)) : 〈() ⊢3 (e0b�c)�(e0(a ⊓ (a�b))�c)〉

• λu(1).λv(1,0).u(1)(v(1,0)v(1,0)) : 〈() ⊢3 e1((e0b�c)�(e0(a ⊓ (a�b))�c))〉

• x⊘ : 〈x⊘ : e1((e0b�c)�(e0(a⊓ (a�b))�c))�d ⊢3 e1((e0b�c)�(e0(a⊓ (a�b))�c))�d〉

• x⊘(λu(1).λv(1,0).u(1)(v(1,0)v(1,0))) : 〈x⊘ : e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d ⊢3 d〉

• x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0)))

: 〈x(2) : e2(e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d) ⊢3 e2d〉

• y⊘(x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0))))

: 〈x(2) : e2(e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d), y⊘ : (e2d�a) ⊓ b ⊢3 a〉

• λy⊘.(y⊘(x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0)))))

: 〈x(2) : e2(e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d) ⊢3 ((e2d�a) ⊓ b)�a〉

• λx(2).λy⊘.(y⊘(x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0)))))

: 〈() ⊢3 e2(e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d)�(((e2d�a) ⊓ b)�a)〉

• λxL2.λyL1 .(yL1(xL2(λuL3.λvL4 .uL3(vL4vL4))))

: 〈() ⊢3 e3(e2(e1((e0b�c)�(e0(a ⊓ (a�b))�c))�d)�(((e2d�a) ⊓ b)�a))〉

Let us now define our decreasing functions on the Typing2.

Definition 7.3.3.

1. If U ∈ ITy2 and Γ ∈ TyEnv2 such that deg(Γ) > 0 and deg(U) > 0 then we let

(Γ ⊢2 U)− = Γ− ⊢2 U
−.

2. If U ∈ ITy3 and Γ ∈ TyEnv3 such that deg(Γ) � L and deg(U) � L then we let

(Γ ⊢3 U)−L = Γ−L ⊢3 U
−L.
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Next we show how ordering propagates to environments and relates degrees:

Lemma 7.3.4.

1. If Γ ⊑ Γ′, U ⊑ U ′, and xI 6∈ dom(Γ) then dom(Γ) = dom(Γ′) and Γ, (xI : U) ⊑

Γ′, (xI : U ′).

2. Γ ⊑ Γ′ iff Γ = (xIi
i : Ui)n, Γ′ = (xIi

i : U ′
i)n and ∀i ∈ {1, . . . , n}. Ui ⊑ U ′

i .

3. Let j ∈ {2, 3}. Γ ⊢j U ⊑ Γ′ ⊢j U
′ iff Γ′ ⊑ Γ and U ⊑ U ′.

4. If U1 ⊑ U2 then deg(U1) = deg(U2) and U1 ∈ GITy⇔ U2 ∈ GITy.

5. If Γ1 ⊑ Γ2 then deg(Γ1) = deg(Γ2).

6. Let j ∈ {2, 3}. The relation ⊑ is well defined on ITyj × ITyj, on TyEnvj ×

TyEnvj, and on Typingj × Typingj.

7. If Γ1,Γ2 ∈ TyEnv2 and Γ1 ⊑ Γ2 then Γ1 ∈ GTyEnv⇔ Γ2 ∈ GTyEnv

Proof. We prove 1. and 2. by induction on the derivation Γ ⊑ Γ′. We prove 3.

by induction on the derivation Γ ⊢j U ⊑ Γ′ ⊢j U
′. We prove 4. by induction on

the derivation U1 ⊑ U2. We prove 5. by induction on the derivation Γ1 ⊑ Γ2. We

prove 6. by induction on a subtyping derivation. We prove 7. by induction on the

derivation of Γ1 ⊑ Γ2.

The next theorem states that typings are well defined, that within a typing,

degrees are well behaved and that we do not allow weakening.

Theorem 7.3.5. Let j ∈ {1, 2, 3}. We have:

1. ⊢j is well defined on Mj × TyEnvj × ITyj.

2. Let M : 〈Γ ⊢j U〉.

(a) deg(M) = deg(U), ok(Γ), and dom(Γ) = fv(M).

(b) If j 6= 3 then U ∈ GITy, M ∈M, Γ ∈ GTyEnv, and deg(Γ) ≥ deg(M).

(c) If j = 3 then deg(Γ) � deg(U).

(d) If j = 2 and deg(U) ≥ k then M−k : 〈Γ−k ⊢2 U
−k〉.

(e) If j = 3 and deg(U) � K then M−K : 〈Γ−K ⊢3 U
−K 〉.

Proof. We prove 1. and 2. by induction on the derivation M : 〈Γ ⊢j U〉.

Let us now present admissible typing (and subtyping) rules.
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Remark 7.3.6.

1. The rule

M : 〈Γ1 ⊢3 U1〉 M : 〈Γ2 ⊢3 U2〉

M : 〈Γ1 ⊓ Γ2 ⊢3 U1 ⊓ U2〉
(⊓′I) is admissible

2. The rule

U ∈ GITy deg(U) = n

xn : 〈(xn : U) ⊢2 U〉
(ax′)

is admissible

3. The rule xdeg(U) : 〈(xdeg(U) : U) ⊢3 U〉
(ax′′)

is admissible

4. The rule U ⊑ ωdeg(U)
(ω′)

is admissible

Let us now present some results concerning the ω type and joinability.

Lemma 7.3.7.

1. If M : 〈Γ ⊢3 U〉 then Γ ⊑ envø
M

2. If dom(Γ) = fv(M) and ok(Γ) then M : 〈Γ ⊢3 ω
deg(M)〉.

3. If i ∈ {1, 2, 3}, M1 : 〈Γ1 ⊢i U1〉 and M2 : 〈Γ2 ⊢i U2〉 then Γ1⋄Γ2⇔M1⋄M2.

Proof.

1. Let Γ = (xLi

i : Ui)n where fv(M) = {xL1

1 , . . . , x
Ln
n } by Theorem 7.3.5.2a. By

Remark 7.3.6.4, ∀i ∈ {1, . . . , n}. Ui ⊑ ωdeg(Ui). By Theorem 7.3.5.2a, ok(Γ) and

therefore ∀i ∈ {1, . . . , n}. deg(Ui) = Li. Finally, by Lemma 7.3.4.2, Γ ⊑ envø
M .

2. Let Γ = (xLi

i : Ui)n. Then by hypotheses fv(M) = {xL1

1 , . . . , x
Ln
n } and ∀i ∈

{1, . . . , n}. deg(Ui) = Li. By Remark 7.3.6.4, ∀i ∈ {1, . . . , n}. Ui ⊑ ωLi. By

Lemma 7.3.4.2, Γ ⊑ envø
M = (xLi : ωLi)n. Since by rule (ω), M : 〈envø

M ⊢3

ωdeg(M)〉, we have by rules (⊑) and (⊑〈〉), M : 〈Γ ⊢3 ω
deg(M)〉.

3. ⇐⇐⇐) Let xI1 ∈ dom(Γ1) and xI2 ∈ dom(Γ2) then by Theorem 7.3.5.2a, xI1 ∈

fv(M1) and xI2 ∈ fv(M2). Because M1 ⋄ M2, then I1 = I2 and therefore

Γ1 ⋄ Γ2. ⇒⇒⇒) Let xI1 ∈ fv(M1) and xI2 ∈ fv(M2) then by Theorem 7.3.5.2a,

xI1 ∈ dom(Γ1) and xI2 ∈ dom(Γ2). Because Γ1 ⋄ Γ2, then I1 = I2 and therefore

M1 ⋄M2.

7.4 Subject reduction and expansion properties

of our type systems

7.4.1 Subject reduction and expansion properties for ⊢1 and

⊢2

Now we list the generation lemmas for ⊢1 and ⊢2 (for proofs see Appendix B).
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Lemma 7.4.1 (Generation for ⊢1).

1. If xn : 〈Γ ⊢1 T 〉 then Γ = (xn : T ).

2. If λxn.M : 〈Γ ⊢1 T1�T2〉 then M : 〈Γ, xn : T1 ⊢1 T2〉.

3. If MN : 〈Γ ⊢1 T 〉 and deg(T ) = m then Γ = Γ1 ⊓ Γ2, T = ⊓n
i=1~ej(1:m),iTi,

n ≥ 1, M : 〈Γ1 ⊢1 ⊓
n
i=1~ej(1:m),i(T

′
i�Ti)〉 and N : 〈Γ2 ⊢1 ⊓

n
i=1~ej(1:m),iT

′
i 〉.

Lemma 7.4.2 (Generation for ⊢2).

1. If xn : 〈Γ ⊢2 U〉 then Γ = (xn : V ) where V ⊑ U .

2. If λxn.M : 〈Γ ⊢2 U〉 and deg(U) = m then U = ⊓k
i=1~ej(1:m),i(Vi�Ti) where

k ≥ 1 and ∀i ∈ {1, . . . , k}. M : 〈Γ, xn : ~ej(1:m),iVi ⊢2 ~ej(1:m),iTi〉.

3. If MN : 〈Γ ⊢2 U〉 and deg(U) = m then U = ⊓k
i=1~ej(1:m),iTi where k ≥ 1, Γ =

Γ1 ⊓ Γ2, M : 〈Γ1 ⊢2 ⊓
k
i=1~ej(1:m),i(Ui�Ti)〉, and N : 〈Γ2 ⊢2 ⊓

k
i=1~ej(1:m),iUi〉.

We also show that no β-redexes are blocked in a typable term.

Remark 7.4.3 (No β-redexes are blocked in typable terms). Let i ∈ {1, 2} and

M : 〈Γ ⊢i U〉. If (λxn.M1)M2 is a subterm of M then deg(M2) = n and hence

(λxn.M1)M2 _β M1[x
n := M2].

Lemma 7.4.4 (Substitution for ⊢2). If M : 〈Γ, xI : U ⊢2 V 〉, N : 〈∆ ⊢2 U〉 and

M ⋄N then M [xI := N ] : 〈Γ ⊓∆ ⊢2 V 〉.

Proof. By induction on the derivation M : 〈Γ, xI : U ⊢2 V 〉.

Lemma 7.4.5 (Substitution and Subject β-reduction fails for ⊢1). Let a, b, c be

different type variables. We have:

1. (λx0.x0x0)(y0z0) _β (y0z0)(y0z0).

2. x0x0 : 〈x0 : (a�c) ⊓ a ⊢1 c〉.

3. (λx0.x0x0)(y0z0) : 〈y0 : b�((a�c) ⊓ a), z0 : b ⊢1 c〉.

4. It is not possible that (y0z0)(y0z0) : 〈y0 : b�((a�c) ⊓ a), z0 : b ⊢1 c〉.

Hence, the substitution and subject β-reduction lemmas fail for ⊢1.

Proof. 1., 2., and 3. are easy.

For 4., assume (y0z0)(y0z0) : 〈y0 : b�((a�c) ⊓ a), z0 : b ⊢1 c〉. By Lemma 7.4.1.3

twice, Theorem 7.3.5 and Lemma 7.4.1.1:

• y0z0 : 〈y0 : b�((a�c) ⊓ a), z0 : b ⊢1 ⊓
n
i=1(Ti�c)〉 and n ≥ 1.
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• y0 : 〈y0 : b�((a�c) ⊓ a) ⊢1 ⊓
n
i=1T

′
i�Ti�c〉.

• ⊓n
i=1T

′
i�Ti�c = b�((a�c) ⊓ a).

Hence, for some i ∈ {1, . . . , n}, b = T ′
i and Ti�c = (a�c) ⊓ a which is absurd.

Nevertheless, we show that β subject reduction and expansion hold in ⊢2. This

will be used in the proof of completeness (more specifically in Lemma 8.2.8 which

is the basis of the completeness Theorem 8.2.9).

Lemma 7.4.6 (Subject reduction and expansion for ⊢2 w.r.t. β).

1. If M : 〈Γ ⊢2 U〉 and M _∗
β N then N : 〈Γ ⊢2 U〉.

2. If N : 〈Γ ⊢2 U〉 and M _∗
β N then M : 〈Γ ⊢2 U〉.

7.4.2 Subject reduction and expansion properties for ⊢3

Now we list the generation lemmas for ⊢3 (for proofs see Appendix B).

Lemma 7.4.7 (Generation for ⊢3).

1. If xL : 〈Γ ⊢3 U〉 then Γ = (xL : V ) and V ⊑ U .

2. If λxL.M : 〈Γ ⊢3 U〉, x
L ∈ fv(M) and deg(U) = K then U = ωK or U =

⊓p
i=1~eK(Vi�Ti) where p ≥ 1 and ∀i ∈ {1, . . . , p}. M : 〈Γ, xL : ~eKVi ⊢3 ~eKTi〉.

3. If λxL.M : 〈Γ ⊢3 U〉, x
L 6∈ fv(M) and deg(U) = K then U = ωK or U =

⊓p
i=1~eK(Vi�Ti) where p ≥ 1 and ∀i ∈ {1, . . . , p}. M : 〈Γ ⊢3 ~eKTi〉.

4. If MxL : 〈Γ, (xL : U) ⊢3 T 〉 and xL 6∈ fv(M), then M : 〈Γ ⊢3 U�T 〉.

Proof. 1. By induction on the derivation xL : 〈Γ ⊢3 U〉. 2. By induction on the

derivation λxL.M : 〈Γ ⊢3 U〉. 3. Same proof as that of 2. 4. By induction on the

derivation MxL : 〈Γ, xL : U ⊢3 T 〉.

Lemma 7.4.8 (Substitution for ⊢3). If M : 〈Γ, xL : U ⊢3 V 〉, N : 〈∆ ⊢3 U〉 and

M ⋄N then M [xL := N ] : 〈Γ ⊓∆ ⊢3 V 〉.

Proof. By induction on the derivation M : 〈Γ, xL : U ⊢3 V 〉.

Since ⊢3 does not allow weakening, we need the next definition since when a term

is reduced, it may lose some of its free variables and hence will need to be typed in

a smaller environment.

Definition 7.4.9. Let Γ↾s stand for s⊳ Γ. We write Γ↾M instead of Γ↾fv(M).

Now we are ready to prove the main result of this section:
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Theorem 7.4.10 (Subject reduction for ⊢3). If M : 〈Γ ⊢3 U〉 and M _∗
βη N then

N : 〈Γ↾N ⊢3 U〉.

Proof. By induction on the reduction M _∗
βη N .

Corollary 7.4.11.

1. If M : 〈Γ ⊢3 U〉 and M _∗
β N then N : 〈Γ↾N ⊢3 U〉.

2. If M : 〈Γ ⊢3 U〉 and M _∗
h N then N : 〈Γ↾N ⊢3 U〉.

The next lemma is needed for expansion.

Lemma 7.4.12. If M [xL := N ] : 〈Γ ⊢3 U〉, deg(N) = L, xL ∈ fv(M), and M ⋄ N

then there exist a type V and two type environments Γ1,Γ2 such that deg(V ) = L,

M : 〈Γ1, x
L : V ⊢3 U〉, N : 〈Γ2 ⊢3 V 〉, and Γ = Γ1 ⊓ Γ2.

Proof. By induction on the derivation M [xL := N ] : 〈Γ ⊢3 U〉.

Since more free variables might appear in the β-expansion of a term, the next

definition gives a possible enlargement of an environment.

Definition 7.4.13. Let m ≥ n, Γ = (xLi

i : Ui)n and X = {xL1

1 , . . . , x
Lm
m }. We write

Γ↑X for xL1

1 : U1, . . . , x
Ln
n : Un, x

Ln+1

n+1 : ωLn+1, . . . , xLm
m : ωLm. If dom(Γ) ⊆ fv(M), we

write Γ↑M instead of Γ↑fv(M).

We are now ready to establish that subject β-expansion holds in ⊢3 (Theo-

rem. 7.4.14) and that subject η-expansion fails (Lemma 7.4.16).

Theorem 7.4.14 (Subject β-expansion holds in ⊢3). If N : 〈Γ ⊢3 U〉 and M _∗
β N

then M : 〈Γ↑M ⊢3 U〉.

Proof. By induction on the length of the derivation M _∗
β N using the fact that if

fv(P ) ⊆ fv(Q) then (Γ↑P )↑Q = Γ↑Q.

Corollary 7.4.15. If N : 〈Γ ⊢3 U〉 and M _∗
h N then M : 〈Γ↑M ⊢3 U〉.

Lemma 7.4.16 (Subject η-expansion fails in ⊢3). Let a be a type variable and let

x 6= y. We have:

1. λy⊘.λx⊘.y⊘x⊘ _η λy
⊘.y⊘.

2. λy⊘.y⊘ : 〈() ⊢3 a�a〉.

3. It is not possible that: λy⊘.λx⊘.y⊘x⊘ : 〈() ⊢3 a�a〉. Hence, subject η-

expansion fails in ⊢3.

Proof. 1. and 2. are easy. For 3., assume λy⊘.λx⊘.y⊘x⊘ : 〈() ⊢3 a�a〉. By

Lemma 7.4.7.2, λx⊘.y⊘x⊘ : 〈(y : a) ⊢3 a〉. Again, by Lemma 7.4.7.2, a = ω⊘

or there exists n ≥ 1 such that a = ⊓n
i=1(Ui�Ti), absurd.
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Realisability semantics and their

completeness

8.1 Realisability

Crucial to a realisability semantics is the notion of a saturated set:

Definition 8.1.1 (Saturated sets). Let i ∈ {1, 2, 3} and M ,M 1,M 2 ⊆Mi.

1. Let M 1  M 2 = {M ∈Mi | ∀N ∈ M 1. M ⋄N ⇒⇒⇒MN ∈ M 2}.

2. Let M 1 ≀M 2 iff ∀M ∈ M 1  M 2. ∃N ∈ M 1. M ⋄N .

3. For r ∈ {β, βη, h}, let SATr = {M ⊆Mi | (M _∗
r N ∧ N ∈ M )⇒⇒⇒ M ∈ M }.

If M ∈ SATr then we say that M is r-saturated.

Saturation is closed under intersection, lifting and arrows:

Lemma 8.1.2. Let i ∈ {1, 2, 3}, r ∈ {β, βη, h}, and M 1,M 2 ⊆Mi.

1. If M 1,M 2 are r-saturated sets then M 1 ∩M 2 is r-saturated.

2. If M 1 ⊆M2 is r-saturated then M 1
+ is r-saturated.

3. If M 1 ⊆M3 is r-saturated then M
+i

1 is r-saturated.

4. If M 2 is r-saturated then M 1  M 2 is r-saturated.

5. If M 1,M 2 ⊆M2 then (M 1  M 2)
+ ⊆ M 1

+  M 2
+.

6. If M 1,M 2 ⊆M3 then (M 1  M )+i ⊆ M
+i

1  M
+i

2 .

7. Let M 1,M 2 ⊆M2. If M 1
+ ≀M 2

+, then M 1
+  M 2

+ ⊆ (M 1  M 2)
+.

8. Let M 1,M 2 ⊆M3. If M
+i

1 ≀M
+i

2 , then M
+i

1  M
+i

2 ⊆ (M 1  M 2)
+i.

9. For every n ∈ N, the set M
n is r-saturated.

73



Chapter 8. Realisability semantics and their completeness

The interpretations and meanings of types are crucial to a realisability semantics:

Definition 8.1.3 (Interpretations and meaning of types). Let Var = Var1 ∪ Var2

such that dj(Var1,Var2) and Var1,Var2 are both countably infinite. Let i ∈ {1, 2, 3}.

1. Let x ∈ Vari and I an index. We define the following family of sets:

VARI
x = {M ∈Mi | ∃N1, . . . ,Nn ∈Mi. M = xIN1 . . . Nn}.

2. In λIN, let r = β and I0 = 0. In λLN, let r ∈ {β, βη, h} and I0 = ⊘.

(a) An ri-interpretation I is a function in TyVar→ P(MI0
i ) such that for all

a ∈ TyVar:

I(a) ∈ SATr ∀x ∈ Var1. VARI0
x ⊆ I(a) In λIN, I(a) ⊆M

0

(b) We extend I to ITy1 in case of λIN and to ITy3 in case of λLN as follows:

In λIN and λLN: I(U1 ⊓ U2) = I(U1) ∩ I(U2) I(U�T ) = I(U) I(T )

In λIN: I(eU) = I(U)+

In λLN : I(eiU) = I(U)+i I(ωL) =ML
3

Let Interpri = {I | I is a ri-interpretation}1.

(c) Let U ∈ ITyi. We define [U ]ri
, the ri-interpretation of U as follows:

[U ]ri
= {M ∈Mi | closed(M) ∧M ∈

⋂
I∈Interpri I(U)}

Because ∩ is commutative, associative, idempotent, (M 1 ∩M 2)
+ = M 1

+ ∩M 2
+

in λIN, (M 1 ∩M 2)
+i = M

+i

1 ∩M
+i

2 in λLN, and I is well defined.

Type interpretations are saturated and interpretations of good types contain

only good terms.

Lemma 8.1.4. Let r ∈ {β, βη, h}. Let i ∈ {1, 2, 3}.

1. (a) For all U ∈ ITyi and I ∈ Interpri, we have I(U) ∈ SATr.

(b) If deg(U) = L and I ∈ Interpr3 then ∀x ∈ Var1. VARL
x ⊆ I(U) ⊆ML

3 .

(c) On ITy1 (hence also on ITy2), if U ∈ GITy, deg(U) = n, and I ∈ Interpr2

then ∀x ∈ Var1. x
n ∈ VARn

x ⊆ I(U) ⊆M
n.

2. Let i ∈ {2, 3}. If I ∈ Interpri and U ⊑ V then I(U) ⊆ I(V ).

Proof. 1a . By induction on U using Lemma 8.1.2. 1b. By induction on U . 1c. By

definition, xn ∈ VARn
x. We prove VARn

x ⊆ I(U) ⊆M
n by induction on U ∈ GITy. 2.

By induction of the derivation U ⊑ V .

1We effectively define five interpretation sets Interpβ1 , Interpβ2 , Interpβ3 , Interpβη
3 , and Interph3
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Corollary 8.1.5 (Meanings of good types consist of good terms). On ITy1 (hence

also on ITy2), if U ∈ GITy such that deg(U) = n then [U ]β2
⊆M

n.

Proof. By Lemma 8.1.4.1c, for any interpretation I ∈ Interpβ2 , I(U) ⊆M
n.

Lemma 8.1.6 (Soundness of ⊢1, ⊢2, and ⊢3). Let i ∈ {1, 2, 3}, r ∈ {β, βη, h},

I ∈ Interpri. If M : 〈(x
Ij

j : Uj)n ⊢i U〉, ∀j ∈ {1, . . . , n}. Nj ∈ I(Uj), and

⋄{M,N1, . . . , Nn} then M [(x
Ij

j := Nj)n] ∈ I(U).

Proof. By induction on the derivation M : 〈(x
Ij

j : Uj)n ⊢i U〉.

Corollary 8.1.7. Let r ∈ {β, βη, h} and i ∈ {1, 2, 3}. If M : 〈() ⊢i U〉 then

M ∈ [U ]ri
.

Proof. By Lemma 8.1.6, M ∈ I(U) for any I ∈ Interpri. By Theorem 7.3.5, fv(M) =

dom(()) = ∅ and hence M is closed. Therefore, M ∈ [U ]ri
.

Lemma 8.1.8 (The meaning of types is closed under type operations). Let r ∈

{β, βη, h} and j ∈ {1, 2, 3}. The following hold:

1. [eiU ]r3
= [U ]+i

r3
and if j 6= 3 then [eU ]rj

= [U ]rj

+.

2. [U ⊓ V ]rj
= [U ]rj

∩ [V ]rj
.

3. If U�T ∈ ITy3 then ∀I ∈ Interpr3. I(U) ≀ I(T ).

4. If U�T ∈ GITy then ∀I ∈ Interpβ2 . I(U) ≀ I(T ).

5. On ITy1 only (since eU�eT 6∈ ITy2), we have: if U�T ∈ GITy then [e(U�T )]β2
=

[eU�eT ]β2
.

Proof. 1. and 2. are easy.

3. Let deg(U) = L, M ∈ I(U) I(T ) and x ∈ Var1 such that ∀K. xK 6∈ fv(M),

hence M ⋄ xL and by Lemma 8.1.4, xL ∈ I(U).

4. Let deg(U) = n and M ∈ I(U)  I(T ). Take x ∈ Var1 such that ∀p. xp 6∈

fv(M). Hence, M ⋄ xn. By Lemma 7.2.3, U ∈ GITy and by Lemma 8.1.4,

xn ∈ I(U).

5. Since U�T ∈ GITy then, by Lemma 7.2.3, U, T ∈ GITy and deg(U) ≥ deg(T ).

Again by Lemma 7.2.3, eU, eT ∈ GITy, deg(eU) ≥ deg(eT ) and eU�eT ∈ GITy.

Hence by 4., I(U)+ ≀ I(T )+. Thus, by Lemma 8.1.2.5 and Lemma 8.1.2.7,

∀I ∈ Interpβ2. I(e(U�T )) = I(eU�eT ).

Let us now put the realisability semantics in use.

Example 8.1.9. Let a and b be two distinct type variables in TyVar. We define:
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• id0 = a�a and id1 = e1(id0).

• d = (a ⊓ (a�b))�b.

• nat0 = (a�a)�(a�a), nat1 = e1(nat0), and nat′0 = (e1a�a)�(e1a�a).

Moreover, if M,N are terms and n ∈ N, we define (M)nN by induction on n as

follows: (M)0N = N and (M)m+1N = M((M)mN).

We now illustrate our realisability semantics by providing the meaning of the

types defined above:

1. [(a ⊓ b)�a]β1
= {M ∈M

0 |M _∗
β λy

0.y0}.

2. It is not possible that λy0.y0 : 〈() ⊢1 (a ⊓ b)�a〉.

3. λy0.y0 : 〈() ⊢2 (a ⊓ b)�a〉.

4. [id0]β3
= {M ∈M⊘

3 | closed(M) ∧M _∗
β λy

⊘.y⊘}.

5. [id1]β3
= {M ∈M

(1)
3 | closed(M) ∧M _∗

β λy
(1).y(1)}.

6. [d]β3
= {M ∈M⊘

3 | closed(M) ∧M _∗
β λy

⊘.y⊘y⊘}.

7. [nat0]β3
= {M ∈ M⊘

3 | closed(M) ∧ (M _∗
β λf⊘.f⊘ ∨ (n ≥ 1 ∧ M _∗

β

λf⊘.λy⊘.(f⊘)ny⊘))}.

8. [nat1]β3
= {M ∈ M

(1)
3 | closed(M) ∧ (M _∗

β λf (1).f (1) ∨ (n ≥ 1 ∧ M _∗
β

λf (1).λx(1).(f (1))ny(1)))}.

9. [nat′0]β3
= {M ∈M⊘

3 | closed(M)∧(M _∗
β λf

⊘.f⊘∨M _∗
β λf

⊘.λy(1).f⊘y(1))}.

8.2 Completeness challenges in λIN

In this document we consider two realisability semantics of types involving E-

variables. These semantics are based on a hierarchy of types and terms. Considering

how expansions can introduce new substitutions, new expansions and an unbound

number of new variables (type variables and E-variables), it was decided to use a

hierarchy on types and terms to give meanings to expansions to represent the en-

capsulation of types by E-variables. An obvious (and naive) approach is to label

types and terms with natural numbers. This is the hierarchy we used in λIN. When

assigning meanings to types, we ensured that each use of an E-variable in a typing

simply changes the indexes of types and terms in the typing and that each E-variable

acted as a kind of capsule that isolates parts of the analysed λ-term in a typing.

This captured the intuition behind E-variables. However, there are two issues w.r.t.
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this indexing: it imposes that the type ω should have all possible indexes (which is

impossible2 and hence we eliminated ω from the type systems for M2) and it im-

plies that the realisability semantics can only be complete when a single E-variable

is used (as we will see in this section). In order to understand the challenges of the

semantics of E-variables with ω and the idea behind the hierarchy, we first studied

two representative intersection type systems for the λI-calculus. The restriction to

λI (where in every (λx.M) the variable x must occur free in M) was motivated

by not supporting the ω type while preserving the intuitive indexes made of single

natural numbers. For ⊢1, the first of these type systems, we showed that subject

reduction and hence completeness do not hold.

8.2.1 Completeness for ⊢1 fails

Remark 8.2.1 (Failure of completeness for ⊢1). Items 1., 2., and 3. of Example 8.1.9

show that we can not have a completeness result (a converse of the soundness

Lemma 8.1.6 for closed terms) for ⊢1. To type the term λy0.y0 by the type (a⊓b)�a,

we need an elimination rule for ⊓ which we do not have in ⊢1.

Note that failure of completeness for ⊢1 is related to the failure of its subject

reduction. So, one might think that since ⊢2, the second type system for λIN, has

subject reduction, its semantics is complete. This is not entirely true.

8.2.2 Completeness for ⊢2 fails with more than one E-variable

Remark 8.2.2 (Failure of completeness for ⊢2 if more than one E-variable are

used). Let a be a type variable, e1 and e2 be two distinct expansion variable, and

nat′′0 = (e1a�a)�(e2a�a). Then:

1. λf 0.f 0 ∈ [nat′′0]β2
.

2. it is not possible that λf 0.f 0 : 〈() ⊢2 nat′′0〉.

Hence λf 0.f 0 ∈ [nat′′0]β2
but λf 0.f 0 is not typable by nat′′0 and we do not have

completeness in the presence of more than one expansion variable.

However, we will see that we have completeness for ⊢2 if only one expansion

variable is used.

8.2.3 Completeness for ⊢2 with only one E-variable

The problem shown in remark 8.2.2 comes from the fact that the realisability seman-

tics designed for ⊢2 identifies all expansion variables. In order to give a completeness

2Let us assume that that our type language contains the ω type annotated with integers, i.e.,
of the form ωn, then we would need e1ω

n = ωn+1 and e2ω
n = ωn+1, and finally we would have

e1ω
n = e2ω

n.
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theorem for ⊢2 we will, in what follows, restrict our system to only one expansion

variable. In the rest of this section, we assume that the set ExpVar contains only

one expansion variable e1.

The need of one single expansion variable is clear in item 2. of Lemma 8.2.3

which would fail if we use more than one expansion variable. For example, if e1 6= e2

then (e1a)
− = a = (e2a)

− but e1a 6= e2a. This lemma is crucial for the rest of this

section and hence, a single expansion variable is also crucial.

Lemma 8.2.3. Let U, V ∈ ITy2 and deg(U) = deg(V ) > 0.

1. e1U
− = U .

2. If U− = V − then U = V .

Proof. 1. is by induction on U . 2. goes as follows: if U− = V − then e1U
− = e1V

−

and by 1., U = V .

Despite the difference in the number of considered expansion variables in the

completeness proof presented in the current section and the one of Sec. 8.3, both

proofs share some similarities. We still write these two proofs independently to

illustrate the method and especially since the proof in the current section is far

simpler. Furthermore, in the current section we only show the completeness of our

semantics w.r.t. β-reduction.

The first step of the proof is to divide {yn | y ∈ Var2} into disjoint subset amongst

types of order n.

Definition 8.2.4. Let U ∈ ITy2. We define the set of variables DVarU by induction

on deg(U). If deg(U) = 0 then DVarU is an infinite set {y0 | y ∈ Var2} such that if

U 6= V and deg(U) = deg(V ) = 0 then dj(DVarU ,DVarV ). If deg(U) = n + 1 then

DVarU = {yn+1 | yn ∈ DVarU−}.

Our partition of Var2 allows useful infinite sets containing type environments

that will play a crucial role in one particular type interpretation. These sets and

environments are given in the next definition.

Definition 8.2.5.

• Let IPreEnvn = {Lyn, UM | U ∈ ITy2 ∧ deg(U) = n ∧ yn ∈ DVarU} and

BPreEnvn =
⋃

m≥n IPreEnvm (where “I” stands for “index” and “B” stands

for “bound”). Note that IPreEnvn and BPreEnvn are not type environments

because they are not functions.

• If M ∈ M2 and U ∈ ITy2 then we write M : 〈BPreEnvn ⊢2 U〉 iff there is a

type environment Γ ⊆ BPreEnvn where M : 〈Γ ⊢2 U〉.
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Now, for every n, we define the set of the good terms of order n which contain

some free variable xi where x ∈ Var1 and i ≥ n.

Definition 8.2.6. Let OPENn = {M ∈M
n | xi ∈ fv(M) ∧ x ∈ Var1 ∧ i ≥ n}.

Obviously, if x ∈ Var1 then VARn
x ⊆ OPENn.

Here is the crucial β2-interpretation I for the proof of completeness:

Definition 8.2.7. Let I be the β2-interpretation defined as follows: for all type

variables a, I(a) = OPEN0 ∪ {M ∈M0
2 |M : 〈BPreEnv0 ⊢2 a〉}.

The function I is indeed a β2-interpretation and the interpretation of a type

of order n contains the good terms of order n which are typable in the special

environments which are parts of the infinite sets of definition 8.2.5:

Lemma 8.2.8.

1. I is a β2-interpretation, i.e., for all a ∈ TyVar, I(a) is β-saturated and ∀x ∈

Var1, VAR0
x ⊆ I(a) ⊆M

0.

2. If U ∈ ITy2 ∩ GITy and deg(U) = n then I(U) = OPENn ∪ {M ∈ M
n | M :

〈BPreEnvn ⊢2 U〉}.

Proof. We prove 1. by first showing that I(a) is saturated: if M _∗
β N then if N ∈

OPEN0 we prove that M ∈ OPEN0 and if N ∈ {M ∈ M0
2 | M : 〈BPreEnv0 ⊢2 a〉}

then M ∈ {M ∈ M0
2 | M : 〈BPreEnv0 ⊢2 a〉}. We then show ∀x ∈ Var1. VAR0

x ⊆

I(a) ⊆ M
0. We prove 2. by induction on U ∈ GITy.

I is used to prove completeness (see Appendix B for the proof).

Theorem 8.2.9 (Completeness). Let U ∈ ITy2 ∩ GITy such that deg(U) = n. The

following hold:

1. [U ]β2
= {M ∈ M

n |M : 〈() ⊢2 U〉}.

2. [U ]β2
is stable by reduction: if M ∈ [U ]β2

and M _∗
β N then N ∈ [U ]β2

.

3. [U ]β2
is stable by expansion: if N ∈ [U ]β2

and M _∗
β N then M ∈ [U ]β2

.

Proof. The first item follows by Lemmas 8.2.8 and 8.1.6. We obtain the second item

using subject reduction and the third one using subject expansion.
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8.3 Completeness for λLN

Having understood the challenges of E-variables and the difficulty of representing

the type ω using natural numbers as indices for the hierarchy, we moved to the

presentation of indices as sequences of natural numbers and we provided our third

type system ⊢3. We developed a realisability semantics where we allow the full λ-

calculus (i.e., where K-redexes are allowed) indexed with lists of natural numbers, an

arbitrary (possibly infinite) number of expansion variables and where ω is present,

and we showed its soundness. Now, we show its completeness.

We need the following partition of the set of indexed variables {yL | y ∈ Var2}.

Definition 8.3.1.

• Let ITyL
3 = {U ∈ ITy3 | deg(U) = L} and VarL = {xL | x ∈ Var2}.

• We inductively define, for every U ∈ ITy3, a set of variables DVarU as follows:

– If deg(U) = ⊘ then:

∗ DVarU is an infinite set of indexed variables of degree ⊘.

∗ If U 6= V and deg(U) = deg(V ) = ⊘ then dj(DVarU ,DVarV ).

∗
⋃

U∈ITy⊘
3

DVarU = Var⊘.

– If deg(U) = i :: L then DVarU = {yi::L | yL ∈ DVarU−i}.

Therefore, if deg(U) = L then DVarU = {yL | y⊘ ∈ DVarU−L}.

Let us now provide some simple results concerning the DVarU sets:

Lemma 8.3.2.

1. If deg(U) � L, deg(V ) � L, and U−L = V −L then U = V .

2. If deg(U) = L then DVarU is an infinite subset of VarL.

3. If U 6= V and deg(U) = deg(V ) = L then dj(DVarU ,DVarV ).

4.
⋃

U∈ITyL
3

DVarU = VarL.

5. If yL ∈ DVarU then yi::L ∈ DVareiU .

6. If yi::L ∈ DVarU then yL ∈ DVarU−i.

Proof. 1. goes as follows: if L = (ni)m then we have U = en1
. . . enm

U ′ and V =

en1
. . . enm

V ′; then U−L = U ′, V −L = V ′ and U ′ = V ′; thus U = V . 2., 3. and 4.

are by induction on L and using 1. We obtain 5. because (eiU)−i = U . 6. is by

definition.
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The set Var2 as defined above allows us to give in the next definition useful infinite

sets containing type environments that will play a crucial role in one particular type

interpretation.

Definition 8.3.3.

• Let L ∈ LN. We denote IPreEnvL = {LyL, UM | U ∈ ITyL
3 ∧ y

L ∈ DVarU} and

BPreEnvL =
⋃

K�L IPreEnvK . Note that IPreEnvL and BPreEnvL are not type

environments because they are not functions.

• Let L ∈ LN, M ∈M3 and U ∈ ITy3, we write:

– M : 〈BPreEnvL ⊢3 U〉 iff there exists a type environment Γ ⊆ BPreEnvL

such that M : 〈Γ ⊢3 U〉.

– M : 〈BPreEnvL ⊢∗3 U〉 iff M _∗
βη N and N : 〈BPreEnvL ⊢3 U〉.

Let us now provide some results concerning the BPreEnvL sets:

Lemma 8.3.4.

1. If Γ ⊆ BPreEnvL then ok(Γ).

2. If Γ ⊆ BPreEnvL then eiΓ ⊆ BPreEnvi::L.

3. If Γ ⊆ BPreEnvi::L then Γ−i ⊆ BPreEnvL.

4. If Γ1 ⊆ BPreEnvL, Γ2 ⊆ BPreEnvK, and L � K then Γ1 ⊓Γ2 ⊆ BPreEnvL.

Proof. 1. is by definition. 2. and 3. are by Lemma 8.3.2. 4. First, by 1., Γ1⊓Γ2 is well

defined. Also, BPreEnvK ⊆ BPreEnvL. Let (Γ1⊓Γ2)(x
L′

) = U1⊓U2 where Γ1(x
L′

) =

U1 and Γ2(x
L′

) = U2, then deg(U1) = deg(U2) = L′ and xL′

∈ DVarU1
∩ DVarU2

.

Hence, by Lemma 8.3.2.3, U1 = U2 and Γ1 ⊓ Γ2 = Γ1 ∪ Γ2 ⊆ BPreEnvL.

For every L ∈ LN, we define the set of terms of degree L which contain some free

variable xK where x ∈ Var1 and K � L.

Definition 8.3.5. For every L ∈ LN, let OPENL = {M ∈ ML
3 | x

K ∈ fv(M) ∧

x ∈ Var1 ∧ K � L}. It is easy to see that, for every L ∈ LN and x ∈ Var1,

VARL
x ⊆ OPENL.

Let us now provide some results on the OPENL sets:

Lemma 8.3.6.

1. (OPENL)+i = OPENi::L.
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2. If y ∈ Var2 and MyK ∈ OPENL then M ∈ OPENL.

3. If M ∈ OPENL, M ⋄N , and L � K = deg(N) then MN ∈ OPENL.

4. If deg(M) = L, L � K, M ⋄N , and N ∈ OPENK then MN ∈ OPENL.

Proof. Easy using Def. 8.3.5.

The crucial interpretation I (the three interpretations Iβη, Iβ, and Ih for our three

reduction relations) used in the completeness proof is given as follows:

Definition 8.3.7.

1. Let Iβη be the βη3-interpretation defined by: for all type variables a, Iβη(a) =

OPEN⊘ ∪ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢∗3 a〉}.

2. Let Iβ be the β3-interpretation defined by: for all type variables a, Iβ(a) =

OPEN⊘ ∪ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢3 a〉}.

3. Let Ih be the h3-interpretation defined by: for all type variables a, Ih(a) =

OPEN⊘ ∪ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢3 a〉}.

The next crucial lemma shows that I (the three functions Iβη, Iβ, and Ih) is

an interpretation and that the interpretation of a type of order L contains terms

of order L which are typable in these special environments which are parts of the

infinite sets of Def. 8.3.3.

Lemma 8.3.8. Let r ∈ {βη, β, h} and r′ ∈ {β, h}.

1. If Ir ∈ Interpr3 and a ∈ TyVar then Ir(a) ∈ SATr and ∀x ∈ Var1. VAR⊘
x ⊆ Ir(a).

2. If U ∈ ITy3 and deg(U) = L then Iβη(U) = OPENL ∪ {M ∈ ML
3 | M :

〈BPreEnvL ⊢∗3 U〉}.

3. If U ∈ ITy3 and deg(U) = L then Ir′(U) = OPENL ∪ {M ∈ ML
3 | M :

〈BPreEnvL ⊢3 U〉}.

Proof. We prove the first item by first showing that Ir(a) is saturated: if M _∗
r N

then if N ∈ OPEN⊘ we prove that M ∈ OPEN⊘ and if N ∈ {M ∈ M⊘
3 | M :

〈BPreEnv⊘ ⊢∗3 a〉} then M ∈ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢∗3 a〉}. We then show

that for all x ∈ Var1, VAR⊘
x ⊆ OPEN⊘ ⊆ Ir(a). We prove the second and third items

by induction on U .

Now, we use this crucial I to establish completeness of our semantics.

Theorem 8.3.9 (Completeness of ⊢3). Let U ∈ ITy3 such that deg(U) = L.

1. [U ]βη3
= {M ∈ML

3 | closed(M) ∧M _∗
βη N ∧N : 〈() ⊢3 U〉}.
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2. [U ]β3
= [U ]h3

= {M ∈ML
3 |M : 〈() ⊢3 U〉}.

3. [U ]βη3
is stable by reduction: if M ∈ [U ]βη3

andM _βη N then N ∈ [U ]βη3
.

Proof.

1. Let M ∈ [U ]βη3
. Then M is closed and M ∈ Iβη(U). By Lemma 8.3.8.2,

M ∈ OPENL ∪ {M ∈ ML
3 | M : 〈BPreEnvL ⊢∗3 U〉}. Since M is closed,

M 6∈ OPENL. Hence, M ∈ {M ∈ ML
3 | M : 〈BPreEnvL ⊢∗3 U〉} and so,

M _∗
βη N and N : 〈Γ ⊢3 U〉 where Γ ⊆ BPreEnvL. By Theorem 7.1.11.2, N

is closed and, by Lemma 7.3.5.2a, N : 〈() ⊢3 U〉.

Conversely, take M closed such that M _∗
β N and N : 〈() ⊢3 U〉. Let

I ∈ Interpβ3. By Lemma 8.1.6, N ∈ I(U). By Lemma 8.1.4.1, I(U) is βη-

saturated. Hence, M ∈ I(U). Thus M ∈ [U ]βη3
.

2. Let M ∈ [U ]β3
. Then M is closed and M ∈ Iβ(U). By Lemma 8.3.8.3,

M ∈ OPENL ∪ {M ∈ ML
3 | M : 〈BPreEnvL ⊢3 U〉}. Since M is closed,

M 6∈ OPENL. Hence, M ∈ {M ∈ ML
3 | M : 〈BPreEnvL ⊢3 U〉} and so,

M : 〈Γ ⊢3 U〉 where Γ ⊆ BPreEnvL. By Lemma 7.3.5.2a, N : 〈() ⊢3 U〉.

Conversely, take M such that M : 〈() ⊢3 U〉. By Lemma 7.3.5.2a, M is closed.

Let I ∈ Interpβ3 . By Lemma 8.1.6, M ∈ I(U). Thus M ∈ [U ]β3
.

It is easy to see that [U ]β3
= [U ]h3

.

3. Let M ∈ [U ]βη3
and M _βη N . By 1., M is closed, M _∗

βη P , and P :

〈() ⊢3 U〉. By confluence Theorem 7.1.13, there is Q such that P _∗
βη Q

and N _∗
βη Q. By subject reduction Theorem 7.4.10, Q : 〈() ⊢3 U〉. By

Theorem 7.1.11.2, N is closed and, by 1., N ∈ [U ]βη3
.
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Conclusion and future work

Expansion may be viewed to work like a multi-layered simultaneous substitution.

Moreover, expansion is a crucial part of a procedure for calculating principal typings

and helps support compositional type inference. Because the early definitions of

expansion were complicated, expansion variables (E-variables) were introduced to

simplify and mechanize expansion. The aim of this document is to give a complete

semantics for intersection type systems with expansion variables.

We studied first the λIN-calculus, an indexed version of the λI-calculus. This

indexed version was typed using first a basic intersection type system with expansion

variables but without an intersection elimination rule, and then using an intersection

type system with expansion variables and an elimination rule.

We gave a realisability semantics for both type systems showing that the first

type system is not complete in the sense that there are types whose semantics is

not the set of λIN-terms having this type. In particular, we showed that λy0.y0 is

in the semantics of (a ⊓ b)�a but that it is not possible to give λy0.y0 the type

(a ⊓ b)�a in the type system ⊢1 (see Example 8.1.9 in Ch. 8.1). The main reason

for the failure of completeness in the first system is associated with the failure of the

subject reduction property for this first type system. Hence, we moved to the second

system which we showed to have the desirable properties of subject reduction and

expansion and strong normalisation. However, for this second system, we showed

again that completeness fails if we use more than one expansion variable but that

completeness succeeds if we restrict the system to a single expansion variable.

In order to overcome the problems of completeness, we changed our realisability

semantics from one which uses natural numbers as indices to one that uses lists of

natural numbers as indices. The new semantics is more complex and we lose the

elegance of the first (especially in being able to define the good terms and good

types). However, we consider a third type system for this new indexed calculus and

we show that is has all the desirable properties of a type system and it handles

all of the λ-calculus (not simply the λI-calculus). We also show that this second

semantics is complete when any number (including infinite) of expansion variables
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is used w.r.t. our third type system. As far as we know, our work constitutes the

first study of a realisability semantics of intersection type systems with E-variables

and of the difficulties involved.

Note that a restricted version (restricted to normalised types1), which we call

RCDV, of the well known CDV intersection type system (see Sec.2.4.2), both systems

introduced by Coppo, Dezani and Venneri [27, 28] and recalled by Van Bakel [4],

can be embedded in our type system ⊢3 without making use of expansion vari-

ables (a more detailed remark can be found in Sec. B.3). We can then restrain

the range of our interpretations (see Def. 8.1.3) from M3 to the “space of mean-

ing” M⊘
3 (see Def. 7.1.9) which is then the only necessary set because expansion

variables are not used and therefore they do not allow one to change the index of

terms. Unfortunately, we do not believe that it would be possible to embed RCDV

in our system such that we would make use of the expansion variables “as much

as possible” (everywhere where an expansion might be needed). For example, if

M : 〈Γ ⊢3 U1 ⊓ U2〉 is derivable from M : 〈Γ ⊢3 U1〉 and M : 〈Γ ⊢3 U2〉 us-

ing the intersection introduction rule and we apply the expansion introduction rule

to each of the branches of the derivation then we obtain the two following typing

judgements: M+i : 〈eiΓ ⊢3 eiU〉 and M+j : 〈ejΓ ⊢3 ejU〉. If we use two differ-

ent expansion variables (i 6= j) then, given these two new typing judgements, we

cannot use the intersection introduction rule because eiU ⊓ ejU is not a ITy3 type

(deg(eiU) = i :: deg(U) 6= j :: deg(U) = deg(ejU)). This might be overcome by

considering trees instead of lists as indices in our semantics. We let the investigation

of such a system to future work.

In the present document we are not interested in a denotational semantics of the

presented calculus. We are neither interested in an extensional λ-model interpreting

the terms of the untyped λ-calculus. Instead, we are interested in building a realis-

ability semantics by defining sets of realisers (programs satisfying the requirements

of some specification) of types. We believe such a model would help highlighting

the relation between terms of the untyped λ-calculus and types involving expan-

sion variables w.r.t. a type system. Moreover, interpreting types in a model helps

understanding the meaning of types (w.r.t. the model) which are defined as purely

syntactic forms and are clearly used as meaningful expressions. For example, the

integer type (whatever its notation is) is always used as the type of each integer.

An arrow type expresses functionality. In that way, models based on λ-models have

been built for intersection type systems [69, 8, 35]. In these models, intersection

types were interpreted by set-theoretical intersections of meanings. Even though

E-variables have been introduced to give a simple formalisation of the expansion

mechanism, i.e., as syntactic objects, we are interested in the meaning of such syn-

tactic objects. We are particularly interested in answering a number of questions

1Normalised types are types strongly related to normalisable (typable) terms.
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such as:

1. Can we find a second order function, whose range is the set of λ-terms, and

which interprets types involving any kind of expansions (any expansion term

and not just expansion variables)?

2. How can we characterise the realisers of a type involving expansion terms?

3. How can the relation between terms and types involving expansion terms be

described w.r.t. a type system?

4. How can we extend models such as the one given in Kamareddine and Nour [80]

to a type system with expansion?

These questions have not yet been answered. We leave their investigation for future

work.
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A constraint system for a type

error slicer
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Chapter 10

Introduction

10.1 Background of type error slicing

As explained in Sec. 2.4.3, SML is a higher-order function-oriented imperative pro-

gramming language and Milner’s W algorithm [32] is the original type-checking

algorithm of the functional core of ML. W implementations generally locate errors

at or near the syntax tree node being visited when unification fails, and this is

unsatisfactory.

10.1.1 Moving the error spot

Following W, other algorithms try to get better locations by arranging that unty-

pability will be discovered when visiting a different syntax tree node. For example,

Lee and Yi proved the folklore algorithm M [98] finds errors “earlier” (this measure

is based on the number of recursive calls of the algorithm) than W and claimed

that their combination “can generate strictly more informative type-error messages

than either of the two algorithms alone can”. Similar claims are made for W’ [104]

and UAE [147]. McAdam observes that W suffers a left-to-right bias and tries to

eliminate it by replacing the unification algorithm used in the application case of

W by another operation called “unification of substitutions”. McAdam explains

that the left-to-right bias in W arises because in the case of applications, “the sub-

stitution from a left-hand subexpression is applied to the type-environment before

traversing the right-hand side expression” [104]. His “unification of solutions” allows

one “to infer types and substitutions for each subexpression independently” [104].

The “unification of substitutions” operation is then used to comnbine the inferred

substitutions. Yang claims that UAE’s primary advantage is that it also eliminates

this bias. However, all the algorithms mentioned above retain a left-to-right bias in

handling of let-bindings and they all blame only one syntax tree node for each type

error when in fact a node set is at fault.

When only one node is reported as the error site, it is often far away from the
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actual programming error. The situation is made worse because the blamed node

depends on internal implementation details, i.e., the tree node traversal order and

which constraints are accumulated and solved at different times in the traversal. The

confusion is worsened because these algorithms usually exhibit in error messages (1)

an internal representation of the program subtree at the blamed location which

often has been transformed substantially from what the programmer wrote, and

(2) inferred type details which were not written by the programmer and which are

anyway erroneous and confusing.

10.1.2 Other improved error reporting systems

Constraint-based type inference algorithms [112, 115, 116] separate constraint gen-

eration and constraint solving. Many works use this idea to improve error reporting.

A probably incomplete list includes [56, 57, 47, 64, 63, 58, 65, 60, 125, 126, 127].

Independently from this separation, there exist other approaches toward improving

errors [149]: error explanation systems [9, 37, 36, 148] which focus on explaining

the reasoning steps leading to a type error, and error reporting systems [139, 133]

which focus on trying to precisely locate errors in pieces of code. There are also

approaches that report type errors together with suggestions for changes that would

solve the errors [59, 99]. Some of these approaches are discussed in Ch. 12.

10.2 Type error slicing

Haack and Wells [57] developed a type error reporting method called type error

slicing (TES). Haack and Wells [57] noted that “Identifying only one node or subtree

of the program as the error location makes it difficult for programmers to understand

type errors. To choose the correct place to fix a type error, the programmer must

find all of the other program points that participate in the error.” They locate type

errors at program slices which include all parts of an untypable piece of code where

changes can be made to fix the error and exclude the parts where changes cannot

fix the error.

We shall refer to the method of Haack and Wells as HW-TES in this document

(the slicer of Haack and Wells as presented in their papers [56, 57] and not its imple-

mentation). HW-TES generates a constraint set for a program, enumerates minimal

unsatisfiable subsets of the constraint set, and computes type error slices. Genera-

tion and solving of constraints are not interleaved. To identify slices responsible for

type errors, each constraint is labelled by the location responsible for its generation.

Error slices are portions of a program where all blameless subterms are elided (e.g.,

replaced by dots). Slices can be shown by highlighting the source code.

HW-TES makes use of intersection types and its handling of polymorphism in-
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volves heavy constraint and type environment duplications which leads to a combi-

natorial constraint size explosion at constraint generation.

HW-TES meets the following seven criteria of Yang et al. [149] for good type

error reports: it reports only errors for ill-typed code (correct), it reports no more

than the conflicting portions of code (precise), it reports short messages (succinct),

it does not report internal information such as internal types generated during type

inference (a-mechanical), it reports only code written by the programmer which has

not been transformed as happens with existing SML implementations (source-based),

it does not privilege any location over the others (unbiased), and it reports all the

conflicting portions of code (comprehensive).

10.3 Contributions

Unfortunately, HW-TES is not practical on real programs and works only for a

tiny SML subset barely larger than the λ-calculus. Our goal is a TES method that

(1) covers full SML, (2) is practical on real programs, and (3) has a simple and general

design. As would happen for any programming language, we faced challenges.

An initial challenge was avoiding a combinatorial constraint size explosion. The

naive approach in HW-TES duplicated constraints for code that gets a polymorphic

type (e.g., in SML’s let-expressions), and thus is unusable beyond small examples.

Instead, at constraint solving we simplify constraints before copying them, and copy

them as late as possible. We retain compositional initial generation of constraints,

but unlike in HW-TES we solve constraints in a strict left-to-right order. Our solution

is related in part to earlier constraint systems for ML-style let-bindings [115, 116,

108, 55, 112], which Pottier explains “allow building a constraint of linear size” [115].

Unfortunately, the earlier ideas are inadequate for module systems, so we needed a

new constraint representation.

The next challenge was to scale constraint generation while also handling ad-

vanced module system features. Like many languages, SML can manipulate names-

paces, e.g., with structures (modules), signatures (module types), functors (func-

tions from modules to modules), etc. We achieve this with our novel hybrid con-

straint/environments (metavariable e in Fig. 11.2 in Sec. 11.2). They are constraints

because they are satisfiable (or not) depending on variable values, and environments

because they bind program names to information. Furthermore, some bindings are

polymorphic to support some the kinds of polymorphism in SML: polymorphic func-

tions, datatype constructors, named structure signatures, and functors.

The remaining challenges were using the novel constraint machinery for a full

programming language, with all its features and warts. Ch. 11 presents full details

for a core of language features large enough to show the essence of the mecha-

nism, and Ch. 14 presents a larger feature set towards Full-TES which is the TES
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we are aiming at but which we have not yet achieved. This core includes poly-

morphic functions, datatypes and pattern matching, and structures (including the

difficult open operation). We call this core system, Core-TES. The larger set of fea-

tures/warts we present includes SML’s value/constructor identifier-status ambiguity,

local declarations, type functions/abbreviations, structure signatures, functors, type

annotations, and the value polymorphism restriction. We generally refer to this for-

malised TES as Form-TES (the formalism we have achieved so far). Even though

the implementation of our TES covers nearly full SML, it is not quite Full-TES.

Some TES features have not yet been implemented and some SML features are not

yet supported. We generally refer to the implementation of our TES as Impl-TES.

Impl-TES is usable via a web demo and installable packages [132]. Note that neither

Impl-TES is a superset of Form-TES and nor is Form-TES a superset of Impl-TES

because Impl-TES supports some features that are not supported by Form-TES (e.g.,

many cases of records or the fun SML forms to write recursive functions) and vice

versa (e.g., Form-TES has a better support for functors). We plan to have both

Form-TES and Impl-TES converge with Full-TES in the future. We will often write

our TES to encompass both Form-TES and Impl-TES.

The most challenging feature for full SML was the open declaration, which splices

another structure into the current environment (example in Sec. 10.4.3), and has

been criticized in the literature [2, 11, 12, 61]. Harper writes [61]: “it is hard to

control its behaviour, since it incorporates the entire body of a structure, and hence

may inadvertently shadow identifiers that happen to be also used in the structure”.

Blume [11] shows that certain automatic dependency analyses become NP-complete

in the presence of open, and writes: “Programs are not only read by analysis tools;

human read them as well. A language construct like open that serves to confuse

the analysis tool is also likely to confuse the human reader”. We believe open is

one of the most difficult programming language features to analyze, but our con-

straint/environments make it easy and simple, and we believe this highlights the

generality of our machinery. Our TES clarifies otherwise obscure type errors involv-

ing open and enhances its usability.

10.4 Key motivating examples

This section gives examples extracted from our testcase database motivating TES.

Our testcase database is distributed with the packages and archives we provide [132].

Type error slices are highlighted with red. Purple and blue highlight error end points

(sources of conflict). End points are discussed in Sec. 15.2.
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fun g x y =

let val f = if y

then fn => fn z => z

else fn z => z

val u = (f, true)

in (#1 u) y

end

k

�



�
	

Figure 10.1 Conditionals, pattern matching, tuples (testcase 121)

10.4.1 Conditionals, pattern matching, records

Fig. 10.1 shows an untypable piece of code involving, among other things, the fol-

lowing derived forms: a conditional, a record selector (# u). Derived forms are

syntactic sugar for core of module forms. For example, if exp1 then exp2 else exp3,

where exp1, exp2, and exp3 are expressions, is not a core expression itself but is equiv-

alent to the core expression case exp1 of true => exp2 | false => exp3. Suppose the

programming error in the code presented in Fig. 10.1 is that we wrote y (the circled

one in Fig. 10.1) instead of x. We call the programming error location, the real error

location. The function g can be used to perform computations on integers. For

example (g true (fn x => x + 1) 2) evaluates to 2 and (g false (fn x => x + 1) 2)

evaluates to 3. This piece of code is untypable because of the following reasons (high-

lighted in Fig. 10.1): y, being a parameter of a function, has a monomorphic type;

y is constrained to be a Boolean via the conditional; and finally, u’s first component

is applied to y, where u’s first component is the function f which is constrained by

the two branches of the conditional to take a function as argument. SML’s compiler

SML/NJ (version 110.72) reports a type constructor clash in line 6 (more precisely,

the circled portion of code (#1 u) y in Fig. 10.1 is blamed) as follows:

Error: operator and operand don’t agree [tycon mismatch]

operator domain: ’Z -> ’Z

operand: bool

in expression:

((fn {1=<pat>,...} => 1) u) y

In the above example, because of the small size of the piece of code, the pro-

grammer’s error is not too far away from the location reported by SML/NJ. It is not

always the case. The real error location might even be in another file. Nonetheless,

note that SML/NJ reports only one location which is far from the real error location

w.r.t. the size of the piece of code. Also, note that the type ’Z -> ’Z reported by

SML/NJ is an internal type made up during type inference. Finally, the reported

expression does not match the source code1.

1SML/NJ has transformed the code because the derived form #1 is equivalent to the function
(fn {1=y,...} => y) in SML. Note also that (fn {1=<pat>,...} => 1) is SML/NJ’s pretty
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datatype (’a,’b,’c) t = Red of ’a * ’b * ’c

| Blue of ’a * ’b * ’c

| Pink of ’a * ’b * ’c

| Green of ’a * ’b * ’b 1

| Yellow of ’a * ’b * ’c

| Orange of ’a * ’b * ’c

fun trans (Red (x, y, z)) = Blue (y, x, z)

| trans (Blue (x, y, z)) = Pink (y, x, z)

| trans (Pink (x, y, z)) = Green (y, x, z)

| trans (Green (x, y, z)) = Yellow(y, x, z)2 3

| trans (Yellow(x, y, z)) = Orange(y, x, z)

| trans (Orange(x, y, z)) = Red (y, x, z)

type (’a, ’b) u = (’a, ’a, ’b) t * ’b
5

val x = (Red (2, 2, false), true)

val y : (int, bool) u = (trans (#1 x), #2 x)
4

Figure 10.2 Datatypes, pattern matching, type functions (testcase 114)

Fig. 10.1 highlights a slice for the type error described above. This highlighting

contains the minimal amount of information necessary to understand and fix the

type error. Also, it highlights the real error location. Note that the fact that most

of the piece of code is highlighted is due to the small size of the piece of code. We

present below larger examples where a smaller percentage of the pieces of code is

highlighted2.

10.4.2 Datatypes, pattern matching, type functions

Fig. 10.2 shows how TES helps for intricate errors. The code declares the datatype t

and the function trans to deal with user defined colours. This function is then applied

to an instance of a colour (the first element in the pair x). Suppose the programming

error is that we wrote ’b instead of ’c in Green’s definition at location 1©. SML/NJ

(version 110.72) reports a type constructor clash at 4© as follows:

operator domain: (int,int,int) t

operand: (int,int,bool) t

in expression:

trans ((fn {1=<pat>,...} => 1) x)

The reported code is far from the actual error and does not match the source

code. SML/NJ gives the same error message if, instead of the error described above,

printing of #1, but the two functions are different because (fn {1=<pat>,...} => 1) returns
always 1 while #1 takes a record and returns the field of field name 1 in the record, which is
confusing. SML’s compilers MLton and Poly/ML do not transform the code.

2A slice for a type error will always contain exactly the portion of the program required to
explain the error. We have no choice on how much or how little of a piece of code is included in
a type error slice. The choice is made by the type error itself. In our experience in using TES,
the size of slices does not vary much depending on the size of the program but it varies mainly
depending on the kind of error.
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structure S = struct

structure Y = struct

structure A = struct val x = false end

structure X = struct val x = false end

structure M = struct val x = true end

end

open Y

val m = M.x

val x = if m then true else false

end

structure T = struct

structure X = struct val x = 1 end

open S

open X

val y = if m then 1 else x

end

Figure 10.3 Chained opens and nested structures (testcase 450)

one writes x instead of z in the right-hand-side of any branch of trans. Thus, one

might need to inspect the entire program to find the error.

Fig. 10.2 highlights a slice for this error. The programming error location being

in the slice, we track it down by considering only the highlighted code, starting from

the clashing types on the last line. The type annotation (int, bool) u constrains

the result type of trans’s application. The part of the trans function in the slice

is the case handling a Green object. At 1©, Green’s second and third arguments are

constrained to be of the same type. At 2©, y is therefore constrained to be of the same

type as z. At 3©, because y and z are respectively Yellow’s first and third arguments

and using Yellow’s definition, we infer that the type of Yellow’s application to its

three arguments (returned by trans) is t where its first and third parameters have

to be equal. At 4© and 5© we can see that trans is constrained to return a t where

its first (int) and third (bool) parameters differ.

10.4.3 Chained opens and nested structures

Fig. 10.3 has an intricate type error with chained opens. Let us describe what the

code was meant to do. Structure T declares structure X declaring integer x. Structure

S is opened to access the Boolean m. Then, X is opened to access the integer x. Finally,

if m is true then we return 1 otherwise we return x. This is untypable and SML/NJ

blames y’s body as follows:

Error: types of if branches do not agree [literal]

then branch: int

else branch: bool

in expression:

if m then 1 else x
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The programming error, as our type error slice shows, is that opening S causes

S’s declarations to shadow the current typing environment. Because Y is opened in

S, the structures A, X and M are part of S’s declarations. Hence, when opening S in T,

the structure X which was in our current typing environment is shadowed by the one

defined in Y. If the programmer’s intent is as described above (and only then), this

error can be solved by replacing “open S open X” by “open S X”, which opens X and

Y simultaneously (opening X results then to the opening of the structure X declared

in T because it is then not shadowed by the one declared in Y).

Our type error slice rules out x’s declarations in X and S and clearly shows why

x does not have the expected type. The traditional report leaves us to track down

x’s binding by hand.
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Technical design of Core-TES

This chapter introduces Core-TES and its different modules: initial constraint gen-

erator (Sec. 11.5), constraint solver (Sec. 11.6), minimiser (Sec. 11.7), enumerator

(Sec. 11.7), and slicer (Sec. 11.8). The reader might (or might not) want to peek

ahead at Sec. 11.7.3 which motivates the need of a minimiser. Sec. 11.1 defines

the overall algorithm. Sec. 11.2 presents a fragment of SML syntax handled by

Core-TES. Sec. 11.3 defines the constraint syntax of Core-TES and Sec. 11.4 their

semantics. Sec. 11.10 discusses the principles of our approach. The reader might

(or might not) want to peek ahead at Sec. 11.10 while reading the sections below.

11.1 TES’ overall algorithm

Fig. 11.1 informally presents how the different modules of our TES interact with

each other. We use different colours to differentiate different parts of our TES. The

green parts are user interface related. The red parts are related to slicing. The

purple parts are related to constraint generation. These parts are external language

related. The blue parts are related to the enumeration of type errors. These parts

are external language unrelated.

Formally, given a SML structure declaration strdec (see Fig. 11.8), the initial con-

straint generation algorithm defined in Fig. 11.7 and extended in Fig. 11.14 to dot

terms (see Sec. 11.8.1), generates a constraint/environment e (see Fig. 11.3). Then,

the enumerator defined in Fig. 11.12 enumerates the type errors of e. Each error

found by the enumerator is minimised by the minimiser also defined in Fig. 11.12.

From each minimised error and strdec, the slicing algorithm defined in Sec. 11.8 com-

putes a type error slice. Both enumeration and minimisation rely on the constraint

solver defined in Fig. 11.10. The computed type error slices are finally reported to

the user. A type error report includes a type error slice, a highlighting of the slice

directly in the SML user code, and a message explaining the kind of the error (see

Fig. 11.8). Formally, our overall algorithm tes is defined as follows (the undefined
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User interface

Initial
constraint
generation

Piece
of code

Slicing

Slice

Error

Error

Initial
filter set

Filter

Enumeration

Constraint
solving

Failure Success

Minimisation
(relies on the constraint solver)

Constraint/
environments

Figure 11.1 Interaction between the different modules of our TES

relations, functions, and other syntactic forms used in this definition of TES’ overall

algorithm are all defined in the remaining sections of the current chapter):

tes(strdec) = {〈strdec ′, ek , vid〉 | strdec -⊲ e

∧ enum(e)→∗
e errors(er)

∧ 〈ek , l ∪ vid〉 ∈ er

∧ sl(strdec, l) = strdec ′}

Note that Core-TES does not have value identifier dependencies. These depen-

dencies are introduced in Sec. 14.1. We anticipate this addition in the definition of

our overall algorithm above (see the computation of the vid sets).

11.2 External syntax

Fig. 11.2 defines a fragment of SML syntax used to present the core ideas. Most

syntactic forms have labels (l), which are generated to track blame for errors. To

provide a visually convenient place for labels, some terms such as function applica-

tions are surrounded by ⌈ ⌉ which are not written by programmers but are part of

an internal representation used to avoid confusion with ( ) as part of SML syntax.

Value identifiers (vid) are subscripted to disambiguate rules for expression (vid l
e),

datatype constructor definitions (dcon l
c), and pattern (vid l

p) occurrences. Note that

the only non-subscripted value identifiers are those occurring at unary positions in

patterns and datatype declarations.

Although SML distinguishes value variables and datatype constructors by assign-

ing statuses in the type system, we distinguish them by defining two disjoint sets

ValVar and DatCon. For fully correct minimal error slices, we discuss the needed

handling of identifier statuses in Sec. 14.1.
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external syntax (what the programmer sees, plus labels)
l ∈ Label (labels)

tv ∈TyVar (type variables)
tc ∈TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈DatCon (datatype constructors)
vid ∈ VId ::= vvar | dcon
ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈Ty ::= tv l | ty1

l
→ ty2 | ⌈ty ltc⌉l

cb ∈ ConBind ::= dcon l

c | dcon of l ty

dn ∈DatName ::= ⌈tv tc⌉l

dec ∈Dec ::= val rec pat
l
= exp | openl strid | datatype dn

l
= cb

atexp ∈ AtExp ::= vid l

e | let
l dec in exp end

exp ∈ Exp ::= atexp | fn pat
l
⇒ exp | ⌈exp atexp⌉l

atpat ∈ AtPat ::= vid l

p

pat ∈ Pat ::= atpat | ⌈ldcon atpat⌉l

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc term ∈Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

Figure 11.2 External labelled syntax

To simplify the presentation of Core-TES, all datatypes have one constructor and

one type argument.

Note that we do not enforce all the syntactic restrictions of the SML syntax [107].

For example, in SML, in a recursive declaration such as val rec pat
l
= exp, the

expression exp must be a fn-expression.

In this chapter we are going to consider the following simple running example:

(EX1)

structure X = struct

structure S = struct datatype ’a u = U end

datatype ’a t = T

val rec f = fn T => T

val rec g = let open S in f U end

end

end

This piece of code is untypable because f is defined as taking a ’a t and is applied

to a ’a u. The labelled version of this piece of code is as follows:

structure X
l1= structl2

structure S
l3= structl4 datatype ⌈’a u⌉l6

l5= U
l7

c
end

datatype ⌈’a t⌉l9
l8= T

l10

c

val rec f
l12

p

l11= fn T
l14

p

l13⇒ T
l15

e

val rec g
l17

p

l16= letl18 openl19 S in ⌈f
l21

e
U
l22

e
⌉l20 end

end

We call this structure declaration strdecEX.
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constraint terms (syntax of entities used internally by TES and which the programmer never sees)
ev ∈ EnvVar (environment variables)
δ ∈TyConVar (type constructor variables)
γ ∈TyConName (type constructor names)
α ∈ ITyVar (internal type variables)
d ∈Dependency ::= l

µ ∈ ITyCon ::= δ | γ | ar | 〈µ, d〉

τ ∈ ITy ::= α | τ µ | τ1�τ2 | 〈τ, d〉

σ ∈ Scheme ::= τ | ∀α. τ | 〈σ, d〉
bind ∈ Bind ::= �tc=µ | �strid=e | �tv=α | �vid=σ
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

c ∈ EqCs ::= µ1=µ2 | e1=e2 | τ1=τ2
e ∈ Env ::=⊤ | ev | bind | acc | c | poly(e) | e2;e1 | 〈e, d〉

extra metavariables
v ∈ Var ::= α | δ | ev

dep ∈Dependent ::= 〈τ, d〉 | 〈µ, d〉 | 〈e, d〉

Figure 11.3 Syntax of constraint terms

11.3 Constraint syntax

11.3.1 Terms

Fig. 11.3 defines constraint terms, those pieces of syntax that can occur anywhere

inside a constraint. In our system, this is any µ, τ , σ, or e.

Some forms, called dependent forms, are annotated by dependencies: 〈x, d〉. In

Core-TES, a dependency d must be a label l (but in Impl-TES, d can also be a value

identifier vid for handling identifier statuses in Sec. 14.1). During analysis, a form

〈x, d〉 depends on the program nodes with labels in d . For example, the dependent

equality constraint 〈τ1=τ2, d ∪ {l}〉 might be generated for the labelled function

application ⌈exp atexp⌉l , indicating the equality constraint τ1=τ2 need only be true

if node l has not been sliced out. Let strip be the function that strips off the outer

dependencies of any syntactic form: strip(x) = strip(y) if x = 〈y, d〉, x otherwise. Let

collapse be the function that combines nested outermost dependencies: collapse(x) =

collapse(〈y, d1 ∪ d2〉) if x = 〈(〈y, d1〉), d2〉, x otherwise.

An internal type τ µ is a type construction and is built from an internal type

constructor µ and its argument τ (such as the polymorphic list type ’a list, where

’a is an explicit type variable in SML). To simplify the formalisation of Core-TES,

external (tc) and internal (µ) type constructors both take exactly one argument.

We present how to handle non-unary type constructors in Sec. 14.10. The special

internal type constructor ar represents the binary arrow type constructor (�) dur-

ing constraint solving solely to allow constraints between � and any unary type

constructor. This allows one to compute the necessary portions of code when gen-

erating type errors. A type scheme can either be a universal quantification, or an

internal type, or a dependent type scheme. Our type schemes are subject to alpha-

conversion. For example, ∀{α}. α is convertible to ∀{α′}. α′. These two terms are
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considered equal.

A constraint/environment e is a hybrid that acts as both a constraint and an

environment, and we will freely switch between these terms when discussing them.

A major novelty is three of the constraint/environment forms, and their interaction:

binders (�id=x, with metavariable bind), composition environments (e1;e2), and ac-

cessors (�id=x, with metavariable acc). A binder �id=x or an accessor �id=x is

used for program occurrences of id that are respectively binding or bound. The

composition e1;e2 is used when the accessors of e2 are in the scope of the binders

of e1, and acts like a logical conjunction requiring e1 to be satisfied, and e2 to be

satisfied when the bindings of e1 are in scope. For example, in �vid=σ;�vid=α, the

type variable α is constrained to be an instance of σ through the binding of vid .

Note that the binders and accessors do not need to be next to each other. For ex-

ample, in �vid=∀α. τ ; · · · ;�vid=α1; · · · ;�vid=α2, if the ellipses do not shadow vid ’s

binder (e.g., if they are equality constraints) then this constraint/environment has

same solvability as �vid=∀α. τ ; · · · ;τ [ren1]=α1; · · · ;τ [ren2]=α2 where the two acces-

sors have been resolved by accessing the corresponding binder, and where the two

renamings ren1 and ren2 rename the type variables in α to fresh variables in order to

instantiate the type scheme ∀α. τ . We have dom(ren1) = dom(ren2) = α and, among

other properties it holds that dj(ran(ren1), ran(ren2)). The shadowing mechanism is

further discussed in Sec. 11.6. The motivation for these constraint/environments is

to have a general mechanism to build environments for sequential declarations that

avoids duplications at initial constraint generation or during constraint solving.

The operator ; is used to compose environments. We consider ; to be associative

(i.e., (e1;(e2;e3)) is considered to be equivalent to ((e1;e2);e3)) with unit ⊤ (i.e.,

(⊤;e), (e;⊤) and e are all equivalent).

A constraint/environment can also be (1) the empty environment and satisfied

constraint ⊤, (2) a constraint/environment variable ev , (3) an equality constraint

c, (4) a special form poly(e) which promotes bindings in e to be polymorphic (see

below), or (5) a conditional environment 〈e, d〉 which acts like e if the dependen-

cies in d are satisfied and otherwise acts (mostly) like ⊤. The semantics of our

constraint/environments is provided in Sec. 11.4.

Binders and accessors are related to ideas in earlier systems, e.g., Pottier and

Rémy’s let-constraints and type scheme instantiations [116]. The earlier systems

are too restrictive to easily represent module systems because they only support

very limited cases of what our binders do and they lack environment variables. We

know of no other system with these features. With our constraints we can easily

define a compositional constraint generation algorithm. A comparison with related

constraint systems is provided in Sec. 12.1.

Note that in Fig. 11.3, Sub = Unifier. These two sets will be extended in Ch. 14

such that they will be different. The set Unifier is generally the set of unifiers
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generated by our constraint solver defined in Sec. 11.6. We also use the distinct

set Sub because we sometimes need to substitute more syntactic forms than allowed

by unifiers. For example, in Sec. 14.7 we need to to substitute rigid type variables

(introduced in Sec. 14.7 as well) when instantiating type schemes (type schemes are

also extended in Sec. 14.7). Rigid type variables are not allowed to be in the domain

of a unifier during constraint solving (because, as explained in Sec. 14.7, they act as

constant types).

11.3.2 “Atomic” syntactic forms

Let atoms(x) be the syntactic form set belonging to Var∪TyConName∪Dependency

and occurring in x whatever x is. We define the following functions:

vars(x) = atoms(x) ∩ Var (set of variables)

labs(x) = atoms(x) ∩ Label (set of labels)

deps(x) = atoms(x) ∩ Dependency (set of dependencies)

11.3.3 Freshness

We use distinguished dummy variables: Dum = {αdum, evdum, δdum}. Each use of a

dummy variable acts like a fresh variable. These variables are used to generate

dummy environments and constraints. For example, in (αdum=α1);(αdum=α2), the

two occurrences of αdum can be thought of as type variables different from each

other and also different from α1 and α2. Note that variable freshness is not handled

via existential constraints as in other systems [55, 108, 116]. Instead the relation

dja ensures the freshness of the generated variables and type constructor names:

dja(x1, . . . , xn)⇔ dj(f (x1), . . . , f (xn),Dum), where f (x) = atoms(x) \ VId. This also

ensures that each label occurs at most once in a labelled program. Let us define

nonDums as follows: nonDums(x) = vars(x) \ Dum.

11.3.4 Syntactic sugar

We write 〈x, d〉 for 〈x, {d}〉. If y is a d or a d , then xy abbreviates 〈x, y〉, and

x1 =
y
==x2 abbreviates 〈x1=x2, y〉, and similarly for binds and accs. Let [e] abbreviate

(evdum=e), an equality constraint that enforces the logical constraint nature of e

while limiting the scope of its bindings (they can still have an effect if e constrains

some environment variable ev). This is used for local bindings by rules (G2) and

(G4) of our constraint generation algorithm defined in Fig. 11.7.
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ren ∈ Ren = {ren ∈ ITyVar→ ITyVar | ren is injective ∧ dj(dom(ren), ran(ren),Dum)}
u ∈Unifier = {f1 ∪ f2 ∪ f3 | f1 ∈ ITyVar→ ITy ∧ f2 ∈ TyConVar→ ITyCon ∧ f3 ∈ EnvVar→ Env}

sub ∈ Sub = Unifier
∆ ∈ Context ::= 〈u, e〉

Figure 11.4 Renamings, unifiers, and substitutions

11.4 Semantics of constraint/environments

11.4.1 Renamings, unifiers, and substitutions

Fig. 11.4 defines renamings, unifiers and substitutions. One can observe that Ren ⊂

Unifier = Sub. Renamings are used to instantiate type schemes. Substitutions will

be extended in Ch. 14 (see Sec.14.7 and Sec.14.9) such that Unifier ⊂ Sub. It will

always be the case that Unifier ⊆ Sub.

The application of a substitution sub (and therefore of a renaming ren and a

unifier u) to a constraint term is defined as follows:

v [sub] =

{
x, if sub(v) = x

v , otherwise

(τ µ)[sub] = τ [sub]µ[sub]

(τ1�τ2)[sub] = τ1[sub]�τ2[sub]

xd [sub] = x[sub]d

(∀v . x)[sub] =





∀v . x[v ⊳− sub],

if dj(v , vars(v ⊳− sub))

undefined, otherwise

(�id=v)[sub] =





(�id=v [sub]),

if v [sub] ∈ Var

undefined, otherwise

(�id=x)[sub] = (�id=x[sub])

(x1=x2)[sub] = (x1[sub]=x2[sub])

(e1;e2)[sub] = e1[sub];e2[sub]

poly(e)[sub] = poly(e[sub])

x[sub] = x, otherwise

Fig. 11.4 also defines constraint solving contexts. A constraint solving context

∆ = 〈u, e〉 is used as the context in which the meaning of constraint/environments

is checked in the semantic rules provided below in Sec. 11.4.3. Such forms are also

used in our constraint solver defined in Sec. 11.6 as contexts in which the solvability

of constraint/environments is checked. In our system unifiers and environments are

complementary: unifiers contain information on internal type variables and environ-

ments on external identifiers. This is further stressed in Sec. 11.4.2, in the definition

of the application of a constraint solving context to an identifier.

Let 〈u, e〉(v) be u(v), let 〈u, e〉;e ′ be 〈u, e;e ′〉.

11.4.2 Shadowing and constraint solving context applica-

tion

In a constraint solving context (of the form 〈u, e〉) some parts might be shadowed

and so inaccessible. For example, in the constraint solving context 〈u, bind2;ev ;bind1〉

where u = ∅, the binder bind1 is “visible” and ev shadows bind2 because ev is not

bound in u (ev 6∈ dom(u)) and an environment variable stands for any environment
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u, e ⊲⊤ →֒ ⊤
(⊤)

u, e ⊲ ev →֒ ev [u]
(evar)

x1[u] = x2[u] x1, x2 6∈ Env

u, e ⊲ (x1=x2) →֒ ⊤
(eqc)

∀i ∈ {1, 2}. u, e ⊲ ei →֒ e ′
i e ′

1 = e ′
2

u, e ⊲ (e1=e2) →֒ ⊤
(eqe)

e(id) −instance−−−−→ x u, e ⊲ (x=v) →֒ ⊤

u, e ⊲ (�id=v) →֒ ⊤
(acc)

e(id) undefined

u, e ⊲ (�id=v) →֒ ⊤
(acc′)

u, e ⊲ (�id=x) →֒ (�id=x[u])
(bind)

u, e ⊲ e ′ →֒ e ′′

u, e ⊲ poly(e ′) →֒ toPoly(〈∅, e〉, e ′′)
(poly)

u, e ⊲ e1 →֒ e ′
1 u, (e;e ′

1) ⊲ e2 →֒ e ′
2

u, e ⊲ (e1;e2) →֒ (e ′
1;e

′
2)

(comp)

Figure 11.5 Semantics of the constraint/environments, ignoring dependencies

and could potentially bind any identifier. Let the predicate shadowsAll be defined

as follows:

shadowsAll(〈u, e〉)⇔





(e = ev ∧ (shadowsAll(〈u, u(ev)〉) ∨ ev 6∈ dom(u)))

∨ (e = (e1;e2)∧ (shadowsAll(〈u, e1〉) ∨ shadowsAll(〈u, e2〉)))

∨ (e = e ′d ∧ shadowsAll(〈u, e ′〉))

shadowsAll(e) ⇔ shadowsAll(〈∅, e〉)

If shadowsAll(e) then it means that some of the binders in e might be shad-

owed, and especially it means that in (e ′;e), the environment e shadows the entire

environment e ′ (no binder from e ′ is accessible in (e;e)).

Let us now present how to access the semantics of an identifier in an environment.

The applications ∆(id) and e(id) to access identifiers’ static semantics are defined

as follows:

〈u, �id=x〉(id) = x

〈u, ed〉(id) = collapse(〈u, e〉(id)d )

〈u, (e1;e2)〉(id) =

{
x, if 〈u, e2〉(id) = x or shadowsAll(〈u, e2〉)

〈u, e1〉(id), otherwise

〈u, ev〉(id) =

{
〈u, e〉(id), if u(ev) = e

undefined, otherwise

e(id) = 〈∅, e〉(id)

For example, (�vid=∀α. τ ;�strid=e)(vid) = ∀α. τ but (e ′;ev ;�strid=e)(vid) and

(�vid=σ;�strid=e)(tc) are undefined.

Let us now present another example involving a unifier:

〈{ev 7→ (�vid=∀α. τ)}, (e ′;ev ;�strid=e)〉(vid) = ∀α. τ

11.4.3 Semantic rules

We will now present the semantics of our constraint/environments.
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First, let us define the relation instance, which allows one to generate instances

of type schemes. This predicate is defined as follows:

x −instance−−−−−→ yd [sub] if collapse(x∅) = (∀v0. y)
d and dom(sub) = v0

x −instance−−−−−→ x if collapse(x∅) is not of the form (∀v0. y)
d

Let us define semantic judgements as follows:

Φ ∈ SemanticsJudgement ::= u, e ⊲ e1 →֒ e2

Fig. 11.5 defines the semantics of our constraint/environments, ignoring depen-

dencies at first. Note that this figure uses the function toPoly which is formally

defined below in Fig. 11.9 in Sec. 11.6.4. The function toPoly allows one to trans-

form a monomorphic environment into a polymorphic one. The function toPoly used

in Core-TES (i.e., defined in Fig. 11.9) can only be applied to a single dependent

value identifier binder. Note that this function is extended in Fig. 14.2 in Sec. 14.1.4

to deal with environments composed of more than one binder.

We say that an environment e is satisfiable iff there exist u and e ′ such that

u,⊤ ⊲ e →֒ e ′. The environment e ′ is the semantics of e in the context 〈u, ⊤〉.

Let us now consider the following environment which we call e1

poly(�vid=α0);(�vid=α2);(α2=α γ);(α1=α3�α4)

Let u = {α2 7→α γ, α1 7→α3�α4} and e ′ = (�vid=∀{α0}. α0). Let Φ = u,⊤ ⊲

e1 →֒ e ′. Then, one can derive Φ. Let us show how to derive this judgement.

Let Φ1 = (u,⊤ ⊲ poly(�vid=α0) →֒ e ′). This judgement can be derived as

follows:

u,⊤ ⊲ (�vid=α0) →֒ (�vid=α0) toPoly(〈∅, ⊤〉, �vid=α0) = e ′

Φ1

Let Φ2 = (u,⊤ ⊲ poly(�vid=α0);(�vid=α2) →֒ e ′). This judgement can be

derived as follows:

Φ1

e ′(vid) −instance−−−−−→ α γ

α2[u] = (α γ)[u] = αγ

u, e ′ ⊲ (α γ=α2) →֒ ⊤

u, e ′ ⊲ (�vid=α2) →֒ ⊤

Φ2

Finally, the judgement Φ can be derived as follows:

Φ2

α2[u] = (α γ)[u] = α γ

u, e ′ ⊲ (α2=αγ) →֒ ⊤

u,⊤ ⊲ poly(�vid=α0);(�vid=α2);(α2=αγ) →֒ e ′
α1[u] = (α3�α4)[u] = α3�α4

u, e ′ ⊲ (α1=α3�α4) →֒ ⊤

Φ

Let us mention an issue concerning the semantics of our constraint/environments

and our constraint solver defined below in Sec. 11.6. Let us consider the following

environment, similar to e1, which we call e2:
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u, e, de ⊲⊤ →֒ ⊤
(⊤)

u, e, de ⊲ ev →֒ ev [u]
(evar)

x1[u] = x2[u] x1, x2 6∈ Env

u, e, de ⊲ (x1=x2) →֒ ⊤
(eqc)

∀i ∈ {1, 2}. u, e, de ⊲ ei →֒ e ′
i e ′

1 = e ′
2

u, e, de ⊲ (e1=e2) →֒ ⊤
(eqe)

e(id) −instance−−−−→ x u, e, de ⊲ (x=v) →֒ ⊤

u, e, de ⊲ (�id=v) →֒ ⊤
(acc)

e(id ) undefined

u, e, de ⊲ (�id=v) →֒ ⊤
(acc′)

u, e, de ⊲ (�id=x) →֒ (�id=x)
(bind)

u, e, de ⊲ e ′ →֒ e ′′

u, e, de ⊲ poly(e ′) →֒ toPoly(〈∅, e〉, e ′′)
(poly)

u, e, de ⊲ e1 →֒ e ′
1 u, (e;e ′

1), de ⊲ e2 →֒ e ′
2

u, e, de ⊲ (e1;e2) →֒ (e ′
1;e

′
2)

(comp)
u, e, de ⊲ e ′ →֒ e ′′ de(d) = {keep}

u, e, de ⊲ 〈e ′, d〉 →֒ 〈e ′′, d〉
(keep)

drop ∈ de(d)

u, e, de ⊲ 〈e ′, d〉 →֒ dum(e ′)
(drop)

{keep-only-binders} = de(d) \ {keep}

u, e, de ⊲ 〈e ′, d〉 →֒ ⊤
(keep-only-binders)

Figure 11.6 Semantics of the constraint/environments, considering dependencies

poly(�vid=α1);(�vid=α2);(α2=αµ);(α1=α3�α4)

The environment e2 only differs from e1 by the replacement of α0 by α1. Note that

there are now two occurrences of α1 in e2. Note that e2 uses α1 at two separate

unrelated places. Because of these two occurrences of α1, the environment e2 fails to

be satisfiable w.r.t. the rules defined in Fig. 11.5. However, e2 is satisfiable w.r.t. our

constraint solver defined below in Sec. 11.6. The issue is that our constraint solver

considers the two occurrences of α1 to be different when with the semantics defined

in this section, these two occurrences are considered to be the same. Note that e2

cannot be generated by our initial constraint generation algorithm defined below in

Sec. 11.5, so this bug is not triggered. (Not initially generating environments such

as e2 is currently our only way of forbidding them.)

Let us define semantic judgements considering dependencies as follows:

ds ∈DepStatus ::= keep | drop | keep-only-binders

de ∈DepEnv = Dependency→ DepStatus

Ψ ∈ SemanticsJudgementDep ::= u, e, de ⊲ e1 →֒ e2

We define des on dependency sets as follows:

de(d) = {de(d) | d ∈ d}

Fig. 11.6 adds dependencies to the rules from Fig. 11.5. Semantic judgements

are now of the form u, e, de ⊲ e1 →֒ e2. Except for these additions, rules (⊤), (eqc),

(eqe), (acc), (acc′), (bind), (evar), (comp), and (poly) do not differ from the ones

defined in Fig. 11.5. In addition to these rules, Fig. 11.6 defines three new rules:

(keep), (drop), and (keep-only-binders) to deal with dependencies. Note that this

figure also uses the function toPoly and in addition uses the function dum which is
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formally defined below in Fig. 11.11 in Sec. 11.7.2. The function dum allows one

to transform an environment e into a similar dummy environment e ′ which cannot

participate in any error but contains dummy versions of the binders from e.

We say that an environment e is satisfiable w.r.t. the dependency environment

de iff there exist u and e ′ such that u,⊤, de ⊲ e →֒ e ′. Given a dependency environ-

ment de, a dependency d is said to be satisfied if de(d) = keep, and it is said to

be unsatisfied if de(d) = drop. The dependency status keep-only-binders is more

complicated. This status is needed for scoping issues which are further discussed

below in Sec. 11.7.2. If an environment e is annotated by a dependency which has

status keep-only-binders then e’s binders and environment variables (which could

potentially bind any identifier) are turned into dummy binders and dummy environ-

ment variables respectively. Other environments, such as equality constraints, are

discarded. The environment e ′ is the semantics of e in the context 〈u,⊤, de〉.

11.5 Constraint generation

11.5.1 Algorithm

Fig. 11.7 defines our initial constraint generator which is the relation -⊲ defined as

the smallest relation satisfying the rules in Fig. 11.7. We use the word “initial” to

distinguish it from our constraint solver defined in Sec. 11.6 which, while solving

constraints, is also responsible for the generation of some constraints. Let the forms

associated with terms (in Term) by our initial constraint generator be defined as

follows:

cg ∈ InitGen ::= e | 〈v , e〉

The relation -⊲ is a binary relation defined on Term×InitGen, i.e., -⊲ ⊂ Term×InitGen.

This relation is extended below in Sec. 14.

The rules of our constraint generator return cgs which can either be environments

e (rules (G17)-(G20)) or constrained variables of the form 〈v , e〉 where e constrains v .

Such a constrained variable v is in some cases an internal type variable α (rules (G1)-

(G8),(G10)-(G16)), in some other cases a type constructor variable δ (rule (G9)), and

in some other cases an environment variable ev (rules (G21)-(G22)). We chose not

to have a constructor of constrained types that would build an internal type from an

environment and an internal type (as a composition environment of the form e1;e2

builds a constrained environment from two environments because e1 constrains e2),

because it simplifies the presentation of our system by not having deep types. Such

a system with constrained types could be investigated (see also Sec. 12.1.2 on this

matter). Having chosen to return pairs of the form 〈α, e〉 for expressions, we then

decided to follow the same pattern for structure expressions and return pairs of the

form 〈ev , e〉 instead of returning composition environments of the form e;ev .
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All rules of the form P ⇐⇐⇐ Q have to be read as P ⇐⇐⇐ (Q∧∧∧ dja(e, e1, e2, α, α
′, ev , ev ′))

Expressions (exp -⊲ 〈α, e〉)

(G1) vid l

e -⊲ 〈α, �vid =
l
== α〉

(G2) letl dec in exp end -⊲ 〈α, [e1;e2;(α=
l
==α2)]〉 ⇐⇐⇐ dec -⊲ e1 ∧∧∧ exp -⊲ 〈α2, e2〉

(G3) ⌈exp atexp⌉l -⊲ 〈α, e1;e2;(α1 =
l
==α2�α)〉 ⇐⇐⇐ exp -⊲ 〈α1, e1〉 ∧∧∧ atexp -⊲ 〈α2, e2〉

(G4) fn pat
l
⇒ exp -⊲ 〈α, [(ev=e1);ev

l ;e2;(α=
l
==α1�α2)]〉 ⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉

Labelled datatype constructors (ldcon -⊲ 〈α, e〉)

(G5) dcon l -⊲ 〈α, �dcon =
l
== α〉

Patterns (pat -⊲ 〈α, e〉)

(G6) vvar l
p -⊲ 〈α, �vvar =

l
== α〉 (G7) dcon l

p -⊲ 〈α, �dcon =
l
== α〉

(G8) ⌈ldcon atpat⌉l -⊲ 〈α, e1;e2;(α1 =
l
==α2�α)〉 ⇐⇐⇐ ldcon -⊲ 〈α1, e1〉 ∧∧∧ atpat -⊲ 〈α2, e2〉

Labelled type constructors (ltc -⊲ 〈δ, e〉)

(G9) tcl -⊲ 〈δ, �tc =
l
== δ〉

Types (ty -⊲ 〈α, e〉)

(G10) tv l -⊲ 〈α, �tv =
l
== α〉

(G11) ⌈ty ltc⌉l -⊲ 〈α′, e1;e2;(α
′ =

l
==α δ)〉 ⇐⇐⇐ ty -⊲ 〈α, e1〉 ∧∧∧ ltc -⊲ 〈δ, e2〉

(G12) ty1

l
→ ty2 -⊲ 〈α, e1;e2;(α=

l
==α1�α2)〉 ⇐⇐⇐ ty1 -⊲ 〈α1, e1〉 ∧∧∧ ty2 -⊲ 〈α2, e2〉

Datatype names (dn -⊲ 〈α, e〉)

(G13) ⌈tv tc⌉l -⊲ 〈α′, (α′ =
l
==α γ);(�tc =

l
== γ);(�tv =

l
== α)〉 ⇐⇐⇐ α 6= α′

Constructor bindings (cb -⊲ 〈α, e〉)

(G14) dcon l

c -⊲ 〈α, �dcon =
l
== α〉

(G16) dcon of l ty -⊲ 〈α, e1;(α
′ =

l
==α1�α);(�dcon =

l
== α′)〉 ⇐⇐⇐ ty -⊲ 〈α1, e1〉

Declarations (dec -⊲ e)

(G17) val rec pat
l
= exp -⊲ (ev=poly(e1;e2;(α1 =

l
==α2)));ev

l ⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉

(G18) datatype dn
l
= cb -⊲ (ev=((α1 =

l
==α2);e1;poly(e2)));ev

l ⇐⇐⇐ dn -⊲ 〈α1, e1〉 ∧∧∧ cb -⊲ 〈α2, e2〉

(G19) openl strid -⊲ (�strid =
l
== ev );ev l

Structure declarations (strdec -⊲ e)

(G20) structure strid
l
= strexp -⊲ [e];(ev ′=(�strid =

l
== ev));ev ′l ⇐⇐⇐ strexp -⊲ 〈ev , e〉

Structure expressions (strexp -⊲ 〈ev , e〉)

(G21) strid l -⊲ 〈ev , �strid =
l
== ev 〉

(G22) structl strdec1 · · · strdecn end -⊲ 〈ev , (ev =
l
== ev ′);(ev ′=(e1; · · · ;en))〉

⇐⇐⇐ strdec1 -⊲ e1 ∧∧∧ · · · ∧∧∧ strdecn -⊲ en ∧∧∧ dja(e1, . . . , en, ev , ev
′)

Figure 11.7 Constraint generation rules

11.5.2 Shape of the generated environments

Our initial constraint generator defined in Fig. 11.7 only generates restricted forms

of environments (ge defined below, where “g” stands for “generation”). Let us

present these restricted forms, where sit is a restriction of τ , and the other forms

are restrictions of e (where “p” stands for “poly” and “l” for “labelled”):
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sit ∈ ShallowITy ::=α | α δ | αγ | α1�α2

lbind ∈ LabBind ::= �tc =
l
== γ | �strid =

l
== ev | �tv =

l
== α | �vid =

l
== α

lc ∈ LabCs ::= ev1 =
l
== ev2 | α=

l
== sit

lacc ∈ LabAcc ::= acc l

lev ∈ LabEnvVar ::= ev l

ipe ∈ InPolyEnv ::= lacc | lc | ipe1;ipe2

pe ∈PolyEnv ::= �vid =
l
== α | pe;ipe | ipe;pe

ge ∈GenEnv ::=⊤ | lev | lbind | lacc | lc | ev=ge | poly(pe) | ge1;ge2

At initial constraint generation, the only labelled (dependent) environments are

equality constraints (c), binders (bind), accessors (acc), and environment variables

(ev). Also, note that a pe contains exactly one binder and can also contain equality

constraints as well as accessors.

11.5.3 Complexity of constraint generation

Inspection reveals the generated constraint’s size is linear in the program size. Un-

like HW-TES’ constraint generation [57], for a polymorphic (let-bound) function (see

the combination of rules (G2), (G6) and (G17)) we do not eagerly copy constraints

for the function body. Instead, we generate (among other things) poly environ-

ments, composition environments, and binders, and force solving (constraint solving

is defined below in Sec. 11.6) the constraints for the body before copying its type for

each use of the function. This type is a simplified form of the constraints generated

for the function body.

11.5.4 Discussion of some constraint generation rules

In rule (G17), the environment e1 generated for pat constrains e2 generated for exp.

This order is necessary to handle the recursivity of such declarations. The binders in

e1 are monomorphic. Polymorphic type schemes are generated at constraint solving

when dealing with the poly constraint. Within the poly environment, binders need

to be monomorphic because SML does not allow polymorphic recursion. Allowing

poly constraints on environments other than just a single binder (e.g., allowing poly

on a binder constraining equality constraints and accessors such as in bind ;c;acc

where acc could potentially refer to bind) allows one to delay the generation of

polymorphic types. Therefore, given a recursive function declaration, one can gen-

erate only one binder for the function (in a naive approach two would be needed:

one monomorphic for the function’s body and one polymorphic for the function’s

scope as mentioned in Sec. 12.1.7 below).

In rule (G18) for datatype declarations, the environment e1 generated for the

declared type constructor constrains the environment poly(e2) generated for the

datatype constructor of the declared type constructor. This order is necessary to
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handle the recursivity of such datatype declarations. For example, in the declaration

datatype nat = z | s of nat, nat’s second occurrence refers to its first occurrence.

Note that e1 also binds explicit type variables in Core-TES. This extends the scope

of the bound external type variable further than needed, but causes no harm in Core-

TES, in which all type variables only occur inside datatype constructor bindings.

This will be changed in Sec. 14.3, after introducing internal local environments in

Sec. 14.2.

Rules (G4), (G17), (G18), (G19) and (G20) label environment variables to prevent

sliced out declarations from shadowing their context (e.g., in our constraint system

if ev is unconstrained, it shadows e in e;ev which is something we do not want

to happen in these rules). In each of these rules, such an environment variable

represents the entire declaration. For example, in rule (G19), ev represents the

entire analysed opening declaration. Our initial constraint generation algorithm

labels ev using l , the label associated with the analysed opening declaration. In

rule (G19) (as in any of the other rules mentioned above), without l the environment

variable ev would be a constraint that always has to be satisfied, even when the

corresponding opening declaration has been sliced out. For example, slicing out

open S in structure S = struct end; val x = 1; open S; val y = x 1 would result in

the environment variable generated for open S shadowing its context which contains

the declaration val x = 1. Failing from labelling ev using l in rule (G19) would

therefore prevent from finding the error that x is declared as an integer in the piece

of code presented above, and is also applied to an argument in y’s body. With the

label, the environment variable is a constraint that has to be satisfied only when

the declaration is not sliced out. Note that in rule (G19), the link between the

environment variable and the structure to open is made via the labelled accessor.

Rules (G4), (G17), (G18), (G20) and (G22) generate unlabelled equality con-

straints. Those generated by rule (G22) are of the form ev ′=(e1; · · · ;en). Such a

constraint needs to be unlabelled because each ei does not depend on the analysed

structure expression structl strdec1 · · · strdecn end itself, but only on the corre-

sponding declaration strdeci packed together with other declarations in the structure

expression. Therefore when slicing out the packaging created by this structure ex-

pression (i.e., when slicing out l above) we do not want to discard all the eis as well

(which is what would happen if we were to label ev ′=(e1; · · · ;en) with l and entirely

discard it when slicing out l). The information related to the structure expres-

sion structl strdec1 · · · strdecn end, carried by the unlabelled equality constraint

ev ′=(e1; · · · ;en), is the fact that a sequence of declarations (corresponding to the

composition environment e1; · · · ;en) is packed into a structure. This information de-

pends on the structure expression via the extra labelled equality constraint ev=
l
==ev ′.

In rules (G4), (G17), (G18) and (G20), we use labelled environment variables of the

form ev l for this purpose.
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11.5.5 Constraints generated for example (EX1)

We now present the constraints generated for example (EX1) presented in Sec. 11.2.

First, let us repeat the labelled version of example (EX1) which is called strdecEX:

structure X
l1= structl2

structure S
l3= structl4 datatype ⌈’a u⌉l6

l5= U
l7

c
end

datatype ⌈’a t⌉l9
l8= T

l10

c

val rec f
l12

p

l11= fn T
l14

p

l13⇒ T
l15

e

val rec g
l17

p

l16= letl18 openl19 S in ⌈f
l21

e
U
l22

e
⌉l20 end

end

We assume in this section that the generated variables and type constructor

names are all distinct from each other.

The environment generated for datatype ’a u = U which we call e0 is as follows:

e0 = (ev4=((α1 =
l5
==α2);e

′′
0 ;e ′0));ev

l5
4

such that





e ′0 is poly(�U =
l7
== α2)

e ′′0 is (α1 =
l6
==α′

1 γ1);(�u =
l6
== γ1);(�’a =

l6
== α′

1)

The environment generated for structure S = struct datatype ’a u = U end, which

we call e1 is as follows:

e1 = [(ev 2 =
l4
== ev3);(ev3=e0)];(ev1=(�S =

l3
== ev2));ev

l3
1

The environment generated for datatype ’a t = T, which we call e2 is as follows:

e2 = (ev5=((α3 =
l8
==α4);e

′′
2 ;e ′2));ev

l8
5

such that





e ′2 is poly(�T =
l10
== α4)

e ′′0 is (α3 =
l9
==α′

3 γ2);(�t =
l9
== γ2);(�’a =

l9
== α′

3)

The environment generated for val rec f = fn T => T, which we call e3 is as

follows:

e3 = (ev6=poly((�f =
l12
== α5);e

′
3;(α5 =

l11
==α6)));ev

l11
6

such that e ′3 = [(ev7=(�T =
l14
== α7));ev

l13
7 ;(�T =

l15
== α8);(α6 =

l13
==α7�α8)]

The environment generated for val rec g = let open S in f U end, which we call

e4 is as follows:

e4 = (ev8=poly((�g =
l17
== α9);[e

′
4;e

′′
4 ;(α10 =

l18
==α11)];(α9 =

l16
==α10)));ev

l16
8

such that





e ′4 is (�S =
l19
== ev9);ev

l19
9

e ′′4 is (�f =
l21
== α12);(�U =

l22
== α13);(α12 =

l20
==α13�α11)

Finally, the environment generated for the entire piece of code is the following

environment which we call eEX:

eEX = [(ev11 =
l2
== ev12);(ev12=(e1;e2;e3;e4))];(ev10=(�X =

l1
== ev11));ev

l1
10

110



Chapter 11. Technical design of Core-TES

er ∈ Error ::= 〈ek , d〉
ek ∈ ErrKind ::= tyConsClash(µ1, µ2) | circularity

state ∈ State ::= slv(∆, d , e) | succ(∆) | err(er)

Figure 11.8 Syntactic forms used by the constraint solver

11.6 Constraint solving

11.6.1 Syntax

Fig. 11.8 defines additional syntactic forms used by our constraint solver (Fig. 11.10)

where a constraint solving step is defined by the relation →, and where →∗ is its

reflexive (w.r.t. State) and transitive closure. A constraint solving process always

starts in a state of the form slv(〈∅, ⊤〉,∅, e) where ⊤ is called the initial envi-

ronment. Given such a state, our constraint solver either succeeds with final state

succ(∆) returning its current constraint solving context ∆, or fails with final state

err(er) returning an error which can be a type constructor clash or a circularity

error (see ek in Fig. 11.8). Given a state slv(∆, d , e), if the dependencies in d are

satisfied and e is solvable in the context ∆ then the constraint solver will succeed

with final state succ(∆′) for some ∆′.

11.6.2 Building of constraint terms

We defined a substitution operation in Sec. 11.3. Let us now define a new substi-

tution operation called “build” that differs from the one defined in Sec. 11.3 by the

facts that: it is recursively called in the variable case, it is undefined on ∀ schemes

and environments, and it collapses dependencies. The constraint solver defined in

Fig. 11.10 uses build to generate, w.r.t. a given constraint solving context, polymor-

phic types from monomorphic ones (build is called by toPoly in Fig. 11.9) and check

circularity errors (in order not to generate a unifier where, e.g., α = τ�α):

build(u, v) =

{
build(u, x), if u(v) = x

v , otherwise

build(u, τ µ) = build(u, τ) build(u, µ)

build(u, τ1�τ2) = build(u, τ1)�build(u, τ2)

build(u, xd ) = collapse(build(u, x)d )

build(u, x) = x, otherwise

We also extend the build function to constraint solving contexts as follows:

build(〈u, e〉, x) = build(u, x).

Types have to be built up when generating polymorphic environments (see

Sec. 11.6.4) for efficiency issues (to avoid duplicating constraints). Also, because

SML does not allow infinite types, we use build to detect circularity issues. During

constraint solving, before augmenting any constraint solving context, we check if

the augmentation could lead to the generation of infinite types (see rule (U1) in

Fig. 11.10). For example, given the unifier {α1 7→αd1

2 , α2 7→ 〈α
d3

3 �αd4

4 , d2〉}, we do
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toPoly(∆, �vid =
d
== τ)

= ∆;(�vid =
d∪d

′

==== ∀α. τ ′)
where





τ ′ = build(∆, τ)
α = (vars(τ ′) ∩ ITyVar) \ (vars(monos(∆)) ∪ {αdum})

d
′
= {d | αd0∪{d} ∈ monos(∆) ∧ α ∈ vars(τ ′) \ α}

Figure 11.9 Monomorphic to polymorphic environment

not allow its augmentation with, e.g., {α3 7→ 〈α
d6

5 �αd7

1 , d5〉} because it would allow

one to generate infinite types.

Note that τ [u] and build(u, τ) do not always yield the same result. Consider u =

{α1 7→α2, α2 7→α3} where dja(α1, α2, α3). Then α1[u] = α2 but build(u, α1) = α3.

The result would be the same if u was idempotent (i.e., if we had u[u] = u).

11.6.3 Environment extraction

The function diff is used by rules (U4) and (P1) of our constraint solver (see

Fig. 11.10) to extract environments generated during solving. It is defined as follows:

diff(e, e) =⊤

diff(e1, (e2;e3)) = diff(e1, e2);e3 if e1 6= (e2;e3)

When solving an environment, it allows one to get back its “solved version” once all

of its constraints have been dealt with. By “solved version” of an environment e, we

mean the sequence of environments that has been added to the constraint solving

context of the state in which the constraint solving process was when it started to

solve e. For example, if slv(〈u, e〉, d , e0) →
∗ succ(〈u ′, e ′〉) then e ′ = e;e1; · · · ;en

and diff(e, e ′) = ⊤;e1; · · · ;en which is the “solved version” of e0 w.r.t. e.

11.6.4 Polymorphic environments

The function monos computes the set of dependent monomorphic type variables

occurring in an environment w.r.t. a unifier as follows (the type variables occurring

in the types of the monomorphic binders):

monos(∆) = {αdeps(τ) | ∃vid . τ = build(∆,∆(vid )) ∧ α ∈ nonDums(τ)}

Note that in monos’ definition, τ = build(∆,∆(vid)) enforces that vid has a monomor-

phic binder in ∆. For example, in 〈u, e;(�vid =
d
== τ)〉, vid has a monomorphic binder

because τ is not a ∀ (dependent or not) type scheme.

Fig. 11.9 defines toPoly which, given a constraint solving context ∆ and a depen-

dent monomorphic value identifier binder, generates a polymorphic binder by quan-

tifying the type variables not occurring in the types of the monomorphic binders of

∆. The function toPoly is used by the semantic rule (poly) and by the constraint

solving rule (P1).

In Fig. 11.9, τ is the type from which a type scheme is generated. First, we

build up τ , using the constraint solving context (∆) of the current state, to obtain
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the type τ ′. The set α is the set of type variables that are quantified over because

they do not depend on the types of monomorphic binders. The dependencies set d
′

“explains” why the type variables not in α but occurring in τ ′ (therefore depending

on monomorphic binders) are not allowed to be quantified over. Roughly speaking, α

is the set of polymorphic type variables in τ ′ and vars(τ ′)\α is the set of monomorphic

type variables in τ ′.

Let us illustrate this mechanism using the fn-expression exp defined as fol-

lows: fn x => let val rec f = fn z => x z in f end. At initial constraint genera-

tion, an environment of the form poly(e1)
1 is generated for the recursive declara-

tion val rec f = fn z => x z. When solving the constraints generated for exp, the

constraint solver eventually applies toPoly to a constraint solving context 〈u, e〉 and

a binder of the form 〈�f=α1, d〉 (which is the “solved version” of e1). Building up

α1 results in a type τ ′ of the form 〈αd2

2 �αd3

3 , d1〉. Because x’s type is monomor-

phic, a monomorphic binder (the only one) of the form �x=α0 occurs in e and so

vars(monos(〈u, e〉)) = vars(τ0) where τ0 is obtained by building up α0 and is of the

form 〈αd5

2 �αd6

3 , d4〉 (equivalent to τ ′ up to dependencies because f eta-reduces to

x). We therefore build a α (see Fig. 11.9) of the form ∅ because α2 and α3 both

occur in τ0. We also build a d
′
of the form d4 ∪ d5 ∪ d6 which are the “reasons” for

not allowing α2 and α3 to be in α (type variable set allowed to be generalised over

when building the type scheme returned by toPoly). Finally, e is augmented with

〈�f=∀∅. 〈αd2

2 �αd3

3 , d1〉, d ∪ d
′
〉.

When solving constraints generated by our constraint generator, toPoly is only

applied to bindd ’s resulting from the solving of an environment wrapped by poly

which in turn is only used to wrap environments built from: dependencies, a single

monomorphic binder, equality constraints, and accessors (see PolyEnv’s definition in

Sec. 11.5).

Extracting the monomorphic type variables of a binder’s type is expensive. We

only perform it once per polymorphic binder by, given a constraint solving context,

first building the type of a given binder and by then looking up in the constraint

solving context which type variables are monomorphic. When accessing the type of

a polymorphic binder we then only have to generate an instance of its type scheme

(see rule (A1) of our constraint solver).

In Fig. 11.9, the computation of d
′
and our constraining of the generated type

scheme with d
′
, even though a correct approximation (that cannot generate false

errors and that will eventually allow one to obtain minimal type errors), could be re-

fined, thereby speeding up minimisation. This refinement is presented in Sec. 11.6.7.

1When considering the following labelling: val rec f
l6

p

l7= fn z
l4

p

l5⇒ ⌈x
l1

e
z
l2

e
⌉l3 , the environment

e1 is of the form �f =
l6
== α6;[ev=(�z =

l4
== α4);ev

l5 ;�x =
l1
== α1;�z =

l2
== α2;α1=

l3
==α2�α3;α5=

l5
==α4�α3];α6=

l7
==α5.
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11.6.5 Algorithm

Let u1⊕u2 be {(v 7→x) ∈ u1∪u2 | dj({v , strip(x)},Dum)} if dj(Dum⊳−dom(u1),Dum⊳−

dom(u2)), and undefined otherwise. This function allows us, at constraint solving

(see rules (U3) and rule (U4) of our constraint solved defined in Fig. 11.10), to gener-

ate unifiers which do not constrain dummy variables. For example, u⊕{αdum 7→ τ} =

u⊕{α 7→αd
dum} = u.

Fig. 11.10 defines our constraint solver which can be regarded as a rewriting

system. A finite computation is then a finite sequence of states 〈state1, . . . , staten〉

such that for each i ∈ {1, . . . , n− 1}, the state state i+1 is obtained by applying one

of the constraint solving rules as defined in Fig. 11.10 to the state state i (i.e., the

pair 〈statei, state i+1〉 is obtained by instantiating one of the constraint solving rules,

where statei is the instantiation of the left-hand-side of the rule and state i+1 is the

instantiation of the right-hand-side).

Rule (A3) can be used to report free identifiers. If slv(∆, d , �id=v)→ succ(∆)

and ¬shadowsAll(∆) then it means that there is no binder for id and so that it

is a free identifier. Free identifiers are in any case important to report, but it

is especially vital for structure identifiers in open declarations. In our approach,

a free opened structure is considered as potentially redefining its entire context.

Hence, val x = 1; open S; val y = x 1 does not have an error involving x because

x’s first occurrence is hidden by the declaration open S. This might be confusing

if S was not reported as being free. Let us explain how a free opened structure

shadows its context. Given a declaration open S labelled by l , our initial constraint

generation algorithm generates an environment of the form (�S =
l
== ev);ev l . Because

S is free, rule (A3) applies when solving �S=ev . The environment variable ev is

then unconstrained. Hence, when solving ev , rule (V) applies and ∆;ev (from the

right-hand-side of rule (V)) results in the shadowing of all the binders in ∆ by ev .

Let the relations isErr and solvable be defined as follows:

e −isErr−−→ er ⇔ slv(〈∅, ⊤〉,∅, e)→∗ err(er )

solvable(e) ⇔∃∆. slv(〈∅, ⊤〉,∅, e)→∗ succ(∆)

solvable(strdec)⇔∃e. strdec -⊲ e ∧ solvable(e)

These relations are used, among other things, to define our minimisation and

enumeration algorithms in Sec. 11.7.

11.6.6 Shape of the environments generated during con-

straint solving

During constraint solving (see Fig. 11.10), a constraint solving context of the form

〈u, e〉 is maintained. No c or acc occurs in e because they are transformed instead

into unifiers u (rules (U3) and (U4) in Fig. 11.10). Similarly, the poly(e ′) forms are
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equality constraint reversing

(R) slv(∆, d , x=y)→ slv(∆, d , y=x), if s = Var ∪Dependent ∧ y ∈ s ∧ x 6∈ s

equality simplification

(S1) slv(∆, d , x=x) → succ(∆)

(S2) slv(∆, d , xd
′

=y) → slv(∆, d ∪ d
′
, x=y)

(S3) slv(∆, d , τ µ=τ ′ µ′) → slv(∆, d , (µ=µ′);(τ=τ ′))

(S4) slv(∆, d , τ1�τ2=τ3�τ4)→ slv(∆, d , (τ1=τ3);(τ2=τ4)),

(S5) slv(∆, d , τ1=τ2) → slv(∆, d , µ=ar), if {τ1, τ2} = {τ µ, τ3�τ4}

(S6) slv(∆, d , µ1=µ2) → err(〈tyConsClash(µ1, µ2), d〉), if {µ1, µ2} ∈ {{γ, γ
′}, {γ, ar}}

∧ γ 6= γ′

unifier access

Rules (U1) through (U6) have also these common side conditions: v 6= x and y = build(u, xd ).

(U1) slv(〈u, e〉, d , v=x)→ err(〈circularity, deps(y)〉),
if v ∈ vars(y) \ (dom(u) ∪ Env ∪ Dum) ∧ strip(y) 6= v

(U2) slv(〈u, e〉, d , v=x)→ succ(〈u, e〉),
if v ∈ vars(y) \ (dom(u) ∪ Env) ∧ strip(y) = v

(U3) slv(〈u, e〉, d , v=x)→ succ(〈u⊕{v 7→ y}, e〉),
if v 6∈ (vars(y) \ Dum) ∪ dom(u) ∪ Env

(U4) slv(〈u, e〉, d , v=x)→ succ(〈u ′⊕{v 7→ diff(e, e ′)}, e〉),

if v ∈ Env \ dom(u) ∧ slv(〈u, e〉, d , x)→∗ succ(〈u ′, e ′〉)

(U5) slv(〈u, e〉, d , v=x)→ err(er),

if v ∈ Env \ dom(u) ∧ slv(〈u, e〉, d , x)→∗ err(er)

(U6) slv(〈u, e〉, d , v=x)→ slv(〈u, e〉, d , z=x),
if u(v) = z

binders
(B1) slv(〈u, e〉, d , �id=x)→ succ(〈u, e;(�id =

d
== x)〉)

empty/dependent/variables

(E) slv(∆, d ,⊤) → succ(∆)

(D) slv(∆, d , ed
′

) → slv(∆, d ∪ d
′
, e)

(V) slv(〈u, e〉, d , ev)→ succ(〈u, e;evd 〉)

composition environments

(C1) slv(∆, d , e1;e2)→ slv(∆′, d , e2), if slv(∆, d , e1)→
∗ succ(∆′)

(C2) slv(∆, d , e1;e2)→ err(er), if slv(∆, d , e1)→
∗ err(er )

accessors

(A1) slv(∆, d , �id=v)→ slv(∆, d ∪ d
′
, v=τ [ren ]),

if ∆(id) = (∀α. τ)d
′

∧ dom(ren) = α ∧ dj(vars(〈∆, v〉), ran(ren))

(A2) slv(∆, d , �id=v)→ slv(∆, d , v=x),
if ∆(id) = x ∧ strip(x) is not of the form ∀α. τ

(A3) slv(∆, d , �id=v)→ succ(∆),
if ∆(id) undefined

polymorphic environments

(P1) slv(〈u1, e1〉, d , poly(e))→ succ(toPoly(〈u2, e1〉, diff(e1, e2))),

if slv(〈u1, e1〉, d , e)→∗ succ(〈u2, e2〉)

(P2) slv(〈u1, e1〉, d , poly(e))→ err(er),

if slv(〈u1, e1〉, d , e)→∗ err(er)

Figure 11.10 Constraint solver

eliminated. Moreover, given that a constraint solving process always starts with the

initial environment ⊤, the environment e is then of the form ⊤;e1 · · · ;en, where

each ei is built from dependencies, binders, environment variables, composition

environments, and ⊤. Such an environment e is of the form se defined as follows:
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sbind ∈ SolvBind ::= �tc=µ | �strid=se | �tv=α | �vid=σ

serhs ∈ SolvEnvRHS ::=⊤ | ev | sbind | serhs1;serhs2 | serhs
d

se ∈ SolvEnv ::=⊤ | ⊤;serhs

It is also the case that, for any environment variable ev ∈ dom(u), u(ev ) ∈

SolvEnv. This is obtained by a simple inspection of the constraint solving rules.

We sometimes call an environment of the form se , a “solved” environment.

11.6.7 Improved generation of polymorphic environments

Fig. 11.9 defines the simple toPoly function which is used by rule (P1) of our con-

straint solver to generate a polymorphic environment from a monomorphic one by

quantifying the type variables not occurring in the types of the monomorphic bind-

ings of the current constraint solving context. In this figure α is the set of type

variables occurring in τ ′ (the type that we want to generalise to a ∀ scheme) that

can be generalised and quantified over. The dependencies in the dependency set d
′

are the reasons for not generalising the type variables occurring in τ ′ that are not

in α (these dependencies are the reasons why some type variables are not allowed

to be quantified over).

As mentioned in Sec. 11.6.4, the computation of d
′
and our constraining of the

generated type scheme with d
′
, even though a correct approximation, could be

refined, thereby speeding up minimisation. We now present how this can be done.

First, we define functions from internal type variables to dependency sets as

follows:

tvdeps ∈ ITyvarToDeps = ITyVar → P(Dependency)

Let us now define the two functions getDeps and putDeps. The application

getDeps(α, τ,∅) results in the dependency set occurring in τ on the paths from its

root node to any occurrence of α. The application putDeps(τ, tvdeps) results in the

constraining, for each variable α in dom(tvdeps), of the occurrences of α in τ with

the dependency set tvdeps(α). The function getDeps is defined as follows:

getDeps(α,α′, d) =

{
d , if α = α′

∅, otherwise

getDeps(τ µ, α, d) = getDeps(τ, α, d)

getDeps(τ1�τ2, α, d) = getDeps(τ1, α, d) ∪ getDeps(τ2, α, d)

getDeps(τd , α, d
′
) = getDeps(τ, α, d ∪ d

′
)

The function putDeps is defined as follows:

putDeps(α, tvdeps) =

{
αd , if tvdeps(α) = d

α, otherwise

putDeps(τ µ, tvdeps) = putDeps(τ, tvdeps)µ

putDeps(τ1�τ2, tvdeps) = putDeps(τ1, tvdeps)�putDeps(τ2, tvdeps)

putDeps(τd , tvdeps) = putDeps(τ, tvdeps)d
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Let us now present another way of constraining τ ′ from the one in Fig. 11.9

(different from constraining it with d
′
). In the following, τ ′ and α are the same as

in Fig. 11.9. First, we define a variant of monos, called monos′ that gathers labels

more precisely as follows:

monos′(∆) = {αd | ∃vid . τ = build(∆,∆(vid)) ∧ α ∈ nonDums(τ) ∧ d = getDeps(τ, α,∅)}

Let e be the monomorphic binder (�vid=α), u be the set {α 7→ 〈αd1

1 �αd2

2 , d0〉},

and ∆ = 〈u, e〉. Then, monos(∆) = {αd0∪d1∪d2

1 , αd0∪d1∪d2

2 }, while monos′(∆) =

{αd0∪d1

1 , αd0∪d2

2 }. As a matter of fact, α1 occurring in the monomorphic type associ-

ated with vid , does not depend on the dependency set d2 but only on the dependency

set d0 ∪ d 1 (and similarly for α2).

We can then compute the set of type variables occurring in τ ′ that are not allowed

to be quantified over in the generated type scheme (because they occur in monos′(∆))

along with the precise reasons as why they are not allowed to be quantified over:

tvdeps = {α 7→ ∪m
i=1 d

′
i | monos′(∆) = {αd

′

1, . . . , αd
′

m} ⊎ τ ∧ α ∈ vars(τ ′) \ (α ∪ vars(τ ))}

Finally, toPoly would generate the following type scheme: ∀α. putDeps(τ ′, tvdeps).

11.6.8 Solving of the constraint generated for example (EX1)

Sec. 11.2 introduced the untypable piece of code (EX1). Let us repeat the labelled

version of example (EX1) (called strdecEX):

structure X
l1= structl2

structure S
l3= structl4 datatype ⌈’a u⌉l6

l5= U
l7

c
end

datatype ⌈’a t⌉l9
l8= T

l10

c

val rec f
l12

p

l11= fn T
l14

p

l13⇒ T
l15

e

val rec g
l17

p

l16= letl18 openl19 S in ⌈f
l21

e
U
l22

e
⌉l20 end

end

Sec. 11.5.5 presented the environment, called eEX, that our initial constraint

generation algorithm generates given example (EX1). Let us now present the solving

of eEX. We present below the solving of the environment (e1;e2;e3;e4) which is part

of eEX as defined in Sec. 11.5.5. Let us consider the solving of e1 generated for

structure S = struct datatype ’a u = U end Let us repeat e1’s definition:

e1 = [(ev2 =
l4
== ev3);(ev3=e0)];(ev1=(�S =

l3
== ev2));ev

l3
1

such that





e ′0 is poly(�U =
l7
== α2)

e ′′0 is (α1 =
l6
==α′

1 γ1);(�u =
l6
== γ1);(�’a =

l6
== α′

1)

e0 is (ev4=((α1 =
l5
==α2);e

′′
0 ;e ′0));ev

l5
4

The solved version of e1 is as follows:
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ev l3
1 such that





ev1 7→ �S =
l3
== ev2

ev2 7→ ev l4
3

ev3 7→ ((�u =
l6
== γ1);(�’a =

l6
== α′

1);(�U =
l7
== ∀{α′

1}. (α
′
1 γ1)

{l5,l6}))l5

Note that ev 3 is mapped to an environment that contains a binder for ’a because

we have not yet introduced any mechanism to only export partial environments (we

want a mechanism other than e1;e2 that exports, e.g., the binders of e1 but not those

of e2). This is done in Sec. 14.2 below.

Let us now consider the solving of e2 generated for datatype ’a t = T. First, let

us repeat e2’s definition:

e2 = (ev5=((α3 =
l8
==α4);e

′′
2 ;e ′2));ev

l8
5

such that





e ′2 is poly(�T =
l10
== α4)

e ′′0 is (α3 =
l9
==α′

3 γ2);(�t =
l9
== γ2);(�’a =

l9
== α′

3)

The solved version of e2 is a follows:

ev l8
5 such that ev5 7→ (�t =

l9
== γ2);(�’a =

l9
== α′

3);(�T =
l10
== ∀{α′

3}. (α
′
3 γ2)

{l8,l9})

Let us now consider the solving of e3 generated for val rec f = fn T => T. First,

let us repeat e3’s definition:

e3 = (ev6=poly((�f =
l12
== α5);e

′
3;(α5 =

l11
==α6)));ev

l11
6

such that e ′3 = [(ev7=(�T =
l14
== α7));ev

l13
7 ;(�T =

l15
== α8);(α6 =

l13
==α7�α8)]

The solved version of e3 is a follows:

ev l11
6 such that ev6 7→ (�f =

l12
== ∀{α′′

3 , α
′′′
3 }. ((α

′′
3 γ2)

{l8,l9,l10,l14}�(α′′′
3 γ2)

{l8,l9,l10,l15}){l11,l13})

Note that in the binder generated at constraint solving for f, l15 only labels

(α′′′
3 γ2) and does not label the whole binder. Having dependencies on types as well

as on environments allows a precise blaming (dependency tracking).

Let us present the solving of e4 generated for val rec g = let open S in f U end.

First, let us repeat e4’s definition:

e4 = (ev8=poly((�g =
l17
== α9);[e

′
4;e

′′
4 ;(α10 =

l18
==α11)];(α9 =

l16
==α10)));ev

l16
8

such that





e ′4 is (�S =
l19
== ev9);ev

l19
9

e ′′4 is (�f =
l21
== α12);(�U =

l22
== α13);(α12 =

l20
==α13�α11)

We start by solving e ′
4. Its solved version is as follows:

ev l19
9 such that ev9 7→ ev

{l3,l19}
2

Then, we solve e ′′
4 . The dependent accessor (�f =

l21
== α12) accesses f’s binder through

ev6. It leads to the generation of the following mapping:

α12 7→ ((α′′
4 γ2)

{l8,l9,l10,l14}�(α′′′
4 γ2)

{l8,l9,l10,l15}){l11,l12,l13,l21}
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filtering function

filt(e l , l1, l2) =





e l , if l ∈ l1 \ l2
dum(e)∅, if l ∈ l2
⊤, otherwise

filt(ev=e, l1, l2) = (ev=filt(e, l1, l2))

filt(e1;e2, l1, l2) = filt(e1, l1, l2);filt(e2, l1, l2)

filt(poly(e), l1, l2) = poly(filt(e, l1, l2))

filt(⊤, l1, l2) =⊤

conversion of environments into dummy environments

dum(�id=x) = (�id=toDumVar(x))
dum(ev ) = ev dum

dum(e1;e2) = dum(e1);dum(e2)

dum(ed ) = dum(e)

dum(c) =⊤
dum(acc) =⊤
dum(⊤) =⊤

toDumVar(σ) = αdum

toDumVar(µ) = δdum
toDumVar(e) = evdum

Figure 11.11 Constraint filtering

The dependent accessor (�U =
l22
== α13) accesses to U’s binder through ev 9, ev2, and

ev3. It leads to the generation of the following mapping:

α13 7→ (α′′
1 γ1)

{l3,l4,l5,l6,l7,l19,l22}

Finally, our constraint solver returns a type error (terminates in an error state) when

dealing with the equality constraint (α12 =
l20
==α13�α11), because γ1 6= γ2. The error is

as follows: 〈tyConsClash(γ1, γ2), {l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l19, l20, l21, l22}〉.

We call this error erEX. Let erEX = 〈ekEX, dEX〉.

11.7 Minimisation and enumeration

11.7.1 Extraction of environment labels

Given an environment e, lBinds extracts the labels labelling binders occurring in

e. It is used during the first phase of our minimisation algorithm which consists in

trying to remove entire sections of code (datatype declarations, functions, structures,

. . . ) by “disconnecting” accessors from their binders:

lBinds(e) = {l | bind l occurs in e}

11.7.2 Constraint filtering

Fig. 11.11 defines the constraint filtering function filt, used to check the solvability

of constraints in which some constraints are discarded. Note that our filtering func-

tion is not defined on all environments. The forms on which the filtering function is

defined are the ones generated by our initial constraint generator (these forms are

defined in Sec. 11.5.2). When applied to unlabelled equality constraints on envi-

ronments, our filtering function is only applied to unlabelled equality constraints of

the form ev=e (and not of the general form e1=e2) because our initial constraint

generator only generates variables as the left-hand-side of unlabelled equality con-

straints on environments (see the definition of GenEnv in Sec. 11.5.2). Similarly,
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we only apply our filtering function to dependent environments of the form e l , i.e.,

depending on a single label. In filt(e, l1, l2), l 1 is the label set for which we want to

keep the annotated environments (first case of the filtering rule for e l ), and l2 is the

label set for which we do not want to keep the equality constraints and accessors but

for which we want to turn the binders into dummy ones and keep the environment

variables (second case of the filtering rule for e l). The environments annotated by

labels not in l 1 ∪ l 2 are discarded (third case of the filtering rule for e l). In the

constraint filtering context, label sets are sometimes called filters. The distinction

between binders to discard (not labelled by a label in l1 ∪ l2) and binders to turn

into dummy ones (labelled by a label in l 2) is necessary because at minimisation,

throwing away any environment might result in different bindings in the filtered con-

straints (corresponding to a different SML code). For example, removing the binder

labelled by l2 in (�x =
l1
== τ1);(�x =

l2
== τ2);(�x =

l
== τ) results in x’s accessor being bound to

x’s first binder instead of its second. Similarly, removing the binder labelled by f’s

second occurrence’s label in the environment generated for

let val rec f = fn x => x 1

in let val rec f = fn x => x + 1 in f true end

end

results in f’s third occurrence being bound to its first occurrence and so to a non-

existing (false) type error to be found at enumeration. When a binder is labelled by

a label from l2, it is turned into a dummy unlabelled one that cannot be involved

in any error and it results that the same holds for its accessors.

The intended meaning of a labelled constraint is that it only must hold if the

condition represented by the label is true. The machinery presented in this document

is designed to implement this intended semantics. We therefore allow our filtering

function to entirely discard labelled equality constraints, bindings, accessors and

environment variables because when generated, these forms are always shallow. As

a matter of fact, by definition, the right-hand-side of an accessor can only be a

variable v . When generated, the right-hand-side of a binder is either a variable v

or a type constructor name γ (see LabBind’s definition in Sec. 11.5.2). Concerning

the generated equality constraints, by shallow we mean a lc constraint as defined

in Sec. 11.5.2. The non-shallow generated equality constraints are the non-labelled

ones generated by rules (G4), (G17), (G18), (G19), (G20) and (G22). Because these

constraints are not labelled, they are then never filtered out but the filtering function

is recursively called on the right-hand-sides of these constraints as they can be non

shallow.
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11.7.3 Why is minimisation necessary?

Given an environment generated for a piece of code (given e such that strdec -⊲ e for

a given strdec), our enumeration algorithm works as follows: it selects a filter from

its search space, it filters out the constraints labelled by the filter in the environment

and runs the constraint solver on the filtered environment. If the constraint solver

succeeds (terminates in a success state) then the enumerator keeps searching for type

errors using the rest of the search space. If the constraint solver fails (terminates in

an error state) then the enumerator has found a new error. This new error might not

be minimal. The enumerator runs then the minimiser on the found error and once a

minimal error has been found, keeps searching for other type errors. The minimiser

is necessary because when the constraint solver returns an error at enumeration,

this error might not be minimal. An obvious example is as follows:

val rec f = fn x => (x (fn z => z), x (fn () => ()))

val rec g = fn y => y true

val u = f g

This piece of code is untypable and the highlighting of one of the type errors of

this piece of code is as follows:

val rec f = fn x => (x (fn z => z), x (fn () => ()))

val rec g = fn y => y true

val u = f g

The corresponding type error slice is as follows (we have adapted the slice re-

turned by Impl-TES to the restricted language presented in this document):

〈..val rec f = fn x => 〈..x (fn () => 〈..〉)..〉

..val rec g = fn y => 〈..y true..〉

..f g..〉

The issue is that because of the first component returned by the function f

(the application x (fn z => z)) and because of x’s monomorphism, when the error

presented above is first found at enumeration, it is not minimal. The error first

found by the enumeration algorithm, before minimisation, is as follows:

〈..val rec f = fn x => 〈..x (fn z => 〈..〉)..x (fn () => 〈..〉)..〉

..val rec g = fn y => 〈..y true..〉

..f g..〉

Because x is monomorphic, it is constrained by both z and (). This is a typical

example that shows the necessity of the minimisation algorithm. We have not yet

found a way to directly obtain the first slice presented above without the help of the
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minimiser. The investigation of such a system is left for future work.

11.7.4 Minimisation algorithm

Fig. 11.12 defines our minimisation algorithm: the relation min that uses the relation

→test which tests if a label can be removed from a slice and where→∗
test is its reflexive

(w.r.t. Env×Error) and transitive closure. Minimisation consists of two main phases.

The first one (phase1) tries to remove entire sections of code at once by turning

bindings into dummy ones using lBinds (defined in Sec. 11.7.1). In a fine-grained

second phase (phase2) the algorithm tries to remove the remaining labels (l1 in

rule (MIN3) in Fig. 11.12) one at a time.

A step of our minimisation algorithm is as follow: 〈e, l1, {l} ⊎ l2〉 →test 〈e, l3, l4〉

where l3 and l 4 depend on the solvability of filt(e, l1 ∪ l2, {l}). Let e ′ = filt(e, l1 ∪

l2, {l}). The set l1 ∪ l2 ∪ {l} is the label set of the error that the minimisation

algorithm is minimising at this step, and {l} ⊎ l2 is the label set yet to try to

discard. The environment e ′ is obtained from e by filtering out the constraints that

are not labelled by l1∪ l 2∪{l}, by filtering out the accessors and equality constraints

that are labelled by l , and by turning the binders labelled by l into dummy ones

(and similarly for the environment variables labelled by l). If e ′ is solvable it means

that l is necessary for an error to occur, and therefore l3 = l1 ∪ {l} and l4 = l 2. If

e ′ is unsolvable (the solver failed and we obtained a new smaller error, i.e., which

contains strictly less labels), it means that l is unnecessary for an error to occur

and that any environment labelled by l can be completely filtered out in the next

step. The label sets l3 and l4 are then restricted to the newly found error (see

rule (MIN1)).

Environments (bindings, environment variables, ...) can be completely filtered

out from one step to another because the labelled internal syntax, our constraint

generator and solver, together ensure that if a binder is turned into a dummy one

then none of its accessors will be part of any error (see Sec. 11.7.6 for more on this

matter). This invariant could explicitly be enforced during constraint solving by

adding side conditions to rules (A1) and (A2) checking that the accessed identifiers’

types are not dummy variables (in Dum). This enforcement is not necessary.

Note that the minimisation algorithm fails if at the end of the second phase,

in rule (MIN3), the label set l 2 does not correspond to an error in e: because of

filt(e, l2,∅) −isErr−−→ er ′, rule (MIN3) is only defined if filt(e, l2,∅) is unsolvable.

11.7.5 Enumeration algorithm

Enumeration states are defined as follows:

EnumState ::= enum(e) | enum(e, er , l) | errors(er)
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minimisation
(MIN1) 〈e, l1, {l} ⊎ l2〉→test 〈e, l1 ∩ d , l2 ∩ d〉, if filt(e, l1 ∪ l2, {l}) −

isErr−−→ 〈ek , d〉

(MIN2) 〈e, l1, {l} ⊎ l2〉→test 〈e, l1 ∪ {l}, l2〉, if solvable(filt(e, l1 ∪ l2, {l}))

(MIN3) 〈e, er 〉 −min−−→ er ′, if lBinds(e) = l

∧ 〈e, labs(er) \ l , labs(er ) ∩ l〉 →∗
test 〈e, l1,∅〉 (phase1)

∧ 〈e,∅, l1〉 →
∗
test 〈e, l2,∅〉 (phase2)

∧ filt(e, l2,∅) −isErr−−→ er ′

enumeration

(ENUM1) enum(e) →e enum(e,∅, {∅})
(ENUM2) enum(e, er ,∅) →e errors(er )

(ENUM3) enum(e, er , l ⊎ {l})→e enum(e, er , l), if solvable(filt(e, labs(e), l))

(ENUM4) enum(e, er , l ⊎ {l})→e enum(e, er ∪ {〈ek , d〉}, l
′
∪ l),

if filt(e, labs(e), l ) −isErr−−→ er

∧ 〈e, er 〉 −min−−→ 〈ek , d〉

∧ l
′
= {l ∪ {l} | l ∈ d ∧ ∀l0 ∈ l . l0 6⊆ l ∪ {l}}

Figure 11.12 Minimisation and enumeration algorithms

Fig. 11.12 also defines our enumeration algorithm: the relation →e where →∗
e is

its reflexive (w.r.t. EnumState) and transitive closure. Assume that strdec -⊲ e for a

given piece of code strdec. An enumeration process always starts in a state of the

form enum(e) and stops in a state of the form errors(er). Enumerating the minimal

type errors in a piece of code consists of trying to solve diverse results of filtering the

constraints generated for the piece of code. The tested filters (label sets) form the

search space which is built while searching for errors. The enumeration algorithm

starts with a single filter: the empty set, so that the constraint solver is called on

all the generated constraints. Then, when an error is found and minimised, the

labels of the error are used to build new filters (see l
′
in rule (ENUM4)). Once the

filters are exhausted the enumeration algorithm stops. The found errors are then

all the minimal type errors of the analysed piece of code (see rule (ENUM2)). In an

enumeration process, the second enumeration state is always (see rule (ENUM1)):

enum(e,∅, {∅}) where the first empty set is the set of found errors (empty at the

beginning) and where the second empty set is the first filter. If strdec is untypable,

the constraint solver fails and returns a type error er 1 of the form 〈ek1, d1〉. The

minimisation algorithm minimises er1 and returns a minimal error er 2 of the form

〈ek2, d2〉 such that d2 ⊆ d1. The error er2 can be er1 if it was already in a minimal

form when found by the enumerator. New filters are computed based on the filter

used to find this new error (∅ in our example) and the new error er 2 itself: {{l} | l ∈

d2}. The enumerator keeps searching for errors using this updated search space: the

new state is enum(e, {er 2}, {{l} | l ∈ d 2}). At the next step, one of the {l} where

l ∈ d2 will be picked as the filter to try to find another error. When a filter leads

to a solvable filtered environment, the filter is discarded (rule (ENUM3)) otherwise

it is used to update the search space as explained above (rule (ENUM4)).
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11.7.6 Minimisation and binding discarding

Let us describe a step of the first phase of our minimisation algorithm. We test if we

can remove a label l associated with a binder bind from the slice we want to minimise

(and still obtain a type error slice) by first filtering the constraints of the original

piece of code as follows: filt(e, l , {l}), to obtain e ′ and where e is the environment

generated for the original piece of code and l ∪ {l} is the label set labelling the slice

that is being minimised. In order not to mix up the bindings, at constraint filtering,

the binder bind associated with l is not discarded but is replaced by a non labelled

dummy binder bind ′ (such that bind ′ = dum(bind)) that cannot participate to any

error but that still acts as a binder. If we then solve e ′ and obtain an error then no

label labelling in e ′ an accessor to bind ′ will occur in the found error (we give below

an informal argument as why none of these accessors will be part of the new error).

The bindings in this new error are then not mixed up. (Note that bindings can

be mixed up in a filtered environment if and only if an accessor refers to a binder

to which it does not refer to in the non filtered environment.) The found error is

then the new slice to try to minimise further and next time the constraints will be

filtered w.r.t. this new slice, the binder bind and its accessors will be completely

thrown away (as well as the other constraints not participating in the new error).

Let us consider the following unsolvable environment which we call e:

α1 =
l1
== int;α2 =

l2
== unit;�vid =

l3
== α1;�vid =

l4
== α2;α3 =

l5
== unit;�vid =

l6
== α3;α1 =

l7
==α3

The only labels necessary for an error to occur are l1, l5 and l7. Note that vid ’s

accessor refers to vid ’s binder labelled by l4 (second binder) and not to the one

labelled by l3 (first binder). Let us run our minimisation algorithm on e and let the

first step be to try to discard l4. First the filtering function is called on e as follows:

filt(e, {l1, l2, l3, l5, l6, l7}, {l4}), which results in the following environment, called e ′:

α1 =
l1
== int;α2 =

l2
== unit;�vid =

l3
== α1;�vid=αdum;α3 =

l5
== unit;�vid =

l6
== α3;α1 =

l7
==α3

At constraint solving, running on e ′, when dealing with the accessor �vid =
l6
== α3,

the dummy binder �vid=αdum is accessed and the equality constraint α3=αdum is

generated by rule (A2). This constraint is then discarded by rule (U3) thanks to the

definition of ⊕ and because αdum ∈ Dum. Therefore, the accessor and its label are

discarded at constraint solving and cannot occur in any error. In our example, on e ′,

the constraint solver terminates in an error state, which means that l4 is unnecessary

for an error to occur. The error returned by the constraint solver does not involve

l4 or l6 and especially, in the next step of the minimisation process, vid ’s accessor

cannot refer to vid ’s first binder.

Note that filtering itself does not prevent bindings to get mixed up because, e.g.,

filtering allows one to throw away the binder generated for the second occurrence

of x in fn x => fn x => x while not throwing away the binder generated for the first
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occurrence of x and not throwing away its accessor. However, we give below an

informal argument as why we never filter a binder without filtering its accessor.

Let us now present an informal argument as why when our constraint solver

returns an error, the error does not involve accessors to dummy binders or accessors

without their corresponding binders.

According to rules (A1)-(A3), during constraint solving the label labelling an

accessor only gets recorded in a constraint solving context ∆ of the form 〈u, e〉 if

the accessed identifier is in the type environment e stored in ∆ in the current state

(the state in which the constraint solving process is when the rule applies). There are

two possible scenarios. In the environment e (1) either the accessed identifier has a

dummy static semantics (resulting from filtering) and then, according to rules (U3)

and (U4), the label of the accessor does not get recorded into the constraint solving

context ∆. In more details, given an accessor �id=v , according to rules (A1) and

(A2), a constraint of the form v=v ′ is generated, where v ′ ∈ Dum comes from the

accessed id binder. Then (U3) or (U4) applies and the newly generated constraint is

discarded without generating anything. (2) Or the accessed identifier has a labelled

non-dummy static semantics, and the labels associated with the binder and the label

associated with the bound occurrence will always occur together in the constraint

solving context. The main point being that in our system if a binder is not a dummy

binder then it is labelled.

This is why we strongly believe that an identifier occurring at a non-binding

position in a piece of code (represented by an accessor in our constraint language)

only occurs in a slice if it is bound and its binder occurs in the slice as well.

This argumentation relies on the fact that our labelled external syntax together

with our initial constraint generation algorithm enforce that each bound occurrence

of an identifier is labelled by a unique label that does not label a larger piece of code

and therefore the label labelling an accessor does not label any other constraint term

(see principle (DP6) presented in Sec. 11.10). Therefore in case (1) described above,

once the accessor and the generated equality constraint have been dealt with and

discarded, the label labelling the accessor does not occur anymore in the state in

which the constraint solver is. This label cannot then be part of any error. Note

that this would not necessarily be the case with an initial constraint generation rule

that would generate 〈α, ((α=
l
== α1�α2);(�id =

l
== α1))〉 for some term. As a matter of

fact, we could imagine a scenario where α is further constrained to, e.g., int. We

would therefore obtain a type constructor clash (between int and the arrow type

constructor) that involves l but that does not require the accessor to be resolved.

The accessor being kept alive in this error, at the next step of the minimisation

algorithm, we would have no guarantee that it does not refer to a different binder

from the one it refers to (if referring to any) in the non filtered environment.

Thanks to the invariant that if a binder is filtered out then its bound occurrences
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are also filtered out, we can then easily compute free identifiers thanks to rule (A3)

which is the rule for an accessor for which no binder exists in the current constraint

solving context (i.e., for free identifiers) or for which the binder is hidden.

11.7.7 Discussion of the search space used by our enumer-

ator

The search space used by our enumeration algorithm is a set of filters (where a

filter is a label set). For example, given an environment e, if using2 the filter l

the enumeration algorithm finds a minimal error labelled by the set {l1, l2} then to

search for other type errors, it generates the two filters l ∪ {l1} and l ∪ {l2} (if no

smaller filter is already in the search space). As a matter of fact, if another error

(different from the one labelled by {l1, l2}) can be found in filt(e, labs(e), l) then this

other error cannot be labelled by both l1 and l2, otherwise it has to be the minimal

type error {l1, l2}. So we want to search for errors that are not labelled by l ∪ {l1}

and for errors that are not labelled by l ∪ {l2} (this allows one to obtain a correct

and terminating enumeration algorithm).

A particularity of the enumeration algorithm presented in Sec. 11.7.5 is that the

search space stays “relatively” small. However, because of the strategy used by the

enumeration algorithm to build new filters, it can happen that the same error is

generated twice (using two different filters). Note that even though an error can

be generated twice using the algorithm presented in Sec. 11.7.5, this cannot happen

using Impl-TES’ enumeration algorithm which differs as follows: before using a filter

l , Impl-TES’ enumeration algorithm checks whether it has already found an error

er using a filter at least as big as l (superset of l), and if it did it does not use l

(does not run the constraint solver) again but instead directly generates new filters

because er can also be found using l .

Note that even though the enumeration algorithm presented in Sec. 11.7.5 can

enumerate an error twice (using two different filters), it terminates because no filter

can be generated twice. (We strongly believe that the termination of our algorithm

follows from the one of HW-TES’ algorithm [57].)

Let us explain why the enumeration algorithm presented in Sec. 11.7.5 can gen-

erate an error twice. We describe a highly possible scenario. Assume that e has been

generated by our initial constraint generator for the structure declaration strdec, i.e.,

strdec -⊲ e. Then, the enumeration algorithm starts with the following transition:

(TR1) enum(e)→ enum(e,∅, {∅})

2Given an environment e, by using a filter l we mean running the constraint solver on
filt(e, labs(e), l ) which is the environment e where, among other things, the equality constraints
labelled by l are filtered out.
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using rule (ENUM1) (see Fig. 11.12), and where the first ∅ is the set of found errors

and {∅} is the initial search space which only contains the empty filter ∅ at the

beginning of the computation.

Let us now assume that the first found minimal error (using rule (ENUM4) in

Fig. 11.12) is labelled by the label set {l1, l4} (d = {l1, l4} in rule (ENUM4) in

Fig. 11.12). The enumeration algorithm generates then the filters {l1} (which is the

union of the filter ∅ and the set {l1}) and {l4} (which is the union of the filter ∅

and the set {l4}). We obtain the following transition:

(TR2) enum(e,∅, {∅})→ enum(e, {〈ek1, {l1, l4}〉}, {{l1}, {l4}})

Using the filter {l1} let us assume that the enumeration algorithm finds an other

minimal error labelled by the set {l2, l3}. From the filter {l1}, the following filters are

then generated: {l1, l2} and {l1, l3}. The search space (set of filters yet to try) is now

{{l1, l2}, {l1, l3}, {l4}}. At this stage, the minimal type error set is {{l1, l4}, {l2, l3}}.

We obtain the following transition:

(TR3)

enum(e, {〈ek 1, {l1, l4}〉}, {{l1}, {l4}})

→

enum(e, {〈ek 1, {l1, l4}〉, 〈ek 2, {l2, l3}〉}, {{l1, l2}, {l1, l3}, {l4}})

Let us assume now that using the filter {l1, l2} the enumeration algorithm finds

an error labelled by the set {l4, l5}. The enumeration algorithm generates from

the filter {l1, l2}, the two following filters: {l1, l2, l4} which is immediately discarded

because it is a superset of the filter {l4} which is already in our search space, and

{l1, l2, l5} which is not discarded and then added to the search space. The search

space is then {{l1, l2, l5}, {l1, l3}, {l4}}. At this stage, the minimal type error set is

{{l1, l4}, {l2, l3}, {l4, l5}}. We obtain the following transition:

(TR4)

enum(e, {er 1, er2}, {{l1, l2}, {l1, l3}, {l4}})

→

enum(e, {er 1, er2, er3}, {{l1, l2, l5}, {l1, l3}, {l4}})

where





er1 = 〈ek1, {l1, l4}〉

er2 = 〈ek2, {l2, l3}〉

er3 = 〈ek3, {l4, l5}〉

Let us assume that the enumeration algorithm does not generate any error with

the filter {l1, l2, l5}. It is then discarded. Assume that the enumeration algorithm

uses then the filter {l1, l3}. The enumeration algorithm has already found an error

that can be obtained using this filter: er 3 which is labelled by {l4, l5}, and might

then generate this error a second time. If it does, we obtain the following transitions:

(TR5)

enum(e, {er 1, er2, er 3}, {{l1, l2, l5}, {l1, l3}, {l4}})

→

enum(e, {er 1, er2, er 3}, {{l1, l3}, {l4}})

→

enum(e, {er 1, er2, er 3}, {{l1, l3, l4}, {l1, l3, l5}, {l4}})

where





er1 = 〈ek1, {l1, l4}〉

er2 = 〈ek2, {l2, l3}〉

er3 = 〈ek3, {l4, l5}〉
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(ENUM4) enum(e, er , l ⊎ {l})→e enum(e, er ∪ {〈ek , d〉}, l
′
∪ l),

if ((〈ek , d〉 ∈ er ∧ dj(l , d))

∨ ((∀〈ek0, d0〉 ∈ er . ¬dj(l , d0)) ∧ filt(e, labs(e), l ) −isErr−−→ er ∧ 〈e, er 〉 −min−−→ 〈ek , d〉))

∧ l
′
= {l ∪ {l} | l ∈ d ∧ ∀l0 ∈ l . l0 6⊆ l ∪ {l}}

(a) Enumeration algorithm of Impl-TES

(ENUM4) enum(e, er , l ⊎ {l})→e enum(e, er ∪ {〈ek , d〉}, l1 ∪ l2 ∪ l3),

if filt(e, labs(e), l) −isErr−−→ er ∧ 〈e, er 〉 −min−−→ 〈ek , d〉

∧ l1 = {l ∪ {l} | l ∈ d ∧ ∀l0 ∈ l . l0 6⊆ l ∪ {l}}

∧ l2 = {l0 ∪ {l} | l ∈ d ∧ l0 ∈ l ∧ dj(l0, d)}

∧ l3 = {l0 | l0 ∈ l ∧ ¬dj(l0, d)}

(b) Variant to generate each error exactly once

Figure 11.13 Variants of our enumeration algorithm

Now, let us present an alternative strategy to generate new filters. In transi-

tion (TR3) above, instead of only generating the filters {l1, l2} and {l1, l3} from the

filter {l1} and the error {l2, l3}, we also could generate the extra filters {l4, l2} and

{l4, l3} (and remove {l4} from the search space) because {l4} is a filter which is yet

to try (is in the search space) and which is disjoint from the error {l2, l3} (the error

{l2, l3} can be found using the filter {l4}). Then, as before when using the filter

{l1, l2} (see transition (TR4) above), this variant of our enumeration algorithm finds

an error labelled by the set {l4, l5}. As before, the filter {l1, l2, l5} is generated and

we also replace the filter {l1, l3} by the filter {l1, l3, l5} because the filter {l1, l3} and

the error {l4, l5} are disjoint (we do not generate the filter {l1, l3, l4} because it is a

superset of the already existing filter {l3, l4}). The error labelled by {l4, l5} is then

not going to be found again. We would then, instead of the transitions as described

above, obtain the following transitions (transitions (TR1) and (TR2) stay the same):

enum(e, {er 1}, {{l1}, {l4}})

→

enum(e, {er 1, er 2}, {{l1, l2}, {l1, l3}, {l4, l2}, {l4, l3}})

→

enum(e, {er 1, er 2, er 3}, {{l1, l2, l5}, {l1, l3, l5}, {l4, l2}, {l4, l3}})

where





er1 = 〈ek1, {l1, l4}〉

er2 = 〈ek2, {l2, l3}〉

er3 = 〈ek3, {l4, l5}〉

Finally, let us formally present two alternatives of the enumeration algorithm

presented in Fig. 11.12. We only present variants of rule (ENUM4) because the

other rules stay unchanged. Fig. 11.13a presents a first variant which is used by

Impl-TES, and Fig. 11.13b presents a second variant which is the one described

above.

11.7.8 Enumerating all the errors in example (EX1)

First, let us repeat the labelled version of example (EX1) defined in Sec. 11.2:
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structure X
l1= structl2

structure S
l3= structl4 datatype ⌈’a u⌉l6

l5= U
l7

c
end

datatype ⌈’a t⌉l9
l8= T

l10

c

val rec f
l12

p

l11= fn T
l14

p

l13⇒ T
l15

e

val rec g
l17

p

l16= letl18 openl19 S in ⌈f
l21

e
U
l22

e
⌉l20 end

end

It turns out that example (EX1) has only one minimal type error which is erEX

defined in Sec. 11.6.8 as the pair 〈ekEX, dEX〉 where dEX is the following set:

{l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l19, l20, l21, l22}

This error is already minimal when found by the enumeration algorithm and there-

fore the minimiser does not do anything in this case, but is still called by the

enumerator. Therefore we obtain the following enumeration steps (we superscript

→e and →∗
e with the names of the rules used to obtain the provided enumeration

steps):

enum(eEX)

→
(ENUM1)
e enum(eEX,∅, {∅})

→
(ENUM4)
e enum(eEX, {erEX}, {{l} | l ∈ dEX})

→∗
e
(ENUM3) enum(eEX, {erEX},∅)

→
(ENUM2)
e errors({erEX})

11.8 Slicing

11.8.1 Dot terms

Our TES’ last phase consists of computing minimal type error slices from untypable

pieces of code and minimal errors found by the enumerator. This is performed by

the slicing function sl (defined below in Fig. 11.17). The nodes labelled by the labels

not involved in the error are discarded and replaced by “dot” terms. For example, if

we remove the node associated with the label l2 (the unit expression) in ⌈1l1 ()l2⌉l3

then we obtain ⌈1l1 dot-e(∅)⌉l3 , displayed as 1 〈..〉 in our implementation. Dots

are visually convenient to show that information has been discarded. Fig. 11.14

extends our syntax and constraint generator to dot terms. Our constraint generator

is extended to dot terms so that every piece of our extended syntax can be type

checked (by generating constraints and by then solving the constraints), which is

needed to define type error slices and to state our minimality criteria in Sec. 11.9. We

call slice, any syntactic form that can be produced using the grammar rules defined

in Fig. 11.2 and Fig. 11.14 combined (i.e., a term as defined in Fig. 11.2). We call

type error slice, any slice for which our constraint generation algorithm (defined

in Fig. 11.7 and Fig. 11.14 combined) only generates unsolvable constraints. If we
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extension of the syntax

LabTyCon ::= · · · | dot-e(
−−→
term)

LabDatCon ::= · · · | dot-e(
−−→
term)

Ty ::= · · · | dot-e(
−−→
term)

ConBind ::= · · · | dot-e(
−−→
term)

DatName ::= · · · | dot-e(
−−→
term)

Dec ::= · · · | dot-d(
−−→
term)

AtExp ::= · · · | dot-e(
−−→
term)

Exp ::= · · · | dot-e(
−−→
term)

AtPat ::= · · · | dot-p(
−→
pat)

Pat ::= · · · | dot-p(
−→
pat)

StrDec ::= · · · | dot-d(
−−→
term)

StrExp ::= · · · | dot-s(
−−→
term)

extension of the constraint generator
(G23) ept -⊲ e ⇐⇐⇐ ept -⊲ 〈v , e〉

(G24) dot-d(〈term1, . . . , termn〉) -⊲ [e1; · · · ;en] ⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en)

(G25) dot-p(〈pat1, . . . , patn〉) -⊲ 〈α, e1; · · · ;en〉 ⇐⇐⇐ pat1 -⊲ e1 ∧∧∧ · · · ∧∧∧ patn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

(G26) dot-s(〈term1, . . . , termn〉) -⊲ 〈ev , [e1; · · · ;en]〉
⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, ev)

(G27) dot-e(〈term1, . . . , termn〉) -⊲ 〈α, [e1; · · · ;en]〉
⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

Figure 11.14 Extension of our syntax and constraint generator to “dot” terms

restrict ourselves to structure declarations, formally a slice is a strdec and a type

error slice is a strdec such that ¬solvable(strdec).

11.8.2 Remark about the constraint generation rules for dot

terms

Fig. 11.14 presents constraint generation rules for the different dot terms of our

syntax. Rules (G24), (G26), and (G27) all wrap the environments generated for the

terms wrapped into the dot constructors, into a local environment not visible from

the outside of the form [e]. Rule (G25) for dot patterns stands out by not generating

an environment of the form [e]. As of matter of fact a dot pattern constructor as

a different meaning as the other dot constructors. Such a dot pattern term means

that information has been sliced away but that the remaining information might

still be in a pattern at a binding position. Such a pattern dot term does not define

a local scope as the other dot terms do.

11.8.3 Alternative definition of the labelled external syntax

We will now provide an alternative generic definition of the external labelled syntax

presented in Fig. 11.2. This definition helps defining our slicing algorithm in a

compact way. First, Fig. 11.15 defines our labelled abstract syntax trees. A node

in a tree tree can either be a labelled node of the form 〈node, l ,
−−→
tree〉, an unlabelled

“dot” node of the form 〈dot ,
−−→
tree〉, or a leaf of the form id .

Fig. 11.16 defines the function toTree which associates a tree with each term

(defined in Fig. 11.2). We also define toTree on sequences of terms.

The function getDot generates dot markers (terms in Dot) from nodes as follows:
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class ∈ Class ::= lTc | lDcon | ty | conbind | datname
| dec | atexp | exp
| atpat | pat | strdec | strexp

prod ∈ Prod ::= tyArr | tyCon
| conbindOf | datnameCon
| decRec | decDat | decOpn
| atexpLet | expFn
| strdecDec | strdecStr
| strexpSt
| id | app | seq

dot ∈Dot ::= dotE | dotP
| dotD | dotS

node ∈Node ::= 〈class , prod〉

tree ∈Tree ::= 〈node, l ,
−−→
tree〉

| 〈dot ,
−−→
tree〉

| id

Figure 11.15 Labelled abstract syntax trees

Labelled type constructors
toTree(tcl) = 〈〈lTc, id〉, l , 〈tc〉〉

Labelled datatype constructors

toTree(dcon l ) = 〈〈lDcon, id〉, l , 〈dcon〉〉

Types
toTree(tv l ) = 〈〈ty, id〉, l , 〈tv〉〉

toTree(ty1

l
→ ty2) = 〈〈ty, tyArr〉, l , 〈toTree(ty1), toTree(ty2)〉〉

toTree(⌈ty ltc⌉l) = 〈〈ty, tyCon〉, l , 〈toTree(ty), toTree(ltc)〉〉

Constructor bindings

toTree(dcon l

c) = 〈〈conbind, id〉, l , 〈dcon〉〉
toTree(dcon of l ty) = 〈〈conbind, conbindOf〉, l , 〈dcon , toTree(ty)〉〉

Datatype names
toTree(⌈tv tc⌉l) = 〈〈datname, datnameCon〉, l , 〈tv , tc〉〉

Declarations

toTree(val rec pat
l
= exp) = 〈〈dec, decRec〉, l , 〈toTree(pat), toTree(exp)〉〉

toTree(datatype dn
l
= cb) = 〈〈dec, decDat〉, l , 〈toTree(dn), toTree(cb)〉〉

toTree(openl strid) = 〈〈dec, decOpn〉, l , 〈strid〉〉

Expressions

toTree(vid l

e) = 〈〈atexp, id〉, l , 〈vid〉〉
toTree(letl dec in exp end) = 〈〈atexp, atexpLet〉, l , 〈toTree(dec), toTree(exp)〉〉

toTree(fn pat
l
⇒ exp) = 〈〈exp, expFn〉, l , 〈toTree(pat), toTree(exp)〉〉

toTree(⌈exp atexp⌉l) = 〈〈exp, app〉, l , 〈toTree(exp), toTree(atexp)〉〉

Patterns

toTree(vid l

p) = 〈〈atpat, id〉, l , 〈vid〉〉

toTree(⌈ldcon atpat⌉l) = 〈〈pat, app〉, l , 〈toTree(ldcon), toTree(atpat)〉〉

Structure declarations

toTree(structure strid
l
= strexp) = 〈〈strdec, strdecStr〉, l , 〈strid , toTree(strexp)〉〉

Structure expressions

toTree(strid l ) = 〈〈strexp, id〉, l , 〈strid〉〉
toTree(structl strdec1 · · · strdecn end) = 〈〈strexp, strexpSt〉, l , toTree(〈strdec1, . . . , strdecn〉)〉

Term sequences
toTree(〈term1, . . . , termn〉) = 〈toTree(term1), . . . , toTree(termn)〉

Dot terms

toTree(dot-e(
−−→
term)) = 〈dotE, toTree(

−−→
term)〉

toTree(dot-d(
−−→
term)) = 〈dotD, toTree(

−−→
term)〉

toTree(dot-p(
−→
pat)) = 〈dotP, toTree(

−→
pat)〉

toTree(dot-s(
−−→
term)) = 〈dotS, toTree(

−−→
term)〉

Figure 11.16 From terms to trees

131



Chapter 11. Technical design of Core-TES

getDot(〈lTc, prod 〉) = dotE

getDot(〈lDcon, prod 〉) = dotE

getDot(〈ty, prod 〉) = dotE

getDot(〈conbind, prod 〉) = dotE

getDot(〈datname, prod 〉) = dotE

getDot(〈dec, prod 〉) = dotD

getDot(〈atexp, prod 〉) = dotE

getDot(〈exp, prod 〉) = dotE

getDot(〈atpat, prod 〉) = dotP

getDot(〈pat, prod 〉) = dotP

getDot(〈strdec, prod 〉) = dotD

getDot(〈strexp, prod 〉) = dotS

This function is, among other things, used by rule (SL1) of our slicing algorithm

defined below in Fig. 11.17 to generate dot nodes from labelled nodes.

11.8.4 Tidying

In addition to turning nodes not participating in type errors into dot nodes, our slic-

ing algorithm uses two tidying functions flat and tidy. The flattening function flat

flattens sequences of terms (term). For example, flattening 〈..1..〈..()..〉..〉 results

in 〈..1..()..〉. Not all nested dot terms are flattened. In order not to mix up bindings

in a slice, we do not let declarations escape dot terms. For example, we do not flatten

〈..val x = false..〈..val x = 1..〉..x + 1..〉 to 〈..val x = false..val x = 1..x + 1..〉

because they have different semantics. The first slice is not typable but the second

is. In the first slice x’s last occurrence is bound to x’s first occurrence while in the

second slice x’s last occurrence is bound to x’s second occurrence.

Let isClass(tree, {class} ∪ class) be true iff tree = 〈〈class, prod〉, l ,
−−→
tree〉. This

predicate is used to check the class of the root node of a tree. Let declares(tree) be

true iff isClass(tree, {dec, strdec, datname, conbind}) and let pattern(tree) be true

iff isClass(tree, {atpat, pat}). The classes dec, strdec, datname, and conbind are

associated (using the toTree function) with terms for which our initial constraint

generation algorithm generates binders.

Let us define our flattening function flat as follows:

flat(〈〉) = 〈〉

flat(〈tree〉@
−−→
tree) =





〈tree1, . . . , treen〉@flat(
−−→
tree),

if tree = 〈dot , 〈tree1, . . . , treen〉〉

and (∀i ∈ {1, . . . , n}. ¬declares(tree i) or
−−→
tree = 〈〉)

〈tree〉@flat(
−−→
tree), otherwise

The condition “∀i ∈ {1, . . . , n}. ¬declares(treei)” ensures that bindings are not

mixed up as explained above. However, flattening the last dot term (if it actu-

ally is a dot term) cannot mix up the bindings because there is no identifier left

to bind. Therefore, flattening 〈..val x = 1..〈..val x = true..〉..〉 would lead to

〈..val x = 1..val x = true..〉. We however have not yet found a concrete exam-

ple where this situation occurs.

We also define the function tidy to tidy sequences of declarations in structure

expressions as follows:
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(SL1) sl(〈node, l ,
−−→
tree〉, l) =






〈node, l , sl1(
−−→
tree, l)〉, if l ∈ l and getDot(node) 6= dotS

〈node, l , tidy(sl1(
−−→
tree, l))〉, if l ∈ l and getDot(node) = dotS

〈getDot(node), flat(sl2(
−−→
tree, l))〉, otherwise

(SL2) sl1(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉

(SL3) sl2(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉

(SL4) sl1(〈node, l ,
−−→
tree〉, l) = sl(〈node, l ,

−−→
tree〉, l)

(SL5) sl2(〈node, l ,
−−→
tree〉, l) = sl(〈node, l ,

−−→
tree〉, l)

(SL6) sl1(〈tree1, . . . , treen〉, l) = 〈sl1(tree1, l), . . . , sl1(treen, l)〉

(SL7) sl2(〈tree1, . . . , treen〉, l) = 〈sl2(tree1, l), . . . , sl2(treen, l)〉

(SL8) sl1(id , l) = id

(SL9) sl2(id , l) = 〈dotE, 〈〉〉

Figure 11.17 Slicing algorithm

tidy(〈〉) = 〈〉

tidy(〈〈dotD,
−−→
tree1〉, 〈dotD,

−−→
tree2〉〉@

−−→
tree)

= tidy(〈〈dotD,
−−→
tree1@

−−→
tree2〉〉@

−−→
tree), if ∀tree ∈ ran(

−−→
tree1). ¬declares(tree)

tidy(〈〈dotD,∅〉〉@
−−→
tree)

= tidy(
−−→
tree), if none of the above applies

tidy(〈tree〉@
−−→
tree)

= 〈tree〉@tidy(
−−→
tree), if none of the above applies

11.8.5 Algorithm

Fig. 11.17 formally defines our slicing algorithm. Note that rule (SL9) generates

the dot marker dotE, but we could have used any of the terms in Dot because the

flattening function flat discards such terms. The functions sl1 and sl2 are defined on

trees but also on sequences of trees in rules (SL6) and (SL7). Finally, let sl(strdec, l)

be sl(toTree(strdec), l).

11.8.6 Generating type error slices for example (EX1)

First, let us repeat the labelled version of example (EX1) called strdecEX and defined

in Sec. 11.2:

structure X
l1= structl2

structure S
l3= structl4 datatype ⌈’a u⌉l6

l5= U
l7

c
end

datatype ⌈’a t⌉l9
l8= T

l10

c

val rec f
l12

p

l11= fn T
l14

p

l13⇒ T
l15

e

val rec g
l17

p

l16= letl18 openl19 S in ⌈f
l21

e
U
l22

e
⌉l20 end

end

We saw in Sec. 11.5.5, that, given example (EX1) (i.e., given strdecEX), our

initial constraint generation algorithm generates the environments eEX. We saw in

Sec. 11.7.8, that, given eEX, our enumeration algorithm enumerates only one error,

namely erEX.
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〈〈strdec, strdecStr〉, l1, 〈X, 〈〈strexp, strexpSt〉, l2, 〈tree1, tree2, tree3, tree4〉〉〉〉

where tree1 = 〈〈strdec, strdecStr〉, l3,
〈S,
〈〈strexp, strexpSt〉, l4,
〈〈〈dec, decDat〉, l5,

〈〈〈datname, datnameCon〉, l6, 〈’a, u〉〉, 〈〈conbind, id〉, l7, 〈U〉〉〉〉〉〉〉〉

tree2 = 〈〈dec, decDat〉, l8, 〈〈〈datname, datnameCon〉, l9, 〈’a, t〉〉, 〈〈conbind, id〉, l10, 〈T〉〉〉〉

tree3 = 〈〈dec, decRec〉, l11,
〈〈〈atpat, id〉, l12, 〈f〉〉,
〈〈exp, expFn〉, l13, 〈〈〈atpat, id〉, l14, 〈T〉〉, 〈〈atexp, id〉, l15, 〈T〉〉〉〉〉〉

tree4 = 〈〈dec, decRec〉, l16,
〈〈〈atpat, id〉, l17, 〈g〉〉,
〈〈atexp, atexpLet〉, l18,
〈〈〈dec, decOpn〉, l19, 〈S〉〉,
〈〈exp, app〉, l20, 〈〈〈atexp, id〉, l21, 〈f〉〉, 〈〈atexp, id〉, l22, 〈U〉〉〉〉〉〉〉〉

Figure 11.18 Result of applying toTree to strdecEX

In Sec. 11.6.8, erEX is defined as 〈ekEX, dEX〉 where dEX is the dependency set

{l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l19, l20, l21, l22}. Let us present the slice that our

slicing algorithm computes when given erEX, i.e., we compute sl(strdecEX, dEX).

Fig. 11.18 shows the tree (which we call treeEX) obtained when applying toTree

to strdecEX. Finally, sl(toTree(strdecEX), dEX) returns the following tree where tree1

and tree2 are the ones defined above, and tree ′
3 and tree ′

4, are obtained from tree3

and tree4 respectively:

〈dotD, 〈tree1, tree2, tree
′
3, tree4〉〉

where tree ′
3 = 〈〈dec, decRec〉, l11,

〈〈〈atpat, id〉, l12, 〈f〉〉,

〈〈exp, expFn〉, l13, 〈〈〈atpat, id〉, l14, 〈T〉〉, 〈dotE, 〈〉〉〉〉〉〉

tree ′
4 = 〈dotE, 〈〈〈dec, decOpn〉, l19, 〈S〉〉,

〈〈exp, app〉, l20, 〈〈〈atexp, id〉, l21, 〈f〉〉, 〈〈atexp, id〉, l22, 〈U〉〉〉〉〉〉

This slice is displayed as follows:

〈..structure S = struct datatype ’a u = U end

..datatype ’a t = T

..val rec f = fn T => 〈..〉

..〈..open S..f U..〉..〉

11.9 Minimality

Informally, bindings is a function on environments that extracts the bindings between

accessors and binders (by keeping track of the bindings generated at constraint solv-

ing by rules (A1) and (A2)). We extend this function to a function on our external

labelled syntax (this extension uses our constraint generator). For example, if exp is
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let val x = true in let val x = 1 in x end end, and the label li is associated with

the ith occurrence of x then bindings(exp) = {〈l2, l3〉}.

We define the sub-slice relation as follows: strdec1 ⊑l strdec2 iff sl(strdec2, l) =

strdec1 and bindings(strdec1) ⊆ bindings(strdec2).

Let strdec2 be a minimal type error slice of strdec1 iff ¬solvable(strdec2), strdec2 ⊑l

strdec1, and for all strdec ′ if strdec′ ⊑
l
′ strdec2 for some l

′
and strdec ′ 6= strdec2 then

solvable(strdec′).

We consider minimality as a design principle for our TES even though minimal

slices do not always seem to be the correct answer to type error reporting (e.g., as

explained in Sec. 15.1, for record field name clashes we report merged minimal type

error slices).

For Core-TES (the subset of our TES presented in this section), we believe the

following holds: a slice strdec′ is a minimal slice of strdec iff 〈strdec ′, ek , vid〉 ∈

tes(strdec). We have not formally proved this statement for diverse reasons. First,

our TES (Form-TES as well as Impl-TES) is in constant change and proving the

minimality of one of its versions would not guarantee the minimality of the others.

Moreover proving the minimality of Core-TES would not guarantee the minimality

of TES (of Form-TES or of Impl-TES) and proving the minimality of TES is beyond

the scope of this thesis. Then, as mentioned above, minimality is only a design

principle. Let us finally stress that we feel improving the range and quality of our

slices is more important than ensuring their minimality in particular.

Note that, given an untypable piece of code, a type error slice will always contain

exactly the portion of the piece of code required to explain the error reported by the

type error slice. Moreover, if a part of a slice is not necessary to explain the error,

minimisation will remove it. Therefore the minimality of a type error slice is not

related to its size. The size of a minimal type error slice depends on the error itself.

11.10 Design principles

While developing our TES we discovered, developed, and followed the following

principles.

(DP1). Each syntactic sort of constraint terms should have a case ranging over an

infinite variable set. This allows incomplete information everywhere, which allows

one to consider every possible way of slicing out parts of the program. This is essen-

tial to get precise slices that include all relevant details and exclude the irrelevant.

Thus, the sorts µ, τ , and e have the variable cases δ, α, and ev .

(DP2). Each syntactic sort of constraint terms should support dependencies.

This allows precise blame, which enables precise slicing. Thus, sorts µ, τ , σ, and e

have dependency cases 〈µ, d〉, 〈τ, d〉, 〈σ, d〉, and 〈e, d〉.

(DP3). Our initial constraint generation rules return a main result (a type or
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an environment) and sometimes also an environment result (used for constraints

and bindings), i.e., our initial constraint generation rules return cgs as defined in

Fig. 11.5.1. The generated constraints may connect information from the results for

a program node’s subtrees to the other subtrees or to the node’s results.

The principle is that these connections should generally be via constraints that

carry the syntax tree node’s label and that are “shallow”, i.e., contain only con-

nection details and not constraints from program subtrees (see LabCs’s definition in

Sec. 11.5.2). Fresh variables should be used as needed. This allows a program syntax

node to be “disconnected” for type errors that depend on the node’s details, while

still keeping type errors that arise solely due to connections between environment

accessors and bindings that pass through the node.

For example, rule (G22) of our initial constraint generation algorithm defined

in Fig. 11.7 in Sec. 11.5.1 builds the unlabelled constraint ev ′=(e1; · · · ;en). This

“deep” unlabelled constraint packs together a sequence of environments from the

declarations that are the structure’s body. The resulting environment is connected

to the main result by the labelled shallow constraint ev =
l
== ev ′.

(DP4). Duplicating constraints should be unnecessary. This seems obvious, but

some previous formalisms seem too weak for the needed sharing. For example,

rule (G22) of our initial constraint generation algorithm defined in Fig. 11.7 in

Sec. 11.5.1 builds a structure’s environment as the sequential composition of its

component declarations’ environments: e1; · · · ;en. Here, the first declaration’s en-

vironment e1 is available for subsequent declarations and also in the result (if its

bindings are not shadowed) which avoids duplicating it. A previous version of our

system had a weaker constraint system with let-constraints similar to those of Pot-

tier and Rémy [116], and the best solution we could find duplicated the constraints

for each declaration’s bindings, causing severe performance problems. Sec. 12.1.7

discusses further this issue.

(DP5). Dependencies must be propagated during solving exactly where needed.

If dependencies are not propagated where they should go, minimisation could over-

minimise yielding non-errors. This can be detected. More insidiously, propagating

dependencies where they are unneeded can keep alive unneeded parts of error slices

much longer during minimisation, resulting in severe slowdowns. Because correct

results happen eventually, detecting such bugs is harder so this requires great care.

For example, an earlier version of our solver copied dependencies from declarations in

a structure to the structure’s main result. The minimiser had to remove declarations

one at a time. Debugging this was hard because only speed suffered. Furthermore,

the system should yield error slices (before minimisation) that are as close to minimal

as can be reasonably achieved. If constraint solving yields a non-minimal error slice,

then solving steps must have annotated a constraint with a location on which it

does not uniquely depend.
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(DP6) Sec. 11.7.6 already mentioned this principle. In the labelled external

syntax, identifiers which can occur at bound positions must be labelled by a unique

label that does not label a piece of code larger than the identifier itself. Moreover,

for those labelled identifiers, the constraint generator should in general generate

no more than a labelled accessor. (Note that to simplify the presentation of Core-

TES we do otherwise for structure openings (see constraint generation rule (G19) in

Fig. 11.7) but this is in general unsafe.) The risk of not following this principle is

that during minimisation, a bound occurrence of an identifier can be kept in a slice

while its binding occurrence is discarded. This can then result in the identifier at a

bound position being bound to a different binding occurrence than the one to which

it is originally bound in the original piece of code. This can then lead to generating

wrong identifier bindings and finding false errors.

(DP7) Environment variables, when not generated as part of a shallow environ-

ment in an equality constraint (e.g., as the direct left or right-hand-side of an equality

constraint), should always be labelled. As explained in Sec. 11.3, an unlabelled en-

vironment variable is a constraint that can never be filtered out and has to always

be satisfied (independently from any program location). Because an environment

variable shadows its context (i.e., in (ev ;e), the environment variable ev shadows

e), if such an environment variable is unlabelled and is not constrained to be equal

to anything, it can only shadow its context whatever filtering is applied on it. This

behaviour is undesirable because the shadowing of an environment should in general

be dependent on a program location (see, e.g., constraint generation rule (G19) in

Fig. 11.7 for open declarations).

However, in our TES, at constraint generation, it happens that most of the en-

vironment variables not generated as part of a shallow environment in an equality

constraint cannot shadow their environments. It is the case for rules (G4), (G17)

and (G18). (Note that in these rules, each generated environment variable has to

be labelled to carry the dependency on the program point responsible for its gen-

eration.) Each of these rules generates an environment variable that is constrained

by an unlabelled equality constraint on the environment variable itself (these unla-

belled equality constraints cannot be filtered out). If these equality constraints were

labelled, but the environment variables were not, the equality constraints could be

filtered out and the environment variables could then be unconstrained and there-

fore shadow their contexts. Given a piece of code, for rule (G17), e.g., this would

mean that filtering out the constraints associated with a recursive value declaration

in the piece of code would allow this declaration to shadow its entire context in the

analysed piece of code which is undesirable. For example, when slicing out the re-

cursive value declaration in val x = 1 val rec f = fn x => x val y = x x, we do not

want it do shadow val x = 1 (i.e., we do not want the environment generated for

val rec f = fn x => x to shadow the environment generated for val x = 1 when the
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label associated with val rec f = fn x => x is sliced out in the environment gener-

ated for the entire piece of code). Rule (G19) stands out by generating environment

variables that are constrained by labelled accessors. Hence, if this rule was generat-

ing ((�strid =
l
== ev);ev) instead ((�strid =

l
== ev);ev l) (where the environment variable

is unlabelled), ev would then be totally unconstrained when filtering out the acces-

sor. This would disallow one to slice out open declarations. Worse, this could lead to

finding typable type error slices. Let us illustrate this last point with the following

example:

structure S = struct end

val x = 1

open S

val y = x 1

Note that the structure S is empty, so open S does not do anything and especially

x is not rebound. Let us assume that our constraint generation algorithm generates

the environment e for this sequence of declarations. Our enumeration algorithm

would find a slice as follows:

〈..val x = 1

..x 〈..〉..〉

Now, filtering out the constraints in e w.r.t. this slice would lead to an environ-

ment e ′ where the unlabelled environment variable generated for open S (assuming

that unlabelled environment variables are generated for open declarations instead

of labelled environment variables as we do in our TES) shadows the environment

generated for x’s declarations. The environment e ′ would then be solvable.
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Related work

12.1 Related work on constraint systems

12.1.1 Constraint based type inference algorithm

Milner [105] proved the soundness of the semantics of a small language (application,

abstraction, conditional, recursion, local declaration) w.r.t. a typing relation. We

refer to this language in this document as core ML. This result allows Milner to state

that the well typed property is enough to prove the well-defined behaviour of pieces

of code, for a certain notion of behaviour. Milner’s method is based on three steps.

First he provides a denotational semantics of his language. Milner defines wrong as

a value in his denotational semantics. Milner points out that wrong “corresponds

to the detection of a failure at run-time” where in his language “the only failures

are the occurrences of a non-Boolean value as a condition of a conditional, and

the occurrence of a nonfunctional value as the operator of an application”1. This

semantics allows one to check some type constraints such as: the first parameter

of a conditional expression has to be a Boolean. However, this semantics does not

allow one to check some other constraints such as: the two branches of a conditional

must have the same type. The second step of Milner’s method consists in defining

types and a typing relation between the values of his semantics and types to ensure

the consistency of the typing of an expression, meaning that, e.g., a function cannot

sometimes return a Boolean and sometimes return an integer when applied to, say,

an integer. Milner provides an example of values that do not have types (such as

the value wrong). One of them can be explained as follows: the value (semantics)

of the function “λx.if x then 1 else true” does not have any type. The third step

of Milner’s method is to define a type assignment system that assigns types to

expressions. Finally, Milner’s soundness results expresses that if a type can be

assigned to an expression (if the expression is well-typed) then this type can also be

1Milner’s theorem is well known under the slogan “well-typed expressions do not go wrong”
where wrong is a value of his semantics with which no type can be associated.
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assigned to the semantics of the expression (so the semantics of the expression cannot

be the wrong value). An interesting aspect in Milner’s paper is that when giving

an informal presentation of his type inference algorithm (W) he separates constraint

generation and constraint solving (these are interleaved in the W algorithm which

leads to the well-known left-to-right bias).

Aiken [1] provides three reasons in favour of constraint-based program analyses

(even though Aiken does not restrict himself to type constraints and to the type

inference problem we provide our understanding of the advantages Aiken describes

in the context of type inference). (1) “Constraints separate specification from im-

plementation”. This says that one obtains a clear separation between constraint

generation and constraint solving where the constraint generation phase is regarded

as producing a specification of the information that one wishes to analyse, and

where the constraint solving phase is regarded as the implementation to compute

this information. (2) “Constraints yield natural specifications”. This says that each

analysed piece of syntax is usually translated into (local) primitive constraints, each

expressing a particular feature of the analysed piece of syntax. Moreover, let us

add that in many constraint systems (see below for examples of such systems), new

forms of constraints are sometimes introduced to deal with particular features of the

analysed language and to deal with them in a particular way, and these constraints

are usually used to translate more than one feature of the analysed language. Given

a piece of code, the generated constraints are packed in a way that gives a constraint

representation of the piece of code. (3) “Constraints enable sophisticated implemen-

tations”. For example, various constraint solvers extending the Martelli-Montanari

algorithm [103] have been designed to define different implementations.

As early as 1987, Wand [140] introduced a constraint based type inference algo-

rithm for the simply typed λ-calculus to provide an alternative proof of the decid-

ability of the type inference problem for the simply typed λ-calculus. Wand reduced

the type inference problem to a unification problem by first converting λ-terms into

constraint sets and by then solving the constraints. Wand’s system is simple, he

does not consider polymorphism and his constraints are only equality constraints

(the only constraints required in his setting). His constraint generation algorithm is

based on a type environment that associates types (type variables) with identifiers.

Henglein [66] considers the type inference problem for two calculi: the Milner

calculus [105, 32] and the Milner-Mycroft calculus [110]. As in the original sys-

tems, the considered languages contain a fixpoint operator and a non-recursive

“let” construct (the two calculi differ on the semantics of the fixpoint operator

which only allows monomorphic recursion in the Milner calculus and polymor-

phic recursion in the Milner-Mycroft calculus). Henglein formulates the type in-

ference problem in these calculi using a constraint based approach. First equal-

ity and inequality constraints are generated. Inequalities are used to deal with
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polymorphism (to encode type schemes) and therefore to enforce the monomor-

phism of λ-bindings (fn-bindings in SML). For example, using SML’s syntax, in

fn z => let val rec f = fn x => z x in (f (), f true) end, f’s first occurrence binds

both f’s second and third occurrences. For each of the bindings, Henglein generates

inequalities on z’s (monomorphic) type which eventually lead to an error because

through the generated equality and inequality constraints, z’s type is constrained to

be both a function that takes a unit (thanks to a first inequality set generated for

the binding of f’s second occurrence to f’s first occurrence) and a bool (thanks to a

second inequality set generated for the binding of f’s third occurrence to f’s first oc-

currence). Then, Henglein presents how to compute most general semi-unifiers from

equality and inequality constraints. Unfortunately, Henglein’s algorithm, based on

semi-unification, is undecidable in the general case [87, 67].

Kanellakis, Mairson and Mitchell [86] consider the same algorithm as Wand [140].

They propose a type inference (they instead use the terminology “type reconstruc-

tion”) algorithm for the λ-calculus extended with polymorphic (non-recursive) let-

expressions (core ML) which consists of reducing an expression to a let-free expression

(by reducing all the let-expressions) and then use Wand’s algorithm on the obtained

λ-expression. This algorithm, obviously inefficient in practice, intuitively gives the

DEXPTIME-completeness of the type inference problem for core ML.

Pottier [114] defines a type system which is based on, among other things, con-

strained types, which are types depending on subtyping constraints. These forms are

not allowed in types but only in type schemes and in type judgements (a constrained

type is a component of a type judgement). The language considered by Pottier is a

core ML-like language with (non-recursive) let-polymorphic expressions and subtyp-

ing. Pottier’s system is based on a similar system by Eifrig, Smith and Trifnov [39]

(they use a notion of recursively constrained type which is a type constrained by a

set of inequality constraints which can themselves be recursive). Pottier mentions

that Eifrig, Smith and Trifnov’s system, “although theoretically correct, depends on

type simplification in order to be usable in practice” (this is due to the fact that

their polymorphic variable rule duplicates the constraints generated for polymorphic

values without simplifying them first). Pottier’s solution to avoid a combinatorial

explosion in the number of constraints is to allow the simplification of constraints

during constraint generation. Moreover, Pottier does not use a notion of solvability

of generated constraints but instead uses a notion of consistency. With the notion

of consistency, no “solution” of a constraint set is computed2. Pottier proves that

the notion of consistency is equivalent to the notion of solvability. He defines a

notion of entailment which is used by his substitution and subtyping rules. An issue

2Eifrig, Smith and Trifnov [39] write: “we expect general union and intersection types would
be required to express the solution of constraints as types, but we do not wish to pay the penalty
of having these types in our languages”. The notion of consistency is then expected to be simpler
to deal with than the notion of solvability.
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with Pottier’s approach is that, as in many other approaches, to avoid constraint

duplication, constraint generation and constraint solving are mixed.

Sulzmann, Odersky and Wehr [112] define a generic type inference algorithm

for the HM(X) system. This system is a “general framework for Hindley/Milner

style type systems with constraints”. Sulzmann, Odersky and Wehr say about their

system that “particular type systems can be obtained by instantiating the param-

eter X to a specific constraint system” and that “the Hindley/Milner system itself

is obtained by instantiating X to the trivial constraint system” (the standard Her-

brand constraint system). They also extend their framework with subtyping. Their

type inference algorithm mixes constraint generation and constraint solving. Con-

straint solving is performed via a “normalization” function. Each time an already

generated constraint is extended with a new constraint (constraints are packed to-

gether via a conjunction operator which can be seen as the union operator in their

context), the extended constraint is normalised. Type schemes in their system can

either be monomorphic types or constrained type schemes of the form ∀α.C ⇒ σ

where α is a type variable set, C is a constraint and σ is a type scheme (similar

forms are used by, e.g., Eifrig, Smith, and Trifonov [39], Pottier [114], or Dug-

gan [36]). Because of the way normalisation is used, during type inference, the

constraints of the generated type schemes are already simplified. Sulzmann [129]

calls such a use of normalisation, an eager use. Sulzmann [129] defines variants of

the generic type inference mentioned above where normalisation is only used before

inferring the type of let-expression’s bodies and at the end of the type inference pro-

cess only. This is achieved by defining an extra rule (and relation) that normalises

constraints and which is to be used when needed (such a use of normalisation is

called by need). In their system, normalisation is required before inferring the type

of let-expression’s bodies because using normalisation only at the end of the type

inference process leads to the separation of the constraint generation and the con-

straint solving phases but also to an inefficient type inference algorithm. Sulzmann,

Muller and Zenger [128, 129] present a variant of the inference algorithm men-

tioned above where constraints are preferred over terms. For example, informally,

constraint-based systems are more expressive because one can devise a simple con-

straint language and a simple constraint generation algorithm that associates the

constrained type 〈{α1=α2�α, α1=int, α2=int}, α〉 (where, using our notation, the

first component of the pair is a constraint set that constrains the second compo-

nent of the pair which is a type variable) with the application (1 1). However, for

this expression to be typable, one needs more complex type constructors such as

the ones used by Neubauer and Thiemann [111]. Also, because Sulzmann, Muller

and Zenger’s type inference algorithm is not based on substitutions anymore (but

on constraints), they obtain simpler results (e.g., their completeness of inference)

than with Sulzmann, Odersky and Wehr’s system [112]. Müller [109] claims that an
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advantage of HM(X) is that “it provide generic proofs of correctness, principality,

and completeness of type inference”.

We discuss other constrained based systems below, by Hage and Heeren [65, 63,

58, 60], by Müller [108], by Gustavsson and Svenningsson [55], and by Pottier and

Rémy [116, 115].

12.1.2 Constrained types

Pottier defines a system [114], similar to the one used by Eifrig, Smith and Tri-

fonov [39], that uses constrained types of the form τ |C , where τ is a type and C

is a (subtyping) constraint set. These forms are not allowed in types but only in

type judgements and in type schemes which are of the following form: ∀α.τ |C (sim-

ilar to those used by Pottier and Rémy [116]) where α is a set of type variables.

As opposed to other systems [112, 78], Pottier allows constrained types in typing

judgement because in his system a typing judgement is of the form A ⊢ e : τ |C

where A is a type environment and e is an expression of the external syntax.

Odersky, Sulzmann and Wehr [112] and Kaes [78] also consider constrained types

in their type schemes. However, because they use a different presentation style of

their constraint generation algorithm, constrained types are not allowed in type

judgements (a constrained type is not a component of a type judgement). Instead

of writing A ⊢ e : τ |C (using Pottier’s syntax) they would write such a typing

judgement as follows: C ,A ⊢ e : τ where C also constrains τ but where such a

constrained form is not explicitly defined.

In our constraint system, types can only be constrained via equality constraints

as in the following environment: e;(τ1=τ2) where both τ1 and τ2 are constrained by

the environment e. For example, our constraint generation rule (G3) for expression

applications generates an environment of the form e1;e2;(α1 =
l
== α2�α) where e1

and α1 are generated for the function part of the application, and where e2 and

α2 are generated for the argument part of the application. In this environment,

both e1 and e2 constrain both α1 and α2 even though α1 only depends on e1 and

α2 only depends on e2. We could then imagine a constraint system where we allow

constrained types to be types. Constrained types could be of the form (e;τ). This

would allow one to generate instead, for expression applications, an environment of

the form (e1;α1)=
l
==(e2;α2)�α. The drawback of such a system is that types are not

shallow anymore which complicates constraint filtering and solving.

12.1.3 Comparison with Haack and Wells’ constraint sys-

tem

The method of Haack and Wells (HW-TES) makes use of intersection types. A type

ty in HW-TES can either be a type variable, the integer type or an arrow type. A
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type set is denoted by S . An intersection type is denoted ∧S . HW-TES’ constraint

generation algorithm gathers the types of bound occurrences of identifiers in type

environments which associate intersection types with identifiers.

Let us consider the following simple piece of code: x x. Given this piece of

code, HW-TES generates the triple 〈Γx, ax,Cx〉, where the type environments Γx,

the type variable a5, and the constraint set Cx are described below. First, the type

environment Γx is of the form {x 7→∧{a1, a2}}
3 where a1 6= a2, a1 is a type variable

generated for x’s first occurrence, and a2 is a type variable generated for x’s second

occurrence. The constraint set Cx contains, among other things, constraints on a1

and a2, and is of the following form: {a1 =
l1
==a ′

1, a2 =
l2
==a ′

2, a
′
1 =

l3
==a3�a4, a

′
2 =

l3
==a3, ax

=
l3
==a4}

where l1 is x’s first occurrence’s label, l2 is x’s second occurrence’s label, and l3 is

the label associated with the application.

Let us now consider a monomorphic binding of these two occurrences of x. Let

x be bound via a monomorphic fn-binding as follows: fn x => x x. Given this piece

of code, HW-TES’ constraint generation algorithm generates the triple 〈Γm, am,Cm〉

(where “m” stands for “monomorphic”). The type environment Γm is ∅ and Cm is

of the following form: Cx∪{a=
l
==a1, a=

l
==a2, a�ax=

l
==am}, where l is the label labelling

the fn-expression, and where a1 and a2 are obtained from Γx.

Let us now consider the polymorphic case. First, assume that given fn y => z y

(this piece of code is reused in the let-expression presented below), where z is a free

variable, HW-TES’ constraint generation algorithm generates the following triple:

〈Γz, az,Cz〉. The type environment Γz is of the form {z 7→∧{a5}}. Let us now con-

sider the following polymorphic let-binding of x: let val x = fn y => z y in x x end.

Now, because Γx (defined above) associates two type variables with x, HW-TES’

constraint generation algorithm generates two “fresh” copies of 〈Γz, az,Cz〉 namely

〈Γ′
z, a

′
z,C

′
z〉 and 〈Γ′′

z , a
′′
z ,C

′′
z 〉. The type environments Γ′

z and Γ′′
z are of the form

{z 7→∧{a ′
5}} and {z 7→∧{a ′′

5}} respectively. It finally generates the following triple

for the entire let-expression: 〈Γ′
z∧Γ′′

z , a
′,Cx∪C

′
z∪C

′′
z ∪{a

′
z=

l
==a1, a

′′
z=

l
==a2, a

′=
l
==ax}〉 where

l is the label labelling the let-expression, where a1 and a2 are obtained from Γx, and

where Γ′
z∧Γ′′

z = {x 7→∧S1∪S2 | Γ
′
z(x) = ∧S1∧Γ′′

z(x) = ∧S2} = {z 7→∧{a ′
5, a

′′
5}} (x is

Haack and Wells’ notation for program variables). Note that polymorphism involves

heavy constraint and type environment duplications which leads to a combinatorial

constraint size explosion at constraint generation.

3Environments in HW-TES are total functions from identifiers to intersection types. Therefore,
the environment {x 7→∧{a1, a2}} denotes the total function that associates ∧{a1, a2} with x and
that associates ∧{} with any identifier different from x.
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12.1.4 Comparison with Hage and Heeren’s constraint sys-

tem

The approach followed by Hage and Heeren [65, 63, 58, 60] is as follows: given a piece

of code, first a constraint tree is generated, then this constraint tree is converted into

a list (many conversions are possible which result in different lists), and finally the

constraints are solved. Because different conversions of trees into lists are allowed,

their system allows them to emulate algorithms such as W [32], M [98] or UAE [147].

In their system, a constraint tree can among other things (we only present some

of their constructs), be a strict node as follows: T1 ≪ T2 where T1 and T2 are

constraint trees. A constraint can be attached to a tree using for example the

following construct: c ⋄ T , which makes the constraint c “part of the constraint

associated with the root of T” [60]. A tree can also pack together trees as follows:

[•T1, . . . ,Tn •]. A constraint itself can among other things be: an equality constraint

τ1 ≡ τ2, a generalisation constraint σ:=GEN(M , τ) where M is a (monomorphic) type

variable set and σ is a scheme variable, or a instantiation constraint τ � σ. Hage

and Heeren [60] say about their generalisation and instantiation constraints: “The

reason we have constraints to explicitly represent generalization and instantiation

is the same as why, e.g., Pottier and Rémy do [116]: otherwise we would be forced

to (make a fresh) duplicate of the set of constraints every single time we use a

polymorphically defined identifier”.

Their equality types are similar to ours. Their generalisation constraints are

related to poly environments but are restricted to types. Another difference is that

the monomorphic type variable set that are not allowed to be quantified over when

generating a type scheme is part of a generalisation constraint in their system while

in our system, such a set is computed at constraint solving. Their instantiation

constraints are related to our accessors but they do not mention external syntax

(external identifiers) and do not have identifier bindings in their constraint language.

Trees in their system can be regarded as sophisticated constraints. They are

used to provide extra structure on constraint sets. In our system a single equality

constraint can be an environment. Similarly, in their system a single constraint

can be a tree. Their strict nodes of the form T1 ≪ T2 can be seen as a restricted

version of our composition environments of the form e1;e2. Environments of the

form e1;e2 also enforce e1 to be solved before e2. A major difference is that in

our system, not only in an environment e1;e2, the environment e1 has to be solved

before e2 but also e2 looks up in e1 to access binders. Also a major difference

between trees and constraint/environments is that in their system trees do not act

as environments, they do not allow one to associate static semantics with identifiers.

We do not allow non-strict nodes (such as their nodes of the form [• T1, . . . ,Tn •])

because our system does not rearrange the order in which constraints are initially
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generated. Their constraint rearrangement mechanism can be seen as a restriction

of our enumeration algorithm.

Enforcing to solve constraints before other introduces a bias. Our TES is unbi-

ased thanks to our enumeration algorithm which, given an environment e, run our

constraint solver on the different environments that can be obtain from e using our

filtering function. We believe that Hage and Heeren only partially remove the bias

thanks to their ordering strategies.

The main difference between their transformation of a type inference problem

into a constraint solving problem and ours (and so the main difference between their

constraint system and our constraint system) is that we also encode the bindings

of identifiers into our constraint system. Bindings of identifiers are solved at con-

straint solving in our system while they are solved at constraint generation in Hage

and Heeren’s system. We do so thanks to our binders and accessors. We moved

from a binding resolution at initial constraint generation to a binding resolution at

constraint solving in order to handle SML features such as the open feature. Thanks

to our binders and accessors, we can generate a “faithful” representation of a SML

program, that uses intricate features such as open, into our constraint language.

Moreover, we believe that in addition to the motivation of generating “faithful”

representations of SML programs in our constraint language, binders and accessors

are necessary to distinctly separate the constraint generation and constraint solving

phases of a constraint based type inference algorithm for SML. To illustrate this

point let us consider the following typable SML program:

structure S = struct val c = fn () => () end

structure T = S

structure U = T

open U

val d = c ()

Without binders and accessors, one needs to use type environments at constraint

generation to be able to access identifiers’ static semantics when analysing identi-

fiers at bound positions. At constraint generation, in order to be able to generate a

proper environment for the declaration open U so that it can be used when dealing

with the declaration val d = c (), one needs to resolve the chain of structure equal-

ities. This means that solving structures’ static semantics at constraint generation

becomes necessary which goes against a clear separation between constraint genera-

tion (generation of constraints on the static semantics of the analysed piece of code)

and constraint solving.

The necessity of having bindings solved at constraint solving rather than at con-

straint generation is also motivated by the will of having a compositional constraint

generation algorithm while dealing with the inherent identifier status ambiguity in
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SML which is dealt with in Sec. 14.1. Here we anticipate Sec. 14.1 where uncon-

firmed binders of the form ��vid=α are introduced to deal with SML’s identifier

status ambiguity. When initially generated, such unconfirmed binders are neither

binders nor accessors but lie between the two. As a matted of fact, for a piece of

code such as fn x => fn c => x c, from Sec. 14.1 on, the binders generated for x and

c are unconfirmed binders and the static semantics of x’s second occurrence does not

depend on the static semantics of x’s first occurrence until the unconfirmed binder

generated for x is turned into a confirmed one (and similarly for c). If it turns out

at constraint solving that, e.g., c is a datatype constructor then c’s unconfirmed

binder is turned into an accessor. Otherwise c’s unconfirmed binder turns into a de-

pendent or independent (on c’s status) confirmed binder (still at constraint solving

only and not at constraint generation). Note that a similar argument holds about

open declarations. Compositionality is further discussed in Sec. 16.1.

12.1.5 Comparison with Müller’s constraint system

Müller [108] defines the relational calculus ρdeep to “implement Damas-Milner poly-

morphic type inference”. This calculus allows one to generate constraints of linear

size. It does that by generating identifier binders with which are associated static

semantics. The semantics attached to an identifier binder can then be simplified

before being “used”, i.e., before instantiating the polymorphic type. The language

considered by Müller is the λ-calculus extended with polymorphic let-expressions

(core ML). Müller also forces bound variables in λ-expressions to be “pairwise dif-

ferent and distinct from the free variables”. His constraint language is a two layer

language. He first defines a constraint set and then an expression set containing the

constraint set. What Müller calls an expression will sometimes be called a constraint

expression in this discussion when we need to distinguish between a λ-expression

(an external expression) and an expression (an internal or constraint expression).

Müller’s syntax of constraints and expressions is defined as follows:

φ,ψ ::= ⊤ | ⊥ | ∃α φ | φ ∧ ψ | α = β | α = β � γ

E ,F ::= φ | E ∧ F | ∃α E | x :α/E | JM Kα

where M is a λ-expression and α, β and γ are type variables. The two constant con-

straints are the satisfied constraint ⊤ and the unsatisfied constraint ⊥. Constraints

and expressions of the forms ∃α φ and ∃α E introduce fresh variables. Constraints

and expressions of the form φ ∧ ψ and E ∧ F are conjunctions. The two last forms

of constraints are shallow equality constraints.

The most interesting forms in Müller’s constraint system are: x :α/E and JM Kα.

An expression x :α/E is called an abstraction and associates the constrained static

semantics α, constrained by E , with the identifier x . Such expressions are called ab-

stractions because, e.g., x :α/E abstracts the type variable α. The polymorphism of
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such forms comes from the fact that expressions can be existential expressions. If id

is the polymorphic identity function, one can then generate the following abstraction

(binder) for id (where some expressions are omitted for clarity): id:γ/∃β γ = β � β.

Let us now assume a bound occurrence of id with which is associated the static se-

mantics α. One has then to apply the abstraction generated for id to α which results

in ∃β α = β � β. A particularity of ρdeep is that computations can occur within the

nested expression of an abstraction, which is within E in an abstraction of the form

x :α/E .

Intuitively, we believe that an abstraction of the form x :α/E would be rep-

resented in our system by an environment of the form poly(e;�x=α) where E is

represented by e.

Note that because of the restriction on free and bound variables, Müller does

not need to define local constraints to restrict the scope of abstractions. Given such

a restriction on the λ-expressions, Müller’s inference algorithm cannot generate two

abstractions for the same identifier.

An expression of the form JM Kα is called a proof obligation and it “represent

the constraint α = τ for the principal type τ of M ”, where τ is an internal type in

Müller’s system. A constraint expression of the form JM Kα is used to analyse (infer

a type for) the lambda expression M .

The constraint based type inference algorithm defined by Müller does not distin-

guish between constraint generation and constraint solving and no specific constraint

solving strategy is presented (constraint generation and solving interleave). Espe-

cially, it seems that Müller’s system does not enforce simplifying the constraints

generated for a polymorphic identifier x before applying the abstraction generated

for x . This can therefore lead to the exponential growth of the size of the constraint

expression generated for a λ-expression. Let us consider the following simple let-

expression called M (where fn x => x is written as λx.x using Müller’s λ-expressions’

syntax):

let id = fn x => x

in let f = id id in f f end

end

Let M ′ be let f = id id in f f end. Fig. 12.1 presents the inference of M ’type

using Müller’s type inference algorithm. One can observe the duplication of the

constraint expression generated for id’s body.
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JM Kα
→ JM ′Kα ∧ F ∧ id:γ/E , where E = Jfn x => xKγ and F = ∃β (JidKβ)
→ Jf fKα ∧ F ′ ∧ f:γ′/Jid idKγ′ ∧ F ∧ id:γ/E , where F ′ = ∃β′ (JfKβ′)
→ (∃β′′ ∃γ′′ (JfKβ′′ ∧ JfKγ′′ ∧ β′′ = γ′′ � α)) ∧ F ′ ∧ f:γ′/Jid idKγ′ ∧ F ∧ id:γ/E
→ (∃β′′ ∃γ′′ (JfKβ′′ ∧ JfKγ′′ ∧ β′′ = γ′′ � α)) ∧ F ′ ∧ f:γ′/E ′ ∧ F ∧ id:γ/E

where E ′ = ∃β′′′ ∃γ′′′ (JidKβ′′′ ∧ JidKγ′′′ ∧ β′′′ = γ′′′ � γ′)
→∗ (∃β′′ ∃γ′′ (JfKβ′′ ∧ JfKγ′′ ∧ β′′ = γ′′ � α)) ∧ F ′ ∧ f:γ′/E ′′ ∧ F ∧ id:γ/E

where E ′′ = ∃β′′′ ∃γ′′′ (E{β′′′/γ} ∧ E{γ′′′/γ} ∧ β′′′ = γ′′′ � γ′)
→∗ (∃β′′ ∃γ′′ (E ′′{β′′/γ′} ∧ E ′′{γ′′/γ′} ∧ β′′ = γ′′ � α)) ∧ F ′ ∧ f:γ′/E ′′ ∧ F ∧ id:γ/E

Figure 12.1 Derivation using Müller’s type inference algorithm

12.1.6 Comparison with Gustavsson and Svenningsson’s con-

straint system

Gustavsson and Svenningsson [55] defined a constraint system where solutions can be

found in cubic time. Their constraint syntax is based on: the satisfied constraint ⊤,

inequality constraints on variables of the form a ≤ b where a and b are variables,

conjunctions of constraints of the form M ∧ N where M and N are constraint

terms, and existential constraints of the form ∃a.M . They also add to their syntax,

abstractions and applications.

Constraint abstractions are inspired by let-expressions and are of the form: f ~a =

M , where f is a constraint abstraction variable (the name of an abstraction), ~a is

a set4 of variables, and M is a constraint term. Constraint abstractions are used in

let-constraint terms. A let-constraint term is of the form: let {~F} in M , where ~F is

a set of abstractions and M is a constraint term. Abstractions in a let-constraint are

mutually recursive so in a let-constraint let {~F} in M ′, if f ~a = M is a constraint

abstraction in ~F , then all the uses of f in ~F and M ′ all refer to this occurrence of f .

We believe a let-constraint as follows:

let {f1 ~a1 = M1, . . . , fn ~an = Mn} in M

would be represented in our system by an environment as follows:

[poly(�f1=α1; · · · ;�fn=αn;e1; · · · ;en);e]

where Mi would be represented by ei for each i ∈ {1, . . . , n}, where M would be

represented by e, and where ~ai, for each i ∈ {1, . . . , n}, would be computed when

dealing at constraint solving with the poly constraint.

Abstractions are applied thanks to application constraint terms of the form f ~a.

An abstraction of the form f ~a would be represented in our system by an accessor

of the form �f =α.

Gustavsson and Svenningsson define a constraint solving algorithm and prove it

to be of cubic complexity. Such a result is obtained by enforcing that abstractions

are simplified before being applied. Their constraint solver is based on a rewriting

4Even though it is not explicitly stated in their paper, vectors seem to be used for sets.

149



Chapter 12. Related work

system that allows four kinds of reductions: a transitivity reduction rule and three

reduction rules allowing reducing abstractions at various places in a let-constraint

(in the body of the let-constraint, in the body of the abstraction that is applied or

in the body of another abstraction declared in the same let-constraint).

These reduction rules do not allow one to copy the whole body of an abstraction

when it is applied. Only the “live” inequality constraints are allowed to be copied

at an application location, where an inequality constraint is said to be “live” in a

constraint term if it does not use a variable which is bound in the term.

12.1.7 Comparison with Pottier and Rémy’s let-constraints

Our constraint system has evolved through many versions. One earlier version

of our constraint system had a kind of constraint that was very close to the let-

constraints5 of systems of Pottier and Rémy [116, 115]. Pottier and Rémy define

a constraint system [116] which allows one “to reduce type inference problems for

HM(X) to constraint solving problems”. Pottier defines a very similar system [115].

Using their let-constraints Pottier and Rémy “achieve the desired separation between

constraint generation, on the one hand, and constraint solving and simplification,

on the other hand, without compromising efficiency” [116]. In our discussion, we

will collectively refer to these two systems as the PR (Pottier/Rémy) system and

ignore their technical differences, although our presentation will follow more closely

the presentation of Pottier and Rémy [116].

In PR, a constraint can, among other things, be a let-constraint, a subtyping con-

straint, a type scheme instantiation constraint, a conjunction of constraints, or the

constant (and satisfied) true constraint. A PR let-constraint looks like let id :σ̇ in C

where σ̇ ranges over type schemes, and C ranges over constraints. In PR, type

schemes are of the form ∀X [C ].T where X is a type variable set, C is a constraint,

and T is a type. We borrow for our discussion two abbreviations that Pottier and

Rémy define: (1) the form ∀X .T stands for the type scheme ∀X [true].T , and (2) the

form let id :T in C stands for let id :∀∅.T in C .

The idea of let-constraints is that a constraint of the form

let id :∀X [C ].T in (id = T1 ∧ id = T2 )

is (roughly) equivalent to a constraint of this form:

(∃X .(C ∧ T = T1 )) ∧ (∃X .(C ∧ T = T2 )) ∧ (∃X .C )

The key point is that one can get the effect of making the appropriate number

5Technically, the let-constraints of Pottier and Rémy are based on their more primitive def-
constraints.
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of copies of C and T while keeping the size of the constraint proportional to the

program size. The constraints will need to be copied and each copy solved inde-

pendently, but each copy can be solved immediately before the next copy is made,

avoiding an exponential increase in the amount of memory used during constraint

solving. To get the full benefit of this, an implementation should be eager in sim-

plifying C and calculating T as much as possible before making any copies. (In our

application, it could be good to also be lazy in simplifying and calculating only those

portions of C and T that are actually needed by the uses of id , because our TES

needs to spend most of its time finding minimal portions of unsatisfiable constraints.

We leave investigating this idea for future work.)

Identifier bindings occurring in let-constraints are similar to abstractions as de-

fined by Müller [108]. A binding as defined by Pottier and Rémy is of the form

id :∀X [C ].T where the type scheme ∀X [C ].T associated with id is a constrained

type scheme where the constraint C constrains the type T . An abstraction as de-

fined by Müller [108] is of the form x :α/E where the static semantics associated

with the identifier x is the type variable α which is constrained by the expression

E .

In our latest system, the equivalent of let-constraints can be represented as a

special case of what our system supports. Informally, a let-constraint of the form

let id :∀X [C1].T in C2 generated for a SML recursive let-binding would be repre-

sented in our system by (using a combination of rules (G2) and (G17) in Fig. 11.7)

[poly((�id=τ);e1);e2]

where Ci is represented by ei and T is represented by τ . (Let-constraints generated

for other SML forms would not necessarily get the same representation.) There is no

explicit representation of X in the representation in our system; instead the correct

set of type variables that can be quantified is calculated by toPoly which generates

type schemes when it handles environments of the form poly(e) (see Fig. 11.9).

Let us have a closer look at the different components of a let-constraint. A

let-constraint is of the form let id :∀X [C1].T in C2. Such a constraint: (1) assigns

static semantics to the identifier id (thanks to the form id :σ̇), (2) quantifies the

static semantics associated with id over a set of variables (generates a polymorphic

type), (3) makes the access to id ’s semantics local to C2, and (4) defines an order

in which the constraints have to be solved (C1 before C2). Such a constraint can

then be seen as the combination of (at least) four primitive constraints. The first

one is a binder in our system, the second one is a poly environment in our system,

the third one is an environment of the form [e] in our system, and the fourth one is

an environment of the form e1;e2 in our system.

We now give an example comparing the constraints that would be generated for

151



Chapter 12. Related work

SML recursive value declarations in the PR system and our system. Consider the

SML expression

let val rec f = fn z => exp1 in exp2

where exp1 and exp2 are two sub-expressions. The constraint generated in PR for

this let-expression would be

let f:∀XY [let f:X → Y in let z:X in C1].X → Y in C2

where X and Y are internal type variables, where XY is PR notation for the set

{X ,Y }, where Ci for i ∈ {1, 2} is the constraint generated for expi, and where Y is

the result type of exp1. Due to the way let-constraints declare a local environment,

the PR system needs two binders for f. The outer one polymorphically binds the

occurrences of f in exp2 and the inner one monomorphically binds the occurrences

of f in exp1.

Some of the differences between PR and our system can be seen when comparing

how this example is handled. Our constraint generator builds roughly6 the following

constraint (technically, an environment) for the example let-expression:

[poly(�f=α1�α2;[(��z=α1);e1]);e2]

In contrast to how PR handles this example, only one binder for f is needed in our

system. Two features of our system interact to allow this. First, in a composition

environment (e1;e2), the bindings from e1 are available in e2, but also form part of the

result (except where bindings in e2 shadow them). Second, in an environment of the

form poly(e), the poly operator changes the status of binders in the result from the

status they had internally. In the example constraint (environment) above, f’s binder

is monomorphic within the scope of the poly operator (in e1) and polymorphic

outside (in e2).

There is a sense in which what the PR system does is similar to what would hap-

pen in our system if the poly operator worked on just single types or single bindings

rather than entire environments. It is significant that we can form environments of

the form poly(�vid=τ ;e1);e2, in which the type for vid is available monomorphically

in e1 and polymorphically in e2.

The differences between the PR system and our system gain greater significance

when we consider how to handle the SML module system. The most basic construct

6We have omitted labels and simplified a bit. The actual constraint that is generated (still
omitting labels though) is

[(ev2=poly(�f=α1;[(ev1=(��z=α2));ev1;e1;c1];c2));ev2;e2;c3]

where c1 = (α3=α2�α4), c2 = (α1=α3), c3 = (α5=α6), 〈α4, e1〉 is generated for exp1, 〈α6, e2〉 is
generated for exp2, and α5 is the type of the entire let-expression.
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of the module system is what forms the body of a structure, namely a sequence

of declarations dec1 · · ·decn. For this discussion, assume each deci declares exactly

one identifier xi. Consider how declaration sequences can be handled by the PR

system and our system. PR can handle such a sequence with nested let-constraints

as follows:

let x1:σ̇1 in (· · · let xn:σ̇n in C0 · · · )

The constraints must be nested as indicated because each xi is only visible in the

“in” part of the corresponding let-constraint, where an identifier binding occurrence

is visible when constraints can refer to it. In contrast, our system handles the same

declaration sequence with the environment

e1; · · · ;en

where ei is the environment generated for the declaration deci for each i ∈ {1, . . . , n}.

The importance of the difference becomes clearer when we consider how to rep-

resent full structures and structure bindings. Take the above example declaration

sequence and wrap it up in a structure definition:

structure strid = struct dec1 · · · decn end

A structure expression packs into a unit a sequence of declarations. The normal

scope of the declarations ends at the end of the structure, and subsequent access

to the declarations must go through the structure itself, which must first be bound

to a name via either a structure declaration like above or a functor application.

When performing type inference for SML structure expressions, it is most natural

and straightforward that the type inferred for a structure will be a sequence of

individual mappings from declared names to their types7. Such sequences are often

called environments. It seems clear that any type inference method will need to

handle environments.

The PR system has never been extended to handle ML-style structures8, but let

us imagine how it might be extended to do this. First, let us point out that Pottier

and Rémy abbreviate the above example of nested let-constraints as follows:

let Γd in C0, where Γd = x1:σ̇1; · · · ; xn:σ̇n

Let us call this constraint Cd where the “d” means “declarations”. Given an SML

structure definition, this kind of constraint can represent the constraints required

7The order of the sequence is important because a type scheme for one value identifier in a
structure can refer to a type constructor name defined by the structure, while at the same time a
type scheme for a different value identifier can use the same type constructor name to refer to a
definition outside the structure.

8François Pottier told us this on 2010-08-09.
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for typability of the sequence of declarations in the structure body, and it is the only

easy way to do so in the context of the PR system.

Now, how do we represent the connection of the structure’s body to the struc-

ture’s name? The immediately (and naively) obvious idea is to extend PR with

let-constraints of a form similar to let strid :Γs in C , where strid is a structure

identifier, and Γs is an environment (the type of a structure). Let us call this new

constraint Cs. This is not enough, because there needs to be some way to connect

the constraint Cd to the environment Γs. In fact, the environment Γd inside Cd is

just what we need, but there is no easy way to get at it, because there is no mech-

anism in PR for generating an environment from a constraint. The easiest thing to

do is to nest the entire constraint Cs inside the constraint C0 inside of Cd, because

the types of the xi’s are not accessible from outside Cd, but this seems like turning

the program inside out, because the entire rest of the program must be nested inside

the scope of the constraints for just the structure’s body.

So one might then want to extend the PR constraint system with an exporting

mechanism and generate a constrained environment of the form [Cd].Γs for the struc-

ture expression where Cd would export the type schemes of the xis and where Γs

would refer to these exported type schemes. But, all this technicality really should

not be needed because Γd is already the environment that we would want to generate

for the structure expression.

The way our constraint system achieves that is by instead of having only one

mechanism (the let-constraints) to bind identifiers and to restrict their scope (let-

constraints define a local scope), it has two separate mechanisms: one for bind-

ings that does not restrict the scope of the binders (we obtain this behaviour by

having binding constraints of form �id=x and by having our general composition

environment forms e1;e2 where the accessors occurring in e2 can depend on the

binders occurring in e1), and another one for constraining the scope of a type envi-

ronment (obtained thanks to our environments of the form [e]). The environment

we generate for the structure expression presented above is then similar to the en-

vironment Γd.

12.2 Related work on presenting type errors and

types

12.2.1 Methods making use of slices

After the first version of TES presented by Haack and Wells [56, 57], many re-

searchers began to present type errors as program slices obtained from unsolvable

sets of constraints.

Tip and Dinesh [133] report type error slices for a Pascal-like language called
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CLaX, which is an explicitly typed language (where explicit types are enforced,

e.g., on function parameters). Their method consists of defining the type checker of

the CLaX language as a rewriting system. This rewriting system rewrites a piece

of code into either a type if the piece of code is typable, or into a list of error

messages if the piece of code is untypable. To compute slices they use “dependence

tracking” [41, 42]. Tip and Dinesh explain that “Dependence tracking is a method

for computing term slices that relies on an analysis of rewriting rules to determine

how the application of rewriting rules causes creation of new function symbols, and

the residuation (i.e., copying, moving around, or erasing) of previously existing

subterms” [133]. Developments (w.r.t. a sequence of rewriting steps on a piece of

code) are trimmed to retain only the necessary symbols of a piece of code, i.e., the

ones responsible for an error to occur. Tip and Dinesh also applied their techniques

to Mini-ML [25] which is a subset of ML (“a simple typed λ-calculus with constants,

products, conditionals, and recursive function definitions” [25]). However, Tip and

Dinesh face some minimality issues when applying their method to Mini-ML (“in

some cases slices are computed that seem larger than necessary” [133]). This issue

is related to the lack of a minimisation algorithm.

Neubauer and Thiemann [111] use flow analysis to compute type dependencies

for a small ML-like language to report type errors. Their system uses discriminative

sum types and can analyze any term. Their first step (“collecting phase”) labels the

studied term and infers type information. This analysis generates a set of program

point sets. These program points are directly stored in the discriminative sum types.

A conflicting type (“multivocal”) is then paired with the locations responsible for

its generation. Their second step (“reporting phase”) consists of generating error

reports from the conflicts generated during the first phase. Slices are built from

which highlighting are produced. An interesting detail is that a type derivation can

be viewed as the description of all type errors in an untypable piece of code, from

which another step computes error reports.

Similar to ours is work by Stuckey, Sulzmann and Wazny [127, 141] (based on

earlier work without slices [125, 126]). They do type inference, type checking and re-

port type errors for the Chameleon language (a modified Haskell subset). Chameleon

includes algebraic data types, type-class overloading, and functional dependencies.

They code the typing problem into a constraint problem and attach labels to con-

straints to track program locations and highlight parts of untypable pieces of code.

First they compute a minimal unsatisfiable set of generated constraints from which

they select one of the type error locations to provide their type explanation. They

finally provide a highlighting and an error message depending on the selected loca-

tion. They provide slice highlighting but using a different strategy from ours. They

focus on explaining conflicts in the inferred types at one program point inside the

error location set. It is not completely clear, but they do not seem to worry much
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about whether the program text they are highlighting is exactly (no more and no

less) a complete explanation of the type error. For example, they do not highlight

applications because “they have no explicit tokens in the source code”. It is then

stated: “We leave it to the user to understand when we highlight a function posi-

tion we may also refer to its application”. This differs from our strategy because we

think it is preferable to highlight all the program locations responsible for an error

even if these are white spaces. Moreover, they do not appear to highlight the parts

of datatype declarations relevant to type errors.

When running on a translation of the code presented in Sec. 10.4.2 into Haskell,

ChameleonGecko outputs the error report partially displayed below (the rest of the

output seems to be internal information from their solver).

ERROR: Type error; conflicting sites:

y = (trans x1, x2)

This highlighting identifies the same location as SML/NJ and would not help

solve the error.

Significantly, because they handle a Haskell-like language, they face challenges

for accurate type error location that are different from the ones for SML.

Gast [47] generates “detailed explanations of ML type errors in terms of data

flows”. His method is in three steps: generation of subtyping constraints annotated

by reasons for their generation; gathering of reasons during constraint solving; trans-

formation of the gathered reasons into explanations by data flows. He provides a

visually convenient display of the data flows with arrows in XEmacs. Gast’s method

(which seems to be designed only for a small portion of OCaml) can be considered

as a slicing method with data flow explanations.

Braßel [16] presents a generic approach (implemented for the language Curry)

for type error reporting that consists of two different procedures. The first one tries

to replace portions of code by dummy terms that can be assigned any type. If an

untypable piece of code becomes typable when one of its subtrees has been replaced

by a dummy term then the process goes on to apply the same strategy inside the

subtree. The second procedure consists in using of a heuristic to guide the search of

type errors. The heuristic is based on two principles: it will always “prefer an inner

correction point to an outer one” and will always “prefer the point which is located

in a function farther away in the call graph from the function which was reported by

the type checker as the error location”. Braßel’s method does not seem to compute

proper slices but instead singles out different locations that might be the cause of a

type error inside a piece of code.
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12.2.2 Significant non-slicing type explanation methods

Heeren et al. designed a method used in the Helium project [64, 62, 65, 59] to provide

error messages for the Haskell language relying on a constraint-based type inference.

First, a constraint graph is generated from a piece of code. For an ill-typed piece

of code, a conflicting path called an inconsistency is extracted from the constraint

graph. Such a conflicting path is a structured unsolvable set of type constraints.

Heuristics are used to remove inconsistencies. A trust value is associated with each

type constraint and depending on these values and the defined heuristics, some

constraints are discarded until the inconsistency is removed. They also propose some

“program correcting heuristics” used to search for a typable piece of code from an

untypable one. Such a heuristic is for example the permutation of parameters which

is a common mistake in programming. Their approach has been used with students

learning functional programming. Using pieces of code written by students and their

expertise of the language they refined their heuristics. They also designed a system

of “directives” which are commands specified by the programmer to constrain the set

of types derivable from a type class. This approach differs from ours by privileging

locations over others by the use of some heuristics. They do not compute minimal

slices and highlightings.

We present below the most interesting part of the error report obtained using

Helium on a translation of the code presented in Sec. 10.4.2 into Haskell. It comes

with some warnings (which are not displayed here) on the bindings of identifiers such

as the binding of y in trans (some of these warnings explain, for example, that y’s

declaration at the end of the code does not bind any of the y’s in trans’s definition).

(16,6): Type error in application

expression : trans x1

term : trans

type : T a a a -> T a a a

does not match : T Int Int Bool -> T Int Int Bool

Compilation failed with 1 error

It is reported that x1 and trans don’t have the expected types. The application,

which is at the end of the code, is then blamed when our programming error is at

the very beginning of the code.

Also, they have tackled the task to report type errors for Java [14, 15]. Error

reports provided by usual compilers can be of little help, especially in the presence

of generics. El Boustani and Hage try to do a better job by keeping track of more

information during type checking. When analysing an untypable piece of code, it

allows a more global view of its type errors and leads to more informative error

reports. The main difference between type error reporting for SML and for Java is
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that in Java “types are instantiated based on local information only and not through

a long and complicated sequence of unifications” [14].

Lerner, Flower, Grossman and Chambers [99] present type error messages by

constructing well-typed programs from ill-typed ones using different techniques (like

Heeren et al. [59]), e.g., switching two parameters. Automatically conceived modi-

fications to the ill-typed piece of code are checked for typability. They target Caml,

and also developed a prototype for C++. The new typable generated code is pre-

sented as possible code that the programmer might have intended. It could be

interesting to study the combination of this with TES.

158



Chapter 13

Case studies

13.1 Modification of user data types using TES

Our TES is generally of great help when coding in SML. It is particularly helpful

when one wants to modify a user data type in a well-typed program. Let us consider

the very simple program provided in Fig. 13.1a (this is testcase 577 in our testcase

database) where we define a structure Id to deal with labelled identifiers (see the

type idlab). In this structure we define some functions to handle labelled identifiers

such as a function to compare two labelled identifiers (compare), or a function to

build a labelled identifier from a label and an identifier (cons).

Now, let us change idlab’s declaration, for a more convenient one as follows:

type idlab = {id : id, lab : lab}. The type idlab is now a record type containing

two fields, one named id of type id and a second one named lab of type lab. Records

are usually preferred over tuples because they are more flexible and meaningful

thanks to the field names.

For example, one can access the field named id in an expression x of type idlab

(the new type idlab) as follows: #id(x:idlab). Records are more flexible than tu-

ples because the order of the fields does not matter in a record. For example,

{id = 0, lab = 0} is equivalent to {lab = 0, id = 0}. Note that a tuple (id, lab) is

equivalent to a record {1 = id, 2 = lab}.

First of all, let us mention that when compiling the updated code with SML/NJ

v.110.72, one obtains a type error report for each function defined in the structure

Id. The report concerning the compare function is as follows:

test-prog.sml:14.1-31.4 Error: value type in structure doesn’t match signature spec

name: compare

spec: ?.Id.idlab * ?.Id.idlab -> order

actual: (int * int) * (int * int) -> order

Note that the reported region is the entire structure Id.
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(a) Structure defining labelled identifiers (b) Highlighting obtained after a type change (c) Program obtained after solving all the type errors

Figure 13.1 Using TES to modify user data types
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MLton v.20100608 outputs the following error report concerning compare:

Error: test-prog.sml 14.16.

Variable type in structure disagrees with signature.

variable: compare

structure: [lab * lab] * [lab * lab] ->

signature: [id: lab, lab: lab] * [id: lab, lab: lab] ->

Poly/ML v.5.3 outputs the following error report concerning compare:

Error-Structure does not match signature.

Signature: val compare: idlab * idlab -> order

Structure: val compare: (int * int) * (int * int) -> order

Reason: Can’t match int * int to {id: int, lab: int} (Field 1 missing)

Found near

struct

type id = int

type lab = int

type idlab = {id: id, ...}

fun ...

fun ...

...

...

end

As for SML/NJ, MLton and Poly/ML both report a conflict between compare’s

types in the structure Id and in its signature ID. Also, MLton blames the signature

ID constraining the structure Id and Poly/ML blames the entire structure.

In contrast, Fig. 13.1b presents the highlighting that one obtains when running

Impl-TES on the updated piece of code. The error in focus (highlighted with a

darker red) shows that the parameter of compare is a pair of pairs. The second pair

(equivalent to a record with two fields named 1 and 2) clashes with the type of

compare’s second parameter given in the signature ID, which is idlab, declared as a

record with field names id and lab in the structure Id. In the parameter of compare,

the second pair has its elements surrounded by grey boxes. We do so, because tuples

do not have explicitly written field names. The first grey box surrounds the first

element of a pair that corresponds to a record where the element would be in a field

with field name 1 (and similarly for the second box). Note that the number of boxes

indicates the arity of the tuple. In addition to the highlighting, we also report a

type error slice (not presented here because often, as it is the case in Fig. 13.1b,

highlightings are enough to solve type errors) and the following message for this

type error:

Record clash, the fields {id,lab} conflict with {1,2}
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The light pink corresponds to slices other than the focused one. One can then

start solving the errors one at a time by just editing the highlighted portions of code,

to get from a well-typed program to another well-typed program (see Fig. 13.1c).

13.2 Adding a new parameter to a function

Our TES and its Emacs user interface are also generally useful when one wants to

add a new parameter to a function. Starting from the program in Fig. 13.1c, let

us consider the program provided in Fig. 13.2a. We have essentially added weights

to our labelled identifiers (this is testcase 578 in our testcase database). We have

also added some functions (declared in Id and sometimes also specified in ID) such

as functions to deal with weights (e.g., raiseWeight raises the weight of a labelled

identifier), renamed some functions (e.g., getId has been renamed to getI), removed

some specifications from ID (e.g., we removed getId’s specification).

Even though in Fig. 13.2a, we still have not made all the necessary changes to

deal with weights, the program is well-typed. Let us now add a new parameter to

the function cons. The new (third) parameter is a weight which allows one to build

a labelled identifier by specifying its weight (in Fig. 13.2a, cons uses a default weight

when building a labelled identifiers from a label and an identifier).

When compiling the updated code with SML/NJ v.110.72, one obtains three type

error reports. One reporting that cons’s type in Id does not match its specification

in ID. The two other ones are similar but for the two functions resetWeight and

raiseWeight. The three error reports are as follows:

test-prog.sml:16.1-50.4 Error: value type in structure doesn’t match signature spec

name: cons

spec: Id.id -> Id.lab -> Id.idlab

actual: ’a -> ’b -> ’c -> {id:’a, lab:’b, weight:’c}

test-prog.sml:16.1-50.4 Error: value type in structure doesn’t match signature spec

name: resetWeight

spec: Id.idlab -> Id.idlab

actual: Id.idlab -> ’a -> {id:Id.id, lab:Id.lab, weight:’a}

test-prog.sml:16.1-50.4 Error: value type in structure doesn’t match signature spec

name: raiseWeight

spec: Id.idlab -> Id.idlab

actual: Id.idlab -> ’a -> {id:Id.id, lab:Id.lab, weight:’a}

Note that once again the reported region is the entire structure Id. In the

report mentioning raiseWeight, one can see that SML/NJ derived that the function

raiseWeight declared in Id takes two arguments and that the second argument’s type

is the same as the type of the weight of the returned labelled identifier. However,
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(a) Structure defining labelled identifiers with
weights

(b) Highlighting obtained after adding a parameter
to a function

(c) Program obtained after solving all the type errors

Figure 13.2 Using TES to add a parameter to a function
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this report does not make it clear as why SML/NJ constrains raiseWeight to take two

arguments. One finally ends up at trying to understand as why SML/NJ generated

such type information. Note that the piece of code being untypable, the types

generated and reported by SML/NJ are anyway erroneous and therefore confusing.

MLton v.20100608 outputs the following error report concerning raiseWeight:

Error: test-prog.sml 16.16.

Variable type in structure disagrees with signature.

variable: raiseWeight

structure: -> [??? -> {id: weight, lab: weight, weight: ???}]

signature: -> [{id: weight, lab: weight, weight: weight}]

MLton blames the signature constraint on Id, namely, the signature ID. This

report is similar to the one generated by SML/NJ. Apart from the blamed region, it

also differs by hiding some of the non-conflicting generated internal type information

using .

Poly/ML v.5.3 outputs the following error report concerning raiseWeight:

Error-Structure does not match signature.

Signature: val raiseWeight: idlab -> idlab

Structure: val raiseWeight: idlab -> ’a -> {id: int, lab: int, weight: ’a}

Reason:

Can’t match ’a -> {id: int, lab: int, weight: ’a} to

{id: int, lab: int, weight: int} (Incompatible types)

Found near

struct

type id = int

type lab = int

type weight = int

type idlab = ...

val ...

...

...

end

Once again Poly/ML blames the entire Id structure. Poly/ML’s report is similar

to MLton’s report. Apart from the blamed region, it also differs by not hiding some of

the non-conflicting generated internal type information but by outputting an extra

“reason” which explains why the type Poly/ML has generated for raiseWeight in Id

conflicts with raiseWeight’s specification in ID (using again generated internal type

information).

In contrast, Fig. 13.1b presents the highlighting that one obtains when using

TES on the updated piece of code. The error in focus (highlighted with a darker
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red) shows that the function raiseWeight is involved in a type error. According to

ID, raiseWeight is meant to return an idlab which is defined as a record type in Id.

In Id, raiseWeight takes a parameter and applies two arguments to mapWeight, which

itself takes two parameters and applies updWeight to two arguments, which itself

takes two parameters and applies cons to two arguments, which itself takes three

arguments (and not two). This means that raiseWeight returns a function and not

a record type. We therefore obtain a type constructor clash between a record type

and an arrow type. In our case, our programming error only concerns raiseWeight

through its use of cons in updWeight. Since cons takes three parameters now, we have

to update the definitions of updId, updLab and updWeight.

We can then quickly spot our programming error and make the necessary changes

to get from a well-typed program to another well-typed program (see Fig. 13.1c).
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More TES features to handle more

of SML

Let us now present other interesting features of our TES which allow one to handle

SML features such as local declarations, type functions, many cases of signatures,

functors, non-recursive declarations, type annotations, and non-unary type construc-

tors. Some of these features were already used in the examples provided above. We

will now formally present how to handle them.

In this section will will extend Core-TES presented above with additional features.

Also, some syntactic forms will sometimes need to be redefined. In this section, we

will sometimes write x −s−_ y to mean that in the set s, syntactic forms of the form

x are replaced by syntactic forms of the form y.

Many examples are provided in the sections below. For readability purposes, we

sometimes omit dependencies and the environment ⊤ in these examples.

14.1 Identifier statuses

In the presentation of Core-TES we have syntactically distinguished between value

identifiers and datatype constructors by defining two disjoints sets ValVar and DatCon.

In SML there is no lexical distinction between, e.g., value variables and datatype

constructors. Only one set exists, the set of value identifiers VId which is redefined

below. To distinguish between value variables (the only kind of value identifier

considered by Haack and Wells), datatype constructors and exception constructors

(omitted in this document), SML assigns statuses to value identifiers. The status of

an identifier depends on its context and cannot always be inferred from any context

smaller than the entire program.

In the subset of SML presented above, datatype (or exception) constructors are:

(1) the value identifiers defined in datatype declarations such as bot and cons in

datatype ’a list = bot | cons of ’a * ’a list, (2) the value identifiers occurring in
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patterns or expressions in the scope of such datatype constructors, and (3) the value

identifiers taking arguments in patterns such as x in fn x y => y. In the subset

of SML presented above, Value variable are: (1) the recursive functions such as

f in val rec f = fn x => x, and (2) the value identifiers occurring in patterns or

expressions in the scope of such value variables.

For example, all of c’s occurrences in datatype t = c; val rec f = fn c => c are

datatype constructors because of c’s declaration as a datatype constructor. Whereas

in val rec c = fn x => x; val f = fn c => c, all occurrences of c are value variables

because of c’s declaration as a recursive function. The sequence of declarations

val rec c = fn x => x; val rec d = fn c x => x is not valid SML because c’s first

occurrence forces c to be a value variable in its scope but in the pattern c x, c must

be a datatype constructor.

A challenge in dealing with SML’s value identifier statuses is that the status of a

value identifier occurring in a pattern, such as x in val rec c = fn x => x, depends

on x’s status in its context. If we were analysing a complete piece of code where x is

not declared in the context of c’s declaration, x would by default be a value variable.

In the context of compositional analysis because x does not occur in the context of

our declaration, we cannot infer x’s status. The identifier x could either be defined

as a datatype constructor, or as a value variable or undefined in a larger piece of

code.

Handling identifier statuses in our constraint system and doing context-independent

type checking allows a natural reporting of context-sensitive syntax errors as error

slices. For example, x occurring twice in the pattern in fn (x, x) => x is an error

only if x has value variable status. Context-sensitive syntax errors are discussed in

Sec. 17.1.1.

14.1.1 External syntax

We redefine the sets VId, ConBind and Pat defined in Fig. 11.2 to introduce SML’s

ambiguity on identifier statuses as follows:

vid ∈VId (value identifiers)

lvid ∈ LabId ::= vid l
u

cb ∈ConBind ::= vid l
c | vid of l ty

atpat ∈AtPat ::= vid l
p

pat ∈Pat ::= atpat | ⌈lvid atpat⌉l

For example, if identifier c has value variable status in the context and not

datatype constructor status, fn c => (c 1, c ()) has a unique minimal error which

is that c has a monomorphic type because it is the parameter of the fn-expression

but is applied to two expressions with different types: int and unit1. However,

1More specifically, the type unit is none of the type on which 1 is overloaded. We do not
discuss overloading in this section. Overloading is discussed in Sec. 18.3
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this error would not exist if the code was preceded by, e.g., datatype t = c because

the fn-binding would not bind c. Instead there would be a minimal error that c is

declared as a nullary datatype constructor and is applied to an argument in c 1.

There would also be another similar error involving c () instead.

In addition to the distinction between value identifiers occurring in expressions,

occurring non applied in patterns (at a nullary position), and occurring in datatype

constructor definitions, we also make the distinction with value identifiers occurring

applied in patterns (at a unary position) using the following subscripted forms:

vid l
u (see LabId’s definition above), where u stands for “unary”, because we only

use this form for identifiers at unary position in patterns which are unary datatype

constructors in SML.

We also entirely discard the sets ValVar, DatCon, and LabDatCon. We replace

the ldcon forms in Term by the lvid forms as follows:

ldcon −Term−−−_ lvid

14.1.2 Constraint syntax

To compute correct type error slices, we annotate constraints by context dependen-

cies on identifier statuses (see the extension of the set Dependency below). For the

fn-binding presented above we generate during constraint solving constraints relating

the occurrences of c annotated by the dependency that c is a value variable and not a

datatype constructor. These constraints are not generated if a context confirms that

c must be a datatype constructor. The constraints but not the context dependency

are generated if a context confirms that c cannot be a datatype constructor. When

handling incomplete programs, we report conditional errors (warnings) that assume

a sensible default truth status for the dependencies (value identifiers are assumed

to be value variables and not datatype constructors2). For example, the type error

slice displayed in Fig. 10.2 in Sec. 10.4.2 is context-dependent: it depends on y and

z being value variables and not datatype constructors. Our type error reports are

then extended with a set of identifier statuses context dependencies: a type error

report is then composed by a type error slice, a highlighting, a message explaining

the kind of the error, and a set of identifier statuses context dependencies.

We extend our constraint syntax to deal with identifier statuses as follows:

2We do not report errors assuming that these identifiers are datatype constructors because in
our experience most of the time these identifiers are value variables. We therefore believe that we
would cause a great increase in unhelpful reported slices.
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η ∈ IdStatusVar (status variables)

ris ∈RawIdStatus ::= v | c | d | u | p

is ∈ IdStatus ::= η | ris | 〈is , d〉

d ∈Dependency ::= · · · | vid

bind ∈Bind ::= · · · | �vid=is | ��vid=α

acc ∈Accessor ::= · · · | �vid=η

c ∈ EqCs ::= · · · | is1=is2

dep ∈Dependent ::= · · · | 〈is , d〉

In our constraint system, an identifier status can either be a status variable η, a

raw status ris or a status annotated with dependencies of the form isd (this complies

with design principles (DP1) and (DP2) defined in Sec. 11.10). The raw status v is for

value variables, e.g., SML requires the recursive function f in val rec f = fn x => x

to be a value variable and not a datatype constructor. Statuses c and d are for

unary and nullary datatype constructors respectively, e.g., the unary constructor C

in datatype ’a t = C of ’a and the nullary constructor D in datatype ’a t = D. Status

u is for unconfirmed context-dependent statuses, e.g., in fn x => x, the identifier x

could be a value variable or a nullary datatype constructor, it is therefore considered

as a dependent value variable at constraint solving. Intuitively, u is a dependent v.

Finally, status p is for unresolvable statuses, e.g., in let open S in fn x => x end, x

could be declared as a value variable as well as a datatype constructor in the free

structure S. The difference between u and p is that u is used for identifiers for which

we know we do not have enough information to resolve their statuses whereas p

is used for identifiers for which we do not know whether or not we have enough

information to resolve their statuses (because information has been filtered out).

The dependency set Dependency is extended to include the value identifier set. In

addition to being dependent on program nodes, constraint terms can now also be de-

pendent on value identifiers. An annotated syntactic term of the form 〈x, d〉 depends

on the vids in d being in the analysed code, value variables and not datatype con-

structors (the statuses v or u). Because identifier statuses are resolved at constraint

solving, such dependencies (value identifiers) are only generated during constraint

solving and not during initial constraint generation. For example, if constraint solv-

ing generates the dependent equality constraint 〈τ1=τ2, d ∪{vid}〉, then the equality

constraint τ1=τ2 need only be true if vid cannot be a datatype constructor.

Our binder set is extended with binders of the form ��vid=α. Such a binder is

called an unconfirmed binder and can, at constraint solving, either be confirmed to

be a binder of a value variable and so be turned into a binder of the form �vid=α, or

be turned into an accessor �vid=α if it turns out that vid is a datatype constructor.

Such unconfirmed binders are initially generated for identifiers occurring in patterns

at a nullary positions. The status (and the fact that it binds or is bound) of such

an identifier is context dependent. Therefore, in order to design a compositional
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constraint generation algorithm, thanks to these unconfirmed binders, the resolution

of identifier statuses is delayed to be dealt with at constraint solving.

Because we introduced status variables we redefine Dum as follows: Dum =

{αdum, evdum, δdum, ηdum}, where ηdum is a distinguished dummy status variable.

As a matter of fact, because of the restricted language considered in this docu-

ment, we do not need any other status variable than the dummy status variable ηdum.

We could therefore discard the status variables and introduce a new constant which

would play the role of the dummy status variable. This is not true anymore when

considering exceptions. For example, in exception e = e’, whether e is nullary or

unary depends on the status of e’. Another reason for introducing status variables

is that it simplifies the presentation of our system and makes our TES comply with

principle (DP1).

If y is a d or a d then we write �vid =
y
== 〈σ, is〉 for �vid =

y
== is ;�vid =

y
== σ, and

similarly for accessors.

We extend the application of a substitution to a constraint term as follows:

(��vid=α)[sub] =

{
(��vid=α[sub]), if α[sub] ∈ ITyVar

undefined, otherwise

14.1.3 Constraint generation

In order to deal with identifier statuses, Fig. 14.1 redefines the rules (G5), (G6), (G8),

(G14), (G16), and (G17) originally introduced in Fig. 11.7 in Sec. 11.5.1. Rule (G6)

now generates unconfirmed binders of the form ��vid=α and no status constraint

is generated (as opposed to, e.g., rule (G14) which forces the analysed identifier to

be a nullary datatype constructor) because in SML, e.g., in fn x => x, without any

more context, the identifier x could be a value variable or a datatype constructor.

The status of x is then unknown. Because we do not allow a lexical distinction

between datatype constructors and value variables anymore, we then replace the two

rules (G6) and (G7) by the generation of unconfirmed binders in a unique rule (the

new rule (G6)). Because SML requires recursive functions to be value variables (v)

even when in the scope of a datatype constructor binding, toV (used by rule (G17))

generates a status constraint:

toV(e1;e2) = toV(e1);toV(e2)

toV(ed) = toV(e)d

toV(��vid=α) = (�vid=〈α, v〉)

toV(e) = e, if none of the above applies

This function is used at initial constraint generation because it is not context

dependent and therefore we do not need to wait constraint solving to apply it.

If not at constraint generation, at constraint solving unconfirmed binders of the

form ��vid=α are eventually turned into binders of the form �vid=α or into accessors
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Labelled value identifiers (lvid -⊲ 〈α, η, e〉)

(G5) vid l

u -⊲ 〈α, η, �vid =
l
== 〈α, η〉〉

Patterns

(G6) vid l

p -⊲ 〈α, ��vid =
l
== α〉

(G8) ⌈lvid atpat⌉l -⊲ 〈α, (α1 =
l
==α2�α);(η=

l
== c);e1;e2〉

⇐⇐⇐ lvid -⊲ 〈α1, η, e1〉 ∧∧∧ atpat -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Constructor bindings

(G14) vid l

c -⊲ 〈α, �vid =
l
== 〈α, d〉〉

(G16) vid of l ty -⊲ 〈α1, e;α2 =
l
==α�α1;�vid =

l
== 〈α2, c〉〉 ⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ dja(e, α1, α2)

Declarations

(G17) val rec pat
l
= exp -⊲ (ev=poly(toV(e1);e2;(α1 =

l
==α2)));ev

l

⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

Figure 14.1 Constraint generation rules to handle identifier statuses

of the form �vid=α. In some cases, a status constraint is also generated from an

unconfirmed binder.

Because the new constraint generation rule (G5) generates triples, we extend the

set InitGen originally defined in Sec. 11.5.1 as follows:

cg ∈ InitGen ::= · · · | 〈α, η, e〉

We also extend the set LabBind of initially generated binders and the set LabCs

of initially generated labelled equality constraints, originally defined in Sec. 11.5.2,

as follows:

lbind ∈ LabBind ::= · · · | ��vid =
l
== α | �vid =

l
== ris

lc ∈ LabCs ::= · · · | η=
l
== ris

We also entirely redefine the set PolyEnv of environment initially generated in a

poly environment, originally defined in Sec. 11.5.2, as follows (we also discard the

set InPolyEnv):

pe ∈PolyEnv ::= lbind | lc | lacc | pe1;pe2

Note that the set PolyEnv is much larger than the set of forms generated in poly

environments by our initial constraint generation algorithm because it allows, e.g.,

more than one binder and also other binders than value identifier binders. We do

so to anticipate the forms generated to handle other features presented below. Note

also that the function toPoly is redefined below to work on such forms.

14.1.4 Constraint solving

In Sec. 11.6, we have defined environment application to access identifier static

semantics. Let us now define a similar application to access value identifier statuses.

Because the two applications are similar we also redefine the application e(id).
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toPoly(∆, �vid=τ) = ∆;(�vid =
d
== ∀α. τ ′), if





τ ′ = build(∆, τ)
α = (vars(τ ′) ∩ ITyVar) \ (vars(monos(∆)) ∪ {αdum})

d = {d | αd0∪{d} ∈ monos(∆) ∧ α ∈ vars(τ ′) \ α}

toPoly(〈u, e〉, ed
0 ) = 〈u ′, (e;diff(e, e ′)d )〉, if toPoly(〈u, e〉, e0) = 〈u ′, e ′〉

toPoly(∆, e1;e2) = toPoly(∆′, e2), if toPoly(∆, e1) = ∆′

toPoly(∆, e) = ∆;e, if none of the above applies

Figure 14.2 Monomorphic to polymorphic environment function

First, let k ∈ AppKind ::= T | S. The applications e(id) to access identifier static

semantics, and e[id ] and ∆[id ] to access value identifier statuses are defined via the

function app as follows:

∆(id) = app(∆, id , T) ∆[id ] = app(∆, id , S) e[id ] = 〈∅, e〉[id ]

app(〈u, �id=x〉, id , T) = x, if x 6∈ IdStatus

app(〈u, �id=x〉, id , S) = x, if x ∈ IdStatus

app(〈u, ed〉, id , k) = collapse((app(〈u, e〉, id , k))d )

app(〈u, (e1;e2)〉, id , k) =

{
x, if app(〈u, e2〉, id , k) = x or shadowsAll(〈u, e2〉)

app(〈u, e1〉, id , k), otherwise

app(〈u, ev〉, id , k) =

{
app(〈u, e〉, id , k), if u(ev) = e

undefined, otherwise

Because adding statuses to our system can lead to new status errors we extend

the set of error kinds as follows:

ek ∈ ErrKind ::= · · · | statusClash(is1, is2)

Because of we have added binders to associate statuses with identifiers, toPoly

can now be applied to an environment composed by such binders. We extends toPoly

in Fig. 14.2.

Fig. 14.3 extends our constraint solver to deal with our new constraint terms.

Two identifier statuses are incompatible iff a unary datatype constructor, occur-

ring in a pattern, is bound to a (context-dependent or independent) value variable

as in let val rec f = fn x => x in fn (f x) => x end where f’s first occurrence is a

value variable and f’s second occurrence is a unary datatype constructor (taking an

argument in a pattern); or if a nullary value identifier in a pattern is bound to a

unary datatype constructor as in let datatype t = x of int in fn x => x end. The

compatible relation is defined as follows:

compatible(is1, is2)⇔{is1, is2} 6∈ {{c, v}, {c, u}, {c, p}}

Status compatibility is checked by constraint solving rules (S7) and (S8) defined

in Fig. 14.3. Rule (S8) is only defined on raw statuses because rule (S2) removes

dependencies on, among other things, statuses.

The status p is used to catch errors in pieces of code such as the let-expression

let open S in fn x => fn x y => y end where x occurs both at a nullary position and
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equality simplification

(S7) slv(∆, d , is1=is2) → err(〈statusClash(is1, is2), d〉), if ¬compatible(is1, is2)

(S8) slv(∆, d , ris1=ris2)→ succ(∆), if compatible(ris1, ris2)

binders

(B2) slv(∆, d , ��vid=α)→ slv(∆, d , �vid=〈α, ifNotDum(α, u)〉),
if strip(∆[vid ]) ∈ {c, d}

(B3) slv(∆, d , ��vid=α)→ succ(∆;(�vid =
d∪d

′

==== α)),

if collapse(∆[vid ]∅) = vd
′

(B4) slv(∆, d , ��vid=α)→ succ(∆;(�vid =
d∪{vid}
====== 〈α, ifNotDum(α, u)〉)),

if strip(∆[vid ]) = u ∨ (¬shadowsAll(∆) ∧ ∆[vid ] undefined)

(B5) slv(∆, d , ��vid=α)→ succ(∆;(�vid =
d
== 〈αdum, ifNotDum(α, p)〉)),

if strip(∆[vid ]) ∈ Var ∪ {p} ∨ (shadowsAll(∆) ∧ ∆[vid ] undefined)

accessors

(A2) slv(∆, d , �id=v) → slv(∆, d , v=x),
if ∆(id) = x ∧ strip(x) is not of the form ∀α. τ ∧ v 6∈ IdStatus

(A3) slv(∆, d , �id=v) → succ(∆),
if (v ∈ IdStatus ∧ ∆[id ] undefined) ∨ (v 6∈ IdStatus ∧ ∆(id) undefined)

(A4) slv(∆, d , �vid=η)→ slv(∆, d , η=is), if ∆[vid ] = is

Figure 14.3 Constraint solving rules to handle identifier statuses

at a unary position in patterns (applied and not applied). The identifier x cannot

be a value variable because it is applied in a pattern. It cannot be a datatype

constructor either because it would be both nullary and unary.

Context dependencies are solved during constraint solving. An unconfirmed

binder of the form ��vid=α either turns into a binder of the form �vid=α or an acces-

sor of the form �vid=α using one of these rules: (B2)-(B5). These rules use the func-

tion ifNotDum that ensures that a dummy status binder cannot bind something else

than a dummy status and therefore cannot be involved in an error: ifNotDum(x, is) =

ηdum if strip(x) ∈ Dum, and is otherwise. Rule (B2) discards binders generated under

unsatisfied context dependencies, e.g., in let datatype t = x in fn x => x end, x’s

second occurrence does not bind x’s third occurrence because of x’s declaration as a

datatype constructor. The unconfirmed binder is then turned into an accessor. In all

three other rules, the unconfirmed binder is turned into a confirmed one. Rule (B3)

validates context dependencies, e.g., in val rec x = fn x => x, x is confirmed to be

a value variable because x’s second occurrence is in the scope of x’s first occurrence

which is a recursive function, and so in SML is forced to be a value variable and not a

datatype constructor. Rule (B4) generates context dependencies, e.g., in fn x => x,

because x can be a value variable as well as a datatype constructor then x’s second

occurrence is bound to x’s first occurrence under the context dependency that x is

not a datatype constructor. Rule (B5) generates dummy environments when there

is not enough information to check whether a context dependency is satisfied or

not, e.g., in let open S in fn x => x end, if S is free, it might declare x as a datatype

constructor or as a recursive function. Thus, we do not allow x to be a monomorphic

binder but we still generate a dummy binder to catch status clashes. For example,
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if instead of the second occurrence of x we had fn (x y) => y where x is a unary

datatype constructor, we would then have x occurring in patterns both at a nullary

position and a unary position.

Because binders of the form �vid=is can now occur in constraint solving contexts

(in e in 〈u, e〉), we extend the binder forms generated at constraint solving, originally

defined in Sec. 11.6.6, as follows:

sbind ∈ SolvBind ::= · · · | �vid=is

14.1.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering function as follows:

dum(��id=x) = (��id=toDumVar(x))

toDumVar(is) = ηdum

14.1.6 Slicing

Because our constraint generator generates a triple of the form 〈α, η, e〉 for labelled

value identifiers of the form vid l
u, we need to introduce a new form of dot term as

follows:

LabId ::= · · · | dot-i(
−−→
term)

We define the new constraint generation rule for terms of the form dot-i(
−−→
term)

as follows:

(G28) dot-i(〈term1, . . . , termn〉) -⊲ 〈α, η, [e1; · · · ;en]〉 ⇐⇐⇐

term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, η, α)

We modify the set of classes Class as follows:

lDcon −Class−−−_ lVid

We extend the set of dot markers Dot as follows:

Dot ::= · · · | dotI

We extend the function getDot that associates dot markers with node kinds as

follows:

getDot(〈lVid, prod 〉) = dotI

Fig. 14.4 extends the function toTree that transforms terms into trees.

Fig. 14.5 slightly modifies rule (SL1) of our slicing algorithm defined in Fig. 11.17.

The only difference with rule (SL1) defined in Fig. 11.17 is the addition of the

condition “or pattern(sl1(
−−→
tree(0), l))”. We add this special treatment for patterns
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Labelled value identifiers toTree(vid l

u) = 〈〈lVid, id〉, l , 〈vid〉〉

Constructor bindings toTree(vid l

c) = 〈〈conbind, id〉, l , 〈vid〉〉
toTree(vid of l ty) = 〈〈conbind, conbindOf〉, l , 〈vid , toTree(ty)〉〉

Patterns toTree(vid l

p) = 〈〈atpat, id〉, l , 〈vid〉〉
toTree(⌈lvid atpat⌉l ) = 〈〈pat, app〉, l , 〈toTree(lvid), toTree(atpat)〉〉

Dot terms toTree(dot-i(
−−→
term)) = 〈dotI, toTree(

−−→
term)〉

Figure 14.4 Extension of toTree to deal with identifier status

(SL1) sl(〈node, l ,
−−→
tree〉, l)

=






〈node, l , sl1(
−−→
tree, l)〉, if (l ∈ l and getDot(node) 6= dotS) or pattern(sl1(

−−→
tree(0), l))

〈node, l , tidy(sl1(
−−→
tree, l))〉, if l ∈ l and getDot(node) = dotS

〈dot , flat(sl2(
−−→
tree, l))〉, otherwise, and where dot = getDot(node)

Figure 14.5 Slicing algorithm rule to handle identifier status

because in our system, at constraint solving, we do not record the label associated

with the fn-expression when generating the following type error slice (the error being

that x is declared as a unary datatype constructor and occurs at a nullary position

in a pattern):

〈..datatype 〈..〉 = x of 〈..〉

..fn x => 〈..〉..〉

This is because the unconfirmed binder generated for x’s occurrence in the fn-

expression turns into an accessor at constraint solving (x being declared as a datatype

constructor) and this accessor can directly refer to x’s binder without using any

constraint labelled by the label associated with the fn-expression. This applies for

any accessor generated for an identifier occurring in a pattern.

14.2 Local declarations

14.2.1 External syntax

First, let us extend our external syntax with local declarations as follows:

dec ::= · · · | locall dec1 in dec2 end

For example,

val x = true

local val x = 1 in val y = x end

val z = x + 1

is untypable because x’s last occurrence is bound to its first occurrence and not to

its second (assuming that + is the one from the Standard ML basis library).
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Let us present another example:

(EX2)

val x = true

local val x = 1 in val y = x end

val z = fn w => (w y, w x)

Only z’s declaration differs from the previous example. This piece of code is also

untypable because w has a monomorphic type and is applied to y which is an integer

and x which is a Boolean. This example will be reused later in this section.

14.2.2 Constraint syntax

We extend constraint/environments with local environments as follows:

e ::= · · · | loc e1 in e2

The meaning of such an environment is that it builds an environment e2 which

depends on e1 and only exports e2’s binders, i.e., only e2’s binders can be accessed

from outside the local environment. Such environments differ from environments of

the form e1;e2 because an environment of the form e1;e2 builds a new environment

from both e1 and e2 and exports both e1’s binders not shadowed by e2 and e2’s

binders.

Environments of the form [e] are not enough to handle local declarations because

they do not allow one to partially export an environment. The requirement imposed

by a local declaration of the from loc e1 in e2 is that only e1 and e2 should be able

to access e1’s binders. Unfortunately, [e1;e2] does not export e2’s binders, and [e1];e2

does not allow e2’s accessors to refer to e1’s binders. The solution was to introduce

environments of the form loc e1 in e2.

Note that these environments are not only used to generate constraints for local

declarations, they are also used to, e.g., handle bindings of external type variables

(see Sec. 14.3). In Sec. 11 we allow binding occurrences of explicit type variables

to have a larger scope than they should, which is harmless in the small language of

Sec. 11, but needs to be (and is) fixed to work for full SML in Sec. 14.3.

We extend the application of a substitution to a constraint term as follows:

(loc e1 in e2)[sub] = loc (e1[sub]) in (e2[sub])

14.2.3 Constraint generation

Fig. 14.6 extends our constraint generator with a rule to handle local declarations.

Because our initial constraint generation algorithm generates new forms of con-

straints, we extend the ge forms as follows (see Sec. 11.5.2):

ge ::= · · · | loc ge1 in ge2
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Declaration (G29) locall dec1 in dec2 end -⊲ (ev=e1);loc ev l in e2

⇐⇐⇐ dec1 -⊲ e1 ∧∧∧ dec2 -⊲ e2 ∧∧∧ dja(e1, e2, ev)

Figure 14.6 Constraint generation rule for local declarations

local environments

(L1) slv(〈u, e〉, d , loc e1 in e2)→ succ(∆), if slv(〈u, e〉, d , e1)→
∗ succ(〈u ′, e ′〉)

∧ slv(〈u ′, e ′〉, d , e2)→
∗ succ(〈u ′′, e ′′〉)

∧ ∆ = 〈u ′′, e;diff(e ′, e ′′)〉

(L2) slv(〈u, e〉, d , loc e1 in e2)→ err(er), if slv(〈u, e〉, d , e1)→
∗ succ(〈u ′, e ′〉)

∧ slv(〈u ′, e ′〉, d , e2)→
∗ err(er)

(L3) slv(〈u, e〉, d , loc e1 in e2)→ err(er), if slv(〈u, e〉, d , e1)→
∗ err(er)

Figure 14.7 Constraint solving rules for local declarations

The forms generated by our initial constraint generator are in fact more restricted

than that, but we already anticipate the forms generated by further extensions such

as for type functions.

14.2.4 Constraint solving

Fig. 14.7 extends our constraint solver to handle local declarations.

The most important rule is rule (L1). The two other ones are to handle the

failure of solving one of the two environments composing a local environment of the

form loc e1 in e2.

When solving an environment of this form, first we solve e1 and if it leads to a

success state succ(∆1), ∆1 is used to solve e2 so that the binders generated while

solving e1 are made available when solving e2. If solving e2 leads to a success

state succ(∆2), solving loc e1 in e2 leads then to a success state succ(〈u, e〉) where

u is the unifier from ∆2 and e is the environment from ∆2 where we forget the

environments generated by the constraint solver while solving e1.

14.2.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering function as follows:

filt(loc e1 in e2, l1, l2) = locfilt(e1, l1, l2) in filt(e1, l1, l2)

14.2.6 Slicing

Finally, our slicing algorithm does not need to be extended but we need to update

the tree syntax for programs as follows:

Prod ::= · · · | decLoc

We also need to extend the toTree function that associates trees of the form tree

with terms of the form term as follows:
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toTree(locall dec1 in dec2 end) = 〈〈dec, decLoc〉, l , 〈toTree(dec1), toTree(dec2)〉〉

14.2.7 Minimality

Let us illustrate what would happen if we were not generating an extra labelled

environment variable in rule (G29). Consider example (EX2) presented above. With

our current system, we would obtain a type error slice involving the local declaration

itself in addition to the nested declarations of x and y as follows:

〈..val x = true

..local val x = 1 in val y = x end

..val z = fn w => 〈..w y..w x..〉..〉

If we were not to label the environment variable in rule (G29) or if we were to

use e1 instead of ev l in the local constraint (and omit ev=e1 which becomes useless),

then we would obtain a type error slice that would look like:

〈..val x = true

..val x = 1

..val y = x

..val z = fn w => 〈..w y..w x..〉..〉

which is typable and therefore is not a minimal type error slice of example (EX2).

As a matted of fact, in this last slice, both bound occurrences of x are bound to x’s

second declaration.

Therefore, the extra initially generated labelled environment variable is necessary

to force, when solving an environment of the form loc e1 in e2, e1’s binders to be

dependent on the label of the local declaration for which the local environment has

been generated before making them accessible to e2.

14.3 Type declarations

14.3.1 External syntax

First, let us extend our external syntax with type functions as follows:

Dec ::= · · · | type dn
l
= ty

For example,

type ’a t = ’a -> ’a -> ’a

datatype ’a u = U of ’a t

val x = U (fn x => x)
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is untypable because U is applied to the identity function which cannot have the type

’a -> ’a -> ’a.

Note that in SML, type declarations are not recursive while datatype declarations

are. For example, in type t = t -> t, the two last occurrences of t are free, especially,

they are not bound to t’s first occurrence. However, in datatype t = C of t -> t,

the two last occurrences of t are bound to t’s first occurrence.

We still use dn (standing for “datatype name”) for type functions. This name is

not suitable anymore because it is not only used for datatype declarations only but

also for type declarations. However, for lack of a better name, we keep this name in

this section.

14.3.2 Constraint syntax

We extend our constraint system with pseudo type functions:

tfi ∈TypFunIns ::= τ1.τ2

µ ∈ ITyCon ::= · · · | Λα. τ

We explain below why, even though we use the symbol Λ, constraint terms of

the form Λα. τ are called pseudo type functions and not type functions.

We also introduce quantified internal type constructors as follows:

κ ∈ TyConSem ::= µ | ∀α. µ | 〈κ, d〉

We modify type constructor binders as follows:

�tc=µ −Bind−−_ �tc=κ

A internal type constructor of the form Λα. τ is called a pseudo type function

and is not a type function as defined in The Definition of Standard ML [107]. At

initial constraint solving, an internal type constructor of the form Λα. τ is a type

function only when the constraints on τ have all been solved and when τ is fully

built up. As a matter of fact, in Λα. τ , the parameter α can be connected to τ

via constraints. For example, at initial constraint generation we generate for a type

declaration of the form type ’a t = ’a, an environment of the form (for readability

purposes, we have omitted labels as well as some constraints):

(δ=Λα1. α2);loc (�’a=α1) in (�’a=α2;�t=δ)

The internal type constructor Λα1. α2 is not a type function. It is a type function

only via constraints. However, at constraint solving, if no constraint is filtered out,

then the binder �t=∀∅.Λα1. α1 is eventually generated, where Λα1. α1 is a type

function.

We introduce quantified internal type constructors of the form ∀α. µ because

now internal type variables can occur in internal type constructors via pseudo type
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functions. For example, the type function Λα1. α2 (where α1 6= α2) is generated at

constraint solving when solving the constraints generated for the type declaration

type ’a t = 〈..〉. Because α2 is not bound by the type function, we need to quantify

it so that it will be renamed for each accessor to t. We then eventually generate

the following binder for t (where we omit dependencies for readability purposes):

�t=∀{α2}.Λα1. α2. If we were to not quantify α2 in our example, we would obtain

an error for the following piece of code (because α2 would be constrained to be equal

to bool and unit):

type ’a t = 〈..〉

val x = true : bool t

val y = () : unit t

But one can observe that this incomplete piece of code becomes typable when

replacing 〈..〉 by ’a.

We also define the following forms where TyFun ⊆ LabName and App ⊆ ITy:

tyf ∈TyFun ::= δ | Λα. τ | 〈tyf , d〉

app ∈App ::= τ tyf

These forms will be used to state side conditions in the extension of our constraint

solver below.

We extend the application of a substitution to a constraint term as follows:

(Λα. τ)[sub] = Λα. τ [{α} ⊳− sub], if α 6∈ vars({α} ⊳− sub)

14.3.3 Constraint generation

Fig. 14.8 modifies the rules for datatype names (G13) and datatype declarations (G18),

and defines a new rule (G30) for type function declarations. The environment e1 is

generated before e2 in rule (G18) to handle the recursivity of datatype declarations

and it is generated after e2 in rule (G30) to handle the non-recursivity of type dec-

larations. Note the use of local environments of the form loc e1 in e2 in rules (G18)

and (G30). They are used to handle binding occurrences of explicit type variables.

In rule (G30) the environment e1 is not required to be generated inside the local

environment. It could as well be generated after the local environment.

Because the new constraint generation rule (G13) associates tuples of the form

〈δ, α, e1, e2〉 with dns, we extend the set InitGen originally defined in Sec. 11.5.1 and

extended in Sec. 14.1.3 as follows:

cg ∈ InitGen ::= · · · | 〈δ, α, e1, e2〉

Because our initial constraint generation algorithm generates new forms of type

constructor binders, we replace the initially generated type constructor binders as

follows:
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Datatype names (dn -⊲ 〈δ, α, e1, e2〉)

(G13) ⌈tv tc⌉l -⊲ 〈δ, α, �tc =
l
== δ, �tv =

l
== α〉

Declarations

(G18) datatype dn
l
= cb -⊲ (ev=((δ=

l
== γ);(α2 =

l
==α1 γ);e1;loc e ′

1 in poly(e2)));ev
l

⇐⇐⇐ dn -⊲ 〈δ, α1, e1, e
′
1〉 ∧∧∧ cb -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

(G30) type dn
l
= ty -⊲ (ev=((δ=

l
== Λα1. α2);loc e ′

1 in (e2;e1)));ev
l

⇐⇐⇐ dn -⊲ 〈δ, α1, e1, e
′
1〉 ∧∧∧ ty -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

Figure 14.8 Constraint generation rules for type functions

�tc =
l
== γ −LabBind−−−−−_ �tc =

l
== δ

The extension of our constraint generation algorithm defined in Fig. 14.8 also

generates forms of equality constraints that were not generated at initial constraint

generation by the algorithm defined so far. We introduce ShallowTyCon and extend

LabCs as follows:

stc ∈ ShallowTyCon ::= γ | Λα.α′

lc ∈ LabCs ::= · · · | δ=
l
== stc

14.3.4 Constraint solving

Because we added internal type constructors of the form Λα. τ , we need to update

our building function as follows:

build(u,Λα. τ) = Λα′. build(u, τ), if build(u, α) = α′

We define the free internal type variable of an internal type or an internal type

constructor as follows (used by rule (B6) in Fig. 14.9 presented below):

freevars(α) = {α} \ Dum

freevars(τ1�τ2) = freevars(τ1) ∪ freevars(τ2)

freevars(τ µ) = freevars(µ) ∪ freevars(τ)

freevars(Λα. τ) = freevars(τ) \ {α}

freevars(xd ) = freevars(x)

freevars(x) = ∅, if none of the above applies

Fig. 14.9 extends our constraint solver to handle internal type constructors of

the form Λα. τ . We replace the two rules (S3) and (S5) defined in Fig. 11.10 by the

new rules (S9)-(S13).

Accessor rules (A1) and (A2), originally defined in Fig. 11.10 (rule (A2) is re-

defined in Fig. 14.3), are redefined to handle universally quantified internal type

constructors as well as type schemes. Also, the new binder rule (B6) is introduced

to generate universally quantifier internal type constructors.

Note that equality constraints of the forms (Λα. τ=µ) or (µ=Λα. τ), where µ

is not a variable, are never generated neither at initial constraint generation nor
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equality simplification

(S9) slv(∆, d , τ2 µ=τ) → slv(∆, d , τ ′[{α 7→ τ2}]=τ), if collapse(µ∅) = (Λα. τ1)
d
′

∧ τ ′ = build(∆, τd
′

1 )

(S10) slv(〈u, e〉, d , τ1 µ=τ) → succ(〈u, e〉), if collapse(µ∅) = δd
′

∧ δ 6∈ dom(u)

(S11) slv(〈u, e〉, d , τ1 µ=τ) → slv(〈u, e〉, d ∪ d
′
, τ1 µ

′=τ), if collapse(µ∅) = δd
′

∧ u(δ) = µ′

(S12) slv(∆, d , τ1 µ1=τ2 µ2)→ slv(∆, d1 ∪ d2, γ1=γ2;τ1=τ2), if collapse(µd
1 ) = γd1

1

∧ collapse(µ∅

2 ) = γd2

2

(S13) slv(∆, d , τ1=τ2) → slv(∆, d , µ=ar), if {τ1, τ2} = {τ µ, τ0�τ
′
0}

∧ strip(µ) ∈ TyConName

equality constraint reversing

(R) slv(∆, d , x=y)→ slv(∆, d , y=x), if s = Var ∪Dependent ∪ App ∧ y ∈ s ∧ x 6∈ s,

binders
(B1) slv(〈u, e〉, d , �id=x)→ succ(〈u, e〉;(�id =

d
== x)), if id 6∈ TyCon

(B6) slv(〈u, e〉, d , �tc=µ)→ succ(〈u, e〉;(�tc =
d
== ∀α. µ′)), if µ′ = build(u, µ) ∧ α = freevars(µ′)

accessors
(A1) slv(∆, d , �id=v)→ slv(∆, d ∪ d

′
, v=x[ren ]),

if ∆(id) = (∀v . x)d
′

∧ dom(ren) = v ∧ dj(vars(〈∆, v〉), ran(ren))

(A2) slv(∆, d , �id=v)→ slv(∆, d , v=x),
if ∆(id) = x ∧ strip(x) is not of the form ∀v . x ∧ v 6∈ IdStatus

Figure 14.9 Constraint solving rules for type functions

at constraint solving. A constraint of the form (Λα. τ=γ) would lead to checking

that Λα. τ and Λα′. α′ γ are the same type functions because γ is considered in our

system as equivalent to a type function of the form Λα′. α′ γ (where α′ is a “fresh”

type variable w.r.t. a given constraint solving context). A constraint of the form

(Λα1. τ1=Λα2. τ2) would lead to checking that τ1[{α1 7→α}] and τ2[{α2 7→α}] can

be made equal (where α is a “fresh” type variable w.r.t. a given constraint solving

context).

There are two issues w.r.t. solving applications of internal type constructors to

internal types where internal type constructors can be type functions, e.g., of the

form τ2 (Λα1. τ1), where dependencies are omitted for readability issues. The first

issue is related to the fact that applications of type functions to internal types need

eventually to be reduced. Such reductions are done by rule (S9) in Fig. 14.9. The

first issue is that when an application of the form τ2 (Λα1. τ1) is reduced at constraint

solving, all the constraints on τ1 need to have already been dealt with in order to

replace all the occurrences of α1 by τ2 in the fully built up version of τ1. Therefore,

at constraint solving, we need to enforce that before reducing the application of a

type function to an argument, all the constraints on the body of the type function

have been dealt with. However we do not allow any look ahead in our constraint

solver. Let us consider the two following environments, where γ1 6= γ2, and which

differ only by the swapping of the two equality constraints:

Let e1 be ((α1 γ1)=(α2 γ2) (Λα′. α));(α=α′)

Let e2 be (α=α′);((α1 γ1)=(α2 γ2) (Λα′. α))
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When dealing with e1, our constraint solver first deals with ((α1 γ1)=(α2 γ2) (Λα. α′))

which does not lead to a type error and leads to α2 γ2 to be thrown away and α′ to

be constrained to be equal α1 γ1. It then deals with α=α′ which leads to α to also

be constrained to be equal to α1 γ1 but which does not lead to any type error. As a

matted of fact, when dealing with the first constraint of e1 (left one) our constraint

solver is not aware of the equality between α and α′ and does not know if there are

any more constraints on α′ that have not yet been dealt with (and does not look them

up). Note that solving e2 leads to a type error. Because we believe e1 and e2 should

have the same semantics, we need to somehow rule out environments such as e1.

Because we do not enforce our constraint solver to deal with (α=α′) before dealing

with ((α1 γ1)=(α2 γ2) (Λα. α′)), we need the initial constraint generation algorithm

to generate (α=α′) before ((α1 γ1)=(α2 γ2) (Λα. α′)). More generally, we need the

initial constraint generation algorithm to generate all the constraints on µ before a

constraint in which a type of the form τ µ occurs.

Another solution would be to introduce another binary environment composition

operator with a different semantics than the one of “;”, such that unifiers generated

for the right-hand-side of such an operator would not be usable for the left-hand-side.

We leave the study of such a system to future work.

Equality constraints of the form (were dependencies are omitted) τ1 δ=τ where

δ is unconstrained (see rule (S10)) are discarded at constraint solving. We do so

because δ could potentially be the type function Λα. τ where α does not occur in

τ . Once again, because we discard such constraints at constraint solving, we need

to require that all the constraints on δ have been generated before τ1 δ=τ at initial

constraint generation and are dealt with before τ1 δ=τ at constraint solving.

Another issue w.r.t. solving applications of internal type constructors to internal

types where internal type constructors can be type functions is an efficiency issue.

For example, we do not wish to generate polymorphic binders of the form, e.g.,

�vid=∀{α}. (α γ1) (Λα′. α′ γ2) because this would potentially involve having to re-

duce the application multiple times. Therefore, because we already need our initial

constraint generation algorithm to generate all the constraints on µ before a con-

straint in which a type of the form τ µ occurs, we redefine our building function on

types of the form τ µ as follows (this new rule replaces the one given in Sec. 11.6):

build(u, τ µ) =

{
collapse(τ ′d )[{α 7→ build(u, τ)}], if build(u, µ∅) = (Λα. τ ′)d

build(u, τ) build(u, γ), otherwise

Because binders of the form �tc=κ can now occur in constraint solving contexts

(in e in 〈u, e〉), we redefine the binder forms generated at constraint solving as

follows (originally defined in Sec. 11.6.6 and extended in Sec. 14.1.4):

�tc=µ −SolvBind−−−−−_ �tc=κ
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14.3.5 Slicing

Because we have changed our constraint generation rule for dns, we need to replace

the dot terms in DatName as follows:

dot-e(
−−→
term) −DatName−−−−−−_ dot-n(

−−→
term)

We define the new constraint generation rule for terms of the form dot-n(
−−→
term)

as follows:

(G31) dot-n(〈
−−→
term1, . . . ,

−−→
termn〉) -⊲ 〈δ, α,⊤, [e1; · · · ;en]〉 ⇐⇐⇐

−−→
term1 -⊲ e1 ∧∧∧ · · · ∧∧∧

−−→
termn -⊲ en ∧∧∧ dja(e1, . . . , en, δ, α)

Note that this rule is correct because our slicing algorithm (defined in Fig. 11.17)

only generates dot-dn terms of the form dot-n(〈〉) and so no binder needs to be non-

locally exported by the rule. The sequence wrapped into a dot-dn term is always

empty when generated by our slicing algorithm because it means that it has been

generated from a dn term of the form ⌈tv tc⌉l and that l is sliced away (see rule (SL1)

in Fig. 11.17). Given the function sl2 on identifiers (see rule (SL9) in Fig. 11.17), we

then obtain what corresponds to the dot-dn term dot-n(〈〉).

Our slicing algorithm does not need to be extended but we need to update the

tree syntax for programs as follows:

Prod ::= · · · | decTyp

Dot ::= · · · | dotN

We also need to modify the getDot function that associates dot markers with

node kinds as follows (the function now returns a dotN marker and not a dotE

marker anymore when applied to a datname node):

getDot(〈datname, prod 〉) = dotN

We also need to extend the toTree function that associates trees of the form tree

with terms of the form term as follows:

toTree(type dn
l
= ty) = 〈〈dec, decTyp〉, l , 〈toTree(dn), toTree(ty)〉〉

toTree(dot-n(
−−→
term)) = 〈dotN, toTree(

−−→
term)〉

14.4 Non-recursive value declarations

In SML, a value declaration can either be recursive or non-recursive depending on

the presence or not of the keyword rec. We already covered recursive value declara-

tions (val rec declarations). Let us now present how to handle non-recursive value

declarations. These declarations are interesting as they raise many issues such as

value identifier status issues.
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14.4.1 External syntax

Let us extend our external syntax with non-recursive value declarations as follows:

Dec ::= · · · | val pat
l
= exp

In SML, the expression of a recursive value declaration is restricted to a fn-

expression so that recursive value declarations are forced to declare functions. We

do not take the restriction into consideration in this document as it does not raise

any interesting issues w.r.t. type error slicing. There is no such restriction for non-

recursive value declarations.

Let us provide an example of a non typable piece of code involving a non-recursive

value declaration (many examples using non-recursive value declarations have al-

ready been given above, as these declarations are most useful):

val x = 1

val x = x 1

In this piece of code, x’s third occurrence is bound to x’s first occurrence and not

to x’s second occurrence. This piece of code is untypable because x’s first occurrence

is constrained to be an integer and x’s third occurrence is constrained to be a function

that takes an integer. We then obtain a type constructor clash.

Let us now present a slightly more interesting example.

datatype t = x

val x = 1

val x = x 1

The issue here is the same as for fn-expression. In our example, x’s second (as

well as its third and fourth) occurrence is bound to x’s first occurrence. Therefore,

the second declaration does not declare any identifier. We obtain two type error

slices for this untypable piece of code: the first one reports a type constructor clash

involving x’s first and second occurrences, and the second one reports another type

constructor clash involving x’s first and fourth occurrences.

Let us finally wrap the second and third declarations of our last example into a

structure declaration as follows:

datatype t = x

structure S = struct

val x = 1

val x = x 1

end

As explained above, the issue here is that the structure does not declare any

identifier even though it contains declarations. This can lead to, e.g., confusing
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Declarations (G45) val pat
l
= exp -⊲ (ev=poly(e2;e1;(α1 =

l
==α2)));ev

l

⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

Figure 14.10 Constraint generation rule for non-recursive value declarations

unmatched errors.

Another interesting issue that is raised when adding non-recursive value decla-

rations is the value polymorphism restriction which is discussed in Sec. 14.5.

14.4.2 Constraint syntax

No additional constraint term is necessary for this partial extension, but some will be

required when taking into account the value polymorphism restriction (see Sec. 14.5).

Our constraint solver and constraint filtering function are not changed in this section

either. They will however be extended in Sec. 14.5.

14.4.3 Constraint generation

Fig. 14.10 extends our constraint generator with a rule to handle non-recursive value

declarations. This rule is similar to rule (G17) defined in Fig. 11.7. Rule (G45) differs

from rule (G17) by the fact that toV is not applied to e1 and by the order in which

the environments are in the generated environment. In rule (G45) for non-recursive

value declarations, e1 does not constrain e2 so that in a declaration val pat
l
= exp

the accessors generated for exp cannot refer to the binders generated for pat .

14.4.4 Slicing

First, we extend our tree syntax for programs as follows:

Prod ::= · · · | decNRec

Then, we extend the toTree function as follows:

toTree(val rec pat
l
= exp) = 〈〈dec, decNRec〉, l , 〈toTree(pat), toTree(exp)〉〉

14.5 Value polymorphism restriction

The value polymorphism restriction [146] allows one to have imperative features such

as references in, e.g., SML by constraining the polymorphism of value declarations

that could potentially be unsound.

We will illustrate this feature using an example given by Tofte [134] and reused

(sometimes slightly modified) by many others [101, 146, 116]. First let us intro-

duce references. The ref datatype and constructor are defined as follows in SML:
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datatype ’a ref = ref of ’a. One can then create a new reference to an expression

e as follows: ref e. One can access the value stored in a reference r as follows: !r.

The function ! has the following polymorphic type ’a ref -> ’a. One can update a

reference r as follows: r := e which results in e being stored in the reference r. The

infix function := has polymorphic type ’a ref * ’a -> unit.

The example used by Pottier and Rémy [116] is as follows:

val r = ref (fn x => x)

val = r := fn x => x + 1

val = !r true

This piece of code declares a reference r to the identity function. This reference

is then updated to store the successor function. Finally, the function stored in r

is applied to true. It would then be unsound to generalise the type of r to the

polymorphic type:

∀{α}. (α�α) ref

because it would result in having a typable piece of code that reduces to the appli-

cation of the successor function to true.

The value polymorphism restriction allows one to overcome this issue by re-

straining the body of value declarations that are allowed to be generalised. First,

the expression set is partitioned into two sets: the expansive expressions and the

non-expansive ones (what Wright [146] calls the syntactic values). A value declara-

tion is not generalised if the corresponding expression is expansive. In The Definition

of Standard ML [107, Sec.4.7], it is written that “the idea is that the dynamic eval-

uation of a non-expansive expression will neither generate an exception nor extend

the domain of the memory, while the evaluation of an expansive expression might”.

In our restricted language, the syntax of non-expansive expressions is defined as

follows:

conexp ∈ConExp ::= vid l
e

nonexp ∈NonExp ::= vid l
e | ⌈conexp nonexp⌉l | fn pat

l
⇒ exp

where a conexp has to be a datatype constructor (it can also be an exception con-

structor in full SML) and has to be different from the datatype constructor ref.

The expressions in Exp \ NonExp are therefore the expansive expressions.

14.5.1 External syntax

Our external labelled syntax does not change. However, we define the functions

expansive and expansiveCon which extract the dependencies responsible for an ex-

pression to be expansive as follows:
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Declarations (G45) val pat
l
= exp -⊲ (ev=expans(e2;e1;(α1 =

l
==α2), expansive(exp)));ev l

⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev)

Figure 14.11 Constraint generator handling the value polymorphism restriction

expansive(vid l
e) = ∅

expansive(letl dec in exp end) = {{l}}

expansive(fn pat
l
⇒ exp) = ∅

expansive(⌈exp atexp⌉l ) = {l ∪ d | d ∈ expansiveCon(exp) ∪ expansive(atexp)}

expansiveCon(vid l
e) = {{l , vid}}

expansiveCon(letl dec in exp end) = {{l}}

expansiveCon(fn pat
l
⇒ exp) = {{l}}

expansiveCon(⌈exp atexp⌉l ) = {{l}}

14.5.2 Constraint syntax

We introduce new environments as follows:

e ∈ Env ::= · · · | expans(e, d)

The semantics of an environment of the form expans(e, d) is that e is monomor-

phic if one of the set in d is satisfied. An environment of the form expans(e, d) is

then a dependent poly(e) environment.

14.5.3 Constraint generation

Fig. 14.11 redefines rule (G45). This rule differs from the one provided in Fig 14.10

by the replacement of the poly environment by an expans environment.

Because our initial constraint generation algorithm generates these new expans

forms, we have to extend the set GenEnv of initially generated environments, origi-

nally defined in Sec. 11.5.2, as follows (where pe is as redefined in Sec. 14.1.3):

ge ∈GenEnv ::= · · · | expans(pe , d)

14.5.4 Constraint solving

Fig. 14.12 extend our constraint solver to deal with expans environments.

An expans environment can turn into a poly environment if it turns out that

the corresponding declaration binds a non-expansive expression or if there is not

enough information to determine whether or not the corresponding expression is ex-

pansive (rule (VPR1)). For example, the environment generated for f’s declaration in

val f = fn x => x will eventually turn into a poly environment at constraint solving

because the corresponding expression is a fn-expression which is non-expansive. The

environment generated for f’s declaration in datatype ’a t = T of ’a val f = T 1
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Value polymorphism restriction

(VPR1) slv(∆, d , expans(e, d)) → slv(∆, d , poly(e)),

if ∀d0 ∈ d . (d0 = l ∪ {vid}
∧(strip(∆[vid ]) 6∈ {v, u} ∨ (∆[vid ] undefined ∧ shadowsAll(∆))))

(VPR2) slv(∆, d , expans(e, d ∪ {l})) → slv(∆, d ∪ l , e)

(VPR3) slv(∆, d , expans(e, d ∪ {d0 ⊎ {vid}}))→ slv(∆, d ∪ d
′
, e),

if (collapse(∆[vid ]) ∈ {vd1 , ud1} ∧ d
′
= d0 ∪ d1)

∨ (∆[vid ] undefined ∧ ¬shadowsAll(∆) ∧ d
′
= d0 ∪ {vid})

Figure 14.12 Constraint solving rules handling the value polymorphism restriction

will also eventually turn into a poly environment at constraint solving because

the corresponding expression is the application of a datatype constructor to a non-

expansive expression (special constants such as 1 are also non-expansive in SML).

Rule (VPR2) applies when dealing with the environment generated for the decla-

ration val f = let val g = fn x => x in g end because let-expressions are expansive

and the expansiveness does not depend on identifier statuses. The binder generated

for f at constraint solving is then monomorphic.

Rule (VPR3) can generate value identifier dependencies if it turns out that the

polymorphism of an environment depends on a value identifier not being a value

variable and that this identifier is free. For example, the environment generated for

f’s declaration in val f = g 1 will stay monomorphic at constraint solving and will

eventually be dependent on g being a value variable and not a datatype constructor

because g is a free identifier and as such its status is context dependent.

Rule (VPR3) also deals with the case where the polymorphism of an environment

depends on a value identifier not being a value variable and that the status of this

identifier is confirmed to be a value variable. For example, the environment gener-

ated for f’s declaration in val rec g = fn x => x; val f = g 1 will stay monomorphic

at constraint solving and will depend on the dependencies of the status binder gen-

erated for g’s first occurrence (which is a value variable).

Let us now consider this example: fn g => let val f = g 1 in (f (), f true) end.

Because g is not declared in the context of this fn-expression, at constraint solv-

ing, a status binder is generated associating the status u to g’s first occurrence.

This binder is context dependent and depends on g’s status being a value vari-

able and not a datatype constructor (see rule (B4) in Fig. 14.3). Rule (VPR3)

applies and the environment generated for f’s declaration will stay monomorphic

at constraint solving and will be dependent on g being a value variable and not

a datatype constructor because g’s status in the context of f’s declaration is con-

text dependent. It will also be dependent on g’s first occurrence itself for bind-

ing issues even though this occurrence does not help resolving the dependency on

g’s status. A type error slice for this untypable piece of code is then as follows:

〈..fn g => 〈..val f = g 〈..〉..f ()..f true..〉..〉 which depends on g being a value
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variable and not a datatype constructor. Let us present why g’s first occurrence is

necessary using the following piece of code:

datatype t = h; val g = h; val u = g;

val v = fn g => let val f = g 1 in (f (), f u) end

If g’s third occurrence was not involved in the found type error slice (similar to

the one described above) then our minimiser would eventually try to minimise the

following slice:

〈..datatype t = h..val g = h..val u = g

..〈..val f = g 〈..〉..f ()..f u..〉..〉

where the bindings are mixed up because in this slice g’s last occurrence is bound

to g’s first occurrence.

Instead, the minimal type error slice computed by our TES is as follows:

〈..datatype t = h..val g = h..val u = g

..fn g => 〈..val f = g 〈..〉..f ()..f u..〉..〉

14.5.5 Constraint filtering

We update our filtering function as follows:

filt(expans(e, d), l1, l2) = expans(filt(e, l1, l2), {d | d ∈ d ∧ labs(d) ⊆ l1})

14.6 Type annotations

14.6.1 External syntax

First, let us extend our external syntax with type annotations as follows:

Exp ::= · · · | exp:l ty

Pat ::= · · · | pat:l ty

Let us consider the following piece of code.

val rec g : unit -> unit = fn x => x

val u = g true

This piece of code is untypable because the function g is explicitly defined to be

a function that takes a unit and is later applied to true. Note that there are several

ways to solve the programming error. We only mention some of them below. For

example, one can change the type annotation on g to be bool -> bool. One could

also apply another function to true.
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We define sequences of explicit type variables as follows:

ltv ∈ LabTyVar ::= tv l
l | dot-d(

−−→
term)

tvseq ∈TyVarSeq ::= ltv | ǫlv | (ltv 1, . . . , ltvn)l | dot-d(
−−→
term)

Explicit type variables (tv) in type variable sequences are subscripted when oc-

curring in type variable sequences (tv l
l) in order to distinguish between occurrences

in type variable sequences and occurrences in types.

We replace the recursive and non-recursive value declarations as follows:

val pat
l
= exp −Dec−−_ val tvseq pat

l
= exp

val rec pat
l
= exp −Dec−−_ val rec tvseq pat

l
= exp

For example, the following piece of code is untypable:

(EX11)

val rec ’a f = fn x =>

let val rec g : ’a -> ’a = fn x => x

in g true

end

First, ’a is explicitly bound at the outer value declaration (f’s declaration). Then,

before generalisation, g’s type is ’a -> ’a. Because ’a is bound to the outer value

declaration, it occurs in the type environment. It is therefore not generalised when

generalising g’s type. After generalisation, g’s type is then still ’a -> ’a. Finally,

when applying g to true, the non-generalised explicit type variable ’a clashes against

the type bool.

As usual, there as several ways of obtaining a typable piece of code. We only

mention some of them below. For example, example (EX12) below (we have just

removed the explicit binding of ’a from (EX11)) is typable if it does not occur in an

expression where ’a occurs at a binding or bound occurrence because the explicit

type variable ’a is implicitly bound to the inner declaration (g’s declaration).

(EX12)

val rec f = fn x =>

let val rec g : ’a -> ’a = fn x => x

in g true

end

In example (EX11), one could also remove the type annotation on g or change it

into, e.g., ’b -> ’b.

Let us present a last example:

(EX13)

val rec f = fn x =>

let val rec g : ’a -> ’a = fn x => x

in fn y : ’a => fn z : ’a => g true

end

This untypable piece of code slightly differs from example (EX12). We have

replaced the expression g true by the fn-expression fn y : ’a => fn z : ’a => g true
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in order to introduce new occurrences of the type variable ’a. Because ’a occurs free

in f’s body (in the expression fn y : ’a => fn z : ’a => g true), it is then implicitly

bound at the outer value declaration (f’s declaration). Now, because ’a is bound

at the outer value declaration, the occurrences of ’a in g’s body are also implicitly

bound at the outer value declaration and not at the inner one. We then obtain as for

example (EX11) a clash between the first occurrence of the non-generalised explicit

type variable ’a and true’s type. As a matter of fact, we obtain two minimal type

error slices. One involves ’a’s occurrence in the pattern y : ’a and the other one

involve ’a’s occurrence in the pattern z : ’a.

14.6.2 Constraint syntax

We introduce unconfirmed type variable binders as follows:

bind ∈Bind ::= · · · | ⇃tv=β

e ∈ Env ::= · · · | or(e, d)

The difference between binders of the form ⇃tv=β and binders of the form ��vid=α

is that a binder of the form ⇃tv=β cannot turn into an accessor while one of the form

��vid=α can as we saw in Fig. 11.10. The similarity is that both kinds of binders

will look up the environment to turn into confirmed binders of the form �id=x. The

difference between binders of the form ⇃tv=β and binders of the form �id=x is that

a binder of the form ⇃tv=β can be discarded at constraint solving while a binder of

the form �id=x cannot.

We need such unconfirmed type variable binders because, e.g., for example (EX11)

presented above, we generate an unconfirmed binder for ’a at the inner declaration

(g’s declaration). In our example, this unconfirmed will obviously be discarded at

constraint solving, if no constraint is filtered out, because there is already a binder

generated for ’a at the outer declaration (f’s declaration).

We also define environments of the form or(e, d). Such an environment differs

from an environment of the form ed by the fact that in the latest all the dependencies

have to be satisfied for e to be kept at constraint filtering (we then say that e is kept

“alive”, or simply that it is “alive”) while in an environment of the form or(e, d)

only one of the dependencies in d has to be satisfied for e to be “alive”. In an

environment of the form ed , the set d can be seen as a conjunction of dependencies,

while in an environment of the form or(e, d), the set d can be seen as a disjunction

of dependencies. This is why we write e∨d for or(e, d).

For example (EX13) we generate an environment or the form (⇃’a =
l
== β)∨{l1,l2}

where l1 is ’a’s third occurrence’s label, l2 is ’a’s fourth occurrence’s label, and l

is the label of the declaration at which ’a is implicitly bound. Both l1 and l2 are

“reasons” explaining why the unconfirmed binder is introduced and only one of them

is necessary for the unconfirmed binder to exist.
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14.6.3 Constraint generation

We extend the labtyvars function, originally defined in Sec. 14.7, to expressions and

patterns as follows:

labtyvars(vid l
e) = ∅

labtyvars(letl dec in exp end) = labtyvars(exp)

labtyvars(fn pat
l
⇒ exp) = labtyvars(pat) ∪ labtyvars(exp)

labtyvars(⌈exp atexp⌉l ) = labtyvars(exp) ∪ labtyvars(atexp)

labtyvars(exp:l ty) = labtyvars(exp) ∪ labtyvars(ty)

labtyvars(vid l
p) = ∅

labtyvars(vid l atpat ) = labtyvars(atpat )

labtyvars(pat:l ty) = labtyvars(pat) ∪ labtyvars(ty)

This function does not extract all the explicit type variables occurring in an

expression of a pattern. It does not extract the explicit type variables occurring in

nested declarations (see case for let-expressions).

We define the function labtyvarsdec as follows:

labtyvarsdec(tvseq , pat , exp) = {tv l | f (tv) = l}

where f = ⋒{tv 7→ {l} | tv does not occur in tvseq

∧ tv l ∈ labtyvars(pat) ∪ labtyvars(exp)}

Such tvseq , pat and exp are meant to be those of a recursive or non-recursive

value declaration.

Fig. 14.13 extends our constraint generation algorithm. Rules (G46)-(G50) are

new. Rules (G17) and (G45) replace the ones respectively defined in Fig. 11.7 and

Fig. 14.11. Rules (G48)-(G50) generate explicit type variable binders for type vari-

able sequences. The generated binders are confirmed binders (of the form �tv=β and

not of the form ⇃tv=β) because type variable sequences are used in SML to explicitly

bind type variables (they are not context dependent). Rules (G17) and (G45) gener-

ate unconfirmed type variable binders of the form ⇃tv=β for explicit type variables

that could potentially implicitly bound at value declarations. These unconfirmed

binders are generated after the confirmed binders because the unconfirmed ones are

dependent on the confirmed ones. This order is necessary. The order in which the

unconfirmed binders are generated is not relevant because the explicit type variables

are all different.

Note that instead of adding environment of the form e∨d , we could have replaced

the dependent environment forms by forms depending on disjunctions of conjunc-

tions of dependencies (instead of just depending on conjunctions of dependencies).

Then, instead of generating, e.g., (⇃tv 1 =
l
== β1)

∨l1 , we could have generated a binder of

the form ⇃tv 1 =
{{l ,l ′}|l ′∈l1}
======== β1, where at least one of {l , l ′}, such that l ′ ∈ l1, has to be

satisfied to the constraint represented by the dependencies to be satisfied. Because

this is only needed for environment, and in order to keep the same simple dependent

193



Chapter 14. More TES features to handle more of SML

Expressions

(G46) exp:l ty -⊲ 〈α, e1;e2;(α=
l
==α1);(α=

l
==α2)〉 ⇐⇐⇐ exp -⊲ 〈α1, e1〉 ∧∧∧ ty -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Patterns

(G47) pat:l ty -⊲ 〈α, e1;e2;(α=
l
==α1);(α=

l
==α2)〉 ⇐⇐⇐ pat -⊲ 〈α1, e1〉 ∧∧∧ ty -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Labelled type variables (ltv -⊲ e)

(G48) tv l
l -⊲ �tv =

l
== β

Type variable sequences (tvseq -⊲ e)

(G49) ǫlv -⊲ ⊤
(G50) (ltv1, . . . , ltvn)l -⊲ e1; · · · ;en ⇐⇐⇐ ltv1 -⊲ e1 ∧∧∧ · · · ∧∧∧ ltvn -⊲ en ∧∧∧ dja(e1, . . . , en)

Declarations

(G17) val rec tvseq pat
l
= exp -⊲ (ev=poly(loc e0;e in (toV(e1);e2;(α1 =

l
==α2))));ev

l

⇐⇐⇐ tvseq -⊲ e0 ∧∧∧ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉

∧∧∧labtyvarsdec(tvseq, pat , exp) = ⊎n
i=1{tv

li

i }

∧∧∧e = ((⇃tv1 =
l
== β1)

∨l1 ; · · · ;(⇃tvn =
l
== βn)∨ln)

∧∧∧dja(e0, e1, e2, ev , β1, . . . , βn)

(G45) val tvseq pat
l
= exp -⊲ (ev=expans(loc e0;e in (e2;e1;(α1 =

l
==α2)), expansive(exp)));ev l

⇐⇐⇐ tvseq -⊲ e0 ∧∧∧ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉

∧∧∧labtyvarsdec(tvseq, pat , exp) = ⊎n
i=1{tv

li

i }

∧∧∧e = ((⇃tv1 =
l
== β1)

∨l1 ; · · · ;(⇃tvn =
l
== βn)∨ln)

∧∧∧dja(e0, e1, e2, ev , β1, . . . , βn)

Figure 14.13 Constraint generation rules for type annotations

binders
(B9) slv(∆, d , ⇃tv=β) → succ(∆;(�tv =

d
== β)), if ∆(tv) is undefined

(B10) slv(∆, d , ⇃tv=β) → succ(∆), if ∆(tv) is defined

or environments

(OR) slv(∆, d , e∨{d}∪d
′

)→ slv(∆, d ∪ {d}, e)

Figure 14.14 Constraint solving rules to handle type annotations

form for all our kind of constraint terms, we did not adopt this solution. We leave

for future work the investigation of such a system.

Because our initial constraint generation algorithm generates new forms of binders

(⇃tv=β), and because poly environment can now wrap local environments, we up-

date LabBind and PolyEnv as follows:

lbind ∈ LabBind ::= · · · | (⇃tv =
l
== β)∨l

pe ∈PolyEnv ::= · · · | loc pe1 in pe2

14.6.4 Constraint solving

Because we introduced new form of binders and environments, Fig. 14.14 extends

our constraint solver. Rule (B9) only picks one dependency from the dependency

set labelling an environment of the form e∨d because only one of them is needed for

the constraint represented by the dependency set to be satisfied. Any dependency

from d can be chosen.
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Expressions
toTree(exp:l ty) = 〈〈exp, expTyp〉, l , 〈toTree(exp), toTree(ty)〉〉

Patterns
toTree(pat:l ty) = 〈〈pat, patTyp〉, l , 〈toTree(pat), toTree(ty)〉〉

Labelled type variables
toTree(tv l

l) = 〈〈labtyvar, id〉, l , 〈tv〉〉

Type variable sequences
toTree(ǫlv) = 〈〈tyvarseq, tyvarseqEm〉, l , 〈〉〉
toTree((ltv1, . . . , ltvn)l ) = 〈〈tyvarseq, tyvarseqSeq〉, l , toTree(〈ltv1, . . . , ltvn〉)〉

Figure 14.15 Extension of our conversion function from terms to trees to deal with
type annotations and type variable sequences

14.6.5 Constraint filtering (Minimisation and enumeration)

We update our filtering function as follows:

filt(e∨l , l1, l2) =





filt(e, l 1, l2)
∨l

′

, if l
′
= l ∩ (l1 \ l2) 6= ∅

dum(strip(e)), if dj(l , l 1 \ l2) and ¬dj(l , l2)

⊙, if dj(l , l 1 ∪ l2) and strip(e) ∈ Var ∪ Bind

⊤, otherwise

dum(⇃id=x) = (⇃id=toDumVar(x))

14.6.6 Slicing

We extend our tree syntax for programs as follows:

Class ::= · · · | labtyvar | tyvarseq

Prod ::= · · · | expTyp | patTyp | tyvarseqEm | tyvarseqSeq

We extend the function getDot that associates dot markers with node kinds as

follows:

getDot(〈labtyvar, prod 〉) = dotD

getDot(〈tyvarseq, prod 〉) = dotD

Finally, Fig. 14.15 extends the function toTree that transforms terms into trees.

14.7 Signatures

This section shows how to design a type error slicer that handles some signature

related features. This section deals with value, type, datatype and structure speci-

fications. It does not deal with include or sharing specifications, and does not deal

with type realisations (where clauses) either. Type realisations are “almost fully”

supported by our implementation, we partially support include specifications, and

we have started implementing support for sharing specifications.

Some kinds of errors are not handled by the system presented in this section.

For example we do not handle unmatched errors: when an identifier is specified in
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a signature but not declared in a structure constrained by the signature. These

errors are dealt with in Sec. 14.8. Another kind of error which is not dealt with in

this section is when a type constructor is defined as a type function in a structure

and as a datatype in the structure’s signature. This kind of error is handled by our

implementation but we do not provide the details in this document.

14.7.1 External syntax

First, let us extend our external syntax with signatures as follows:

sigid ∈ SigId (signature identifiers)

sigdec ∈ SigDec ::= signature sigid
l
= sigexp

| dot-d(
−−→
term)

sigexp ∈ SigExp ::= sigid l | sigl spec1 · · · specn end

| dot-s(
−−→
term)

spec ∈ Spec ::= val vid :l ty

| type dn l

| datatype dn
l
= cd

| structure strid :l sigexp

| dot-d(
−−→
term)

cd ∈ConDesc ::= vid l
c | vid of l ty

| dot-e(
−−→
term)

id ∈ Id ::= · · · | sigid

strexp ∈ StrExp ::= · · · | strexp :l sigexp | strexp :>l sigexp

topdec ∈TopDec ::= strdec | sigdec

prog ∈Program ::= topdec1; · · · ;topdecn

The symbol :> is used for opaque constraints and : for translucent constraints.

The structure strexp :>l sigexp is the structure strexp constrained by the signature

sigexp where each of sigexp’s specifications has to be matched by one of strexp’s

declarations (and similarly for strexp :l sigexp). The structure strexp can declare

more identifiers than are specified in sigexp. In the structure strexp :>l sigexp,

only the identifiers specified in sigexp can be accessed from strexp, i.e., only the

sigexp part from strexp is visible to the outside world. The difference between

strexp :>l sigexp and strexp :l sigexp is that in the first one if sigexp specifies a type

constructor tc then in strexp :>l sigexp it is not constrained by its declaration in

strexp, whereas in strexp :l sigexp the type constructor would be constrained by its

declaration in strexp. Opaque signatures are used to abstract types from structures

and are usually preferred over translucent ones for this reason.

Let us present an example involving an opaque signature:

(EX3)

signature s = sig val x : ’a end

structure S = struct val x = 1 end

structure T = S :> s
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This piece of code is untypable because the type variable ’a is more general than

the type int. Types of declarations in structures have to be at least as general as

the corresponding specifications in signatures. This kind of error will be referred as

a too general error henceforth.

Let us now present an example illustrating the difference between opaque and

translucent signatures:

(EX4)

signature s = sig type t val f : t -> t end

structure S = struct type t = bool val rec f = fn x => x end

structure T1 = S :> s

structure T2 = S : s

val u1 = let open T1 in f true end

val u2 = let open T2 in f true end

In this piece of code, the difference between T1 and T2 is that T1 is the structure

S constrained by the signature s using an opaque constraint while the structure

T2 uses a translucent signature. The declaration u2 differs from u1 by opening the

structure T2 instead of T1. The application f true occurring in u1 is part of an error

because f is a function that takes a t as argument and not a bool. In T1, the type

t is abstracted and is not related to bool. The application f true occurring in u2

however, is not part of an error because f is there a function that takes a bool as

argument. In T2, the type t is the bool type.

14.7.2 Constraint syntax

We extend our constraint system to handle signatures as follows:

β ∈RigidTyVar (set of rigid type variables)

svar ∈ SVar ::= v | β

ρ ∈ FRTyVar ::=α | β

sig ∈ SigSem ::= e | ∀δ. e | 〈sig , d〉

bind ∈Bind ::= · · · | �sigid=sig

acc ∈Accessor ::= · · · | �sigid=ev

τ ∈ ITy ::= · · · | β

µ ∈ ITyCon ::= · · · | tv

subty ∈ SubTy ::= σ1 �vid σ2 | κ1 �tc κ2

e ∈ Env ::= · · · | e1:e2 | ins(e) | subty

In this table, we introduce new type variables: the rigid type variables. These

rigid type variables act as constant types but are called variables because they are

allowed to be renamed and quantified over. Being considered as constant types,

they are not allowed to be equal, e.g., to arrow types (they are not allowed to be

vs in rules (U1)-(U6) in Fig. 11.10). Because these rigid type variables have a spe-

cial status (they are not allowed in the domain of unifiers), they are not allowed
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in the set Var. However, we define the new variable set SVar (where “S” stands

for substituable, because we allow βs to be renamed as αs do when, e.g., instanti-

ating type schemes, where type schemes are redefined below) that contains all the

variables in Var plus the rigid type variables. Type variables of the form α will

now be referred as flexible type variables in contrast with rigid type variables of the

form β. The set FRTyVar contains the flexible (“F”) and rigid (“R”) type variables.

The terminology used to distinguish between type variables3 is borrowed from Pot-

tier and Rémy’s implementation of their constraint system [116]. In Pottier and

Rémy’s implementation of their constraint system [116], a type scheme is as follows:

∀X .∃Y .[C ]id1:T1 · · · idn:Tn where X is a rigid type variable set, Y is a flexible

type variable set, C is a constraint, and the Ti are types all constrained by the

constraint C . Such a type scheme can bind more than one identifier. They explain

that for such a type scheme to be considered consistent, the constraint ∀X .∃Y .C

must hold 4. They also write: “Rigid and flexible quantifiers otherwise play the

same role, that is, they all end up universally quantified in the type scheme”, which

is why we consider two distinct sets of variables for flexible and rigid type variables

and why both kinds are allowed to be universally quantified over.

Let us extend the definition of atoms, originally introduces in Sec. 11.3, as fol-

lows: let atoms(x) be the set of syntactic forms belonging to SVar ∪ TyConName ∪

Dependency and occurring in x whatever x is. Let svars(x) = atoms(x) ∩ SVar.

We extend the form of the explicit type variable binders and the form of type

schemes as follows:

�tv=α −Bind−−_ �tv=ρ ∀α. τ −Scheme−−−−_ ∀ρ. τ

To allow one to instantiate our different universally quantified forms, we redefine

renamings as follows:

ren ∈ Ren = {ren | ren = f1 ∪ f2

∧ f1 ∈ FRTyVar→ ITyVar

∧ f2 ∈ TyConVar → TyConVar

∧ ren is injective

∧ dj(dom(ren), ran(ren),Dum)}

Both flexible and rigid type variables are renamed to flexible ones. So, e.g.,

instantiating the type scheme ∀{α}. α�α or the type scheme ∀{β}. β�β both result

in a type of the form α′�α′.

We also extend our substitutions as follows:

sub ∈ Sub = {sub | sub = u ∪ f ∧ f ∈ RigidTyVar→ ITy}

3Flexible is the term usually used for existentially quantified variables and rigid is the term
usually used for universally quantified variables.

4See documentation at the following location http://www.pps.jussieu.fr/~yrg/software/

mini-doc/Constraint.html.
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Therefore, Ren ⊂ Sub and Ren 6⊆ Unifier.

We extend the application of a substitution to a constraint term as follows:

svar [sub] =

{
x, if sub(svar ) = x

svar , otherwise

Let us now define another kind of substitution called ins because used to deal

with ins environments. Note that a ins is a sub: Ins ⊆ Sub. Instantiations are

defined as follows:

ins ∈ Ins = {f | f ∈ TyConVar→ TyConName ∧ f is injective}

An environment of the form ins(e) is an instance of the environment e where in-

ternal type constructor variables are instantiated to internal type constructor names.

Such an instantiation is performed using an ins as defined above.

The table above also introduces subtyping constraints of the forms σ1 �vid σ2

and κ1 �tc κ2. Checking, e.g., that σ1 is a subtype of σ2 (that σ1 is at least as

general as σ2, or equivalently as written in The Definition of Standard ML [107,

Sec.5.5], that σ1 is “more polymorphic” than σ2
5) results in a new type scheme built

from both σ1 and σ2. The identifier in such a constraint is used to bind the newly

built type scheme at constraint solving. Therefore, a subtyping constraint of the

form σ1 �vid σ2 is both a constraint and an environment because it constrains σ1

to be a subtype of σ2 and also can be responsible for the generation of a binder

of the form �vid=σ at constraint solving, where σ is computed from both σ1 and

σ2. Subtyping constraints are only generated at constraint solving and not at initial

constraint generation. They are generated when dealing with constraints of the

form e1:e2 which are used to check that the validity of signature constraints on

structures. When a signature constraint sigexp on a structure strexp is valid SML

code, we sometimes say that sigexp matches strexp. For example, in example (EX4)

the signature s matches the structure S.

Our subtyping relation departs from usual subtyping relations. Usually a type

scheme σ1 is a subtype of a type scheme σ2 iff each function that is typed by

the scheme σ1 in a type environment can also be typed by the type scheme σ2

in the same type environment. For example, 1 can have type int but cannot be

associated the type ∀{α}. α. However, in our system int �vid ∀{α}. α is solvable

(∀{α}. α �vid int is also solvable). We elaborate on this below. Our definition

departs from usual subtyping relations by the fact that ∀α1. τ1 is a subtype of ∀α2. τ2

iff τ1[ren1] can be made equal to τ2[ren2] for some renamings ren1 and ren2, where

ren1 renames the flexible and rigid type variables of τ1 to “fresh” flexible type

variables and where ren2 only renames the flexible type variables of τ2 to “fresh”

5Milner et al. [107] write σ1 ≺ σ2 to mean that σ2 is “more polymorphic” than σ1. Moreover,
using their notation σ1 ≺ σ2 iff for all monomorphic type τ , if τ ≺ σ1 (τ is an instance of the type
scheme σ1) then τ ≺ σ2.
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flexible variables. The renaming ren2 does not rename rigid type variables because

in type schemes, rigid type variables are used for type variables that are not allowed

to be more specific whereas flexible type variables can be more specific (constrained

further to be equal to type constructs). Rigid type variables give us a control on the

(enforced) generality of type schemes. Therefore, the type scheme ∀{β}. β cannot

be more specific while ∀{α}. α could potentially have been more specific if some

constraint filtering had not occurred. In our system, int �vid ∀{β}. β is not solvable

but ∀{β}. β �vid int is.

We associate rigid type variables with explicit type variables because of the gen-

erality imposed by the explicit type variables. Thus, allowing explicit type variables

to bind rigid type variables and not only flexible ones helps us catch too general

errors as presented above. We also add the new form tv to the internal type con-

structor set. Intuitively, a rigid type variable of the form β can turn into a flexible

one but as long as it is rigid, it is considered as a constant type with which is

associated the type name tv.

Let us illustrate why rigid type variables are vital using the following piece of

code (the same as (EX3) where we replaced ’a by bool in x’s specification):

(EX5)

signature s = sig val x : bool end

structure S = struct val x = 1 end

structure T = S :> s

Given this piece of code, our enumeration algorithm would find the type error

that x is specified as a Boolean in s, which is the signature constraining S in T’s

definition, and that x is declared as an integer in S. The issue is that our minimisation

algorithm would eventually try to slice out the type bool in x’s specification. This

would result in x having a type scheme of the form ∀{α}. α in its specification. In our

system, as discussed above, ∀{α}. α and int are both subtypes of each other. Usually,

∀{α}. α is considered a subtype of int but int is not considered a subtype of ∀{α}. α.

Now, if we were to bind explicit type variables occurring in value specifications to

flexible type variables, we would also generate a type scheme of the form ∀{α}. α

for x’s specification in (EX3) (instead of a type scheme of the form ∀{β}. β which

is currently generated by our system when no constraint is filtered out). We then

would not be able to distinguish between a type scheme which is genuinely too

general (in (EX3)) and a type scheme which is too general because some information

has been discarded (in (EX5) where bool has been filtered out). In order to avoid

that, explicit type variables occurring in a signature are not bound to flexible type

variables but to rigid type variables.

Let rigtyvars(x) be the set of rigid type variables (in RigidTyVar) occurring in x

whatever x is. Let tyconvars(x) be the set of internal type constructor variables (in

TyConVar) occurring in x whatever x is.
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Let the function labtyvars, which computes the set of labelled explicit type vari-

ables occurring in an explicit type, be defined as follows:

labtyvars(tv l ) = {tv l}

labtyvars(ty1
l
→ ty2) = labtyvars(ty1) ∪ labtyvars(ty2)

labtyvars(⌈ty ltc⌉l ) = labtyvars(ty)

Let the function tyvars, which computes the set of explicit type variables occur-

ring in an explicit type, be defined as follows:

tyvars(ty) = {tv | tv l ∈ labtyvars(ty)}

This function is used by rule (G35) in Fig 14.16 to generate explicit type variable

binders for explicit type variables occurring in value specifications.

We extend the application of a substitution to a constraint term as follows:

x1 �id x2[sub] = x1[sub] �id x2[sub]

(e1:e2)[sub] = e1[sub]:e2[sub]

ins(e)[sub] = ins(e[sub])

14.7.3 Constraint generation

Fig. 14.16 presents the new constraint generation rules to handle signature related

syntactic forms introduced above.

Note that rules (G32), (G33) and (G34) for signature declarations and expressions

are similar to rules (G20), (G21) and (G22), defined in Fig. 11.10, for structure

declarations and expressions. Rule (G32) differs from rule (G20) by the generation

of the quantification over the internal type constructor variables occurring in the

bound structure expression.

Rule (G35) is a simplified version of rule (G17) for recursive value declarations

(defined in Fig. 11.10), where the expression is replaced by an external type and

where the pattern is reduced to a single value identifier. The novelty in this rule is

the binding of the explicit type variables occurring in the external type. To do so, it

uses the function tyvars. For example, for the specification val f : ’a -> ’a we would

generate a binder of the form �’a=β. The order in which the binders are generated

does not matter. For example, it does not matter whether for val f : ’a -> ’b, ’a’s

binder or ’b’s binder is generated first.

Rule (G36) is similar to rule (G30) defined in Fig. 14.8, but instead of binding the

specified type constructor to an internal type computed from an external type, it

leaves the generated internal type constructor variable unconstrained (the variable

occurring in the generated binder). Such a variable might then be captured by a ∀

when declaring a signature, or constrained by an internal type constructor when a

signature is matched against a structure during constraint solving.

201



Chapter 14. More TES features to handle more of SML

Signature declarations (sigdec -⊲ e)

(G32) signature sigid
l
= sigexp -⊲ ev ′=(e;�sigid =

l
== ev);ev ′l ⇐⇐⇐ sigexp -⊲ 〈ev , e〉 ∧∧∧ dja(e, ev ′)

Signature expressions (sigexp -⊲ 〈ev , e〉)

(G33) sigid l -⊲ 〈ev , �sigid =
l
== ev 〉

(G34) sigl spec1 · · · specn end -⊲ 〈ev , (ev =
l
== ev ′);(ev ′=(e1; · · · ;en))〉

⇐⇐⇐ spec1 -⊲ e1 ∧∧∧ · · · ∧∧∧ specn -⊲ en ∧∧∧ dja(e1, . . . , en, ev , ev
′)

Specifications (spec -⊲ e)

(G35) val vid :l ty -⊲ (ev=poly(loc �tv1 =
l
== β1; · · · ;�tvn =

l
== βn in (e;�vid =

l
== 〈α, v〉)));ev l

⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ tyvars(ty) = {tv1, . . . , tvn}∧∧∧ dja(e, ev , β1, . . . , βn)

(G36) type dn l -⊲ (ev=e);ev l ⇐⇐⇐ dn -⊲ 〈δ, α, e, e ′〉 ∧∧∧ dja(e, e ′, ev)

(G37) structure strid :l sigexp -⊲ (ev ′=(e;(�strid =
l
== ev )));ev ′l ⇐⇐⇐ sigexp -⊲ 〈ev , e〉 ∧∧∧ dja(e, ev ′)

(G38) datatype dn
l
= cd -⊲ (ev=((α2 =

l
==α1 δ1);e1;loc e ′

1 in poly(e2)));ev
l

⇐⇐⇐ dn -⊲ 〈δ1, α1, e1, e
′
1〉 ∧∧∧ cd -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

Structure expressions

(G39) strexp :l sigexp -⊲ 〈ev , e2;e1;(ev =
l
== ev1:ev2)〉

⇐⇐⇐ strexp -⊲ 〈ev1, e1〉 ∧∧∧ sigexp -⊲ 〈ev2, e2〉 ∧∧∧ dja(e1, e2, ev )

(G40) strexp :>l sigexp -⊲ 〈ev , e2;e1;(ev dum =
l
== ev1:ev2);(ev =

l
== ins(ev2))〉

⇐⇐⇐ strexp -⊲ 〈ev1, e1〉 ∧∧∧ sigexp -⊲ 〈ev2, e2〉 ∧∧∧ dja(e1, e2, ev )

Programs (prog -⊲ e)

(G41) topdec1; · · · ;topdecn -⊲ e1; · · · ;en ⇐⇐⇐ topdec1 -⊲ e1 ∧∧∧ · · · ∧∧∧ topdecn -⊲ en ∧∧∧ dja(e1, . . . , en, ev)

Figure 14.16 Constraint generation rules for signatures

Rule (G37) is similar to rule (G20) defined in Fig. 11.10 where, as for type specifi-

cations, the generated type constructor variables are left unconstrained. Rule (G38)

is similar to rule (G18) defined in Fig. 14.8.

The constraint generation rules for constructor descriptions are the same as the

ones for constructor declarations: rules (G14) and (G16) defined in Fig. 11.10.

Finally, rules (G39) and (G40) are the most interesting rules. They are the ones

generating our new environments of the forms e1:e2. Rule (G39) generates such forms

for translucent signature constraints and rule (G40) for opaque signature constraints.

As opposed to rule (G39), rule (G40) for opaque signature constraints also generates

ins(e) forms. Rule (G39) generates constraints for a structure constrained by a

translucent signature. The environment associated with the analysed constrained

structure is computed from an environment of the form e1:e2. It is then obtained

from both the environment generated for the structure expression and the environ-

ment generated for the signature expression. Rule (G40) generates constraints for a

structure constrained by an opaque signature. The environment associated with the

analysed constrained structure is not computed from an environment of the form

e1:e2 (such an environment is still generated to check that the signature matches the

structure) but from an environment of the form ins(e). It is then obtained from

the environment generated for the signature expression only.

Because our initial constraint generation algorithm generates new forms of con-
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straints, we extend the lbind and lc forms as follows (see Sec. 11.5.2):

lbind ∈ LabBind ::= · · · | �sigid =
l
== ev

lc ∈ LabCs ::= · · · | ev =
l
== ev1:ev2 | ev =

l
== ins(ev ′)

We also replace the initially generated external type variable binders as follows:

�tv =
l
== α −LabBind−−−−−_ �tv =

l
== ρ

14.7.4 Constraint solving

First, let us extend constraint solving states and error kinds as follows:

state ∈ State ::= · · · | match(∆, d , e1, e2)

ek ∈ ErrKind ::= · · · | tyVarClash | tooGeneral(µ1, µ2)

Error kinds of the form tooGeneral(µ1, µ2) are for type errors as the one de-

scribed above (too general errors), where a signature constrains a structure and is

more general than the structure. Error kinds of the form tyVarClash are for type

errors such that the one in the following piece of code:

signature s = sig val f : ’a -> ’b end

structure S = struct val rec f = fn x => x end

structure T = S :> s

In this piece of code, f is specified in the signature s as a function where its

argument’s type can differ from its body’s type. In the structure S, the function f is

declared as the identity function and so its argument’s type has to be the same as

its body’s type. Finally S is constrained by s. Therefore, we report an explicit type

variable clash between ’a and ’b. This is a special kind of too general errors.

We also need to extend our unifiers as follows (note that this extension also

extends Sub):

u ∈ Unifier = {
⋃4

i=1 fi | f1 ∈ ITyVar → ITy

∧ f2 ∈ TyConVar → ITyCon

∧ f3 ∈ EnvVar→ Env

∧ f4 ∈ SigSemVar→ SigSem}

We now allow flexible and rigid type variables to be quantified over when gen-

erating type schemes. Fig. 14.17 updates the toPoly function. The only difference

with the definition in Fig. 14.2 is that the type variable set generalised over can now

contain both flexible and rigid type variables.

Let us define the function scheme that computes a for all quantified form from

a variable set, a unifier and a constraint term (either an internal type or an internal

type constructor):

scheme(u, svar , x) = ∀svar ∩ svars(x′). x′, if x′ = build(u, x)
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toPoly(∆, �vid=τ) = ∆;(�vid =
d
== ∀ρ. τ ′), if





τ ′ = build(∆, τ)
ρ = (vars(τ ′) ∩ FRTyVar) \ (vars(monos(∆)) ∪ {αdum})

d = {d | αd0∪{d} ∈ monos(∆) ∧ α ∈ vars(τ ′) \ ρ}

toPoly(〈u, e〉, ed
0 ) = 〈u ′, e;diff(e, e ′)d 〉, if toPoly(〈u, e〉, e0) = 〈u ′, e ′〉

toPoly(∆, e1;e2) = toPoly(∆′, e2), if toPoly(∆, e1) = ∆′

toPoly(∆, e) = ∆;e, if none of the above applies

Figure 14.17 Monomorphic to polymorphic environment function generalising flex-
ible and rigid type variables

Rule (B7) of the extension of our constraint solver defined below in Fig. 14.18,

needs to build up environments to generate polymorphic forms (for signatures). We

therefore need to extend the build function as follows:

build(u, �id=x) = (�id=build(u, x))

build(u, e1;e2) = build(u, e1);build(u, e2)

Fig. 14.18 and Fig. 14.19 extend our constraint solver to deal with our new

constraint terms. Fig. 14.18 presents rules to rewrite states of the form slv(∆, d , e)

and Fig. 14.19 presents rules to rewrite states of the form match(∆, d , e1, e2).

The new equality constraint simplification rules (S14)-(S17) are defined to handle

rigid type variables.

Rules (SM1)-(SM12) check whether a signature matches a structure. These rules

are used for both translucent and opaque constraints. If match(∆, d , e1, e2) →
∗

match(∆′, d
′
, e ′

1, e
′
2) using rules (SM1)-(SM12) then e1 = e ′

1. Moreover, e1 is the

environment generated for a structure and e2 is the environment generated for a

signature constraining the structure.

Rules (SU1)-(SU5) handle subtyping constraints. In rule (SU1), the generated

type scheme is built from τ2 and not from τ1. The type τ2 is extracted from an

environment generated for a signature sigexp. The type τ1 is extracted from an

environment generated for a structure constrained by sigexp. We do so in case the

binding from the signature is a dummy binding. If the binding from the signature

is a dummy binding then τ2 is αdum. If we were to generate a type scheme from

τ1 and not from τ2, it could result in finding an error that involves a declaration

in a structure constrained by a signature without involving the signature. Let us

consider the following piece of code:

signature s = sig val c : bool end

structure S = struct val c = true end

structure T = S : s

val x = let open T in c () end

This piece of code is untypable because c is specified and declared as a Boolean and

is also used as a function because it is applied to (). If we were to try to slice out

c’s specification, we would then generate a dummy binding for c in the environment
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Some kinds of errors are not handled by the system presented in this section, although our imple-
mentation handles them. For more information please refer to the introductory paragraph of this
section (Sec. 14.7).

equality simplification

(S14) slv(∆, d , τ1=τ2) → slv(∆, d , µ=tv), if {τ1, τ2} = {τ µ, β}
∧ strip(µ) ∈ TyConName

(S15) slv(∆, d , τ1=τ2) → slv(∆, d , tv=ar), if {τ1, τ2} = {τ0�τ
′
0, β}

(S16) slv(∆, d , β1=β2)→ err(〈tyVarClash, d〉), if β1 6= β2

(S17) slv(∆, d , µ1=µ2)→ err(〈tooGeneral(µ1, µ2), d〉), if {µ1, µ2} ∈ {{tv, ar}, {tv, γ}}

binders
(B1) slv(〈u, e〉, d , �id=x) → succ(〈u, e〉;(�id =

d
== x)), if id 6∈ SigId ∪ TyCon

(B7) slv(〈u, e〉, d , �sigid=e1)→ succ(〈u, e〉;(�sigid =
d
== ∀tyconvars(e2). e2)), if e2 = build(u, e1)

instantiations
(I1) slv(〈u, e〉, d , ins(e0))→ succ(〈u, e;e1[ins ]〉),

if build(u, e0) = e1 ∧ dom(ins) = tyconvars(e1) ∧ dj(vars(〈u, e〉), ran(ins))

signature constraints

(SC1) slv(〈u, e〉, d , e1:e2)→ match(〈u, e〉, d , build(u, e1), build(u, e2))

subtyping constraints

(SU1) slv(∆, d , σ1 �vid σ2)→ succ(〈u ′, e ′;�vid =
d
== scheme(u ′, ρ1[ren1] ∪ ρ2[ren2], τ2[ren2])〉),

if ∀i ∈ {1, 2}. (σi = ∀ρi. τi ∨ (σi = τi ∧ ρi = ∅ ∧ τi 6∈ Dependent))
∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2} ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , τ1[ren1]=τ2[ren2])→
∗ succ(〈u ′, e ′〉)

(SU2) slv(∆, d , σ1 �vid σ2)→ err(er),
if ∀i ∈ {1, 2}. (σi = ∀ρi. τi ∨ (σi = τi ∧ ρi = ∅ ∧ τi 6∈ Dependent))
∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2} ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , τ1[ren1]=τ2[ren2])→
∗ err(er )

(SU3) slv(∆, d , κ1 �tc κ2) → succ(〈u ′, e ′;�tc =
d
== scheme(u ′, α1[ren1] ∪ α2[ren2], µ2[ren2])〉),

if ∀i ∈ {1, 2}. (κi = ∀αi. µi ∧ dom(reni) = αi) ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , µ1[ren1]=µ2[ren2])→
∗ succ(〈u ′, e ′〉)

(SU4) slv(∆, d , κ1 �tc κ2) → err(er),
if ∀i ∈ {1, 2}. (κi = ∀αi. µi ∧ dom(reni) = αi) ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , µ1[ren1]=µ2[ren2])→
∗ err(er)

(SU5) slv(∆, d , x1 �id x2) → slv(∆, d ∪ d
′
, y1 �id y2),

if (x1 is of the form yd
′

1 ∧ y2 = x2) ∨ (x2 is of the form yd
′

2 ∧ y1 = x1)

Figure 14.18 Constraint solving for signature related constraints (1)

generated for the signature s. Now if we were to use τ1 instead of τ2 in rule (SU1) to

build c’s binder in the environment generated for T, we would generate a binder as

follows: �c=∀∅. bool. We would then obtain a clash with the arrow type generated

for c (). We would then obtain a slice as follows:

〈..structure S = struct val c = true end

..structure T = S : 〈..〉

..〈..open T..c ()..〉..〉

However, this is not a complete type error slice (this slice is typable) because S

might be constrained by a signature that does not specify c and therefore c’s last

occurrence would be free. As a matter of fact, c might be defined as a function

taking a unit in a larger context. A complete, minimal type error slice would be as
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structure/signature matching

(SM1) match(∆, d , e,⊤) → succ(∆)

(SM2) match(∆, d , e, e1;e2) → match(∆′, d , e, e2), if match(∆, d , e, e1)→
∗ succ(∆′)

(SM3) match(∆, d , e, e1;e2) → err(er), if match(∆, d , e, e1)→
∗ err(er)

(SM4) match(∆, d , e, �vid=σ1) → slv(∆, d , σ2 �vid σ1), if e(vid) = σ2

(SM5) match(∆, d , e, �tc=κ1) → slv(∆, d , κ2 �tc κ1), if e(tc) = κ2

(SM6) match(〈u1, e1〉, d , e, �strid=e0)→ succ(〈u2, e1;e
′d 〉),

if e(strid) = e ′
0 ∧ match(〈u1, e1〉, d , e

′
0, e0)→

∗ succ(〈u2, e2〉)
∧ e ′ = (�strid=diff(e1, e2))

(SM7) match(∆, d , e, �strid=e0) → err(er),

if match(∆, d , e(strid), e0)→
∗ err(er)

(SM8) match(∆, d , e, �vid=is1) → succ(∆;(�vid=is)),

if e[vid ] = is2 ∧ (solvable(is1 =
d
== is2) ∨ strip(is1) = v) ∧ is = ifNotDum(is1, is

d

2 )

(SM9) match(∆, d , e, �vid=is1) → err(er),

if strip(is1) 6= v ∧ slv(∆, d , is1=e[vid ])→∗ err(er )

(SM10) match(∆, d , e, �id=x) → succ(∆;(�id=y)),
if e(id) is undefined ∧ y = toDumVar(x)

(SM11) match(∆, d , e, ev ) → succ(∆;ev)

(SM12) match(∆, d , e, e ′d
′

) → match(∆, d ∪ d
′
, e, e ′)

Figure 14.19 Constraint solving for signature related constraints (2)

follows:

〈..signature s = sig val c : 〈..〉 end

..structure S = struct val c = true end

..structure T = S : c

..〈..open T..c ()..〉..〉

Note that this is not the only type error slice explaining the type error described

above, another type error slice involves the signature s and not the structure S.

In rule (SU1) again, from a subtyping constraint of the form σ1 �vid σ2, a new

type scheme σ is generated from both σ1 and σ2. This type scheme is then used to

generate a new binder of the form �vid=σ. Let us explain how this new type scheme

σ is generated. Let us assume that σ1 is of the form ∀ρ1. τ1 and that σ2 is of the

form ∀ρ2. τ2. First, we generate fresh instances of τ1 and τ2: τ
′
1 and τ ′2 respectively.

The type τ ′1 is obtained from τ1 by renaming the flexible and rigid type variables in

ρ1 (flexible and rigid type variables are renamed to “fresh” flexible type variables).

Because we are checking that τ2 is not more general than τ1 and because rigid type

variables enforce the generality of type schemes, the type τ ′2 is obtained by renaming

only the flexible type variables in ρ2. We then check that τ ′1 can be made equal to

τ ′2. We finally generate a new type scheme σ by first building up τ ′2 to obtain τ

and by then renaming (using the two renamings used to generate τ ′1 from τ1 and τ ′2
from τ2) the flexible and rigid type variables in ρ1∪ρ2 and by quantifying over those

occurring in τ . For example, solving the following subtyping constraints:

∀{α1}. α1�α1 �vid ∀{α2}. α2

∀∅. αdum �vid ∀{α2}. α2�α2
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result in a binder of the form �vid=∀{α}. α�α. and solving the following subtyping

constraints:

∀{α1}. α1 �vid ∀{β}. β�β

∀{α1}. α1�α1 �vid ∀{α2, β}. α2�β

result in the binder �vid=∀{β}. β�β. However, solving the following subtyping

constraint:

∀{α1}. α1�α1 �vid ∀∅. αdum

results in the dummy binder �vid=∀∅. αdum and solving the following subtyping

constraints:

∀{α1}. bool�α1 �vid ∀{α2}. (α2�α2)�α2

∀{α1}. bool�α1 �vid ∀{β, α2}. β�α2

result in type errors (in type constructor clashes).

Because restricted forms of signature binders can now occur in constraint solving

contexts (in e in 〈u, e〉), we extend the binder forms generated at constraint solving,

originally defined in Sec. 11.6.6, as follows:

sbind ∈ SolvBind ::= · · · | �sigid=∀δ. se

Because in constraint solving contexts, type variable binders can now bind flex-

ible as well as rigid type variables, we redefine SolvBind as follows:

�tv=α −SolvBind−−−−−_ �tv=ρ

14.7.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering function as follows:

filt(e1:e2, l1, l2) = filt(e1, l1, l2):filt(e1, l1, l2)

filt(ins(e), l1, l2) = ins(filt(e, l1, l2))

filt(v , l1, l2) = v

We now need the filtering of unlabelled environment variables (we generalise

the rule to all kinds of variables) because we now allow unlabelled environment

variables to occur within environments of the form e1:e2 or ins(e). Note that these

environments are considered shallow when initially generated (see the extension of

LabCs above in Sec. 14.7.3) and are only generated as part of equality constraints.

Therefore, we still follow our principle (DP7).

Note that regarding the form of the initially generated environments, our filtering

function could be lazier and, e.g., we could just have: filt(e1:e2, l1, l2) = e1:e2. We

do not adopt this solution which is less robust regarding changes or extensions to

the slicer.

We also extend toDumVar as follows:

toDumVar(sig) = evdum
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Signature declarations

toTree(signature sigid
l
= sigexp) = 〈〈sigdec, sigdecDec〉, l , 〈sigid , toTree(sigexp)〉〉

Signature expressions

toTree(sigid l ) = 〈〈sigexp, id〉, l , 〈sigid〉〉
toTree(sigl spec1 · · · specn end) = 〈〈sigexp, sigexpSig〉, l , 〈toTree(spec1), . . . , toTree(specn)〉〉

Specifications
toTree(val vid :l ty) = 〈〈spec, specVal〉, l , 〈vid , toTree(ty)〉〉

toTree(type dn l) = 〈〈spec, specTyp〉, l , 〈toTree(dn)〉〉

toTree(datatype dn
l
= cd) = 〈〈spec, specDat〉, l , 〈toTree(dn), toTree(cd)〉〉

toTree(structure strid :l sigexp) = 〈〈spec, specStr〉, l , 〈strid , toTree(sigexp)〉〉

Structure expressions
toTree(strexp :l sigexp) = 〈〈strexp, strexpTr〉, l , 〈toTree(strexp), toTree(sigexp)〉〉
toTree(strexp :>l sigexp) = 〈〈strexp, strexpOp〉, l , 〈toTree(strexp), toTree(sigexp)〉〉

Programs
toTree(topdec1; · · · ;topdecn) = 〈dotD, 〈toTree(topdec1), . . . , toTree(topdecn)〉〉

Figure 14.20 Extension of toTree to deal with signatures

14.7.6 Slicing

We extend our tree syntax for programs as follows:

Class ::= · · · | sigdec | sigexp | spec

Prod ::= · · ·

| sigdecDec

| sigexpSig

| specVal | specTyp | specDat | specStr

| strexpTr | strexpOp

We also extend our function getDot that associates dot markers with node kinds

as follows:

getDot(〈sigdec, prod 〉) = dotD

getDot(〈sigexp, prod 〉) = dotS

getDot(〈spec, prod 〉) = dotD

Finally, Fig. 14.20 extends our function toTree that transforms a term term into

a tree tree.

14.8 Reporting unmatched errors

There is a kind of error involving signatures that is not handled by the constraint

solver as defined above: what we refer to as the “unmatched” errors.

Let us consider the following piece of code:

signature s = sig val fool : int end

structure S = struct val foo = 1 val bar = 2 end

structure T = S :> s
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The specification fool from the signature s is not matched in the structure S,

but s constrains S in T’s definition. This error could be solved in many ways, such

as: (1) one could replace fool by foo in s, (2) one could replace foo by fool in S,

(3) one could change T’s definition.

For this error we would like to report that fool specified in s is not any of foo

or bar declared in S, but s constrains S. For that we need to be able to check that

indeed fool is not any of S’s declarations.

With the system as described above, we cannot report such errors because we do

not have any way of knowing whether an environment is constituted by the binders

corresponding to all the declarations of a structure. As a matter of fact, this is not

possible with the current system because of the way constraint filtering can replace

environment variables and binders by ⊤.

We will now show how to extend our system to report such errors.

14.8.1 Constraint syntax

Environments are extended with a new empty and satisfied environment as follows:

Env ::= · · · | ⊙

The meaning of the environment ⊙ lies in between the meaning of ⊤ and the

meaning of environment variables.

The difference between ⊤ and ⊙ is that ⊙ will be used to indicate that we filtered

out an environment which has the potential to bind (either an environment variable

or a binder) and not, say, an equality constraint.

The difference between ⊙ and an environment variable is that in an environment

of the form (e;⊙), the environment ⊙ does not shadow e.

14.8.2 Constraint solving

The environment ⊙ is allowed to exist within constraint solving contexts (see Sec. 11.6.6

for the definition of SolvEnvRHS):

serhs ∈ SolvEnvRHS ::= · · · | ⊙

Let us extend error kinds as follows:

ek ∈ ErrKind ::= · · · | unmatched(id , id)

Fig. 14.21 extends our constraint solver with rules to handle unmatched errors.

Rule (SM10) replaces the previous rule (SM10) from Fig. 14.19 and rules (SM13)

and (E2) are new.

Rules (SM10) and (SM13) make use of the predicate complete (similar to shadowsAll)

which is defined as follows:
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Some kinds of errors are not handled by the system presented in this section, although our im-
plementation handles them. For more information please refer to the introductory paragraph of
Sec. 14.7.

structure/signature matching
(SM10) match(∆, d , e, �id=x)→ succ(∆;(�id =

d
== toDumVar(x))),

if e(id) is undefined ∧ ¬complete(e)

(SM13) match(∆, d , e, �id=x)→ err(〈unmatched(id , getBinders(e)), d〉),
if e(id) is undefined ∧ complete(e)

(SM14) match(∆, d , e,⊙) → succ(∆;⊙)

empty

(E2) slv(∆, d ,⊙) → succ(∆;⊙)

Figure 14.21 Constraint solving rules handling unmatched errors

complete(e)⇔





(e of the form �id=x and x 6∈ Dum)

or (e of the form e1;e2 and ∀i ∈ {1, 2}. complete(ei))

or (e of the form e ′d and complete(e ′))

or e = ⊤

For example, complete(�vid=σ), ¬complete(⊙;�vid=σ), ¬shadowsAll(⊙;�vid=σ),

¬complete(ev ;�vid=σ), and shadowsAll(ev ;�vid=σ).

A “solved” environment (occurring in a constraint solving context and of the

form se as defined in Fig. 11.6.6 and extended above) is said to be complete if it is

not composed by an environment variable, a filtered binder or a dummy binder.

Rule (SM13) makes use of the function getBinders which gathers the identifiers

bound in its argument:

getBinders(�id=x) = {id}

getBinders(e1;e2) = getBinders(e1) ∪ getBinders(e2)

getBinders(ed) = getBinders(e)

getBinders(e) = ∅, if none of the above applies

14.8.3 Constraint filtering (Minimisation and enumeration)

We add a new rule to filter ⊙ and update the filtering of labelled environment as

follows:

filt(e l , l1, l2) =





e l , if l ∈ l1 \ l2

dum(e), if l ∈ l2

⊙, if l 6∈ l1 ∪ l2 and e ∈ Var ∪ Bind

⊤, otherwise

filt(⊙, l1, l2) =⊙
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14.8.4 Slicing

We now need to modify our slicing algorithm. Consider the following piece of code:

signature s = sig val x : int val y : bool end

structure S : s = struct val x = 1 val y = true end

structure T :> s = struct val x = 1 val y = true end

val u = let open T val z = y open S

in fn w => (w z, w x)

end

where in the fn-expression, z’s last occurrence is the y from T and x’s last occurrence

comes from S via the structure opening. The structures S and T have the same

structure body constrained by the same signature s, but S has a translucent signature

while T’s signature is opaque.

This piece of code is untypable because w has a monomorphic type and is applied

to z which is the Boolean y defined in T, and it is also applied to x which is the integer

x defined in S.

With our current slicing algorithm, one of the type error slice we obtain would

be as follows:

〈..signature s = sig val x : 〈..〉 val y : bool end

..structure S : s = struct val x = 1 end

..structure T :> s = 〈..〉

..〈..open T..val z = y..open S..fn w => 〈..w z..w x..〉..〉..〉

which is not minimal: s does not match S because y is not declared in S.

The problem comes from our tidying of declarations in structure expressions.

We therefore need to update our tidying function so that it does not discard empty

dot declarations:

tidy(〈〉) = 〈〉

tidy(〈〈dotD,
−−→
tree1〉, 〈dotD,

−−→
tree2〉〉@

−−→
tree)

= tidy(〈〈dotD,
−−→
tree1@

−−→
tree2〉〉@

−−→
tree), if ∀tree ∈ ran(

−−→
tree1). ¬declares(tree)

tidy(〈tree〉@
−−→
tree)

= 〈tree〉@tidy(
−−→
tree), if none of the above applies

With this new tidy function, we would then obtain a slice as follows:

〈..signature s = sig val x : 〈..〉 val y : bool end

..structure S : s = struct 〈..〉 val x = 1 end

..structure T :> s = 〈..〉

..〈..open T..val z = y..open S..fn w => 〈..w z..w x..〉..〉..〉

where the second occurrence of 〈..〉 indicates that some declarations have been sliced

out in S’s declaration and that therefore S is not a “complete” structure.
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(G24) dot-d(〈term1, . . . , termn〉) -⊲ [e1; · · · ;en];⊙
⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en)

(G31) dot-n(〈term1, . . . , termn〉) -⊲ 〈α, α′,⊙, [e1; · · · ;en]〉
⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, α, α

′)

(G25) dot-p(〈pat1, . . . , patn〉) -⊲ 〈α, e1; · · · ;en;⊙〉
⇐⇐⇐ pat1 -⊲ e1 ∧∧∧ · · · ∧∧∧ patn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

(G42) dot-c(〈term1, . . . , termn〉) -⊲ 〈α, [e1; · · · ;en];⊙〉
⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, α)

Figure 14.22 Constraint generation rules to handle incomplete structures and sig-
natures

We also have to replace our constraint generation rule for dot declarations, in

order to generate markers of discarded binders: Fig. 14.22 redefines rule (G24) orig-

inally defined in Fig. 11.14 in Sec. 11.8.1.

However, this modification is not enough because binders are generated for cbs,

pats, and dns. For example, we would like to generate a marker of discarded binder

for the following declaration: datatype ’a t = 〈..〉.

First, let us replace the dot terms for cbs. We need to do so because we want to

generate markers of discarded binders only for cb dot terms, but not for expressions

and types. We replace these dot terms as follows:

dot-e(
−−→
term) −ConBind−−−−−_ dot-c(

−−→
term)

Fig. 14.22 also redefines the constraint generation rules for the forms dot-n(
−−→
term)

(rule (G31)) and dot-p(
−−→
term) (rule (G25)), and we introduce a new constraint gen-

eration rule for the forms dot-c(
−−→
term) (rule (G42)).

We add a new dot marker to the set Dot as follows:

Dot ::= · · · | dotC

Finally, we extend the toTree function as follows:

toTree(dot-c(
−−→
term)) = 〈dotC, toTree(

−−→
term)〉

14.9 Functors

14.9.1 External syntax

First, let us extend our external syntax with functors as follows:

funid ∈ FunId (functor identifiers)

strexp ∈ StrExp ::= · · · | funid(strexp)l

fundec ∈ FunDec ::= functor funid(strid:sigexp)
l
= strexp

| dot-d(
−−→
term)

topdec ∈TopDec ::= · · · | fundec

id ∈ Id ::= · · · | funid
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Let us consider the following piece of code:

(EX6)

functor F (S : sig val x : int end) =

struct open S val y = x + 1 end

structure T = F(struct val x = true end)

This piece of code is untypable because F’s parameter is a structure that must

declare an integer x, and F is applied to a structure that declares a Boolean x.

Therefore, for this untypable piece of code, we would like to obtain a type error

slice as follows:

〈..functor F (〈..〉 : sig val x : int end) = 〈..〉

..F(struct val x = true end)..〉

Such kinds of errors are relatively easy to find and report because they just

involve checking a structure against a signature and we have seen how to do that

in Sec. 14.7. However some error reports involving functors are harder to find. For

example, more interestingly, (assuming that + is the one defined in the Standard ML

basis) we would also like to obtain the following slice for the same untypable piece

of code ((EX6)):

〈..functor F (S : sig val x : 〈..〉 end) =

〈..open S..val 〈..〉 = x + 〈..〉..〉

..F(struct val x = true end)..〉

This type error slice shows that the functor F has a parameter S that specifies

a value x that is used as an integer in F’s body. The functor F is then applied to

a structure that declares x as being a Boolean. This means that x’s specification

in S’s signature, must be at least as general as int and at most as general as bool.

Therefore, we obtain a type constructor clash.

This error is more complicated to report than the first one, because it involves

constraining the parameter of a functor depending on the types of the bound oc-

currences of the identifiers specified in the parameter’s signature. In our example,

it involves constraining x’s specification such that it has to be at least as general

as the type int (e.g., ’a is at least as general as int but bool is not) because of its

bound occurrence which is constrained to be of type int via the use of +.

Let us now consider an even trickier example:

(EX7)

functor F (S : sig val x : 〈..〉 end) = struct

local open S in val rec g = fn y => x end

val = (g 1) + 0

end

structure T = F(struct val x = true end)

In this incomplete piece of code, the signature of F’s parameter specifies a value

x that has an entirely sliced out type. The difference with example (EX6) is that
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the type of x’s occurrence in F’s body does not allow one to constrain the type of

x’s specification because the context of x’s occurrence in g’s declaration does not

constrain its type. Such a way of constraining type schemes is presented below.

However, g’s type depends on x’s type and because of the expression (g 1) + 0, the

function g must return integers. This means that x’s specification has to be at least

as general as the type int. As in example (EX6), because of F’s application, x’s

specification has to be at most as general as bool. So we would like to obtain the

following type error slice:

〈..functor F (S : sig val x : 〈..〉 end) =

〈..local open S in val rec g = fn 〈..〉 => x end

..(g 〈..〉) + 〈..〉..〉

..F(struct val x = true end)..〉

Such a type error slice is harder to obtain than the ones presented above because

it involves constraining x’s specification depending on its uses but also depending

on the uses of the functions using x (and so on).

Let us present a final example that shows the complexity in reporting as much

explanations of type errors involving functors as possible:

(EX8)

functor F (S : sig val x : 〈..〉 end) = struct

local open S in val rec g = fn y => x end

end

structure T = F(struct val x = true end)

local open T in val = (g 1) + 0 end

This example differs from example (EX7) by the fact that we took the expression

(g 1) + 0 out of F’s body. Now, g’s occurrence in this expression does not directly

refer to g’s declaration in F’s body but it refers to it through the application of F to

struct val x = true end. Because x’s specification is totally unconstrained, F’s body

declares the function g that can take any argument and return anything (because we

have sliced out x’s type in its specification). Now, because F is applied to a structure

that declares x as a Boolean, the structure T declares a function g that has to return

a Boolean. Finally, because the last declaration constrains g from T to be a function

that returns an integer, we want to obtain the following type error slice:

〈..functor F (S : sig val x : 〈..〉 end) =

〈..local open S in val rec g = fn 〈..〉 => x end..〉

..structure T = F(struct val x = true end)..〉

..local open T in 〈..(g 〈..〉) + 〈..〉end..〉

Note that the complexity discussed above comes from, at it is often the case,

dealing with incomplete information (sliced out pieces of code). It is relatively easy

to report some type errors involving functors when pieces of code are complete.

What we wish to accomplish in this section is designing a TES that reports as close
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as possible all possible explanations of a programming error involving functors (see,

e.g., the two first slices provided in this section).

14.9.2 Constraint syntax

We extend our constraint syntax as follows:

φ ∈ FuncVar (set of functor variables)

sv ∈ SchemeVar (set of scheme variables)

fct ∈ Func ::= φ | e1 e2 | 〈fct , d〉

fctsem ∈ FuncSem ::= fct | ∀v . fct | 〈fctsem, d〉

bind ∈Bind ::= · · · | �funid=fctsem

acc ∈Accessor ::= · · · | �funid=φ

c ∈ EqCs ::= · · · | fct1=fct2

e ∈ Env ::= · · · | fct · e | lazy(e)

σ ∈ Scheme ::= · · · | σ1 ·∩ σ2 | sv

cap ∈ LazyCapture ::= 〈τ, sv〉

v ∈Var ::= · · · | φ | sv

We extend type schemes with intersection type schemes. An intersection type

scheme is a sequence of type schemes as follows: σ1 ·∩· · · ·∩σn. We only use restricted

forms of intersection type schemes which are as follows: σ ·∩ τ1 ·∩ · · · ·∩ τn ·∩ sv , where

σ is not of the form σ′ ·∩ σ′′ and is called the head of the intersection type scheme,

and where sv is called its tail. In such an intersection type scheme, the order of the

types τi is not relevant but is convenient. For example, it allows one to distinguish

its head and tail. It is also convenient at constraint solving to have a variable in an

intersection type scheme. Moreover, in such an intersection scheme, the τi are meant

to all be instances of the type scheme σ (the type uses of the identifier with which

the intersection type scheme is associated). So for each i ∈ {1, . . . , n}, we have

σ �vid τi solvable (for some vid). Such an intersection type scheme is also called a

lazy type scheme. For example, (∀{α}. α�int) ·∩ (int�int) ·∩ (bool�int) ·∩ sv would

be the lazy type scheme of a function of type ∀{α}. α�int which is used on at least

an integer and a Boolean. Such a type scheme would be derived, e.g., for c specified

in F’s parameter in the following incomplete piece of code:

(EX9)

functor F (S : sig c : 〈..〉 -> int end) = struct

open S

val rec g = fn x => c 1

val rec h = fn x => c true

end

The lazy form is used to mark the parameter of a functor. It is used to have

a control on which type schemes are transformed into lazy type schemes. We also

introduce environments of the form fct · e for applications of functors to structures.
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Because we introduced functor variables, we extend Dum as follows: let φdum be

a distinct functor variable in FuncVar, and let Dum = {αdum, evdum, δdum, ηdum, φdum}.

We also replace the type schemes of the form ∀ρ. τ as follows6:

∀ρ. τ −Scheme−−−−_ ∀ρ. cap ⋄ τ

A type scheme of the form ∀ρ. cap ⋄ τ is a type scheme as defined in Sec. 14.7 (of

the form ∀ρ. τ), augmented with a set of pairs, each composed by a internal type

and a type scheme variable. Each type in this set contains at least a variable which

is quantified over in the type scheme: in a type scheme of the form ∀ρ. cap ⋄ τ we

have ∀〈τ, sv〉 ∈ cap. ¬dj(vars(τ), ρ). Each pair is extracted from a lazy type scheme.

Because these forms are not intuitive, let us explain why we need such forms using

the following example:

(EX10)

functor F (S : sig val c : 〈..〉 end) = struct

local open S in val rec g = fn x => x :: c end

val = g true

end

Because c is used as a list in F’s body, we want to obtain a binder as follows for

c in F’s parameter:

�c=(∀{α}. α) ·∩ σ

where σ = α0 list ·∩sv and α0 is x’s type in g’s body. Now, instead of generating the

type scheme ∀{α0}. α0�α0 list for g, we want to generate a type scheme as follows:

∀{α0}. {〈α0 list, sv〉} ⋄ α0�α0 list

so that the intersection type scheme σ can be constrained further via sv depending

on the uses of g. In this last type scheme, the type variable α0 in 〈α0 list, sv〉, is

captured by the universal quantification of the type scheme. Then, when applying g

to true we generate an instance of this type scheme. When doing so, we generate an

instance α′
0�α

′
0 list but we also constrain sv to be equal to α′

0 list ·∩sv ′ where α′
0 and

sv ′ are fresh variables. Now because g is applied to true we conclude that α′
0 has to

be equal to bool. So the intersection type scheme σ, which is the list of type uses of

c, is eventually equal to (α0 list) ·∩ (bool list) ·∩ sv ′. If the functor F was applied to a

structure, the structure would then have to declare a c that can be a list of something

(that has a type which is a subtype of α0 list for some α0), and more precisely, that

can be a list of Boolean (that has a type which is a subtype of bool list). It is the

case for the structures struct val c = [] end and struct val c = [true] end, but not

the case for the structure struct val c = [()] end.

6Because we have already updated and extended type schemes many times above, let us recall
the full definition of type schemes: σ ∈ Scheme ::= τ | ∀ρ. cap ⋄ τ | σ1 ·∩ σ2 | sv | 〈σ, d〉
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In a type scheme of the form ∀ρ. cap ⋄ τ , the flexible type variables in ρ that

also occur in cap are not definitively quantified type variables. Such type schemes

occur in binders generated for functors’ bodies. The quantification over such vari-

ables is conditional and the condition is resolved when applying the functor for

which such a type scheme has been generated. For example, the type scheme

∀{α1, α2}. {〈α2, sv〉} ⋄ α1�α2, can turn into ∀{α1}. α1�unit if the type α2 from

〈α2, sv〉 is constrained to unit. This can happen with the following piece of code:

functor F (S : sig val c : 〈..〉 end) = struct

local open S in val rec g = fn x => c end

end

structure T = F(struct val c = () end)

This will be further illustrated below.

Because of this mechanism, these new type scheme forms cannot be subject to

alpha-conversion. For example, the type scheme ∀{α1, α2}. {〈α2, sv〉} ⋄ α1�α2 is

not convertible to ∀{α1, α3}. {〈α3, sv〉} ⋄ α1�α3. Note that this is overly restrictive

because, given a type schemes of the form ∀ρ. cap ⋄ τ , one could safely alpha-convert

the type variables in ρ \ vars(cap).

Let ∀ρ. τ stand for ∀ρ.∅ ⋄ τ

Lazy type schemes of the form σ1 ·∩σ2 are meant to be used for functors’ param-

eters and type schemes of the form ∀ρ. cap ⋄ τ where cap 6= ∅ are meant to be used

for functors’ bodies. Type schemes of the form ∀ρ. cap ⋄ τ where cap 6= ∅ are not

meant to be generated for signatures.

Let us now formally define the functions that extract the heads (head) and tails

(tail) of intersection type schemes. The functions head and tail are defined as follows:

head(σ1 ·∩ σ2) = head(σ1)

head(σ) = σ, if the above does not apply

tail(sv , u) =

{
tail(σ, u), if u(sv) = σ

sv , otherwise

tail(σ1 ·∩ σ2, u) = tail(σ2, u)

tail(σ, 〈u, e〉) = tail(σ, u)

Note that tail is undefined if the argument is a sequence that does not end with

a variable or if it is neither a variable nor an intersection type scheme.

We extend the application of a substitution to a constraint term as follows:
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Functor declarations (fundec -⊲ e)

(G43) functor funid(strid:sigexp)
l
= strexp -⊲ (ev=(e1;e

′
1;e

′
2;e

′
3));ev

l

⇐⇐⇐ sigexp -⊲ 〈ev1, e1〉 ∧∧∧ sigexp -⊲ 〈ev2, e2〉 ∧∧∧ dja(e1, e2, φ, ev , ev0, ev
′
0)

where





e ′
1 = (ev0 =

l
== lazy(ev1))

e ′
2 = (ev ′

0 =
l
== ins(ev0))

e ′
3 = loc�strid =

l
== ev ′

0 in (e2;(φ=
l
== ev ′

0 ev2);�funid =
l
== φ)

Structure expressions

(G44) funid(strexp)l -⊲ 〈ev ′, (�funid =
l
== φ);e;(ev ′ =

l
==φ · ev)〉 ⇐⇐⇐ strexp -⊲ 〈ev , e〉 ∧∧∧ dja(e, ev ′, φ)

Figure 14.23 Constraint generation rules for functors

(σ1 ·∩ σ2)[sub] = σ1[sub] ·∩ σ2[sub]

(fct · e)[sub] = fct [sub] · e[sub]

lazy(e)[sub] = lazy(e[sub])

(e1 e2)[sub] = e1[sub] e2[sub]

(∀ρ. cap ⋄ τ)[sub] =





∀ρ2 ∪ ρ1[sub]. cap[ρ2 ⊳− sub] ⋄ τ [ρ2 ⊳− sub],

if ρ1 = ρ ∩ svars(cap)

∧ ρ2 = ρ \ ρ1

∧ ρ1[sub] ⊆ SVar

∧ dj(ρ2, vars(ρ2 ⊳− sub))

undefined, otherwise

14.9.3 Constraint generation

Fig. 14.23 extends our constraint generator with rules to handle functor declarations

and functor applications.

Let us detail what rule (G43) does. First with ev 0=lazy(ev1), we switch to a

“lazy mode” to deal with the functor’s parameter. With ev ′
0=ins(ev0), we abstract

the types specified in the signature of the functor’s parameter. Then we generate

two binder. A binder for the functor’s parameter which is local to the functor’s

definition, and a binder for the functor itself.

Because our initial constraint generation algorithm generates new forms of con-

straints, we extend the lbind , lc, and ge forms as follows (see Sec. 11.5.2):

lbind ∈ LabBind ::= · · · | �funid =
l
== φ

lc ∈ LabCs ::= · · · | φ=
l
== ev1 ev2 | ev =

l
==φ · ev ′ | ev =

l
== lazy(ev ′)

14.9.4 Constraint solving

First, we extend our unifiers as follows (note that this extension also extends Sub):
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toPoly(∆, �vid=τ) = ∆;(�vid =
d
== σ), if





τ ′ = build(∆, τ)
ρ = (vars(τ ′) ∩ FRTyVar) \ (vars(monos(∆)) ∪ {αdum})

d = {d | αd0∪{d} ∈ monos(∆) ∧ α ∈ vars(τ ′) \ ρ}
cap = {〈τ, sv〉 | 〈τ, sv〉 ∈ inters(∆) ∧ ¬dj(ρ, vars(τ))}
σ = ∀ρ. cap ⋄ τ ′

toPoly(〈u, e〉, ed
0 ) = 〈u ′, e;e ′′〉, if toPoly(〈u, e〉, e0) = 〈u ′, e ′〉 ∧ e ′′ = diff(e, e ′)d

toPoly(∆, e1;e2) = toPoly(∆′, e2), if ∆′ = toPoly(∆, e1)
toPoly(∆, e) = ∆;e, if none of the above applies

Figure 14.24 Monomorphic to polymorphic environment function handling inter-
section type schemes

u ∈ Unifier = {
⋃6

i=1 fi | f1 ∈ ITyVar → ITy

∧ f2 ∈ TyConVar → ITyCon

∧ f3 ∈ EnvVar→ Env

∧ f4 ∈ SigSemVar→ SigSem

∧ f5 ∈ FuncVar → Func

∧ f6 ∈ SchemeVar → Scheme}

We extend the function build to intersection type schemes and functors as follows:

build(u, σ1 ·∩ σ2) = build(u, σ1) ·∩ build(u, σ2)

build(u, e1 e2) = build(u, e1) build(u, e2)

The intersection type scheme case is used by the functions inters and rebuild

defined below.

The function toLazy transforms type schemes into lazy type schemes as follows:

�vid=σ −toLazy−−−−→ �vid=σ ·∩ sv

�strid=e −toLazy−−−−→ �strid=e ′ ⇔ e −toLazy−−−−→ e ′

e1;e2 −
toLazy−−−−→ e ′1;e

′
2 ⇔

{
∀i ∈ {1, 2}. ei −

toLazy−−−−→ e ′i

∧ dja(vars(e ′1) \ vars(e1), vars(e
′
2) \ vars(e2))

ed −toLazy−−−−→ e ′d ⇔ e −toLazy−−−−→ e ′

e −toLazy−−−−→ e ⇔ if none of the above applies

The complicated rule for environments of the form e1;e2 is to ensure that no type

scheme variable is generated twice.

For example, given the functor:

functor F (S : sig val c : 〈..〉 end) = struct

val rec g = fn x => c x

end

at constraint solving, we would generate the following binder for c in F’s parameter:

�c=∀{α}. α. From this binder, when dealing with the constraints generated for S,

we would then eventually generate a binder of the form: �c=(∀{α}. α) ·∩ sv .

Fig. 14.24 redefines the function toPoly to build our new forms of type schemes.

It only differs from Fig. 14.17 by the generation of cap. It now uses the function
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inters which extracts the types (and their tails) from the intersection types from a

given constraint solving context and which is defined as follows:

inters(∆) = {〈τ, tail(σ,∆)〉 | ∃vid . strip(∆(vid)) = (σ1 ·∩ σ2) ∧ τ ·∩ σ occurs in build(∆, σ2)}

We explain below why the constraints annotating intersection type schemes are

discarded in inters’s definition, i.e., why we use strip.

The way the new toPoly function works was already illustrated above with ex-

ample (EX10). Still using example (EX10), let us add a word on this function

now that it is formally defined. At constraint solving, when dealing with the

poly environment generated for g, using inters we find that the intersection type

α0 list ·∩ sv occurs in the current constraint solving context. Because α0 occurs

in this intersection type and also in the built-up monomorphic type α0�α0 list

(τ ′ in Fig 14.24) generated for g’s declaration, we finally generate the type scheme

∀{α0}. {〈α0 list, sv〉} ⋄ α0�α0 list (where cap in Fig 14.24 is then {〈α0 list, sv〉})

for g that captures the type α0 list from the intersection type generated for c (the

intersection type α0 list ·∩ sv).

Let us now explain why the dependencies annotating intersection type schemes

are not needed in inters’s definition. Let us again consider example (EX10). As

explained above, at constraint solving, when dealing with the poly environment

generated for g, using inters we find that the intersection type α0 list ·∩ sv occurs.

In the current constraint solving context, this intersection type is labelled by l

which c’s first occurrence label. We claim it is safe for inters to discard this label.

The intuition is that the type α0 list by itself (and not the whole binder) is only

used to constraint sv further for each of g’s use. Therefore, if we were to label

α0 list with l , this label would eventually be redundant in c’s binder. If we were to

generate ∀{α0}. {〈(α0 list)
l , sv〉} ⋄ α0�α0 list (some dependencies are still omitted

for clarity issues) instead of the type scheme presented above, then dealing with

the constraints generated for g true would lead to constraining sv by an instance

of (α0 list)
l . The fully built up binder associated with c’s first occurrence would

then at this stage be of the form (where again we omit all the dependencies except

l) �c =
l
== (∀{α}. α) ·∩ (α0 list) ·∩ (α′

0 list)
l ·∩ sv ′. We can observe that l ’s second

occurrence is not needed because it occurs in c’s binder which already depends on

l .

The function rebuild builds up the type uses gathered (in intersection type

schemes) while solving the constraints generated for functors. It is defined as follows:

rebuild(u, e1 e2) = build(u, e1) e2

Let us consider again example (EX9). The binder generated for c in F’s parameter

is as follows: �c=(∀{α}. α�int) ·∩ sv . When solving the constraints generated for

F’s body, we also generate a unifier as follows: {sv 7→α1 ·∩ sv1, sv1 7→α2 ·∩ sv 2} ∪ u
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such that build(u, α1) = int�int and build(u, α2) = bool�int. When rebuilding

the environment generated for F’s parameter once the constraints generated for its

body have been solved, we obtain the following binder for c: �c=(∀{α}. α�int) ·∩

(int�int) ·∩ (bool�int) ·∩ sv2.

We define abstractions as follows:

abs ∈ Abs = {f | f ∈ TyConName→ TyConVar ∧ f is injective}

In order to use our substitution notation to apply abstractions to constraint

terms, we need first to extend our substitution definition.

We also extend our substitutions as follows:

sub ∈ Sub = {sub | sub = u ∪ f1 ∪ f2

∧ f1 ∈ RigidTyVar→ ITy

∧ f2 ∈ TyConName→ TyConVar}

Therefore, Abs ⊂ Sub.

We then extend the application of a substitution to a constraint term as follows:

γ[sub] =

{
µ, if sub(γ) = µ

γ, otherwise

Abstractions are used by the relation abstract which is itself used by rule (B8)

of the extension of our constraint solver defined below in Fig. 14.26. The relation

abstract is used to rebuild the environment associated with the parameter of a functor

and to abstract the functor over the intersection types and type constructor names

defined in its parameter. The relation abstract is defined as follows:

〈fct , 〈u, e〉〉 −abstract−−−−−→ ∀α ∪ ran(abs). fct1[abs ]

⇔





fct1 = rebuild(u, fct)

∧ fct2 = strip(fct1)

∧α = {α | τ ·∩ σ occurs in fct1 ∧ α ∈ vars(τ)}

∧ (if fct2 = e1 e2 then γ = {γ | �tc=γ occurs in e1} else γ = ∅)

∧ dom(abs) = γ

∧ dja(nonDums(〈∆, e〉), ran(abs))

For example let us consider the following typable piece of code:

functor F (S : sig type t end) = struct

local open S in datatype u = c of t end

val rec g = fn x => c x

end

structure T = F (struct type t = int)

At constraint solving, when computing F’s binder, at first we generate the follow-

ing fct (again we omit dependencies and the environment ⊤ for readability purposes):

(�t=γ) ((�u=∀∅. γ′);(�c=∀∅. γ�γ′);(�g=∀∅. γ�γ′))
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genLazy(〈u, e〉, �vid=σ) = (�vid=∀(ρ1 ∩ svars(τ ′)) ∪ ρ2. τ
′),

if head(σ) = ∀ρ. cap ⋄ τ and ρ1 = ρ \ vars(cap) and τ ′ = build(ρ1 ⊳− u, τ)
and ρ2 = {ρ | 〈τ0, sv0〉 ∈ cap ∧ α ∈ vars(τ0) ∩ ρ ∧ ρ ∈ svars(build(u, α))}

genLazy(∆, �strid=e) = (�strid=genLazy(∆, e))
genLazy(∆, e1;e2) = genLazy(∆, e1);genLazy(∆, e2)

genLazy(∆, xd ) = genLazy(∆, x)d

genLazy(∆, x) = x, if none of the above applies

Figure 14.25 Recomputation of functors’ bodies

where e is the environment generated for F’s body. Abstracting fct allows us to

obtain an internal functor semantic as follows:

∀{δ}. (�t=δ) ((�u=∀∅. γ′);(�c=∀∅. δ�γ′);(�g=∀∅. δ�γ′))

The function duplicate is used to duplicate intersection types when instantiating a

type scheme that captures intersection types (of the form ∀ρ. cap⋄τ where cap 6= ∅):

〈〈u, e〉, d , cap〉 −duplicate−−−−−→ ∪n
i=1{sv i 7→σi}

⇔





⊎n
i=1{sv i 7→ τ i} = ⋒{tail(sv , u) 7→ {τd} | 〈τ, sv 〉 ∈ cap}

∧ ∀i ∈ {1, . . . , n}.

{
τ i = {τ1} ⊎ · · · ⊎ {τm}

∧ σi = τ1 ·∩ · · · ·∩ τm ·∩ sv ′
i

∧ dja(nonDums(〈u, e〉), sv ′
1, . . . , sv

′
n)

Let us illustrate the necessity of duplicate using example (EX7) introduced above

in this section. The binder generated for g at constraint solving is as follows:

�g=∀{α}. {〈α0, sv〉} ⋄ α�α0 where α0 is an instance of x’s type (from its specifi-

cation) and occurs also in the intersection type scheme associated with x (due to

x’s bound occurrence), and where sv is the tail of the intersection type scheme as-

sociated with x’s binding occurrence. Because g occurs in the expression (g 1) + 0,

we instantiate this type scheme to obtain a type as follows: α′�α′
0 where α′ and

α′
0 are fresh variables. The type α′

0 is obtained by renaming α0 from 〈α0, sv〉. The

predicate duplicate is then used to duplicate α′
0 so that the copy can be added to

the intersection type associated with x using the intersection variable sv . Because

of (g 1) + 0, α′
0 is further constrained to be equal to int and therefore, int occurs in

the builtin version of the intersection type associated with x’s binding occurrence.

Fig. 14.25 defines the function genLazy. Given the application of a functor to

an argument, genLazy computes new type schemes from those generated for the

functor’s body, which have a head of the form ∀ρ. cap ⋄ τ depending on the types in

cap. Let us illustrate the necessity of genLazy using the following piece of code:

functor F (S : sig val f : 〈..〉 end) = struct

local open S in val rec g = fn x => f true end

end

structure T = F(struct val f = fn x => x end)
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At constraint solving, we eventually generate the following binder for F (where

again dependencies and the environment ⊤ are omitted for readability purposes):

�F=∀{α2}. e1 e2 where

{
e1 = (�f=(∀{α0}. α0) ·∩ bool�α2 ·∩ sv)

e2 = (�g=∀{α1, α2}. {〈bool�α2, sv〉} ⋄ α1�α2)

The constraint term generated for F’s second occurrence is then as follows:

e ′1 e ′2 where

{
e ′1 = (�f=(∀{α0}. α0) ·∩ bool�α′

2 ·∩ sv)

e ′2 = (�g=∀{α1, α
′
2}. {〈bool�α

′
2, sv 〉} ⋄ α1�α

′
2)

Note that even though α2 is quantified in g’s type scheme, it is renamed when

instantiating F’s static semantics because it occurs (and so depends) in the inter-

section type associated with f. Such a type variable is not confirmed yet to be a

quantifiable.

Because F’s argument is a structure that defines f as the identity function, the

environment generated for it is as follows:

�f=∀{α}. α�α

When checking whether f’s binders from F’s parameter (in e ′
1) and F’s argument

match, we generate the following constraint:

α′
2=bool

by first generating an instance of ∀{α}. α�α as follows: α′�α′, and by constraining

α′ to be both equal to bool and α′
2 (because of bool�α′

2 occurring in e ′
1).

Thanks to genLazy, the environment generated at constraint solving for T is then

as follows (generated from g’s binder in e ′
2):

�g=∀{α1}. α1�bool

Fig. 14.26 extends our constraint solver to handle functors. Rules (B1), (A1),

(A2), (SU1), and (SU2) are updated and rules (B8), (SU6), (SU7), (FP1), (FP2),

(FA1), (FA2), and (FA3) are new. Rule (SU1) for subtype scheme constraints is now

more complicated than in Fig. 14.18 mainly because of the computation of cap ′
1 as

part of the generated type scheme. Let us illustrate the necessity of this computation

using the following piece of code:

signature s = sig val g : 〈..〉 end

functor F (S : sig val c : 〈..〉 end) = struct

open S

structure X = struct val rec g = fn x => x :: c end

structure T = X : s

local open T in val u = g () end

end

The binder generated for g declared in X is as follows:
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binders
(B1) slv(〈u, e〉, d , �id=x) → succ(〈u, e〉;(�id =

d
== x)),

if id 6∈ FunId ∪ SigId ∪ TyCon

(B8) slv(〈u, e〉, d , �funid=fctsem)→ succ(〈u, e〉;(�funid =
d
== fctsem ′)),

if 〈build(u, fctsem), 〈u, e〉〉 −abstract−−−−→ fctsem ′

accessors

(A1) slv(∆, d , �id=v) → slv(∆, d ∪ d
′
, v=x[ren ]),

if ∆(id) = (∀svar . x)d
′

∧ dom(ren) = svar ∧ dj(vars(〈∆, v〉), ran(ren)) ∧ id 6∈ VId

(A2) slv(∆, d , �id=v) → slv(∆, d , v=x),
if ∆(id) = x ∧ id ∈ StrId ∪ TyVar

(A5) slv(〈u, e〉, d , �vid=α)→ succ(〈u ′, e〉),

if ∆(vid) = σ ∧ slv(〈u, e〉, d , σ �vid α)→∗ succ(〈u ′, e ′〉)

(A6) slv(〈u, e〉, d , �vid=α)→ err(er ),

if ∆(vid) = σ ∧ slv(〈u, e〉, d , σ �vid α)→∗ err(er)

subtyping constraints

(SU1) slv(∆, d , σ1 �vid σ2) → succ(〈u1⊕u2⊕u3, e ′;�vid =
d
== ∀ρ. cap′

1 ⋄ τ〉),
if σ′

1 = head(σ1) ∧ σ
′
2 = σ2

∧ ∀i ∈ {1, 2}. (σ′
i = ∀ρi. capi ⋄ τi or (σ′

i = τi and ρi = capi = ∅ and τi 6∈ Dependent))
∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2} ∧ dj(vars(∆), ran(ren1), ran(ren2), {sv

′})

∧ slv(∆, d , τ1[ren1]=τ2[ren2])→
∗ succ(〈u1, e ′〉)

∧ τ = build(u1, τ
′
2[ren2])

∧ ρ = (ρ1[ren1] ∪ ρ2[ren2]) ∩ svars(τ)

∧ 〈〈u1, e ′〉, d , cap1[ren1]〉 −
duplicate−−−−−→ u2 ∧ sv ′ 6∈ vars(u2)

∧ (if tail(σ1, u1⊕u2) = sv then u3 = {sv 7→ τ ·∩ sv ′} ∧ cap = {〈τ, sv ′〉} else u3 = cap = ∅)
∧ cap′

1 = cap ∪ {〈τ ′0, sv0〉 | 〈τ0, sv0〉 ∈ cap1[ren1] ∧ τ
′
0 = build(u1, τ0) ∧ ¬dja(vars(τ ′0), ρ)}

(SU2) slv(∆, d , σ1 �vid σ2) → err(er),
if σ′

1 = head(σ1) ∧ σ
′
2 = σ2

∧ ∀i ∈ {1, 2}. (σ′
i = ∀ρi. capi ⋄ τi or (σ′

i = τi and ρi = capi = ∅ and τi 6∈ Dependent))
∧ dom(ren1) = ρ1 ∧ dom(ren2) = {α | α ∈ ρ2} ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ slv(∆, d , τ1[ren1]=τ2[ren2])→
∗ err(er )

(SU6) slv(〈u, e〉, d , σ1 �vid σ2 ·∩ σ3)→ slv(〈u ′, e〉, d , σ1 �vid σ2),

if slv(〈u, e〉, d , σ1 �vid σ3)→
∗ succ(〈u ′, e ′〉)

(SU7) slv(〈u, e〉, d , σ1 �vid σ2 ·∩ σ3)→ err(er),

if slv(〈u, e〉, d , σ1 �vid σ3)→
∗ err(er )

functor parameters

(FP1) slv(〈u1, e1〉, d , lazy(e))→ succ(〈u2, e1;e
′〉),

if slv(〈u1, e1〉, d , e)→∗ succ(〈u2, e2〉) ∧ diff(e1, e2) −
toLazy−−−−→ e ′

(FP2) slv(〈u1, e1〉, d , lazy(e))→ err(er ),

if slv(〈u1, e1〉, d , e)→∗ err(er )

functor applications

(FA1) slv(〈u, e〉, d , fct · e)→ succ(∆′;genLazy(∆′, ed
′

2 )),

if build(u, fct) = (e1 e2)
d
′

∧ slv(〈u, e〉, d ∪ d
′
, e:e1)→

∗ succ(∆′)

(FA2) slv(〈u, e〉, d , fct · e)→ err(er),

if build(u, fct) = (e1 e2)
d
′

∧ slv(〈u, e〉, d , e:e1)→
∗ err(er)

(FA3) slv(〈u, e〉, d , fct · e)→ succ(〈u, e〉),
if strip(build(u, fct)) ∈ Var

Figure 14.26 Constraint solving rules for functors

�g=∀{α0}. {〈α0 list, sv 〉} ⋄ α0�α0 list

where sv is the tail of c’s binder and where α0 list is the type generated for c’s

bound occurrence. The type scheme generated for g specified in s is as follows:

�g=∀{α}. α. When checking whether g’s specification matches g’s declaration (when
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dealing with the constraint generated for X : s), we generate the following binder

for g’s declaration in T:

�g=∀{α1}. {〈α1 list, sv 〉} ⋄ α1�α1 list

where {〈α1 list, sv〉} is cap ′
1 in rule (SU1) (cap is empty). We also constrain sv to

be equal α1 list ·∩ sv ′ via duplicate. Instantiating the type scheme generated for g in

T leads to the further constraining of sv ′, and therefore to the further constraining of

sv as well. For example, because g is applied to () in u’s body, sv ′ is then eventually

constrained to be equal to unit list ·∩ sv ′′.

Let us now consider a similar example, where g’s specification which was sliced

in our previous example, has been replaced by a specification that respects SML

syntax (we also took out the local declaration):

signature s = sig val g : (’a -> ’a) -> (’a -> ’a) list end

functor F (S : sig val c : 〈..〉 end) = struct

open S

structure X = struct val rec g = fn x => x :: c end

structure T = X : s

end

The binder generated for g declared in X is as before:

�g=∀{α0}. {〈α0 list, sv 〉} ⋄ α0�α0 list

The binder generated for g specified in s is now as follows:

�g=∀{β}. (β�β)�(β�β) list

When checking whether g’s specification matches g’s declaration (when dealing with

the constraints generated for S : s), we generate the following binder for g’s decla-

ration in T:

�g=∀{β}.∅ ⋄ (β�β)�(β�β) list

where ∅ is the cap ′
1 computed in rule (SU1). In this case we also constrain sv to

be equal to (β�β) list ·∩ sv ′. The set cap′
1 cannot be anything else than empty in

this case because the quantified variable set contains only rigid type variables and

rigid type variables cannot be constrained further. When checking that the type

scheme ∀{α0}. {〈α0 list, sv〉} ⋄α0�α0 list is a subtype of ∀{β}. (β�β)�(β�β) list

we first generate instances of the two type schemes as follows: α1�α1 list and

(β�β)�(β�β) list respectively. We then check that these two types can be made

equal which leads to α1 being constrained to be equal to β�β. When computing

cap′
1, we build up α1 list from {〈α1 list, sv〉} (which is a renaming of {〈α0 list, sv〉})

and obtain the type (β�β) list which does not contain any flexible type variable and
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is therefore not added to cap′
1 (the condition ¬dja(vars(τ ′0), ρ), where τ ′0 = (β�β) list

and ρ = {β}, in rule (SU1) is false).

Finally, let us now illustrate how the different mechanisms used by our con-

straint solver interact to handle functor declarations and functor applications. Let

us consider the following incomplete, untypable piece of code:

functor F (S : sig val c : 〈..〉 end) = struct

local open S in val rec g = fn x => x :: c end

val = g true

end

structure T = F(struct val c = [()] end)

We aim at obtaining the following type error slice:

〈..functor F (S : sig val c : 〈..〉 end) =

〈..local open S in val rec g = fn x => 〈..x :: c..〉 end

..g true..〉

..F(struct val c = [()] end)..〉

At constraint solving when solving the constraints generated for F’s parameter,

we generate the following binder:

�c=(∀{α1}. α1) ·∩ sv

When solving c’s accessor, we generate the following unifier:

{sv 7→α′
1 ·∩ sv ′}

where α′
1 is an instance of c’s binding occurrence’s type and is constrained to be

equal to c’s bound occurrence’s type. When solving the constraints generated for g,

because α′
1 is constrained to be equal to α2 list, we generate the following binder:

�g=∀{α2}. {〈α2 list, sv
′〉} ⋄ α2�α2 list

When solving the constraints generated for the last declaration in F’s body, because

g is applied to the Boolean true, we generate an instance of g’s type scheme as

follows (where α2 is renamed to α′
2):

α′
2�α

′
2 list

and we also generate the following unifier from 〈α2 list, sv
′〉:

{sv ′ 7→α′
2 list ·∩ sv ′′}

where α′
2 is constrained to be equal to bool. Therefore, we generate the following

binder for F:

�F=∀{α2}. e1 e2 where

{
e1 = (�c=(∀{α1}. α1) ·∩ (α2 list) ·∩ (bool list) ·∩ sv ′′)

e2 = (�g=∀{α2}. {〈α2 list, sv
′〉} ⋄ α2�α2 list)
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The constraint term generated for F’s bound occurrence is then as follows:

e ′1 e ′2 where

{
e ′1 = (�c=(∀{α1}. α1) ·∩ (α3 list) ·∩ (bool list) ·∩ sv ′′)

e ′2 = (�g=∀{α3}. {〈α3 list, sv
′〉} ⋄ α3�α3 list)

where α2 has been renamed to α3. The environment generated for F’s argument is

as follows:

�c=∀∅. unit list

When matching this environment against e ′
1, we get a clash between unit and bool

when checking that ∀∅. unit list is a subtype of bool list.

Because restricted forms of functor binders can now occur in constraint solv-

ing contexts (in e in 〈u, e〉), we extend some constraint term forms generated at

constraint solving, originally defined in Sec. 11.6.6, as follows:

sbind ∈ SolvBind ::= · · · | �funid=sfctsem

sfctsem ∈ SolvFuncSem ::= sfct | ∀v . sfct | 〈sfctsem , d〉

sfct ∈ SolvFunc ::= φ | se1 se2 | 〈sfct , d〉

14.9.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering algorithm as follows:

filt(fct · e, l1, l2) = filt(fct , l1, l2) · filt(e, l1, l2)

filt(lazy(e), l1, l2) = lazy(filt(e, l1, l2))

filt(e1 e2, l1, l2) = filt(e1, l1, l2) filt(e2, l1, l2)

toDumVar(fctsem) = φdum

14.9.6 Slicing

First, we extend our tree syntax for programs as follows:

Class ::= · · · | fundec

Prod ::= · · · | fundecDec | strexpFct

Then, Fig. 14.27 extends the toTree function. We also extend the function getDot

as follows:

getDot(〈fundec, prod 〉) = dotD

14.10 Arity clash errors

The slicer presented so far only deals with unary type constructors. Let us now

present how to build a constraint mechanism and a TES that handles type construc-

tor with unconstrained arity (unary as well as non-unary arity). Tuples are not

formally presented in this document, but they can be handled using the machinery

introduced in this section. Note that non-unary type constructors and tuples are

both handled by our implementation.
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Structure expressions
toTree(funid(strexp)l ) = 〈〈strexp, strexpFct〉, l , 〈funid , toTree(strexp)〉〉

Functor declarations

toTree(functor funid(strid:sigexp)
l
= strexp)

= 〈〈fundec, fundecDec〉, l , 〈funid , strid , toTree(sigexp), toTree(strexp)〉〉

Figure 14.27 Extension of our conversion function from terms to trees to deal with
functors

14.10.1 External syntax

The external labelled syntax of type sequences is as follows:

tyseq ∈TySeq ::= ty l | ǫlt | (ty1, . . . , tyn)l | dot-t(
−−→
term)

We redefine atomic sequences of explicit type variables and the forms of type

constructs at binding and bound positions as follows:

ltv −TyVarSeq−−−−−−_ ltv l

ty tcl −Ty−_ tyseq tc l

⌈tv tc⌉l −DatName−−−−−−_ ⌈tvseq tc⌉l

An atomic type variable sequence is then labelled by two labels. The inner one

is associated with the explicit type variable itself while the outer one is associated

with the sequence (of length one).

Let us consider the following piece of code:

type (’a, ’b) t = ’a -> ’b

val rec f : int t = fn x => x

This piece of code is untypable because the type constructor t is defined as a

binary type constructor and is used as an unary type constructor. As usual they are

many ways of solving the programming error causing this piece of code to be unty-

pable. We only present some of them. One could, e.g., define another type function

type ’a u = (’a, ’a) t and to replace the type annotation int t by the type annota-

tion int u. One could also replace the type definition type (’a, ’b) t = ’a -> ’b by

the type definition type ’a t = ’a -> ’a. One could also replace the type annotation

int t by (int, int) t.

We do not deal in this document with syntactic errors stemming from adding

type and type variable sequences to the language. For example, type (’a, ’a) t = ’a

is syntactically incorrect because the explicit type variable ’a occurs twice in the

type variable sequence (’a, ’a). Such syntactic errors are dealt with and reported

using error slices by Impl-TES (see Sec. 17.1.1).
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14.10.2 Constraint syntax

We introduce internal type sequences as follows:

ξ ∈ ITyVarSeqVar (type variable sequence variables)

ω ∈ ITySeqVar (type sequence variables)

vsq ∈ ITyVarSeq ::= ξ | 〈|ρ1, . . . , ρn|〉 | 〈vsq , d〉

sq ∈ ITySeq ::= ω | 〈τ1, . . . , τn〉 | 〈sq , d〉

c ∈ EqCs ::= · · · | sq1=sq2 | vsq1=vsq2

We redefine internal type functions and internal type constructs as follows (App

and TyFun are defined in Sec. 14.3.2 and are used in side conditions):

τ µ −LabTy−−−_ sq µ

Λα. τ −LabName−−−−−−_ Λvsq . τ

τ tyf −App−−_ sq tyf

Λα. τ −TyFun−−−−_ Λvsq . τ

Note that arrow types of the form τ1�τ2 can be encoded as follows: 〈τ1, τ2〉 ar.

We do not do so because we believe the first form to be easier to read.

Let ξdum be a distinct variable sequence variable in ITyVarSeqVar. We extend

Dum as follows: Dum = {αdum, evdum, δdum, ηdum, φdum, ξdum}.

14.10.3 Constraint generation

Fig. 14.28 extends our constraint generation algorithm. This figure introduces three

new rules to generate constraints for type sequences: (G52)-(G54). It also intro-

duces the new rule (G51) for type variable sequences. The other rules redefine rules

introduced above.

Let us consider the following type declaration: type (’a, ’b) t = ’a -> ’b Its

labelled version is as follows: type ⌈(’a
l4

l
, ’b

l5

l
)l3 t⌉l2

l1= ’a
l7 l6→ ’a

l8
.

Our constraint generator generates the following information for (’a, ’b) t:

〈α, ω, e1, e2〉

where





e1 = (�t =
l2
== Λξ. α)

e2 = (ξ=
l3
== 〈|β1, β2|〉;ω=

l3
== 〈α1, α2〉;�’a =

l4
== β1;α1 =

l4
==β1;�’b =

l5
== β2;α2 =

l5
==β2)

Our constraint generator generates the following information for ’a -> ’b:

〈α3, e3〉 where e3 = (�’a =
l7
== α4;�’b =

l8
== α5;(α3 =

l6
==α4�α5))

Finally, using rule (G30), our constraint generator generates the following envi-

ronment for the entire type declaration:

(ev=((α=
l1
==α3);loc e2 in (e3;e1)));ev

l1

When replacing e1, e2, and e3, one obtains the following environment:
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Labelled type variables (ltv -⊲ 〈α, β, e〉)

(G48) tv l
l -⊲ 〈α, β, �tv =

l
== β;α=

l
== β〉

Type variable sequences (tvseq -⊲ 〈ξ, ω, e〉)

(G51) ltv l -⊲ 〈ξ, ω, ξ=
l
== 〈|β|〉;ω=

l
== 〈α〉;e〉 ⇐⇐⇐ ltv -⊲ 〈α, β, e〉

(G49) ǫlv -⊲ 〈ξ, ω, ξ=
l
== 〈||〉;ω=

l
== 〈〉〉

(G50) (ltv1, . . . , ltvn)l -⊲ 〈ξ, ω, ξ=
l
== 〈|β1, . . . , βn|〉;ω=

l
== 〈α1, . . . , αn〉;e1; · · · ;en〉

⇐⇐⇐ ltv1 -⊲ 〈α1, β1, e1〉 ∧∧∧ · · · ∧∧∧ ltvn -⊲ 〈αn, βn, en〉 ∧∧∧ dja(e1, . . . , en, ξ, ω)

Type sequences (tyseq -⊲ 〈ω, e〉)

(G52) ty l -⊲ 〈ω, ω=
l
== 〈α〉;e〉 ⇐⇐⇐ ty -⊲ 〈α, e〉 ∧∧∧ dja(e, ω)

(G53) ǫlt -⊲ 〈ω, ω=
l
== 〈〉〉

(G54) (ty1, . . . , tyn)l -⊲ 〈ω, ω=
l
== 〈α1, . . . , αn〉;e1; · · · ;en〉

⇐⇐⇐ ty1 -⊲ 〈α1, e1〉 ∧∧∧ · · · ∧∧∧ tyn -⊲ 〈αn, en〉 ∧∧∧ dja(e1, . . . , en, ω)

Datatype names (dn -⊲ 〈α, ω, e1, e2〉)

(G13) ⌈tvseq tc⌉l -⊲ 〈α, ω, �tc =
l
== Λξ. α, e〉 ⇐⇐⇐ tvseq -⊲ 〈ξ, ω, e〉 ∧∧∧ dja(e, α)

Types

(G11) ⌈tyseq ltc⌉l -⊲ 〈α, e1;e2;(ω δ=
l
==α)〉 ⇐⇐⇐ tyseq -⊲ 〈ω, e1〉 ∧∧∧ ltc -⊲ 〈δ, e2〉 ∧∧∧ dja(e1, e2, α)

Declarations

(G17) val rec tvseq pat
l
= exp -⊲ (ev=poly(loc e0;e in (toV(e1);e2;(α1 =

l
==α2))));ev

l

⇐⇐⇐ tvseq -⊲ 〈ξ, ω, e0〉 ∧∧∧ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉

∧∧∧labtyvarsdec(tvseq, pat , exp) = ⊎n
i=1{tv

li

i }

∧∧∧e = ((⇃tv1 =
l
== β1)

∨l1 ; · · · ;(⇃tvn =
l
== βn)∨ln)

∧∧∧dja(e0, e1, e2, ev , β1, . . . , βn)

(G45) val tvseq pat
l
= exp -⊲ (ev=expans(loc e0;e in (e2;e1;(α1 =

l
==α2)), expansive(exp)));ev l

⇐⇐⇐ tvseq -⊲ 〈ξ, ω, e0〉 ∧∧∧ pat -⊲ 〈α1, e1〉 ∧∧∧ exp -⊲ 〈α2, e2〉

∧∧∧labtyvarsdec(tvseq, pat , exp) = ⊎n
i=1{tv

li

i }

∧∧∧e = ((⇃tv1 =
l
== β1)

∨l1 ; · · · ;(⇃tvn =
l
== βn)∨ln)

∧∧∧dja(e0, e1, e2, ev , β1, . . . , βn)

(G18) datatype dn
l
= cb -⊲ (ev=((α1 =

l
==ω1 γ);(α2 =

l
==α1);e1;loc e ′

1 in poly(e2)));ev
l

⇐⇐⇐ dn -⊲ 〈α1, ω1, e1, e
′
1〉 ∧∧∧ cb -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

(G30) type dn
l
= ty -⊲ (ev=((α1 =

l
==α2);loc e ′

1 in (e2;e1)));ev
l

⇐⇐⇐ dn -⊲ 〈α1, ω1, e1, e
′
1〉 ∧∧∧ ty -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, ev )

Specifications

(G36) type dn l -⊲ (ev=((α=
l
==ω δ);e));ev l ⇐⇐⇐ dn -⊲ 〈α, ω, e, e ′〉 ∧∧∧ dja(e, e ′, ev)

(G38) datatype dn
l
= cd -⊲ (ev=((α1 =

l
==ω1 δ);(α2 =

l
==α1);e1;loc e ′

1 in poly(e2)));ev
l

⇐⇐⇐ dn -⊲ 〈α1, ω1, e1, e
′
1〉 ∧∧∧ cd -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

Figure 14.28 Constraint generation rules to handle type constructor with unre-
stricted arity

(ev=((α=
l1
==α3);

loc (ξ=
l3
== 〈|β1, β2|〉;ω=

l3
== 〈α1, α2〉;�’a =

l4
== β1;α1 =

l4
==β1;�’b =

l5
== β2;α2 =

l5
==β2)

in ((�’a =
l7
== α4;�’b =

l8
== α5;(α3 =

l6
==α4�α5));(�t =

l2
== Λξ. α))

));ev l1

Note that some constraints in this environment are not useful: ω=
l3
==〈α1, α2〉, α1=

l4
==

β1, and α2=
l5
==β2. As a matter of fact ω does not occur in any other constraint. These

constraints are only useful when generating constraints for datatype declarations.

In order to illustrate this point, let us consider the following datatype dec-
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laration: datatype (’a, ’b) t = T of ’a -> ’b. Its labelled version is as follows:

datatype ⌈(’a
l4

l
, ’b

l5

l
)l3 t⌉l2

l1= T of l9 ’a
l7 l6→ ’a

l8
. The same information is gener-

ated for (’a, ’b) t and ’a -> ’b. Our constraint generator generates the following

information for T of ’a -> ’b:

〈α6, e4〉 where e4 = e3;α7 =
l9
==α3�α6;�T =

l9
== 〈α7, c〉

Finally, using rule (G18), our constraint generator generates the following envi-

ronment for the entire datatype declaration:

(ev=((α=
l1
==ω γ);(α6 =

l1
==α);e1;loc e2 in poly(e4)));ev

l1

When replacing e1, e2, e3, and e4, one obtains the following environment:

(ev=




(α=
l1
==ω γ);(α6 =

l1
==α);(�t =

l2
== Λξ. α);

loc (ξ=
l3
== 〈|β1, β2|〉;ω=

l3
== 〈α1, α2〉;�’a =

l4
== β1;α1 =

l4
==β1;�’b =

l5
== β2;α2 =

l5
==β2)

in poly((�’a =
l7
== α4;�’b =

l8
== α5;(α3 =

l6
==α4�α5));α7 =

l9
==α3�α6;�T =

l9
== 〈α7, c〉)


 ;ev l1

One can see that the three constraints ω=
l3
==〈α1, α2〉, α1=

l4
==β1, and α2=

l5
==β2 are used

when dealing with datatype declarations. The variable ω occurs in the constraint

α=
l1
==ω γ. They are necessary to have t’s type depending on the labels of the explicit

type variables occurring in the type variable sequence.

Note that t’s arity is constrained via the constraint ξ=
l3
== 〈|β1, β2|〉.

Because of the tuples generated by the constraint generation rules (G48)-(G54),

we extend the set InitGen originally defined in Sec. 11.5.1 and extended in Sec. 14.3.3

as follows:

cg ∈ InitGen ::= · · · | 〈α, β, e〉 | 〈ξ, ω, e〉 | 〈ω, e〉

Also, because rule (G13) associates new forms with dns, we redefine some of

the forms that our initial constraint generation algorithm associates with terms as

follows:

〈δ, α, e1, e2〉 −
InitGen−−−−_ 〈α, ω, e1, e2〉

Because our initial generation algorithm generates new forms of equality con-

straints, we update LabCs as follows:

shvsq ∈ ShallowITyVarSeq ::= ξ | 〈|β1, . . . , βn|〉

shseq ∈ ShallowITySeq ::=ω | 〈α1, . . . , αn〉

lc ∈ LabCs ::= · · · | ξ=
l
== shvsq | ω=

l
== shseq

We also the initially generated type constructor binders, some shallow types, and

the shallow type equality constraints as follows:

�tc =
l
== δ −LabBind−−−−−_ �tc =

l
== Λξ. α

α δ −ShallowITy−−−−−−_ ω δ

αγ −ShallowITy−−−−−−_ ω γ

sit1 −
LabCs−−−_ sit2
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14.10.4 Constraint solving

First, let us extend error kinds as follows:

ek ∈ ErrKind ::= · · · | arity(n1, n2)

We extend our unifiers as follows (note that this extension also extends Sub):

u ∈ Unifier = {
⋃8

i=1 fi | f1 ∈ ITyVar → ITy

∧ f2 ∈ TyConVar → ITyCon

∧ f3 ∈ EnvVar→ Env

∧ f4 ∈ SigSemVar→ SigSem

∧ f5 ∈ FuncVar → Func

∧ f6 ∈ SchemeVar → Scheme

∧ f7 ∈ ITyVarSeqVar → ITyVarSeq

∧ f8 ∈ ITySeqVar→ ITySeq}

We extend the building function to internal type sequences as follows:

build(u, 〈τ1, . . . , τn〉) = 〈build(u, τ1), . . . , build(u, τn)〉

build(u,Λvsq . τ) = Λbuild(u, vsq). build(u, τ)

Let the function shallow be defined as follows:

shallow(ω,∆) =

{
shallow(sq ,∆), if ∆(ω) = sq

ξdum, otherwise

shallow(〈τ1, . . . , τn〉,∆) = 〈|αdum, . . . , αdum|〉

shallow(sqd ,∆) = shallow(sq ,∆)d

Fig. 14.29 extends our constraint solver. Rules (S23)-(S27), (SU8)-(SU10) are

new and the other ones redefine rules introduced above.

In rule (S23), a constraint of the form sq (Λξ. τ1)=τ (we omit dependencies for

readability issues) leads to the constraining of ξ using a shallow version of sq which is

obtained using the function shallow. Note that at the time a type function is applied

at constraint solving in our system, it is fully built up. Therefore, if the type function

is of the form Λξ. τ1, it means that the information relative to the arguments of the

type constructor for which the type function has been generated, has been sliced

out. We then constrain it further using a shallow version of the type sequence to

which the type function is applied to in order to catch arity errors between two

bound occurrences of type constructors. We only extract a shallow version of the

type sequence, which is a type variable sequence that has the same length as the

type sequence. For example, datatype ’a t = T of t -> ’a t is untypable because,

among other things, the two bound occurrences of t have different arities. If the

constraints generated for ’a’s first occurrence is sliced out, at constraint solving, the

two bound occurrences of t can constrain the arity of the binding occurrence of t

via rule (S23) which leads to an arity clash between the first bound occurrence of t

which is nullary and the second bound occurrence of t which is unary.
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equality simplification

(S9) slv(∆, d , sq µ=τ) → slv(∆, d ∪ d1 ∪ d2, e),

if collapse(µ∅) = (Λ〈|β1, . . . , βn|〉
d1 . τ1)

d2 ∧ ren = ∪n
i=1{βi 7→αi}

∧ dj(vars(∆), ran(ren)) ∧ e = (sq=〈α1, . . . , αn〉;build(∆, τ1)[ren]=τ)

(S23) slv(〈u, e〉, d , sq µ=τ)→ slv(〈u, e〉, d ∪ d
′
, ξ=ξ′),

if collapse(µ∅) = (Λξ. τ1)
d
′

∧ ξ′ = shallow(sq , u)

(S10) slv(〈u, e〉, d , sq µ=τ)→ succ(〈u, e〉),
if strip(µ) = δ ∧ δ 6∈ dom(u)

(S11) slv(〈u, e〉, d , sq µ=τ)→ slv(〈u, e〉, d ∪ d
′
, sq µ′=τ),

if strip(µ) = δ ∧ u(δ) = µ′ ∧ d
′
= deps(µ)

(S12) slv(∆, d , sq µ=sq ′ µ′)→ slv(∆, d1 ∪ d2, γ=γ
′;sq=sq ′),

if collapse(µd ) = γd1 ∧ collapse(µ∅) = γ′d2

(S13) slv(∆, d , τ1=τ2) → slv(∆, d , µ=ar),
if {τ1, τ2} = {sq µ, τ0�τ

′
0} ∧ strip(µ) ∈ TyConName

(S14) slv(∆, d , τ1=τ2) → slv(∆, d , µ=tv),
if {τ1, τ2} = {sq µ, β} ∧ strip(µ) ∈ TyConName

(S24) slv(∆, d , sq=sq ′) → slv(∆, d , τn=τ ′n; · · · ;τ1=τ
′
1),

if sq = 〈τ1, . . . , τn〉 ∧ sq ′ = 〈τ ′1, . . . , τ
′
n〉

(S25) slv(∆, d , sq=sq ′) → err(〈arity(n,m), d〉),
if sq = 〈τ1, . . . , τn〉 ∧ sq ′ = 〈τ ′1, . . . , τ

′
m〉 ∧ n 6= m

(S26) slv(∆, d , vsq=vsq ′) → slv(∆, d , ρn=ρ′n; · · · ;ρ1=ρ
′
1),

if vsq = 〈|ρ1, . . . , ρn|〉 ∧ vsq ′ = 〈|ρ′1, . . . , ρ
′
n|〉

(S27) slv(∆, d , vsq=vsq ′) → err(〈arity(n,m), d〉),
if vsq = 〈|ρ1, . . . , ρn|〉 ∧ vsq ′ = 〈|ρ′1, . . . , ρ

′
m|〉 ∧ n 6= m

subtyping constraints

(SU3) slv(∆, d , κ1 �tc κ2)→ succ(〈u ′, e ′;�tc=scheme(u ′, α1[ren1] ∪ α2[ren2], δ)〉),

if κ1 = ∀α1.Λ〈|β1, . . . , βn|〉
d1 . τ1 ∧ κ2 = ∀α2.Λ〈|β

′
1, . . . , β

′
n|〉

d2 . (〈τ1, . . . , τn〉
d4 δ)d3

∧ dom(ren1) = α1 ∧ dom(ren2) = α2 ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ sub = ∪n
i=1{βi 7→ τi[ren2]} ∧ d

′
= d ∪ d1 ∪ d2 ∪ d3 ∪ d4

∧ slv(∆, d
′
, δ=Λ〈|β′

1, . . . , β
′
n|〉. τ1[ren1][sub])→∗ succ(〈u ′, e ′〉)

(SU8) slv(∆, d , κ1 �tc κ2)→ err(er ),

if κ1 = ∀α1.Λ〈|β1, . . . , βn|〉
d1 . τ1 ∧ κ2 = ∀α2.Λ〈|β

′
1, . . . , β

′
n|〉

d2 . (〈τ1, . . . , τn〉
d4 δ)d3

∧ dom(ren1) = α1 ∧ dom(ren2) = α2 ∧ dj(vars(∆), ran(ren1), ran(ren2))

∧ sub = ∪n
i=1{βi 7→ τi[ren2]} ∧ d

′
= d ∪ d1 ∪ d2 ∪ d3 ∪ d4

∧ slv(∆, d
′
, δ=Λ〈|β′

1, . . . , β
′
n|〉. τ1[ren1][sub])→∗ err(er )

(SU9) slv(∆, d , κ1 �tc κ2)→ err(〈arity(n,m), d〉),

if κ1 = ∀α1.Λ〈|β1, . . . , βn|〉
d1 . τ1 ∧ κ2 = ∀α2.Λ〈|β

′
1, . . . , β

′
m|〉

d2 . τ2 ∧ n 6= m

(SU10) slv(∆, d , κ1 �tc κ2)→ succ(∆;�tc=δdum),

if κ1 not of the form ∀α1.Λ〈|β1, . . . , βn|〉
d1 . τ1

∨ κ2 not of the form ∀α2.Λ〈|β
′
1, . . . , β

′
m|〉

d2 . (〈τ1, . . . , τn〉
d4 δ)d3

Figure 14.29 Constraint solving rules to also handle non-unary type constructor

The complexity of the subtyping constraint rules presented in Fig. 14.29 comes

partially from the fact that with non-unary type constructors, we also have to

check that if a type constructor is specified in a signature constraining a struc-

ture then it has to be defined in the structure with the same arity. For example,

struct type ’a t = ’a end : sig type t end is not typable because t is specified as

being a unary type constructor in the signature and declared as being a nullary type

constructor in the structure.
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(G55) dot-v(
−−→
term) -⊲ 〈ξ, ω, [e1; · · · ;en]〉 ⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, ξ, ω)

(G56) dot-l(
−−→
term) -⊲ 〈α, β, [e1; · · · ;en]〉 ⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, α, β)

(G57) dot-t(
−−→
term) -⊲ 〈ω, [e1; · · · ;en]〉 ⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, ω)

(G31) dot-n(
−−→
term) -⊲ 〈α, ω,⊙, [e1; · · · ;en]〉 ⇐⇐⇐ term1 -⊲ e1 ∧∧∧ · · · ∧∧∧ termn -⊲ en ∧∧∧ dja(e1, . . . , en, α, ω)

Figure 14.30 Constraint generation rules to handle incomplete sequences

14.10.5 Slicing

Because we have changed our constraint generation rules for type variable sequences

and labelled type variables, we need to replace some dot terms as follows:

dot-d(
−−→
term) −TyVarSeq−−−−−−_ dot-v(

−−→
term)

dot-d(
−−→
term) −LabTyVar−−−−−−_ dot-l(

−−→
term)

Fig. 14.30 defines new constraint generation rules for our new dot terms as follows

and redefines the one for dot dns.

Because the environments generated for type variable sequences are always used

in local environment (of the form loc e1 in e2) we do not need to generate any ⊙

environment in rules (G55) and (G56).

We extend our tree syntax for programs as follows:

Class ::= · · · | tyseq

Prod ::= · · ·

| tyvarseqSgl | tyvarseqEm | tyvarseqSeq

| tyseqSgl | tyseqEm | tyseqSeq

Dot ::= · · · | dotV | dotT

We also extend the function getDot that associates dot markers with node kinds

as follows:

getDot(〈tyseq, prod 〉) = dotT

We also redefine this function on tyvarseq nodes as follows:

getDot(〈tyvarseq, prod 〉) = dotV

Finally, Fig. 14.31 extends the function toTree that transforms terms into trees.

Non-unary type constructors raise interesting slicing and highlighting issues. Let

us consider the following piece of code: type ’a t = int val x : t. This piece of

code is untypable because t is defined as being unary and is used as a nullary type

constructor. The type error slice that report this error would then be as follows:

〈..type 〈..〉 t = 〈..〉..t..〉 because, among other things, the explicit type variables

’a is not part of the error. The obvious problem with this slice is that 〈..〉 in 〈..〉 t

can be a sliced out type variable sequence of length zero which means that this

slice has to be typable. First, note that this issue does not arise in our labelled

syntax because 〈..〉 in 〈..〉 t is in fact the type variable sequence dot-l(∅)l which is
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Type variable sequences toTree(ltv l ) = 〈〈tyvarseq, tyvarseqSgl〉, l , 〈toTree(ltv)〉〉

Type sequences toTree(ty l) = 〈〈tyseq, tyseqSgl〉, l , 〈ty〉〉
toTree(ǫlt) = 〈〈tyseq, tyseqEm〉, l , 〈〉〉
toTree((ty1, . . . , tyn)l ) = 〈〈tyseq, tyseqSeq〉, l , toTree(〈ty1, . . . , tyn〉)〉

Types toTree(tyseq tcl) = 〈〈ty, tyCon〉, l , 〈toTree(tyseq), tc〉〉

Datatype names toTree(⌈tvseq tc⌉l) = 〈〈datname, datnameCon〉, l , 〈tvseq , tc〉〉

Dot terms toTree(dot-v(
−−→
term)) = 〈dotV, toTree(

−−→
term)〉

toTree(dot-t(
−−→
term)) = 〈dotT, toTree(

−−→
term)〉

Figure 14.31 Extension of our conversion function from terms to trees to handle
type and type variable sequences

different from the sliced out empty type variable sequence dot-v(∅). The problem

comes from the fact that there is no explicit syntax representing a unary sequence

in SML. To solve this issue, we add special parentheses in our slice language, in

addition to 〈 and 〉. We print dot-l(∅)l as follows: J〈..〉K which is then different

from 〈..〉 which is an entirely sliced out sequence. Finally, the slice reporting the

error described above is then as follows: 〈..type J〈..〉K t = 〈..〉..t..〉. This error

is highlighted as follows: type ’a t = int val x : t. The box around ’a indicates

that t’s first occurrence is unary and that ’a itself is not part of the reported error.

The highlighted empty space preceding t’s second occurrence indicates that this

occurrence of t is nullary. The extra parentheses J and K are also used to display

type sequences of the form dot-e(〈〉)l .

Let us consider a similar example which only differs from the previous example by

the removal of the white space between the colon and t: type ’a t = int val x = 1 :t.

As above, this piece of code is untypable because t is defined as being unary and is

used as a nullary type constructor. The issue is that now when highlighting this type

error in the code, we cannot anymore highlight the white space before t’s second oc-

currence because there is no such space. We therefore have to come up with a conven-

tion to highlight such errors. A possibility is to put a box around the type construc-

tor itself when the fact that it is a nullary type constructor is part of the reported

error. We would then obtain the following highlighting: type ’a t = int val x :t.

Finally, let us present another issue raised by non-unary type constructors using

the following untypable datatype declaration: datatype ’a t = T of (’a, ’a) t t.

Because a datatype declaration is recursive, t’s two last occurrences are bound

to t’s first occurrence. Now, t’s second occurrence is a binary type construc-

tor while t’s third occurrence is unary. Therefore we report the following error:

〈..datatype 〈..〉 t = 〈..(〈..〉, 〈..〉) t t..〉..〉. The highlighting of this error in the

original code is as follows: datatype ’a t = T of (’a, ’a) t t. Note that in this

case, a portion of the code is highlighted inside the box. Whether or not t’s first

occurrence has to be part of the report is disputable. For example, the system pre-

sented so far does not report any error for type ’a u = T of (’a, ’a) t t where t is
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free even though there is no way of completing this piece of code with a declaration

of t such that the piece of code would be typable. Given this piece of code, we

should then report an arity type error. We do not present in this document how

to report such errors and how to report 〈..(〈..〉, 〈..〉) t t..〉 instead of the slice

presented above but our implementation report such errors. Informally, reporting

such errors in our implementation involves the generation at constraint solving of

special binders of free, or bound by dummy binders, type constructors.
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Chapter 15

Extensions for better error

handling

15.1 Merged minimal type error slices

We have found cases needing the display of many minimal errors at once. The

combination of at least two minimal type error slices is called a merged type error

slice. We present in this section two cases for which our TES report merged type

error slice: for record field name clashes and for unmatched specifications. Note that

our TES does not merge minimal type error slices but directly generates merged type

error slices.

15.1.1 Records

One important case is in record field name clashes where, e.g., the highlighting

val {foo,bar} = {fool=0,bar=1} reports two minimal errors at once: that fool is not

in the set {foo, bar} and foo is not in the set {fool, bar}. This merged error is

preferable over the minimal errors because of the explosion in the number of minimal

slices. Green highlights the fields that are common to different minimal slices. For

merged slices minimality is understood as follows: retain a single blue/purple field

name in one of the two clashing records and all field names in the other.

15.1.2 Signatures

With the constraint solver as defined above, our TES would report two minimal

unmatched type error slices for the following piece of code:

structure S = struct val (fool, barr, x, y) = (1, 2, 3, 4) end

signature s = sig val foo : int val bar : int val x : int end

structure T = S :> s
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One of the type errors is that the specification foo in s is not matched in the

structure S (that declares fool, barr, x and y), but s constrains S in T. The other

error is similar but concerns the specification bar.

This is another typical example where finding and reporting merged minimal

error slices would be useful. For the example above, instead of the two reports

described above, we would prefer a highlighting that would looks like:

structure S = struct val (fool, barr, x, y) = (1, 2, 3) end

signature s = sig val foo : int val bar : int val x : int end

structure T = S :> s

This highlighting shows that foo and bar are not matched in the structure S,

but also suppose that x might not be the matching for foo or bar as x is specified

in the signature s. Note that x is still reported because we cannot know if x in the

structure S is definitely not the matching of, e.g., foo in the signature s.

We could obtain this slice by altering the part of our constraint solver defined in

Fig. 14.18, Fig. 14.19, and Fig. 14.21.

First, we want unmatched error kinds to be as follows instead (we replace the

previous form by this new one):

ek ∈ ErrKind ::= · · · | unmatched(id1, id2, id3)

For the highlighting presented above, the generated error kind would then be

unmatched(id1, id2, id3), where id1 is the set of identifiers highlighted in purple (the

identifiers specified in s that are not declared in S), id2 is the set of identifiers

highlighted in blue (the identifiers declared in S that are not specified in s) and id3

is the set of identifiers highlighted in green (the identifiers both specified in s and

declared in S).

Then, when checking if a signature matches a structure, in order to gather (1) the

identifiers that are specified in the signature but not declared in the structure, (2) the

identifiers that are declared in the structure but not specified in the signature,

and (3) the identifiers that are both specified in the signature and declared in the

structure, we extend our “match” states as follows:

Θ ∈Unmatched ::= 〈id1, id2〉

state ∈ State ::= · · · | match(∆, d ,Θ, e1, e2) | succ(∆,Θ)

In order to update Θs, we define the two functions addI and addO (where “I”

stands for “in” and “O” stands for “out”) as follows: addI(〈id1, id2〉, id) = 〈id1, id2∪

{id}〉 and addO(〈id1, id2〉, id) = 〈id1∪{id}, id2〉. The function addI is used when an

identifier has been checked to be both specified in a signature sigexp and declared

in a structure which is constrained by the signature sigexp. The function addO is

used when an identifier has been checked to be declared in a structure strexp but

not in a signature that constrain the structure strexp.
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Finally, Fig. 15.1 updates the rules defined in Fig. 14.18, Fig. 14.19, and Fig. 14.21

to handle the reporting of merged unmatched errors. Rule (SC1) is updated and

we add two new rules for signature constraints: (SC2) and (SC3). Rules (SC2) and

(SM17) are new and replace rule (SM13).

The difference between this new algorithm and the one presented in Fig. 14.18,

Fig. 14.19, and Fig. 14.21, is that when checking that a signature matches a struc-

ture, this new algorithm gathers the identifiers that are both specified in the signa-

ture and declared in the structure (rules (SM4), (SM5), and (SM6)) and also gathers

the identifier that are not matched in the structure (rule (SM10)). If there exists

such an identifier, it means that there is an unmatched error. We then wait to check

the matching of the entire signature against the structure to finally report all such

unmatched identifiers in a single error report (rules (SC2) and (SM17)).

Note that such type error reports for unmatched errors are still imperfect. For

example, the highlighting above does not show that {fool, barr, x, y} is precisely

the set of identifiers declared in the structure S. Similarly, the highlighting does not

show that {foo, bar, x} is precisely the set of identifiers specified in the signature

s. Note that this is made precise in our type error slices because in S, e.g., no

declaration is entirely sliced out and replaced by 〈..〉. We could then consider the

following convention when highlighting a type error: if all the identifiers declared

in a structure or specified in a signature are involved in the reported error and this

information is necessary for the error to occur then we highlight the blank spaces

(if any) preceding the corresponding val, type, datatype and structure keywords.

We would then obtain the following highlighting which is a bit more informative

than the one presented above:

structure S = struct val (fool, barr, x, y) = (1, 2, 3) end

signature s = sig val foo : int val bar : int val x : int end

structure T = S :> s

It is important to find conventions as intuitive as possible because the issue with

such conventions is that they have to be known by the user for highlightings to be

understandable.

15.2 End points

Some error reports involve what we call end points. It the case for clash errors

such as type constructor clashes. The two end points of a type constructor clash

error are the two program locations responsible for the generation of two distinct

type constructors that are constrained to be equal at constraint solving. More

generally, the end points of a clash error are the program locations responsible for

the generation of two distinct constraint terms that are constrained to be equal
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Some kinds of errors are not handled by the system presented in this section, although our im-
plementation handles them. For more information please refer to the introductory paragraph of
Sec. 14.7.

signature constraints

(SC1) slv(〈u, e〉, d , e1:e2)→ succ(∆′), if build(u, e1) = e ′
1 ∧ build(u, e2) = e ′

2

∧ match(〈u, e〉, d , 〈∅,∅〉, e ′
1, e

′
2)→

∗ succ(∆′,Θ)

∧ (Θ = 〈∅, id2〉 ∨ ¬complete(e ′
1;e

′
2))

(SC2) slv(〈u, e〉, d , e1:e2)→ err(〈ek , d〉), if build(u, e1) = e ′
1 ∧ build(u, e2) = e ′

2

∧ match(〈u, e〉, d , 〈∅,∅〉, e ′
1, e

′
2)→

∗ succ(∆′,Θ)

∧ Θ = 〈id1, id2〉 ∧ id1 6= ∅ ∧ complete(e ′
1;e

′
2)

∧ ek = unmatched(id1, getBinders(e ′
1) \ id2, id2)

(SC3) slv(〈u, e〉, d , e1:e2)→ err(er), if build(u, e1) = e ′
1 ∧ build(u, e2) = e ′

2

∧ match(〈u, e〉, d , 〈∅,∅〉, e ′
1, e

′
2)→

∗ err(er )

structure/signature matching

(SM1) match(∆, d ,Θ, e,⊤) → succ(∆,Θ)

(SM2) match(∆, d ,Θ, e, e1;e2) → match(∆′, d ,Θ′, e, e2),

if match(∆, d ,Θ, e, e1)→
∗ succ(∆′,Θ′)

(SM3) match(∆, d ,Θ, e, e1;e2) → err(er),

if match(∆, d ,Θ, e, e1)→
∗ err(er )

(SM4) match(∆, d ,Θ, e, �vid=σ1) → succ(∆′, addI(Θ, vid)),

if e(vid) = σ2 ∧ slv(∆, d , σ2 �vid σ1)→
∗ succ(∆′)

(SM15) match(∆, d ,Θ, e, �vid=σ1) → err(er),

if e(vid) = σ2 ∧ slv(∆, d , σ2 �vid σ1)→
∗ err(er )

(SM5) match(∆, d ,Θ, e, �tc=κ1) → succ(∆′, addI(Θ, tc)),

if e(tc) = κ2 ∧ slv(∆, d , κ2 �tc κ1)→
∗ succ(∆′)

(SM16) match(∆, d ,Θ, e, �tc=κ1) → err(er),

if e(tc) = κ2 ∧ slv(∆, d , κ2 �tc κ1)→
∗ err(er)

(SM6) match(∆, d ,Θ, e, �strid=e0)→ succ(∆′, addI(Θ, strid)),
if e(strid) = e ′

0 ∧ ∆ = 〈u1, e1〉

∧ match(∆, d , 〈∅,∅〉, e ′
0, e0)→

∗ succ(〈u2, e2〉, 〈id1, id2〉)

∧ (id1 = ∅ ∨ ¬complete(e ′
0;e0)) ∧ ∆′ = 〈u2, e1;(�strid =

d
== diff(e1, e2))〉

(SM17) match(∆, d ,Θ, e, �strid=e0)→ err(〈ek , d〉),

if e(strid) = e ′
0 ∧ match(∆, d , 〈∅,∅〉, e ′

0, e0)→
∗ succ(∆′, 〈id1, id2〉) ∧ id1 6= ∅

∧ complete(e ′
0;e0) ∧ ek = unmatched(id1, getBinders(e ′

0) \ id2, id2)

(SM7) match(∆, d ,Θ, e, �strid=e0)→ err(er),

if match(∆, d , 〈∅,∅〉, e(strid), e0)→
∗ err(er)

(SM8) match(∆, d ,Θ, e, �vid=is1) → succ(∆;(�vid=is),Θ),

if e[vid ] = is2 ∧ (solvable(is1 =
d
== is2) ∨ strip(is1) = v) ∧ is = ifNotDum(is1, is

d

2 )

(SM9) match(∆, d ,Θ, e, �vid=is1) → err(er),

if strip(is1) 6= v ∧ slv(∆, d , is1=e[vid ])→∗ err(er )

(SM10) match(∆, d ,Θ, e, �id=x) → succ(∆;(�id=y),Θ′),
if e(id) is undefined ∧ y = toDumVar(x) ∧ Θ′ = addO(Θ, id)

(SM11) match(∆, d ,Θ, e, ev) → succ(∆;ev ,Θ)

(SM12) match(∆, d ,Θ, e, e ′d
′

) → match(∆, d ∪ d
′
,Θ, e, e ′)

(SM14) match(∆, d ,Θ, e,⊙) → succ(∆;⊙,Θ)

Figure 15.1 Constraint solving to handle merged unmatched errors

during constraint solving.

The end points of a minimal type error clash are notable program locations

because they are the sources of conflicting types and because as such they allow us

to derive the kind of the error and therefore they allow us to produce a verbose type

error message.
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For example the end points of the type constructor clash in fn x => (x 1, x true)

are the locations of 1 and true. As discussed above, we use different colours to

highlight end points. The type error report for this error is composed by, among

other things, the following highlighting:

fn x => (x 1, x true)

and the following verbose message:

Type constructor clash between int and bool

This report does not involve the Standard ML basis but a builtin basis where 1

can only have the type int (from the initial static basis [107, Appendix C]). When

checked against the Standard ML basis where 1 is overloaded to several different int

types, one obtains the following message:

Constant 1 overloaded to the overloading class Int not including bool

The overloading class Int is a set of int types that contains the type int from

the initial static basis (See Sec. 18.3 for more details on overloading).

An unmatched error can be regarded as a clash error between two sets of iden-

tifiers. For example, in

signature s = sig val y : int end

structure S = struct val x = 1 end :> s

the set {y} should be included in the set {x}. The end points of the unmatched

error in this piece of code are the locations of x and y.

In order to keep track of end points, changes in our constraint system are re-

quired. Let us informally present how Impl-TES handles end points. We only in-

formally present how to handle end points because formally presenting this feature

of our TES the way we have implemented it would require updating most of the

machinery presented so far.

First, we annotate the type constructor names in the internal type constructor

set as follows: we replace the γs in ITyCon by terms of the form 〈γ, l〉. We do the

same for ar and replace it by 〈ar, l〉. That is to say, We define the following set:

γ̃ ∈ LabTyConName ::= 〈γ, l〉 | 〈ar, l〉

and replace the type constructor names in ITyCon as follows:

γ −ITyCon−−−−_ γ̃
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As part of an informal presentation on how to handle end points, this figure only updates few
constraint generation rules. Not all the rules that need to be updated are redefined in this figure.

(G18) datatype dn
l
= cb -⊲ (ev=((α1 =

l
==ω1 〈γ, l〉);(α2 =

l
==α1);e1;loc e ′

1 in poly(e2)));ev
l

⇐⇐⇐ dn -⊲ 〈α1, ω1, e1, e
′
1〉 ∧∧∧ cb -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, γ, ev)

(G3) ⌈exp atexp⌉l -⊲ 〈α, e1;e2;(α1 =
l
==α2

l
� α)〉 ⇐⇐⇐ exp -⊲ 〈α1, e1〉 ∧∧∧ atexp -⊲ 〈α2, e2〉 ∧∧∧ dja(e1, e2, α)

Figure 15.2 Redefinition of some constraint generation rules to handle end points

As part of an informal presentation on how to handle end points, this figure only updates few
constraint solving rules. Not all the rules that need to be updated are redefined in this figure.

(S12) slv(∆, d , sq µ=τ)→ slv(∆, d1 ∪ d2, γ̃=γ̃
′;sq=sq ′),

if τ = sq ′ µ′ ∧ collapse(µd ) = γ̃d1 ∧ collapse(µ′∅) = γ̃′d2

(S13) slv(∆, d , τ1=τ2) → slv(∆, d , µ=〈ar, l〉),

if {τ1, τ2} = {sq µ, τ0
l
� τ ′0} ∧ strip(µ) ∈ LabTyConName

(S6) slv(∆, d , µ1=µ2) → err(〈tyConsClash(µ1, µ2), d〉),
if {µ1, µ2} ∈ {{〈γ, l1〉, 〈γ

′, l2〉}, {〈γ, l1〉, 〈ar, l2〉}} ∧ γ 6= γ′

Figure 15.3 Redefining of some constraint solving rules to handle end points

We also remove ar from ITyCon. We label arrow types as follows:

τ1�τ2 −
ITy−−_ τ1

l
� τ2

At constraint generation, instead of generating γ’s, we generate constraint terms

of the form 〈γ, l〉 where l is the label annotating the labelled external syntactic form

responsible for γ’s generation. For example, we would replace rule (G18) defined in

Fig. 14.28 by the one defined in Fig. 15.2. The new rule only differs from the old

one by the replacement of the generated γ by 〈γ, l〉. We also need to update each

rule introducing a type of the form τ1�τ2. For example, we need to replace rule (G3)

defined in Fig. 11.7 by the one defined in Fig. 15.2. The new rule only differs from

the old one by the replacement of α1�α2 by α1
l
� α2. Note that Fig. 15.2 only

presents a few changes that need to be made to our initial constraint generation

algorithm. Not all the necessary changes are presented in this figure.

We also have to update some constraint solving rules. For example, we replace

rule (S12) defined in Fig. 14.29 by the one defined in Fig. 15.3. The only difference

with the old rule is that TyConName has been replaced by LabTyConName. Another

example is rule (S13) which is originally defined in Fig. 14.29 and which is updated

in Fig. 15.3. The only difference with the old rule is that ar is replaced by 〈ar, l〉,

τ0�τ
′
0 is replaced by τ0

l
� τ ′0 and TyConName has been replaced by LabTyConName.

Yet another example is rule (S6) which is originally defined in Fig. 11.10 and which

is updated in Fig. 15.3. In the new rule, l1 and l2 are the two end points of a type

constructor clash. Note that Fig. 15.3 only presents a few changes that need to be

made to our constraint solver. Not all the necessary changes are presented in this

figure.

Instead of changing the syntax of internal types and internal type constructors, it

could be interesting to investigate the handling of end points defined as dependencies
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as follows:

d ∈Dependency ::= · · · | e(l)

We leave this investigation for future work.
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Some of TES’ properties

16.1 Compositionality

16.1.1 Status of the compositionality of our TES

The TES originally defined by Haack and Wells [57] allowed a compositional analy-

sis. Their constraint generation algorithm was accumulating the types of identifiers

at bound occurrences in an environment using intersection types. When dealing

with a polymorphic declaration of an identifier id , their constraint generation was

duplicating the constraints generated for the declaration as many times as there were

types associated with id in the environment generated for its scope. This approach

led to a combinatorial explosion in the number of generated constraints. To solve

this combinatorial explosion, we switched to another approach to polymorphic dec-

larations. Bindings are now solved at constraint solving. At constraint solving our

TES forces the solving of the constraints generated for a polymorphic declaration

before using it. Constrained types are simplified into types. We then only have to

duplicate the type of a polymorphic declaration and not all the constraints initially

generated for it. This idea was initially based on other works such as the ones by,

e.g., Gustavsson and Svenningsson [55] or Pottier and Rémy [116].

Because of this change in our system we have lost the compositionality of our

analysis. As a matter of fact, because we force the solving of the constraints gen-

erated for a polymorphic declaration before using it, if the declaration refers to a

free identifier, once the type of the polymorphic declaration is generated from the

constraints, this type is then independent from the free identifier’s type. For exam-

ple, when solving e, the environment generated for val rec f = fn x => z, because z

occurs free, f’s type is of the form (where dependencies have been omitted for read-

ability reasons): ∀{α1, α2}. α1�α2 where α1 is x’s type and α2 is a type constrained

to be equal to z’s type. This type scheme does not depend on z. If f’s declaration

is placed in a larger context containing the declaration val z = (), to be able to

recompute f’s type in this larger context we need to solve the environment gener-
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ated for val z = () and then solve once again e. We cannot reuse any information

previously computed while solving e the first time.

However, the compositionality of our initial constraint generation algorithm is

not affected by this change. It remained compositional thanks to our system of

binders and accessors. Our constraint generation algorithm is not based on envi-

ronments that accumulate the types of identifiers at bound occurrences. For an

identifier at a bound occurrence, we generate an accessor as part of the generated

environment. When dealing with an identifier id at binding occurrence we do not

generate constraints relating the type of id to its bound occurrences. We do not

compute bindings at initial constraint generation but for such an identifier we gen-

erate a binder as part of the generated environment. We therefore delay the solving

of bindings to be dealt with at constraint solving instead.

These binders and accessors are especially necessary to obtain a compositional

initial constraint generation algorithm while handling features such as open declara-

tions and dealing with SML identifier statuses. When dealing with an open declara-

tion and when the opened structure identifier is free, we are facing the fact that the

structure might be in the scope of identifiers that it re-declares. Without binders

and accessors, at constraint generation, one can then choose to either (1) shadow

all the identifiers in which the open declaration is in the scope of, or (2) shadow

none of them, or (3) solve the structure opening. None of these solutions would

allow one to design a compositional constraint generation algorithm. A composi-

tional constraint generation algorithm must allow the structure declaration to be

analysed after analysing declarations which open it. Solutions (1) and (2) are not

suitable because it might turn out that the structure only partially shadows the de-

clared identifiers in which the open declaration is in the scope of. Solution (3) would

require having the opened structure already analysed by the constraint generation

algorithm when dealing with its opening. Also, solution (3) would not allow one

to separate the constraint generation phase from the constraint solving phase and

would not allow “faithful” representations of pieces of code in a constraint language.

In our system, when dealing with an open declaration, we generate an accessor re-

ferring to the opened structure identifier and then export the environment declared

by the structure via an environment variable.

Let us now discuss the handling of SML identifier statuses. When dealing with an

identifier vid in a pattern that is not a recursive function (f is a recursive function in

val rec f = fn x => x, but it is not in val f = fn x => x) the status of vid is resolved

by looking at its context. If vid is declared as a recursive function in its context

then vid is forced to be a value variable and not a datatype constructor and if vid is

declared as a datatype constructor in its context then vid is forced to be a datatype

constructor and not a value variable. If vid is neither declared as a value variable

nor as a datatype constructor or if vid is free in its context then vid could either be
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a value variable or a datatype constructor. If the analysed piece of code is complete

then it means that vid is a value variable but if the piece of code is incomplete we

cannot resolve the status of vid . In our system if we cannot resolve the status of an

identifier vid then it is considered as a dependent value variable (dependent on vid ’s

status). At constraint generation we therefore generate unconfirmed binders (see

Sec. 14.1) which allow us to delay the resolution of identifier status to be dealt with

at constraint solving. Making this decision at initial constraint generation would

not allow our initial constraint generation algorithm to be compositional.

Because accessors and binders allow us to delay the resolution of bindings to

be dealt with at constraint solving rather than at constraint generation, we can

therefore obtain a compositional initial constraint generation algorithm. However,

because constraint solving requires the context of an environment e to be solved

before solving e, it is therefore not compositional.

16.1.2 Future work on compositionality

Unfortunately, our initial constraint generator is not compositional anymore once

fixity declarations are added to the language. Fixity declarations influence the pars-

ing of a piece of code. We do not have a good solution to handle fixity declarations

in a compositional way. Therefore, our TES deals with fixity at parsing time. We

leave the study of a compositional constraint generation algorithm in the presence

of fixity declarations for future work.

Finally, we believe that the intersection type machinery introduced to handle

functors in Sec. 14.9 could be used to partially recover the compositionality of con-

straint solving. For example, let us consider the declaration val rec f = fn x => z.

Informally, instead of discarding z’s accessor, we could imagine generating an acces-

sor of the form (we omit dependencies and ⊤ for readability purposes) �z=α ·∩ sv

which would be stored in the constraint solving context from the state in which the

constraint solver is when dealing with z’s accessor. We would also generate a binder

of the form �f=∀{α, α′}. {〈α, sv〉}⋄α′�α for f. If, e.g., val u = if f () then 1 else 0

was in the scope of f’s declaration, we would then constrain sv to be equal to

bool ·∩ sv ′. For the sequence of the two declarations, we would then generate an

environment of the form (�z=α ·∩ bool ·∩ sv ′);(�f=∀{α, α′}. {〈α, sv〉} ⋄ α′�α). If

these two declarations were in the scope of val z = (), where z has type unit, we

would then obtain a type error clash when constraining unit to be a subtype of

bool. If instead these two declarations were in the scope of val z = true, where z

has type bool, we would constrain further f’s binder to be �f=∀{α′}. α′�bool by

constraining α to be equal to bool. However, we believe that such a solution would

be inefficient. Let us also sketch the implications of such a system in the pres-

ence of open declarations. Let us consider the following sequence of declarations:
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val z = (); open S; val rec f = fn x => z. Instead of simply discarding S’s binder

we would then store it in the constraint solving context from the state in which the

constraint solver is when dealing with S’s accessor. We would then generate the fol-

lowing environment (�z=∀∅. unit);(�S=ev);ev ;(�z=α ·∩ sv);(�f=∀{α, α′}. {〈α, sv〉}⋄

α′�α). It becomes then unclear what to do when also dealing with, among other

things, signatures. We also leave the investigation of such a system for future work.

16.2 Satisfiability of Yang et al.’s criteria

Yang, Wells, Trinder and Michaelson [149] provide a list of criteria for good type

error reports. We will now informally present how our type error reports meet these

criteria.

First, let us point out that in TES a type error report is composed by a type

error slice, a highlighting, a verbose explanation of the kind of the error, and a set

of identifier statuses context dependencies.

Correct. For the same reasons as listed in Sec. 11.9, we have not formally proved

that, given a piece of code, our initial constraint generation algorithm generates

unsolvable constraints if and only if the piece of code does not have a static semantics

in SML. We however strongly believe this result to be true.

Moreover, every SML compiler already contains a type inference algorithm en-

suring only type safe code is compiled. Standard software engineering techniques,

like our database of 550 regression tests (typable and untypable pieces of SML), are

much more cost effective for ensuring high quality error slices. This database is used

to check the empirical correctness of our algorithms.

Note that we do not plan on building another SML compiler but instead we would

like to obtain an interface where the errors reported by TES would be preferred over

the ones of any SML compiler. This interface could regularly run our TES while

programmers are implementing (e.g., every time programmers stop typing for a

certain amount of time). If a type error was discovered by our TES it would then

be reported to the user, otherwise we would rely on a SML compiler chosen by the

user to find errors that our TES does not find (this would be considered as a bug of

our TES once our implementation finished) and to compile the code. We leave the

building of such an interface for future work.

Precise. We have not proved the minimality result stated in Sec. 11.9 but we

strongly believe that our TES only reports minimal errors. We believe that our type

error slices are minimal and that therefore they are precise because they do not

involve portions of code not participating in the reported errors.

Succinct. Our verbose explanations are succinct. For example, for () (), we would

report the type error slice 〈..() 〈..〉..〉. We would also report a verbose, clear and
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brief message explaining that the error is a type constructor clash between the type

unit and the functional type.

A-mechanical. TES does not report any internal constraint term computed while

searching for type errors.

Source-based. We consider the main components of type error reports in TES to

be the highlightings. Our highlightings directly present type errors in the user code

and therefore are source-based. A type error slice however is based on the user code,

where portions not participating to the reported error are omitted. The omissions

are made explicit thanks to dots and extra parentheses. Note that a type error slice

is therefore not strictly speaking source-based because it involves extra symbols.

However, type error slices are mainly in our reports to formally define type errors

and to make explicit the scoping of identifiers in the highlightings.

Unbiased. TES is unbiased thanks to its enumeration algorithm which is designed

to find all minimal unsatisfiable portions of a constraint/environment. Moreover,

by default no location is presented in our system as being more important than

others. End points are highlighted using different colours because they are used

among other things to generate our verbose error messages. They are by no means

more important than the other locations. Note the use of “by default” above. Even

though we do not believe that any location in a type error slice should be more

important than the other ones, we also believe that this could be relaxed depending

on users’ preferences. For example, one could prefer looking at the non signature

related portions of a highlighting and therefore would prefer having the signature

related portions of a type error highlighted with a lighter colour. This has not been

implemented or investigated yet.

Comprehensive. Thanks to both our highlightings and our type error slices, given

a type error report, the user does not need to look at any other portion that is not

involved in the report. Moreover, our type error slices are unambiguous. In our type

error slices, bindings of identifiers are made explicit thanks to our extra dots and

parentheses.
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Implementation discussion

17.1 Other implemented features

17.1.1 Syntax errors

As mentioned in Sec. 14.1 and Sec. 14.10, our implementation also reports some

context-sensitive and context-insensitive syntactic errors. Let us present some ex-

amples.

We have already mentioned in Sec. 14.1 that our TES reports that x occurring

twice in the pattern in fn (x, x) => x is an error only if x has value variable status.

This is a context-sensitive syntactic error that depends on the x’s status. We report

the following highlighting fn (x, x) => x where fn and => are highlighted to show

that the highlighted x’s occur in a pattern.

We also report various context-insensitive multi-occurrence syntax errors. For

example, in Sec. 14.10, we mentioned that type (’a, ’a) t = ’a is syntactically in-

correct because the explicit type variable ’a occurs twice in the type variable se-

quence (’a, ’a). We report the following highlighting type (’a, ’a) t = ’a where

type and = are highlighted to show that the highlighted ’a’s occur in the type vari-

able sequence of a type declaration. The datatype declaration datatype t = T | T is

also syntactically incorrect because it declares twice the datatype constructor T. We

report the following highlighting datatype t = T | T. Also, datatype t = V and u = V

which declares, among other things, two datatypes t and u is syntactically incorrect

because V is declared as a datatype constructor of both t and u in the same datatype

declaration. We report the following highlighting datatype t = V and u = V. We re-

port many other cases of multi-occurrence syntax errors that we do not discuss in

this document.

Let us present another kind of context-insensitive syntactic error. The datatype

specification datatype (’a,’b)t = T of ’a -> ’c is syntactically incorrect because the

type variable ’c does not occur in the type variable sequence (’a,’b). We report

the following highlighting datatype (’a,’b)t = T of ’a -> ’c. We also explain in the
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report that a type variable is unbound in the declaration.

Let us present a last example. As mentioned in Sec. 11.2, recursive declarations’

bodies must be fn-expressions. For example, val rec f = () is not syntactically

correct because () is not a fn-expression. We report the following highlighting

val rec f = ().

17.1.2 Datatype replications

A datatype replications in SML is of the form datatype t = datatype u. For example

if u is defined in the context as follows: datatype u = U | V, then the datatype repli-

cation will have the effect to splice U’s constructors into the current environment.

Datatype replications are handled similarly to open declarations in Impl-TES. In

our implementation we also associate environments with external type constructors.

For example, for datatype u = U | V, we generate a binder for u that carries u’s

type but it also binds an environment which is the environment generated for its

constructors (U and V in our example). Then we deal with the datatype declaration

by generating an accessor that does not access to u’s internal type but that access

to the environment associated with u.

17.1.3 Exceptions

When adding exceptions, one has to consider another identifier status: exception

constructors. Let us present some interesting issues raised by exceptions. First, let

us consider the following typable piece of code:

exception ex of int;

exception fx = ex;

val x = fn () => raise fx 0;

The exception constructor ex is unary. But the arity of fx cannot be inferred by

just looking at the declaration exception fx = ex. The arity of fx depends on ex’s ar-

ity. That is why when dealing with exceptions we need more that the dummy status

variable ηdum. When generating constraints for the declaration exception fx = ex, we

associate a status variable with the exception fx, which we constrain to be equal to

ex’s status, which is obtained via an accessor.

There is another issue raised when dealing with such declarations. The issue is

that given exception fx = ex, we do not need to know ex’s arity to known that fx

is an exception constructor. We therefore consider extra raw statuses. We have a

nullary exception raw status e0 and a unary exception raw status e1 (as we have

d and c for datatype constructors), but we also have an extra exception raw status

e for when the arity of an exception constructor is unknown. For our example,

at initial constraint generation we constrain fx’s status to be equal to ex’s status
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and we also constrain it to be equal to e. This constraining is made such that the

constraint on fx’s status with ex’s status will predominate the constraint on fx’s

status with the raw status e.

17.1.4 Long identifiers

Long identifiers are used to access identifiers defined in structures. Let us consider

the following simple typable SML program:

(EX14)

structure S = struct

val a = 1

val f = fn x => x + 1

structure T = struct val b = f a end

end

val x = S.T.b + 1

The main point of this example is that S.T.b is a long identifier that allows one to

access the identifier b defined in T, itself defined in S. A long identifier is a sequence

(possibly empty) of structure identifiers, each of them followed by a dot, followed by

an identifier. In order to handle long identifiers in Impl-TES we use long accessors

where instead of an identifier one can have a labelled long identifier.

One can then obtain unmatched errors involving long identifiers. For example, if

one replaces S.T.b by S.T.v in example (EX14) one obtains the following highlighting:

structure S = struct

val a = 1

val f = fn x => x + 1

structure T = struct val b = f a end

end

val x = S.T.v + 1

We have not fully finished implementing support for long identifiers, but we plan

in reporting the two following slices for the following variant of example (EX14):

structure S = struct

val a = 1

val f = fn x => x + 1

structure T = struct val b = f a end

end

val x = S.Y.b + 1

structure S = struct

val a = 1

val f = fn x => x + 1

structure T = struct val b = f a end

end

val x = S.Y.b + 1

This example differs from example (EX14) by the replacement of S.T.b by S.Y.b.

The first highlighting shows that S.Y tries to access Y in S and that S does not declare

S. The second highlighting shows that S.Y. tries to access the structure Y in S and

that S does not declare any structure called Y.
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Figure 17.1 Highlighting of a SML type error in Emacs

17.2 Performance

Our implementation is currently usable for small projects (a few thousand lines)

and is steadily improving. Our latest TES is 10 to 100 times faster in many cases

than before we switched to using our constraint/environments. Our previous TES

version was already enormously faster than HW-TES (the original TES by Haack

and Wells) due to avoiding duplication of polymorphic types. We believe that more

careful use of data structures and algorithms will allow much better performance.

Minimisation and enumeration are expensive. The expense of minimisation is

handled by (1) reporting partially minimised slices to the user interface while minimi-

sation continues in the background, and (2) designing the constraint solving system

to avoid including unneeded parts of the program in slices whenever possible (which

means each iteration of minimisation does less work, as explained in Sec.11.7.6).

The expense of enumeration is handled by reporting slices to the user interface as

they are produced while continuing enumeration in the background. Wolfram’s re-

sult [145] shows there will be an exponential number of minimal type error slices in

the worst case, so we merely aim to quickly present a few of them.

17.3 User interface

An Emacs interface (and a preliminary one for Vim) highlights slices in the edited

source code. There is also a terminal command-line interface. Fig. 17.1 presents a

screenshot of the type error presented in Sec. 10.4.2 highlighted in Emacs. The light

pink corresponds to slices other than the focused one. Other such screenshots are

provided in Ch. 13.
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17.4 The Standard ML basis library

Our examples have used operators like :: and +. For now, we allow one to define the

Standard ML basis in a file, and we provide a file declaring a portion of the basis.

For the future, we have begun implementing a way to use library types extracted

from a running instance of SML/NJ.
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Future work

18.1 Examples exhibiting the desire for even more

type error reports

We have found some cases of incomplete pieces of code that we do not believe could

be made typable by completing them. We present some of them in this section. Not

reporting such errors prevents TES from reporting all minimal type error slices in

the presence of incomplete pieces of code.

18.1.1 An example involving structures and signatures

We do not believe that the following incomplete piece of code could be made typable:

signature S = sig val f : 〈..〉 end

structure U = struct val f = true end : S

structure V = struct val f = () end : S

As a matter of fact, whatever 〈..〉 is replaced by, the piece of code would always

be untypable. Finding such errors is complicated because, e.g., the following piece

can be made typable by replacing 〈..〉 by t:

signature S = sig type t val f : 〈..〉 end

structure U = struct type t = bool val f = true end : S

structure V = struct type t = unit val f = () end : S

18.1.2 An example involving datatype constructors

Let us consider this other example in which C is free:

val = fn (C ) =>

C () ()
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The first occurrence of C forces C to be a unary (datatype or exception) construc-

tor. The second occurrence of C forces C to take two arguments. In SML, datatype

and exception constructors can take one argument at most. Therefore, we believe

that there is no declaration of C that would make the piece of code typable. Currently

our TES does not complain. We believe we could generate an error by generating

at constraint solving a binder for C when dealing with the accessor generating for

C’s first occurrence. This binder would force C to have an arrow type. Note that

this piece of code is incomplete in the sense that C is constrained to be a datatype

constructor and there is no declaration of C as such.

18.1.3 An example involving type annotations

Let us now consider the following piece of code in which u is free:

datatype ’a t = T of ’a t

fun f x = T (x : u)

We believe that there is no declaration of u that would make this piece of code

typable. If u was defined as a datatype then it would have to be different from t

because u’s definition would have to precede t’s definition. If u was defined as a type

function then because it does not take any argument it would have to be a nullary

type function. It then would have to be equal to a type that does not mention any

type variable and therefore it would have to be equal to a type construct where the

type constructor is different from t because u’s definition would have to precede t’s

definition. We have not yet investigated the report of such errors.

18.2 Missing features

Some of SML’s features are not yet handled by Impl-TES or by Form-TES. We do

not yet deal with type and signature sharing, equality types, and flexible records.

Impl-TES handles non-flexible records but we have not started investigating flexi-

ble records. However, because we allow programmers to use flexible records in pieces

of code (we parse them), Impl-TES handle them in a way that cannot cause false

errors to be found. We have started implementing support for type sharing but it

is currently at an early stage (we only catch a few errors involving type sharing

specifications). We believe that the handling of equality types will require the intro-

duction of another kind of rigid type variables (equality rigid type variables). We

believe that the handling of these features will not require fundamental extensions

to our constraint system. The handling of these features is left for future work.

Also, we have not yet implemented or formalised support for overloading res-

olution as specified in The Definition of Standard ML [107, Appendix E]: “Every
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overloaded constant and value identifier has among its types a default type, which is

assigned to it, when the surrounding text does not resolve the overloading. For this

purpose, the surrounding text is no larger than the smallest enclosing structure-level

declaration; an implementation may require that a smaller context determines the

type.” We currently do not do anything when “the surrounding text does not resolve

the overloading”. For example, Impl-TES considers the following piece of code to be

typable:

structure S = struct fun f x y = x + y end

open S

val x1 = f 1 2

val x2 = f 1.1 2.2

In SML the operator + is overloaded to the overloading class Int described in

Sec. 18.3. If one follows The Definition of Standard ML, because the surrounding

text of + in f’s definition does not resolve the overloading of +, it results that when

dealing with S the function f is forced to be a function from int to int because the

type int is the default type of the overloading class Int. (Note that implementations

are allowed to resolve the overloading of + when inferring f’s type.) Therefore, x1 is

fine but x2’s body should be involved in a type error.

Overloading is further discussed in Sec. 18.3.

18.3 Overloading

18.3.1 Status of TES’ handling of overloading

Impl-TES partially handles overloaded operators and constants. We also allow the

user to overload operators and to define overloading classes thanks to overloading

declarations. These declarations are useful to define the Standard ML basis (Impl-

TES uses a basis file containing most of the declarations from the Standard ML

basis). There are however some issues stemming from the handling of overloading.

One issue is that we feel that we do not currently do a good job at reporting type

error slices involving overloaded operators or constants. Usually such errors involve

many types from many structures from the Standard ML basis, and these tend to

cloud type error slices. Let us first informally present our overloading declarations.

We will then illustrate the issue mentioned above. Overloaded operators and con-

stants are overloaded over overloading classes. An overloading class is the union

of a number of type constructors. For example the overloading class Int is a type

constructor set containing at least int. Similarly are defined the overloading classes

Real, Word, String, and Char (See The Definition of Standard ML [107, Appendix E]).

These overloading classes are called basic. On top of the basic overloading classes
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are defined the composite overloading classes which combine the basic overloading

classes. For example the overloading class RealInt is defined as Real∪Int. Note that

Int can contain (and usually does) other type constructors. In SML/NJ, it also con-

tains, e.g., the type Int.int which is in SML/NJ the same as the type int (which

is the int type at top-level), and also contains Int32.int which is in SML/NJ differ-

ent from the type int. In SML/NJ, the overloading class Int contains many other

type constructors. In Impl-TES, overloading classes can be defined using overload

declarations which follow the following labelled syntax:

ovcid ∈OverloadingClassId (overloading classes identifiers)

ovcitem ∈OverloadingItem ::= inl tc | ovcid l

ovcseq ∈OverloadingSeq ::= (ovcitem1, . . . , ovcitemn)l

dec ∈Dec ::= · · · | overload ovcid l ovcseq

For example, in the basis file provided with the implementation of Impl-TES, the

overloading class Int is defined as follows:

overload Int (int, Int.int, Int31.int, Int32.int,

Position.int, IntInf.int, LargeInt.int)

We then use other kinds of overloading declarations to overload operators. These

declarations follow the following labelled syntax:

dec ∈Dec ::= · · · | overload vid :l ty with tv in ovcseq

For example, in our basis file, + is overloaded as follows:

overload + : ’a * ’a -> ’a with ’a in (in Int, in Word, in Real)

18.3.2 An issue in handling overloading

Let us now consider the following erroneous piece of code: val x = 1 + true. Because

true is of type bool which is not a type in any of the overloading classes Int, Word or

Real then one obtains a type error. The type error slice reporting this error needs to

contain 〈..〉 + true, but it also need to contain +’s definition and also all the types on

which + is overloaded. In this case it involves reporting portions of many structures

from the basis. All the reported information tend to cloud the main point of the

error which is that true is not any of the types on which + is overloaded. Therefore,

even though our error reports are correct, we believe we need to develop a way to

“fold” such errors. The same arguments applies for overloaded constants. This is

left for future work.

257



Chapter 18. Future work

18.4 Tracking programming errors using TES

Even though type error slices are already of a great help on their own, we believe we

could improve our error reports by proposing guidance to users to navigate through

error slices. Let us consider the type error slice presented in Fig. 10.2 in Sec. 10.4.2.

Sec. 10.4.2 contains some text describing a way of reading the presented type error

slice, depending on the bindings in the slice. We would like to automate this in

the future. We would like to make data flow information, computed at constraint

solving, available to users. It is however not evident that such guidance on how to

read type error slices would be useful for every error kind. We believe it would for

at least type constructor clashes and circularity errors.

18.5 Combining TES with suggestions to repair

type errors

We see that our work can enable work for suggesting fixes, because it can correctly

calculate the portion of a program that is involved in a type error, while excluding

the uninvolved portion. This would allow fix suggestions to correctly consider all the

spots which need to be considered to find the right place for the fix. In the absence

of information equivalent to a correct type error slice, automated fix suggestion

will inevitably sometimes suggest fixes at the wrong places. We believe it could be

interesting to study the combination of our work with other approaches to error

reporting, e.g., by Hage and Heeren [59] or by Lerner et al. [99].

18.6 Proving the correctness of TES

Once Form-TES will be close enough to Full-TES and stable enough, we would like

to prove its correctness (i.e., given a piece of code, it finds all and only the minimal

errors of the given piece of code if and only if the piece of code is untypable). This

would require proving the correctness of the different components of TES, i.e., of

constraint generation, constraint solving, minimisation, enumeration, and slicing.
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Proofs of Part I

A.1 From a semantic proof to a syntactic one

(Ch. 4)

A.1.1 Saturation, variable, abstraction properties (Sec. 4.1)

Proof of Lemma 4.1.2. 1. If r = βη, the proof is by induction on the length of

the reduction M →∗
βη N .

• If M = N then M [x := P ] = N [x := P ]. We prove that N [x := P ] →∗
βη

N [x := Q] by induction on the structure of N .

– Let N ∈ Var. If N = x then N [x := P ] = P →∗
βη Q = N [x := Q],

else N [x := P ] = N = N [x := Q].

– Let N = λy.N ′. By IH, N [x := P ] = λy.N ′[x := P ]→∗
βη λy.N

′[x :=

Q] = N [x := Q] such that y 6∈ fv(PQx).

– Let N = N1N2. By IH, N [x := P ] = N1[x := P ]N2[x := P ] →∗
βη

N1[x := Q]N2[x := Q] = N [x := Q].

• Let M →∗
βη M

′ →βη N . By IH, M [x := P ] →∗
βη M

′[x := Q]. We prove

that M ′[x := Q]→βη N [x := Q] by induction on the structure of M ′.

– Let M ′ ∈ Var then nothing to prove since M ′ does not reduce.

– Let M ′ = λy.M ′
1.

∗ Either N = λy.M ′
2 such that M ′

1 →βη M ′
2. By IH, M ′

1[x :=

Q] →βη M ′
2[x := Q]. So M ′[x := Q] = λy.M ′

1[x := Q] →βη

λy.M ′
2[x := Q] = N [x := Q] such that y 6∈ fv(Qx).

∗ Or M ′
1 = Ny such that y 6∈ fv(N). So M ′[x := Q] = λy.N [x :=

Q]y →η N [x := Q] such that y 6∈ fv(Qx).

– Let M ′ = M1M2.
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∗ Either N = M ′
1M2 such that M1 →βη M ′

1. By IH, M1[x :=

Q] →βη M ′
1[x := Q]. So M ′[x := Q] = M1[x := Q]M2[x :=

Q]→βη M
′
1[x := Q]M2[x := Q] = N [x := Q].

∗ Or N = M1M
′
2 such that M2 →βη M

′
2. By IH, M2[x := Q] →βη

M ′
2[x := Q], so M ′[x := Q] = M1[x := Q]M2[x := Q] →βη

M1[x := Q]M ′
2[x := Q] = N [x := Q].

∗ Or M1 = λy.M ′
1 and N = M ′

1[y := M2]. So, M ′[x := Q] =

(λy.M ′
1[x := Q])M2[x := Q] →β M

′
1[x := Q][y := M2[x := Q]] =

N [x := Q] by the well known substitution lemma and such that

y 6∈ fv(Qx).

If r = β, the proof is by induction on the length of the reduction M →∗
β N .

• If M = N then M [x := P ] = N [x := P ]. We prove that N [x := P ] →∗
β

N [x := Q] by induction on the structure of N .

– Let N ∈ Var. If N = x then N [x := P ] = P →∗
β Q = N [x := Q], else

N [x := P ] = N = N [x := Q].

– Let N = λy.N ′. By IH, N [x := P ] = λy.N ′[x := P ] →∗
β λy.N

′[x :=

Q] = N [x := Q] such that y 6∈ fv(PQx).

– Let N = N1N2. By IH, N [x := P ] = N1[x := P ]N2[x := P ] →∗
β

N1[x := Q]N2[x := Q] = N [x := Q].

• Let M →∗
β M

′ →β N . By IH, M [x := P ]→∗
β M

′[x := Q]. We prove that

M ′[x := Q]→β N [x := Q] by induction on the structure of M ′.

– Let M ′ ∈ Var then nothing to prove since M ′ does not reduce.

– Let M ′ = λy.M ′
1. Then N = λy.M ′

2 such that M ′
1 →β M

′
2. By IH,

M ′
1[x := Q] →β M ′

2[x := Q], so M ′[x := Q] = λy.M ′
1[x := Q] →β

λy.M ′
2[x := Q] = N [x := Q] such that y 6∈ fv(Qx).

– Let M ′ = M1M2.

∗ Either N = M ′
1M2 such that M1 →β M ′

1. By IH, M1[x :=

Q] →β M
′
1[x := Q], so M ′[x := Q] = M1[x := Q]M2[x := Q] →β

M ′
1[x := Q]M2[x := Q] = N [x := Q].

∗ Or N = M1M
′
2 such that M2 →β M

′
2. By IH, M2[x := Q] →β

M ′
2[x := Q], so M ′[x := Q] = M1[x := Q]M2[x := Q] →β

M1[x := Q]M ′
2[x := Q] = N [x := Q].

∗ Or M1 = λy.M ′
1 and N = M ′

1[y := M2]. So, M ′[x := Q] =

(λy.M ′
1[x := Q])M2[x := Q] →β M

′
1[x := Q][y := M2[x := Q]] =

N [x := Q] by the well known substitution lemma and such that

y 6∈ fv(Qx).

2. We prove this lemma by induction on the structure of M .
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• Let M ∈ Var then either M = x and so fv(M [x := N ]) = fv(N) =

fv((λx.M)N). Or M 6= x and so fv(M [x := N ]) = fv(M) ⊆ fv(M) ∪

fv(N) = fv((λx.M)N).

• Let M = λy.P then fv(M [x := N ]) = fv(λy.P [x := N ]) = fv(P [x :=

N ]) \ {y} ⊆IH fv((λx.P )N) \ {y} = fv((λx.M)N) such that y 6∈ fv(Nx).

• let M = P1P2 then fv(M [x := N ]) = fv(P1[x := N ])∪ fv(P2[x := N ]) ⊆IH

fv((λx.P1)N) ∪ fv((λx.P2)N) = fv((λx.M)N).

3. We prove this lemma by induction on the length of the reduction M →∗
βη N .

• Let M = N then fv(M) = fv(N).

• Let M →∗
βη M

′ →βη N . By IH, fv(M ′) ⊆ fv(M). We prove that fv(N) ⊆

fv(M ′) by induction on the structure of M ′.

– Let M ′ ∈ Var then nothing to prove since M ′ does not reduce.

– Let M ′ = λx.P .

∗ Either N = λx.Q such that P →βη Q. By IH, fv(Q) ⊆ fv(P ). So

fv(N) ⊆ fv(M ′).

∗ Or P = Nx such that x 6∈ fv(N). So fv(N) = fv(M ′).

– Let M ′ = P1P2.

∗ Either N = P ′
1P2 such that P1 →βη P

′
1. By IH, fv(P ′

1) ⊆ fv(P1),

so fv(N) ⊆ fv(M ′).

∗ Or N = P1P
′
2 such that P2 →βη P

′
2. By IH, fv(P ′

2) ⊆ fv(P2), so

fv(N) ⊆ fv(M ′).

∗ Or P1 = λx.P0 and N = P0[x := P2]. By Lemma 4.1.2.2, fv(N) ⊆

fv(M ′).

A corollary of this result is that if M →∗
β N then fv(N) ⊆ fv(M).

4 By induction on the length of the reduction λx.M →∗
βη N .

• Let λx.M = N then it is done.

• Let λx.M →∗
βη P →βη N . By IH:

– Either P = λx.Q such that M →∗
βη Q. Then, by compatibility:

∗ Either Q = Nx such that x 6∈ fv(N). So it is done since M →∗
βη

Nx.

∗ Or N = λx.M ′ such that Q→βη M
′. So it is done since M →∗

βη

M ′.

– Or M →∗
βη Px such that x 6∈ fv(P ). So M →∗

βη Nx and it is done

since by Lemma 4.1.2.3, x 6∈ fv(N).
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5 By induction on the length of the reduction Mx→∗
βη N .

• Let N = Mx then it is done.

• Let Mx →∗
βη P →βη N . Then by IH, M →∗

βη Q (by Lemma 4.1.2.3,

x 6∈ fv(Q)) and:

– Either P = Qx. Then, by compatibility:

∗ Either N = Q′x such that Q→βη Q
′. So it is done since M →∗

βη

Q′.

∗ Or Q = λy.Q′ and N = Q′[y := x]. So M →∗
βη λy.Q

′ = λx.N .

– Or Q = λx.P . So it is done since M →∗
βη Q = λx.P →βη λx.N .

6. (a) If k = 0 then P = Q is a direct r-reduct of Q, absurd.

(b) Assume k = 1, we prove P = M [x := N ] by case on r.

• Let r = β. The proof is by case on Q = (λx.M)N →β P .

– If (λx.M)N →β M [x := N ] then we are done.

– If (λx.M)N →β (λx.M ′)N = P such that M →β M
′ then P is a

direct β-reduct of (λx.M)N , absurd.

– If (λx.M)N →β (λx.M)N ′ = P such that N →β N
′ then P is a

direct β-reduct of (λx.M)N , absurd.

• Let r = βη. The proof is by case on Q = (λx.M)N →βη P .

– If (λx.M)N →β M [x := N ], then we are done.

– If λx.M →βη R and P = RN then:

∗ Either R = λx.M ′ such that M →βη M ′. So P is a direct

βη-reduct of (λx.M)N , absurd.

∗ Or M = Rx and x 6∈ FV (R). Hence, P = RN = M [x := N ]

and we are done.

– If N →βη N
′ and P = (λx.M)N ′ then P is a direct βη-reduct of

(λx.M)N , absurd.

(c) We prove the statement by induction on k ≥ 1.

• If k = 1 then it is done since by (b) P = M [x := N ].

• Else, let k ≥ 1 and Q = (λx.M)N →k
r R→r P .

– If R is a direct r-reduct of Q, then R = (λx.M ′)N ′, such that

M →∗
r M

′ and N →∗
r N

′. Since P is not a direct r-reduct of Q,

P is not a direct r-reduct of R. Hence by (b), P = M ′[x := N ′].

– Else, by IH, there exists a direct r-reduct (λx.M ′)N ′ of Q such

that M ′[x := N ′]→∗
r R→r P .
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7. If P is a direct r-reduct of (λx.M)N then P = (λx.M ′)N ′ such that M →∗
r

M ′ and N →∗
r N ′. So P →r M ′[x := N ′] and M [x := N ] →∗

r M ′[x :=

N ′], by Lemma 4.1.2.1. If P is not a direct r-reduct of (λx.M)N then by

Lemma 4.1.2.6, there exists a direct r-reduct, (λx.M ′)N ′ of (λx.M)N such

that M →∗
r M

′, N →∗
r N

′ and M ′[x := N ′]→∗
r P . Finally, by Lemma 4.1.2.1,

M [x := N ]→∗
r M

′[x := N ′]→∗
r P , .

8.a) Let n ≥ 0, M [x := N ] ∈ CRr, (λx.M)N →∗
r M1 and (λx.M)N →∗

r M2.

By Lemma 4.1.2.7, there exist M ′
1 and M ′

2 such that M1 →
∗
r M ′

1, M [x :=

N ] →∗
r M

′
1, M2 →

∗
r M

′
2 and M [x := N ] →∗

r M
′
2. Then we conclude using

M [x := N ] ∈ CRr.

8.b) Let n ≥ 0 and for all i ∈ {1, . . . , n}, Mi ∈ CRr. First we prove that if

xM1 · · ·Mn →
∗
r N then N = xM ′

1 · · ·M
′
n such that for all i ∈ {1, . . . , n},

Mi →
∗
r M

′
i . We prove the result by induction on the length of the reduction

xM1 · · ·Mn →
∗
r N .

• Let xM1 · · ·Mn = N then it is done

• Let xM1 · · ·Mn →
∗
r N

′ →r N . By IH, N ′ = xM ′
1 · · ·M

′
n such that for all

i ∈ {1, . . . , n}, Mi →
∗
r M

′
i . We prove the result by induction on n.

– Let n = 0 then it is done since x does not reduce by →r.

– Let n = m+ 1 such that m ≥ 0. By compatibility:

∗ Either N = PM ′
n such that xM ′

1 · · ·M
′
m →r P Then by IH P =

xM ′′
1 · · ·M

′′
m such that for all i ∈ {1, . . . , m}, M ′

i →
∗
r M

′′
i . So it

is done.

∗ Or N = xM ′
1 · · ·M

′
mM

′′
n such that M ′

n →r M
′′
n then it is done.

8.c) Case β: Let λx.M →∗
β P1 and λx.M →∗

β P2 then P1 = λx.M1 and P2 = λx.M2

such that M →∗
β M1 and M →∗

β M2. By hypothesis, there exists M3 such that

M1 →
∗
β M3 and M2 →

∗
β M3. So P1 →

∗
β λx.M3 and P2 →

∗
β λx.M3.

Case βη: Let λx.M →∗
βη P1 and λx.M →∗

βη P2. By Lemma 4.1.2.4:

• Either P1 = λx.Q1 such that M →∗
βη Q1 and P2 = λx.Q2 such that

M →∗
βη Q2. So by hypothesis there exists Q3 such that Q1 →

∗
βη Q3 and

Q2 →
∗
βη Q3, hence, P1 →

∗
βη λx.Q3 and P2 →

∗
βη λx.Q3.

• Or P1 = λx.Q1 such that M →∗
βη Q1 and M →∗

βη P2x such that x 6∈

fv(P2). By hypothesis there exists Q3 such that Q1 →
∗
βη Q3 and P2x→

∗
βη

Q3. So, by Lemma 4.1.2.5 P2 →
∗
βη Q2 (by Lemma 4.1.2.3, x 6∈ fv(Q2))

and:

– Either Q3 = Q2x. So P1 = λx.Q1 →
∗
βη λx.Q3 = λx.Q2x→η Q2.

– Or Q2 = λx.Q3. So it is done since P1 = λx.Q1 →
∗
βη λx.Q3.
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• Or M →∗
βη P1x such that x 6∈ fv(P1) and P2 = λx.Q2 such that M →∗

βη

Q2. This case is similar to the previous one.

• Or M →∗
βη P1x such that x 6∈ fv(P1) and M →∗

βη P2x such that x 6∈

fv(P2). By hypothesis, there exists Q3 such that P1x →
∗
βη Q3 and

P2x →
∗
βη Q3. By Lemma 4.1.2.5, P1 →

∗
βη Q1 and P2 →

∗
βη Q2. By

Lemma 4.1.2.3, x 6∈ fv(Q1) ∪ fv(Q2). Therefore:

– Either Q3 = Q1x and Q3 = Q2x so Q1 = Q2.

– Or Q3 = Q1x and Q2 = λx.Q3 so Q2 →η Q1.

– Or Q1 = λx.Q3 and Q3 = Q2x so Q1 →η Q2.

– Or Q1 = λx.Q3 and Q2 = λx.Q3 so Q1 = Q2.

A.1.2 Pseudo Development Definitions (Sec 4.2)

Proof of Lemma 4.2.7. 1 By induction on the structure of M .

• Let M = x then Ψc(M) = M .

• Let M = λx.N . Let x 6= c. By IH, Ψc(N) →∗
c N . Then, Ψc(M) =

λx.Ψc(N)→∗
c λx.N = M .

• Let M = M1M2. By IH, for i ∈ {1, 2}, Ψc(Mi)→
∗
c Mi.

– If M1 is a λ-abstraction, then Ψc(M) = Ψc(M1)Ψc(M2)→
∗
c M1M2 =

M .

– Else Ψc(M) = cΨc(M1)Ψc(M2)→c Ψc(M1)Ψc(M2)→
∗
c M1M2 = M .

2 By induction on the length of the reductionM →∗
c N . The basic case (M = N)

is trivial. Let us prove the induction case. Let M →c M
′ →∗

c N . By IH,

fv(M ′) \ {c} = fv(N) \ {c}. We prove that fv(M) \ {c} = fv(M ′) \ {c} by

induction on the size of the derivation of M →c M
′ and then by case on the

last rule of the derivation.

• Let M = cM ′ →c M
′ then it is done.

• Let M = λx.P →c λx.P
′ = M ′ such that P →c P

′ then it is done by IH.

• Let M = PQ→c P
′Q = M ′ such that P →c P

′ then it is done by IH.

• Let M = PQ→c PQ
′ = M ′ such that Q→c Q

′ then it is done by IH.

3 Corollary of Lemma 4.2.7.1 and Lemma 4.2.7.2.

4 Let M ∈ Λβη
c . We prove by induction on the structure of M that M 6∈ Ac.

• Let M ∈ Varc then M 6∈ Ac.
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• Let M = λx .M1 then M 6∈ Ac.

• Let M = (λx .M1)M2 then because λx .M1 6∈ Ac then M 6∈ Ac.

• Let M = cM1M2. By IH, M2 6∈ Ac so M 6∈ Ac.

• Let M = cM1. By IH, M1 6∈ Ac so M 6∈ Ac.

5 We prove this lemma by induction on the structure of d.

• Let d = c then cM →c M .

• Let d = d1d2 then by IH, d = d1d2 →
∗
c d2 and again by IH, d2M →

∗
c M ,

so by compatibility dM →∗
c M .

6 ⇒) We prove this lemma by induction on the length of the reductionM →∗
c c.

• Let M = c then it is done.

• Let M →∗
c M

′ →c c. We prove the lemma by induction on the length

of the derivation of M ′ →c c and then by case on the last rule.

– Let M ′ = cc →c c then M ′ ∈ Ac and by IH, M ∈ Ac.

– Let M ′ = λx.M1 →c λx.M2 = c such that M1 →c M2, then it is

done because by case on c, c 6= λx.M2.

– Let M ′ = M1M2 →c M
′
1M2 = c such that M1 →c M

′
1. By case

on d, M ′
1,M2 ∈ Ac, so by IH, M1 ∈ Ac. Hence, M ′ ∈ Ac and by

IH, M ∈ Ac.

– Let M ′ = M1M2 →c M1M
′
2 = c such that M2 →c M

′
2. By case

on d, M1,M
′
2 ∈ Ac so by IH, M2 ∈ Ac. Hence M ′ ∈ Ac and by

IH, M ∈ Ac.

⇐) We prove this lemma by induction on the reduction c →∗
c N .

• Let c = N then it is done.

• Let c →∗
c N

′ →c N . By IH, N ′ ∈ Ac. We prove that N ∈ Ac by

induction on the size of the derivation of N ′ →c N and then by case

on the last rule.

– Let N ′ = cN →c N then N ∈ Ac.

– Let N ′ = λx.P →c λx.P
′ = N such that P →c P

′ then it is done

because by case on N ′, N ′ 6= λx.P .

– Let N ′ = PQ→c P
′Q = N such that P →c P

′. Then P,Q ∈ Ac,

by IH P ′ ∈ Ac, so N ∈ Ac.

– Let N ′ = PQ→c PQ
′ = N such that Q→c Q

′. Then P,Q ∈ Ac,

by IH Q′ ∈ Ac, so N ∈ Ac.

7 We prove this lemma by induction on the length of the reduction M →∗
c N .

The basic case is trivial. Let us prove the induction case. Let M →c M
′ →∗

c N .

We prove the lemma by induction on the structure of M .
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• Let M = x then it is done since M →c M
′ is wrong.

• Let M = λx.M1 then by compatibility M ′ = λx.M ′
1 such that M1 →c M

′
1.

By IH, N = λx.N1 such that M ′
1 →

∗
c N1. Hence, M1 →

∗
c N1.

• Let M = M1M2. By compatibility:

– Either M ′ = M ′
1M2 such that M1 →c M

′
1. By IH, either M ′

1 ∈ Ac and

M2 →
∗
c N or N = N1N2 and M ′

1 →
∗
c N1 and M2 →

∗
c N2. In the first

case, by Lemma 4.2.7.6, M1 ∈ Ac. In the second case, M1 →
∗
c N1.

– Or M ′ = M1M
′
2 such that M2 →

∗
c M

′
2. By IH, either M1 ∈ Ac and

M ′
2 →

∗
c N or N = N1N2 and M1 →

∗
c N1 and M ′

2 →
∗
c N2. In the first

case, M2 →
∗
c N . In the second case, M2 →

∗
c N2.

– Or M1 = c and M = cM2 →c M2 = M ′. Then it is done because

M = cM2 →c M2 = M ′ →∗
c N .

8 We prove this lemma by induction on the structure of M .

• Let M = y. By Lemma 4.2.7.7, M ′ = y. If y = x then M [x := N ] =

N →∗
c N

′ = M ′[x := N ′]. Else y 6= x and M [x := N ] = M = M ′ =

M ′[x := N ′].

• Let M = λy.M1. Let y 6∈ fv(N) ∪ fv(N ′) ∪ {x}. Then by Lemma 4.2.7.7,

M ′ = λy.M ′
1 such that M1 →

∗
c M ′

1. Hence, by IH, M [x := N ] =

λy.M1[x := N ]→∗
c λy.M

′
1[x := N ′] = M ′[x := N ′].

• Let M = M1M2. By Lemma 4.2.7.7, either M1 ∈ Ac and M2 →
∗
c M

′ or

M ′ = M ′
1M

′
2 and M1 →

∗
c M

′
1 and M2 →

∗
c M

′
2.

– If M1 ∈ Ac and M2 →
∗
c M

′ then by IH and Lemma 4.2.7.5, M [x :=

N ] = (M1M2)[x := N ] = M1(M2[x := N ]) →∗
c M2[x := N ] →∗

c

M ′[x := N ′].

– If M ′ = M ′
1M

′
2 and M1 →

∗
c M

′
1 and M2 →

∗
c M

′
2 then by IH, M [x :=

N ] = (M1M2)[x := N ] = M1[x := N ]M2[x := N ] →∗
c M ′

1[x :=

N ′]M ′
2[x := N ′] = M ′[x := N ′].

9 We prove this lemma by induction on the length of the reduction M →∗
c N .

The basic case is trivial. Let M →c M
′ →∗

c N . We prove that M →c M
′ is

false by first proving that if M →c M
′ then c ∈ fv(M) by induction on the size

of the derivation M →c M
′ and then by case on the last rule of the derivation:

• Let M = cM ′ →c M
′ then c ∈ fv(M).

• Let M = λx.M1 →c λx.M
′
1 = M ′ such that M1 →c M

′
1. Let x 6= c. By

IH, c ∈ fv(M1), hence c ∈ fv(M).

• Let M = M1M1 →c M
′
1M2 = M ′ such that M1 →c M

′
1. By IH, c ∈

fv(M1) ⊆ fv(M).
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• Let M = M1M2 →c M1M
′
2 such that M2 →c M

′
2. By IH, c ∈ fv(M2) ⊆

fv(M).

10 We prove this lemma by induction on the structure of M .

• Let M = x then by Lemma 4.2.7.7 it is done because M = P = N .

• Let M = λx.M ′. Let x 6= c. By Lemma 4.2.7.7, N = λx.N ′ and

P = λx.P ′ such that M ′ →∗
c N

′ and M ′ →∗
c N

′. By IH, P ′ →∗
c N

′, hence

P →∗
c N .

• Let M = M1M2. By Lemma 4.2.7.7:

– Either M2 →
∗
c P , M2 →

∗
c N and M1 ∈ Ac. By IH, P →∗

c N .

– Or M2 →
∗
c P , M1 ∈ Ac, N = N1N2, M1 →

∗
c N1 and M2 →

∗
c N2.

By Lemma 4.2.7.6, N1 ∈ Ac, so c ∈ fv(N1) ⊆ fv(N). We get a

contradiction.

– Or P = P1P2, M1 →
∗
c P1, M2 →

∗
c P2, M1 ∈ Ac and M2 →

∗
c N .

By IH, P2 →
∗
c N . By Lemma 4.2.7.6, P1 ∈ Ac. By Lemma 4.2.7.5,

P →∗
c P2 →

∗
c N .

– Or P = P1P2, N = N1N2, M1 →
∗
c P1, M1 →

∗
c N1, M2 →

∗
c P2,

M2 →
∗
c N2. By IH, P1 →

∗
c N1 and P2 →

∗
c N2. Hence, P →∗

c N .

A.1.3 A simple Church-Rosser proof for β-reduction (Sec. 4.3)

Proof of Lemma 4.3.1. We prove the result by induction on the structure of M :

• Let M = x ∈ Varc and M ∈ s then x[x := M ] = M ∈ s.

• Let M = λx .N . Let fv(N ) \ {c, x} = {x1, . . . , xn} and M1, . . . ,Mn ∈ s. Let

x 6∈ fv(M1) ∪ · · · ∪ fv(Mn). Because s ∈ VAR then x ∈ s. By IH, N [x1 :=

M1, . . . , xn := Mn] ∈ s. Because s ∈ ABS then (λx .N )[x1 := M1, . . . , xn :=

Mn]s ∈ s.

• Let M = cPQ . Let fv(P) \ {c} = {x1, . . . , xn} ⊎ {x
′
1, . . . , x

′
n1
}, fv(Q) \ {c} =

{x1, . . . , xn} ⊎ {x
′′
1, . . . , x

′′
n2
}, dj({x′1, . . . , x

′
n1
}, {x′′1, . . . , x

′′
n2
})

andM1, . . . ,Mn,M
′
1, . . . ,M

′
n1
,M ′′

1 , . . . ,M
′′
n2
∈ s. By IH, P [x1 := M1, . . . , xn :=

Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1

],Q [x1 := M1, . . . , xn := Mn, x
′′
1 := M ′′

1 , . . . , x
′′
n2

:=

M ′′
n2

] ∈ s. Because s ∈ VAR then (cPQ)[x1 := M1, . . . , xn := Mn, x
′
1 :=

M ′
1, . . . , x

′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:= M ′′
n2

] ∈ s.

• Let M = (λx .P)Q . Let fv(P) \ {c, x} = {x1, . . . , xn} ⊎ {x
′
1, . . . , x

′
n1
}, fv(Q) \

{c} = {x1, . . . , xn}⊎{x
′′
1, . . . , x

′′
n2
} andM1, . . . ,Mn,M

′
1, . . . ,M

′
n1
,M ′′

1 , . . . ,M
′′
n2
∈

s and dj({x′1, . . . , x
′
n1
}, {x′′1, . . . , x

′′
n2
}). Let x 6∈ fv(M1)∪· · ·∪ fv(Mn)∪ fv(M ′

1)∪
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· · · ∪ fv(M ′
n1

) ∪ fv(M ′′
1 ) ∪ · · · ∪ fv(M ′′

n2
). By IH, Q′ = Q [x1 := M1, . . . , xn :=

Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:= M ′′
n2

] ∈ s. By IH,

P [x1 := M1, . . . , xn := Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:=

M ′′
n2
, x := Q′] ∈ s. Because s ∈ SAT, ((λx .P)Q)[x1 := M1, . . . , xn :=

Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:= M ′′
n2

] ∈ s.

Proof of Lemma 4.3.3. By induction on the structure of M .

• Let M ∈ Var, so Ψc(M) = M ∈ Varc, since M 6= c.

• Let M = λx.N . Let x 6= c. By IH, Ψc(N) ∈ Λβ
c , so Ψc(M) = λx.Ψc(N) ∈ Λβ

c .

• Let M = PQ.

– If P = λx.N such that x 6= c then Ψc(M) = (λx.Ψc(N))Ψc(Q). By IH,

Ψc(N),Ψc(Q) ∈ Λβ
c , so Ψc(M) ∈ Λβ

c .

– Else Ψc(M) = cΨc(P )Ψc(Q). By IH, Ψc(P ),Ψc(Q) ∈ Λβ
c , so Ψc(M) ∈ Λβ

c .

Proof of Lemma 4.3.4.

1 By induction on the structure of M .

• Let M ∈ Varc. Either M = x , then M [x := N ] = N ∈ Λβ
c . Or, M 6= x

and so M [x := N ] = M ∈ Λβ
c .

• Let M = λy .P such that y ∈ Varc and P ∈ Λβ
c . By IH, P [x := N ] ∈ Λβ

c .

Then, M [x := N ] = λy .P [x := N ] ∈ Λβ
c such that y 6∈ fv(N ) ∪ {x}.

• Let M = (λy .P)Q such that y ∈ Varc and P ,Q ∈ Λβ
c . By IH, P [x :=

N ],Q [x := N ] ∈ Λβ
c . Then, M [x := N ] = (λy .P [x := N ])Q [x := N ] ∈

Λβ
c such that y 6∈ fv(N ) ∪ {x}.

• Let M = cPQ such that P ,Q ∈ Λβ
c . By IH, P [x := N ],Q [x := N ] ∈ Λβ

c .

Then, M [x := N ] = cP [x := N ]Q [x := N ] ∈ Λβ
c .

2 We prove the lemma by induction on the length of the derivation M →∗
β N .

• let M = N then it is done.

• Let M →∗
β M ′ →β N . By IH, M ′ ∈ Λβ

c . We prove that N ∈ Λβ
c by

induction on the structure of M ′.

– Let M ′ ∈ Varc then it is done because M ′ does not reduce.

– Let M ′ = λx.P such that x ∈ Varc and P ∈ Λβ
c , so by compatibility

N = λx.P ′ such that P →β P
′. By IH, P ′ ∈ Λβ

c so N ∈ Λβ
c .

– Let M ′ = (λx.P )Q such that x ∈ Varc and P,Q ∈ Λβ
c . By compati-

bility:
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∗ Either N = (λx.P ′)Q such that P →β P ′. By IH, P ′ ∈ Λβ
c so

N ∈ Λβ
c .

∗ Or N = (λx.P )Q′ such that Q →β Q′. By IH, Q′ ∈ Λβ
c so

N ∈ Λβ
c .

∗ Or N = P [x := Q], so by Lemma 4.3.4.1, N ∈ Λβ
c

– Let M ′ = cPQ such that P,Q ∈ Λβ
c . By compatibility:

∗ Either N = cP ′Q such that P →β P
′. By IH, P ′ ∈ Λβ

c so N ∈ Λβ
c .

∗ Or N = cPQ′ such that Q→β Q
′. By IH, Q′ ∈ Λβ

c so N ∈ Λβ
c .

3 We prove this lemma by induction on the structure of M .

• Let M ∈ Varc then it is done because by Lemma 4.2.7.7, N = M and

Ψc(N) = M .

• Let M = λx .M ′. By Lemma 4.2.7.7, N = λx .N ′ such that M ′ →∗
c N

′.

By IH, M ′ →∗
c Ψc(N

′). Hence, M →∗
c λx .Ψc(N

′) = N .

• Let M = (λx .M1)M2. By Lemma 4.2.7.7, N = (λx .N1)N2 such that

M1 →
∗
c N1 and M2 →

∗
c N2. By IH, M1 →

∗
c Ψc(N1) and M2Ψc(N2), so

M →∗
c (λx .Ψc(N1))Ψc(N2) = Ψc(N).

• Let M = cM1M2. By Lemma 4.2.7.7 and Lemma 4.2.7.4:

– Either N = N1N2 such that M1 →
∗
c N1 and M2 →

∗
c N2. By IH,

M1 →
∗
c Ψc(N1) and M2 →

∗
c Ψc(N2). If N1 is a λ-abstraction then

M →∗
c cΨc(N1)Ψc(N2) →c Ψc(N1)Ψc(N2) = Ψc(N) else M →∗

c

cΨc(N1)Ψc(N2) = Ψc(N).

– Or N = cN1N2 such that M2 →
∗
c N1 and M2 →

∗
c N2. We obtain a

contradiction because by IH, c 6∈ fv(N).

4 We prove this lemma by induction on the structure of M .

• Let M ∈ Varc then it is done with N = M .

• Let M = λx .M ′. By IH there exists N ′ such that c 6∈ fv(N ′) and M ′ →∗
c

N ′. So, M →∗
c λx .N

′ = N and c 6∈ fv(N).

• Let M = (λx .M1)M2. By IH, there exists N1, N2 such that c 6∈ fv(N1) ∪

fv(N2), M1 →
∗
c N1 and M2 →

∗
c N2. So, M →∗

c (λx .N1)N2 = N and

c 6∈ fv(N).

• Let M = cM1M2. By IH, there exists N1, N2 such that c 6∈ fv(N1)∪fv(N2),

M1 →
∗
c N1 and M2 →

∗
c N2. So, M →∗

c cN1N2 →c N1N2 = N and

c 6∈ fv(N).

269



Appendix A. Proofs of Part I

Proof of Lemma 4.3.5.

1 By induction on the structure of M1.

• Let M1 ∈ Varc then it is done because M1 does not reduce.

• Let M1 = λx .P1 such that P1 ∈ Λβ
c and x ∈ Varc, then by Lemma 4.2.7.7,

M2 = λx .P2 such that P1 →
∗
c P2 and by compatibility N1 = λx .Q1

such that P1 →β Q1. By IH, there exists Q2 such that P2 →β Q2 and

Q1 →
∗
c Q2. So it is done with N2 = λx .Q2.

• let M1 = (λx .P1)Q1 such that P1,Q1 ∈ Λβ
c and x ∈ Varc then by

Lemma 4.2.7.7, M2 = (λx .P2)Q2 such that P1 →
∗
c P2 and Q1 →

∗
c Q2.

By compatibility:

– Either N1 = (λx .P ′
1)Q1 such that P1 →β P ′

1. By IH, there exist

P ′
2 such that P2 →β P ′

2 and P ′
1 →

∗
c P ′

2. So it is done with N2 =

(λx .P ′
2)Q2.

– Or N1 = (λx .P1)Q
′
1 such that Q1 →β Q

′
1. By IH, there exists Q′

2 such

that Q2 →β Q
′
2 and Q′

1 →
∗
c Q

′
2. So it is done with N2 = (λx .P2)Q

′
2.

– Or N1 = P1[x := Q1]. By Lemma 4.2.7.8, it is done with N2 =

P2[x := Q2].

• Let M1 = cP1Q1 such that P1,Q1 ∈ Λβ
c . By Lemmas 4.2.7.7 and 4.2.7.4:

– Either M2 = cP2Q2 such that P1 →
∗
c P2 and Q1 →

∗
c Q2. By compat-

ibility:

∗ Either N1 = cP ′
1Q1 such that P1 →β P

′
1. By IH, there exists P ′

2

such that P2 →β P ′
2 and P ′

1 →
∗
c P

′
2. So it is done with N2 =

cP ′
2Q2.

∗ Or N1 = cP1Q
′
1 such that Q1 →β Q

′
1. By IH, there exists Q′

2 such

that Q2 →β Q
′
2 and Q′

1 →
∗
c Q

′
2. So it is done with N2 = cP2Q

′
2.

– Or M2 = P2Q2 such that P1 →
∗
c P2 and Q1 →

∗
c Q2. By compatibility:

∗ Either N1 = cP ′
1Q1 such that P1 →β P

′
1. By IH, there exists P ′

2

such that P2 →β P
′
2 and P ′

1 →
∗
c P

′
2. So it is done with N2 = P ′

2Q2.

∗ Or N1 = cP1Q
′
1 such that Q1 →β Q

′
1. By IH, there exists Q′

2 such

that Q2 →β Q
′
2 and Q′

1 →
∗
c Q

′
2. So it is done with N2 = P2Q

′
2.

2 By induction on the length of the reduction M1 →
∗
β N1 using Lemma 4.3.5.1.

Proof of Lemma 4.3.6.

⇒) Let M →∗
β N . Let c be a variable such that c 6∈ fv(M). By Lemma 4.1.2.3,

c 6∈ fv(N). We prove that M →∗
1 N by induction on the size of the reduction

M →∗
β N .
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• If M = N , then it is done since M →∗
1 N .

• If M →∗
β M

′ →β N . By Lemma 4.1.2.3, c 6∈ fv(M ′). By IH, M →∗
1 M

′.

We prove that M ′ →1 N by induction on the structure of M ′.

– Let M ′ ∈ Var then it is done because M ′ does not reduce.

– Let M ′ = λx.P such that x 6= c, then by compatibility N = λx.P ′

and P →β P ′. By IH, P →1 P
′. By definition, Ψc(P ) →∗

β Q and

Q→∗
c P

′. So Ψc(λx.P ) = λx.Ψc(P )→∗
β λx.Q and λx.Q→∗

c λx.P
′ =

N . Hence, M ′ →1 N .

– Let M ′ = PQ.

(a) If P = λx.P1 such that x 6= c then by compatibility:

∗ Either N = (λx.P2)Q such that P1 →β P2. By IH, P1 →1 P2.

By definition, Ψc(P1) →
∗
β P ′

1 and P ′
1 →

∗
c P2. So, Ψc(M

′) =

(λx.Ψc(P1))Ψc(Q) →∗
β (λx.P ′

1)Ψc(Q) and by Lemma 4.2.7.1,

(λx.P ′
1)Ψc(Q)→∗

c (λx.P2)Q = N . Hence, M ′ →1 N .

∗ Or N = (λx.P1)Q1 such that Q →β Q1. By IH, Q →1 Q1.

By definition, Ψc(Q) →∗
β Q2 and Q2 →

∗
c Q1. So, Ψc(M

′) =

(λx.Ψc(P1))Ψc(Q) →∗
β (λx.Ψc(P1))Q2 and by Lemma 4.2.7.1,

(λx.Ψc(P1))Q2 →
∗
c (λx.P1)Q1 = N . Hence, M ′ →1 N .

∗ Or N = P1[x := Q]. So, Ψc(M
′) = (λx.Ψc(P1))Ψc(Q) →β

Ψc(P1)[x := Ψc(Q)] and by Lemma 4.2.7.1 and Lemma 4.2.7.8

Ψc(P1)[x := Ψc(Q)]→∗
c P1[x := Q]. Hence, M ′ →1 N .

(b) Else, by compatibility:

∗ Either N = P ′Q such that P →β P ′. By IH, P →1 P ′.

By definition, Ψc(P ) →∗
β P1 and P1 →

∗
c P ′. So, Ψc(M

′) =

cΨc(P )Ψc(Q)→∗
β cP1Ψc(Q) and by Lemma 4.2.7.1 cP1Ψc(Q)→∗

c

cP ′Q→c P
′Q = N . So M ′ →1 N .

∗ Or N = PQ′ such that Q →β Q′. By IH, Q →1 Q′. By

definition, Ψc(Q) →∗
β Q1 and Q1 →

∗
c Q′. So, Ψc(M

′) =

cΨc(P )Ψc(Q)→∗
β cΨc(P )Q1 and by Lemma 4.2.7.1 cΨc(P )Q1 →

∗
c

cPQ′ →c PQ
′ = N . So M ′ →1 N .

⇐) Let M →∗
1 N . We prove that M →∗

β N by induction on the size of the

derivation M →∗
1 N .

• Let M = N , then it is done since M →∗
β N .

• Let M →∗
1 M ′ →1 N . By IH, M →∗

β M ′. Because M ′ →1 N then

by definition there exists P such that Ψc(M
′) →∗

β P and P →∗
c N and

c 6∈ fv(M ′) ∪ fv(N). By Lemma 4.3.3, Ψc(M
′) ∈ Λβ

c . By Lemma 4.2.7.1,

Ψc(M
′)→∗

c M
′. By Lemma 4.3.5.2, there exists Q such that P →∗

c Q and
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M ′ →∗
β Q. By Lemma 4.1.2.3, c 6∈ fv(Q). By Lemma 4.3.4.2, P ∈ Λβ

c . By

Lemma 4.2.7.10, Q→∗
c N . By Lemma 4.2.7.9, Q = N . Hence M ′ →∗

β N .

Proof of Lemma 4.3.7.

1 By definition, there exist P1, P2 such that Ψc(M) →∗
β P1, Ψc(M) →∗

β P2,

P1 →
∗
c M1, P2 →

∗
c M2 and c 6∈ fv(M) ∪ fv(M1) ∪ fv(M2). By Lemma 4.3.3,

Ψc(M) ∈ Λβ
c . So by Corollary 4.3.2, there exists P3 such that P1 →

∗
β P3

and P2 →
∗
β P3. By Lemma 4.3.4.2, P1, P2, P3 ∈ Λβ

c . By Lemma 4.3.4.4,

there exists M3 such that P3 →
∗
c M3 and c 6∈ fv(M3). By Lemma 4.3.4.3,

P1 →
∗
c Ψc(M1) and P2 →

∗
c Ψc(M2). By Lemma 4.3.5.2, there exist Q1, Q2

such that P3 →
∗
c Q1, P3 →

∗
c Q2, Ψc(M1) →

∗
β Q1 and Ψc(M2) →

∗
β Q2. By

Lemma 4.2.7.10, Q1 →
∗
c M3 and Q2 →

∗
c M3. So M1 →1 M3 and M2 →1 M3.

2 By Lemma 4.3.7.1

A.1.4 A simple Church-Rosser proof for βη-reduction (Sec. 4.4)

Proof of Lemma 4.4.1. We prove the result by induction on the structure of M :

• Let M = x ∈ Varc and M ∈ s then x[x := M ] = M ∈ s.

• Let M = λx .N . Let fv(N ) \ {c, x} = {x1, . . . , xn} and M1, . . . ,Mn ∈ s. Let

x 6∈ fv(M1) ∪ · · · ∪ fv(Mn). Because s ∈ VAR then x ∈ s. By IH, N [x1 :=

M1, . . . , xn := Mn] ∈ s. Because s ∈ ABS then (λx .N )[x1 := M1, . . . , xn :=

Mn] ∈ s.

• Let M = cPQ . Let fv(P) \ {c} = {x1, . . . , xn, x
′
1, . . . , x

′
n1
}, fv(Q) \ {c} =

{x1, . . . , xn, x
′′
1, . . . , x

′′
n2
}, {x′1, . . . , x

′
n1
} ∩ {x′′1, . . . , x

′′
n2
} = ∅ and

M1, . . . ,Mn,M
′
1, . . . ,M

′
n1
,M ′′

1 , . . . ,M
′′
n2
∈ s. By IH, P [x1 := M1, . . . , xn :=

Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1

],Q [x1 := M1, . . . , xn := Mn, x
′′
1 := M ′′

1 , . . . , x
′′
n2

:=

M ′′
n2

] ∈ s. Because s ∈ VAR then (cPQ)[x1 := M1, . . . , xn := Mn, x
′
1 :=

M ′
1, . . . , x

′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:= M ′′
n2

] ∈ s.

• Let M = (λx .P)Q . Let fv(P)\{c, x} = {x1, . . . , xn, x
′
1, . . . , x

′
n1
} , fv(Q)\{c} =

{x1, . . . , xn, x
′′
1, . . . , x

′′
n2
} and M1, . . . ,Mn,M

′
1, . . . ,M

′
n1
,M ′′

1 , . . . ,M
′′
n2
∈ s and

{x′1, . . . , x
′
n1
} ∩ {x′′1, . . . , x

′′
n2
} = ∅. Let x 6∈ fv(M1) ∪ · · · ∪ fv(Mn) ∪ fv(M ′

1) ∪

· · · ∪ fv(M ′
n1

) ∪ fv(M ′′
1 ) ∪ · · · ∪ fv(M ′′

n2
). By IH, Q′ = Q [x1 := M1, . . . , xn :=

Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:= M ′′
n2

] ∈ s. By IH,

P [x1 := M1, . . . , xn := Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:=

M ′′
n2
, x := Q′] ∈ s. Because s ∈ SAT, ((λx .P)Q)[x1 := M1, . . . , xn :=

Mn, x
′
1 := M ′

1, . . . , x
′
n1

:= M ′
n1
, x′′1 := M ′′

1 , . . . , x
′′
n2

:= M ′′
n2

] ∈ s.
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• Let M = cP . Let fv(P) \ {c} = {x1, . . . , xn} and M1, . . . ,Mn ∈ s. By

IH, P [x1 := M1, . . . , xn := Mn] ∈ s. Because s ∈ VAR then c(P [x1 :=

M1, . . . , xn := Mn]) = (cP)[x1 := M1, . . . , xn := Mn] ∈ s.

Proof of Lemma 4.4.4.

1 By induction on the structure of M .

• Let M ∈ Varc. If M = x then M [x := N ] = N ∈ Λβη
c . Else M [x := N ] =

M ∈ Λβη
c .

• Let M = λy .P such that y ∈ Varc and P ∈ Λβη
c . Let y 6∈ fv(N ) ∪ {x}.

By IH, P [x := N ] ∈ Λβη
c . Then, M [x := N ] = λy .P [x := N ] ∈ Λβη

c .

• Let M = (λy .P)Q such that y ∈ Varc and P ,Q ∈ Λβη
c . By IH, P [x :=

N ],Q [x := N ] ∈ Λβη
c . Then, M [x := N ] = (λy .P [x := N ])Q [x := N ] ∈

Λβη
c , such that y 6∈ fv(N ) ∪ {x}.

• Let M = cPQ such that P ,Q ∈ Λβη
c . By IH, P [x := N ],Q [x := N ] ∈

Λβη
c . Then, M [x := N ] = cP [x := N ]Q [x := N ] ∈ Λβη

c .

• Let M = cP such that P ∈ Λβη
c . By IH, P [x := N ] ∈ Λβη

c . Then,

M [x := N ] = c(P [x := N ]) ∈ Λβη
c .

2 We prove the lemma by induction on the length of the derivation M →∗
βη N .

• Let M = N then it is done.

• Let M →∗
βη M

′ →βη N . By IH, M ′ ∈ Λβη
c . We prove that N ∈ Λβη

c by

induction on the structure of M ′.

– Let M ′ ∈ Varc then it is done because M ′ does not reduce.

– Let M ′ = λx.P such that x ∈ Varc and P ∈ Λβη
c . By compatibility:

∗ Either N = λx.P ′ such that P →βη P ′. By IH, P ′ ∈ Λβη
c so

N ∈ Λβη
c .

∗ Or P = Nx such that x 6∈ fv(N). Because P ∈ Λβη
c , by case on

P , either N = cN ′ such that N ′ ∈ Λβη
c , so N = cN ′ ∈ Λβη

c . Or

N = λy.N ′ such that y ∈ Varc and N ′ ∈ Λβη
c , so N = λy.N ′ ∈

Λβη
c .

– Let M ′ = (λx.P )Q such that x ∈ Varc and P,Q ∈ Λβη
c . By compati-

bility:

∗ Either N = (λx.P ′)Q such that P →βη P
′. By IH, P ′ ∈ Λβη

c so

N ∈ Λβη
c .

∗ Or N = P ′Q and P = P ′x such that x 6∈ fv(P ′). Because

P ∈ Λβη
c , either P ′ = cP ′′ such that P ′′ ∈ Λβη

c , and so we obtain

N = cP ′′Q ∈ Λβη
c . Or P ′ = λy.P ′′ such that P ′′ ∈ Λβη

c and

y ∈ Varc, and so we obtain N = (λy.P ′′)Q ∈ Λβη
c .
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∗ Or N = (λx.P )Q′ such that Q →βη Q′. By IH, Q′ ∈ Λβη
c so

N ∈ Λβη
c .

∗ Or N = P [x := Q]. So, by Lemma 4.4.4.1, N ∈ Λβη
c .

– Let M ′ = cPQ such that P,Q ∈ Λβη
c . By compatibility:

∗ Either N = cP ′Q such that P →βη P ′. By IH, P ′ ∈ Λβη
c so

N ∈ Λβη
c .

∗ Or N = cPQ′ such that Q→βη Q
′. By IH, Q′ ∈ Λβη

c so N ∈ Λβη
c .

– Let M ′ = cP such that P ∈ Λβη
c , so by compatibility N = cP ′ such

that P →βη P
′. By IH, P ′ ∈ Λβη

c so N ∈ Λβη
c .

3 We prove this lemma by induction on the structure of M .

• Let M ∈ Varc then it is done because by Lemma 4.2.7.7, N = M and

Ψc(N) = M .

• Let M = λx .M ′. By Lemma 4.2.7.7, N = λx .N ′ such that M ′ →∗
c N

′.

By IH, M ′ →∗
c Ψc(N

′). Hence, M →∗
c λx .Ψc(N

′) = N .

• Let M = (λx .M1)M2. By Lemma 4.2.7.7, N = (λx .N1)N2 such that

M1 →
∗
c N1 and M2 →

∗
c N2. By IH, M1 →

∗
c Ψc(N1) and M2Ψc(N2), so

M →∗
c (λx .Ψc(N1))Ψc(N2) = Ψc(N).

• Let M = cM1M2. By Lemma 4.2.7.7 and Lemma 4.2.7.4:

– Either N = N1N2 such that M1 →
∗
c N1 and M2 →

∗
c N2. By IH,

M1 →
∗
c Ψc(N1) and M2 →

∗
c Ψc(N2). If N1 is a λ-abstraction then

M →∗
c cΨc(N1)Ψc(N2) →c Ψc(N1)Ψc(N2) = Ψc(N) else M →∗

c

cΨc(N1)Ψc(N2) = Ψc(N).

– Or N = cN1N2 such that M2 →
∗
c N1 and M2 →

∗
c N2. We obtain a

contradiction because by IH, c 6∈ fv(N).

• Let M = cM ′. By Lemma 4.2.7.7:

– Either M ′ →∗
c N . By IH, M ′ →∗

c Ψc(N), so M →c M ′ →∗
c Ψc(N).

– Or N = cN ′ and M ′ →∗
c N

′. We obtain a contradiction because by

IH, c 6∈ fv(N).

4 We prove this lemma by induction on the structure of M .

• Let M ∈ Varc then it is done with N = M .

• Let M = λx .M ′. By IH there exists N ′ such that c 6∈ fv(N ′) and M ′ →∗
c

N ′. So, M →∗
c λx .N

′ = N and c 6∈ fv(N).

• Let M = (λx .M1)M2. By IH, there exists N1, N2 such that c 6∈ fv(N1) ∪

fv(N2), M1 →
∗
c N1 and M2 →

∗
c N2. So, M →∗

c (λx .N1)N2 = N and

c 6∈ fv(N).
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• Let M = cM1M2. By IH, there exists N1, N2 such that c 6∈ fv(N1)∪fv(N2),

M1 →
∗
c N1 and M2 →

∗
c N2. So, M →∗

c cN1N2 →c N1N2 = N and

c 6∈ fv(N).

• Let M = cM ′. By IH, there exists N such that c 6∈ fv(N) and M ′ →∗
c N .

So, M →c M ′ →∗
c N .

Proof of Lemma 4.4.5.

1 We prove this lemma by induction on the structure of M1.

• Let M1 ∈ Varc, then it is done because M1 does not reduce.

• Let M1 = λx .P1 such that x ∈ Varc and P1 ∈ Λβη
c . By Lemma 4.2.7.7,

M2 = λx .P2 such that P1 →
∗
c P2. By compatibility:

– Either N1 = λx .P ′
1 such that P1 →βη P

′
1. By IH, there exits P ′

2 such

that P2 →βη P
′
2 and P ′

1 →
∗
c P

′
2. So it is done with N2 = λx .P ′

2.

– Or P1 = N1x such that x 6∈ fv(N1). Because P1 ∈ Λβη
c then by

case on P1, N1 ∈ Λβη
c By Lemmas 4.2.7.7 and 4.2.7.4, P2 = N ′

1x and

N1 →
∗
c N

′
1. By Lemma 4.2.7.2, x 6∈ fv(N ′

1). So M2 = λx .N ′
1x →η

N ′
1 = N2.

• Let M1 = (λx .P1)Q1 such that x ∈ Varc and P1,Q1 ∈ Λβη
c . Therefore, by

Lemma 4.2.7.7, M2 = (λx .P2)Q2 such that P1 →
∗
c P2 and Q1 →

∗
c Q2. By

compatibility:

– Either, N1 = P1[x := Q1]. We have, M2 →β P2[x := Q2] = N2 and

by Lemma 4.2.7.8, N1 →
∗
c N2.

– Or, N1 = (λx .P ′
1)Q1 such that P1 →βη P

′
1. By IH, there exists P ′

2

such that P2 →βη P ′
2 and P ′

1 →
∗
c P ′

2. So, M2 = (λx .P2)Q2 →βη

(λx .P ′
2)Q2 = N2 and N1 →

∗
c N2.

– Or P1 = R1x such that x 6∈ fv(R1) and N1 = R1Q1. Because P1 ∈

Λβη
c then by case on P1, R1 ∈ Λβη

c . By Lemmas 4.2.7.7 and 4.2.7.4,

P2 = R′
1x and R1 →

∗
c R′

1. By Lemma 4.2.7.2, x 6∈ fv(R′
1). So

M2 = (λx .R′
1x )Q2 →η R

′
1Q2 = N2 and N1 = R1Q1 →

∗
c N2.

– Or, N1 = (λx .P1)Q
′
1 such that Q1 →βη Q

′
1. By IH, there exist Q′

2

such that Q2 →βη Q′
2 and Q′

1 →
∗
c Q

′
2. So, M2 = (λx .P2)Q2 →βη

(λx .P2)Q
′
2 = N2 and N1 →

∗
c N2.

• Let M1 = cP1Q1 such that P1,Q1 ∈ Λβη
c . By compatibility:

– Either N1 = cP ′
1Q1 such that P1 →βη P ′

1. By Lemmas 4.2.7.7

and 4.2.7.4:
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∗ Either M2 = P2Q2 such P1 →
∗
c P2 and Q1 →

∗
c Q2. By IH, there

exists P ′
2 such that P ′

1 →
∗
c P

′
2 and P2 →βη P

′
2. So it is done with

N2 = P ′
2Q2.

∗ Or M2 = cP2Q2 such that P1 →
∗
c P2 and Q1 →

∗
c Q2. By IH,

there exists P ′
2 such that P ′

1 →
∗
c P

′
2 and P2 →βη P

′
2. So it is done

with N2 = cP ′
2Q2.

– Or N1 = cP1Q
′
1 such that Q1 →βη Q′

1. By Lemma 4.2.7.7 and

Lemma 4.2.7.4:

∗ Either M2 = P2Q2 such P1 →
∗
c P2 and Q1 →

∗
c Q2. By IH, there

exists Q′
2 such that Q′

1 →
∗
c Q

′
2 and Q2 →βη Q

′
2. So it is done

with N2 = P2Q
′
2.

∗ Or M2 = cP2Q2 such that P1 →
∗
c P2 and Q1 →

∗
c Q2. By IH,

there exists Q′
2 such that Q′

1 →
∗
c Q

′
2 and Q2 →βη Q

′
2. So it is

done with N2 = cP2Q
′
2.

• Let M1 = cP1 such that P1 ∈ Λβη
c . Then by compatibility N1 = cP ′

1 such

that P1 →βη P
′
1. By Lemma 4.2.7.7:

– Either M2 = P2 and P1 →
∗
c P2. By IH, there exists P ′

2 such that

P2 →βη P
′
2 and P ′

1 →
∗
c P

′
2. So it is done with N2 = P ′

2.

– Or M2 = cP2 and P1 →
∗
c P2. By IH, there exists P ′

2 such that

P2 →βη P
′
2 and P ′

1 →
∗
c P

′
2. So it is done with N2 = cP ′

2.

2 Easy by Lemma 4.4.5.1.

Proof of Lemma 4.4.6.

⇒) Let M →∗
βη N . Let c be a variable such that c 6∈ fv(M). By Lemma 4.1.2.3,

c 6∈ fv(N). We prove that M →∗
2 N by induction on the size of the reduction

M →∗
βη N .

H If M = N , then it is done since M →∗
2 N .

H If M →∗
βη M

′ →βη N . By Lemma 4.1.2.3, c 6∈ fv(M ′). By IH, M →∗
2 M

′.

We prove that M ′ →2 N by induction on the structure of M ′.

• Let M ′ ∈ Var. It is done because M ′ does not reduce.

• Let M ′ = λx.P such that x 6= c. By compatibility:

– Either N = λx.P ′ such that P →βη P
′. By IH, P →2 P

′. By

definition there exists Q such that Ψc(P ) →∗
βη Q and Q →∗

c

P ′. Then Ψc(M
′) = λx.Ψc(P ) →∗

βη λx.Q and λx.Q →∗
c λx.P

′.

Hence, M ′ →2 N .

– Or P = Nx such that x 6∈ fv(N). By Lemma 4.2.7.3, x 6∈

fv(Ψc(N)).
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∗ If N is a λ-abstraction then we have Ψc(M
′) = λx.Ψc(P ) =

λx.Ψc(N)x →η Ψc(N), and by Lemma 4.2.7.1, Ψc(N) →∗
c N .

Hence, M ′ →2 N .

∗ Else, Ψc(M
′) = λx.Ψc(P ) = λx.cΨc(N)x →η cΨc(N) and by

Lemma 4.2.7.1, cΨc(N)→c Ψc(N)→∗
c N . Hence, M ′ →2 N .

• Let M ′ = PQ.

– If P = λx.P1, such that x 6= c then M ′ = (λx.P1)Q and by

compatibility:

∗ Either N = (λx.P2)Q and P1 →βη P2. By IH, P1 →2 P2. By

definition there exists P ′
1 such that Ψc(P1)→

∗
βη P

′
1 and P ′

1 →
∗
c

P2. So, Ψc(M
′) = (λx.Ψc(P1))Ψc(Q) →∗

βη (λx.P ′
1)Ψc(Q) and

by Lemma 4.2.7.1, (λx.P ′
1)Ψc(Q) →∗

c (λx.P2)Q = N . Hence,

M ′ →2 N .

∗ Or, N = P0Q and P1 = P0x such that x 6∈ fv(P0). By

Lemma 4.2.7.3, x 6∈ fv(Ψc(P0)). If P0 is a λ-abstraction then

Ψc(M
′) = (λx.Ψc(P0)x)Ψc(Q) →η Ψc(P0)Ψc(Q) = Ψc(N).

Else, Ψc(M
′) = (λx.cΨc(P0)x)Ψc(Q) →η cΨc(P0)Ψc(Q) =

Ψc(N). In both cases by Lemma 4.2.7.1, Ψc(N) →∗
c N , and

so, M ′ →2 N .

∗ Or N = (λx.P1)Q1 such that Q→βη Q1. By IH, Q→2 Q1. By

definition there exists Q2 such that Ψc(Q)→∗
βη Q2 and Q2 →

∗
c

Q1. So, Ψc(M
′) = (λx.Ψc(P1))Ψc(Q) →∗

βη (λx.Ψc(P1))Q2 and

by Lemma 4.2.7.1, (λx.Ψc(P1))Q2 →
∗
c (λx.P1)Q1 = N . Hence,

M ′ →2 N .

∗ Or N = P1[x := Q]. So, Ψc(M
′) = (λx.Ψc(P1))Ψc(Q) →β

Ψc(P1)[x := Ψc(Q)] and by Lemma 4.2.7.1 and Lemma 4.2.7.8,

Ψc(P1)[x := Ψc(Q)]→∗
c P1[x := Q]. Hence, M ′ →1 N .

– Else,

∗ Either N = P ′Q such that P →βη P ′. By IH, P →2 P ′.

By definition, there exists P1 such that Ψc(P ) →∗
βη P1 and

P1 →
∗
c P

′. So, Ψc(M
′) = cΨc(P )Ψc(Q) →∗

βη cP1Ψc(Q) and by

Lemma 4.2.7.1, cP1Ψc(Q)→∗
c cP

′Q→c N . So M ′ →2 N .

∗ Or N = PQ′ such that Q →βη Q′. By IH, Q →2 Q′. By

definition, there exists Q1 such that Ψc(Q)→∗
βη Q1 and Q1 →

∗
c

Q′. Therefore, Ψc(M
′) = cΨc(P )Ψc(Q) →∗

β cΨc(P )Q1 and by

Lemma 4.2.7.1, cΨc(P )Q1 →
∗
c cPQ

′ →c N . So M ′ →2 N .

⇐) Let M →∗
2 N . We prove that M →∗

βη N by induction on the size of the

derivation M →∗
2 N .
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• Let M = N , then it is done because M →∗
βη N .

• Let M →∗
2 M

′ →2 N . By IH, M →∗
βη M ′. Because M ′ →2 N then

by definition there exists P such that Ψc(M
′) →∗

βη P and P →∗
c N and

c 6∈ fv(M ′) ∪ fv(N). By Lemma 4.4.3, Ψc(M
′) ∈ Λβη

c . By Lemma 4.2.7.1,

Ψc(M
′) →∗

c M
′. By Lemma 4.4.5.2, there exists Q such that P →∗

c Q

and M ′ →∗
βη Q. By Lemma 4.1.2.3, c 6∈ fv(Q). By Lemma 4.4.4.2,

P ∈ Λβη
c . By Lemma 4.2.7.10, Q →∗

c N . By Lemma 4.2.7.9, Q = N .

Hence M ′ →∗
βη N .

Proof of Lemma 4.4.7.

1 By definition, there exist P1, P2 such that Ψc(M) →∗
βη P1, Ψc(M) →∗

βη P2,

P1 →
∗
c M1, P2 →

∗
c M2 and c 6∈ fv(M) ∪ fv(M1) ∪ fv(M2). By Lemma 4.4.3,

Ψc(M) ∈ Λβη
c . So by Corollary 4.4.2, there exists P3 such that P1 →

∗
βη P3

and P2 →
∗
βη P3. By Lemma 4.4.4.2, P1, P2, P3 ∈ Λβη

c . By Lemma 4.4.4.4,

there exists M3 such that P3 →
∗
c M3 and c 6∈ fv(M3). By Lemma 4.4.4.3,

P1 →
∗
c Ψc(M1) and P2 →

∗
c Ψc(M2). By Lemma 4.4.5.2, there exist Q1, Q2

such that P3 →
∗
c Q1, P3 →

∗
c Q2, Ψc(M1) →

∗
βη Q1 and Ψc(M2) →

∗
βη Q2. By

Lemma 4.2.7.10, Q1 →
∗
c M3 and Q2 →

∗
c M3. So M1 →2 M3 and M2 →2 M3.

2 Easy by Lemma 4.4.7.1.

A.2 Comparisons and conclusions (Sec. 5)

Proof of Lemma 5.3.2. 2 Let M ⇒β N . We prove that M →1 N by induction

on the size of the derivation of M ⇒β N and then by case on the last rule of

the derivation.

• Let M ⇒β M = N then it is done because by Lemma 4.2.7.1, Ψc(M)→∗
c

M .

• Let M = λx.P ⇒β λx.P ′ = N such that P ⇒β P ′. Let x 6= c. Then

c 6∈ fv(P ) ∪ fv(P ′). By IH, P →1 P
′. By definition, there exists Q where

Ψc(P ) →∗
β Q →

∗
c P

′. So Ψc(M) = λx.Ψc(P ) →∗
β λx.Q →

∗
c λx.P

′ = N .

Hence M →1 N .

• Let M = PQ ⇒β P ′Q′ = N such that P ⇒β P ′ and Q ⇒β Q′. Then

c 6∈ fv(P ) ∪ fv(P ′) ∪ fv(Q) ∪ fv(Q′). By IH, P →1 P ′ and Q →1 Q′.

By definition, where P ′′ and Q′′ such that Ψc(P ) →∗
β P ′′ →∗

c P ′ and

Ψc(Q)→∗
β Q

′′ →∗
c Q

′.
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– If P is a λ-abstraction then Ψc(M) = Ψc(P )Ψc(Q) →∗
β P ′′Q′′ →∗

c

P ′Q′ = N . So M →1 N .

– Else Ψc(M) = cΨc(P )Ψc(Q)→∗
β cP

′′Q′′ →∗
c P

′Q′ = N . So M →1 N .

• Let M = (λx.P )Q⇒β P
′[x := Q′] = N such that P ⇒β P

′ andQ⇒β Q
′.

Let x 6= c. Then c 6∈ fv(P )∪fv(Q). By Lemma 5.3.2.1, c 6∈ fv(P ′)∪fv(Q′).

By IH, P →1 P
′ and Q→1 Q

′. By definition, there exist P ′′ and Q′′ such

that Ψc(P ) →∗
β P ′′ →∗

c P ′ and Ψc(Q) →∗
β Q′′ →∗

c Q′. So Ψc(M) =

(λx.Ψc(P ))Ψc(Q)→∗
β (λx.P ′′)Q′′ →β P

′′[x := Q′′] and by Lemma 4.2.7.8

P ′′[x := Q′′]→∗
c P

′[x := Q′] = N . So M →1 N .

3. Let M ⇒βη N . We prove that M →2 N by induction on the size of the

derivation of M ⇒βη N and then by case on the last rule of the derivation.

• Let M ⇒βη M = N then it is done because by Lemma 4.2.7.1, Ψc(M)→∗
c

M .

• Let M = λx.P ⇒βη λx.P
′ = N such that P ⇒βη P

′. Let x 6= c. Then

c 6∈ fv(P ) ∪ fv(P ′). By IH, P →2 P
′. By definition, there exists Q such

that Ψc(P )→∗
βη Q and Q→∗

c P
′. So Ψc(M) = λx.Ψc(P )→∗

βη λx.Q and

λx.Q→∗
c λx.P

′ = N . So M →2 N .

• Let M = PQ ⇒βη P
′Q′ = N such that P ⇒βη P

′ and Q ⇒βη Q
′. Then

c 6∈ fv(P ) ∪ fv(P ′) ∪ fv(Q) ∪ fv(Q′). By IH, P →2 P
′ and Q →2 Q

′. By

definition, there exist P ′′ and Q′′ such that Ψc(P ) →∗
βη P

′′, Ψc(Q) →∗
βη

Q′′, P ′′ →∗
c P

′ and Q′′ →∗
c Q

′.

– If P is a λ-abstraction then Ψc(M) = Ψc(P )Ψc(Q) →∗
βη P

′′Q′′ and

P ′′Q′′ →∗
c P

′Q′ = N . So M →2 N .

– Else Ψc(M) = cΨc(P )Ψc(Q) →∗
βη cP

′′Q′′ and cP ′′Q′′ →c P
′′Q′′ →∗

c

P ′Q′ = N . So M →2 N .

• Let M = (λx.P )Q ⇒βη P ′[x := Q′] = N such that P ⇒βη P ′ and

Q ⇒βη Q′. Let x 6= c. Then c 6∈ fv(P ) ∪ fv(Q). By Lemma 5.3.2.1,

c 6∈ fv(P ′) ∪ fv(Q′). By IH, P →2 P
′ and Q →2 Q

′. By definition, there

exist P ′′ and Q′′ such that Ψc(P ) →∗
βη P

′′, Ψc(Q) →∗
βη Q

′′, P ′′ →∗
c P

′

and Q′′ →∗
c Q′. So Ψc(M) = (λx.Ψc(P ))Ψc(Q) →∗

βη (λx.P ′′)Q′′ →β

P ′′[x := Q′′] and by Lemma 4.2.7.8 P ′′[x := Q′′]→∗
c P

′[x := Q′] = N . So

M →2 N .

• Let M = λx.Px ⇒βη N such that P ⇒βη N and x 6∈ fv(P ). Then

c 6∈ fv(P ). Let x 6= c. By IH, P →2 N . By definition, there exists Q such

that Ψc(P )→∗
βη Q and Q→∗

c N . By Lemma 4.2.7.3, x 6∈ fv(Ψc(P )).

– If P is a λ-abstraction then Ψc(M) = λx.Ψc(P )x →η Ψc(P ) →∗
βη Q

and Q→∗
c N . So M →2 N .
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– Else Ψc(M) = λx.cΨc(P )x→η cΨc(P )→∗
βη cQ and cQ→c Q→

∗
c N .

So M →2 N .
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Proofs of Part II

B.1 The λIN and λLN calculi and associated type

systems (Ch. 7)

B.1.1 The syntax of the indexed λ-calculi (Sec. 7.1)

Proof of Lemma 7.1.2. We want to prove that on LN, � is reflexive, transitive, and

antisymmetric. Let us prove that � is reflexive w.r.t. LN. Let L ∈ LN. By definition

L � L because L = L :: ⊘. Let us prove that � is transitive. Let L1 � L2

and L2 � L3. By definition there exist L4 and L5 such that L2 = L1 :: L4 and

L3 = L2 :: L5. Therefore L3 = (L1 :: L4) :: L5 = L1 :: (L4 :: L5) (it is also easy to

check that � is associative). Let us prove that � is antisymmetric. Assume L1 � L2

and L2 � L1. By definition there exist L3 and L4 such that L2 = L1 :: L3 and

L1 = L2 :: L4. Therefore L1 = L1 :: L3 :: L4. Which means that L3 = L4 = ⊘.

Proof of Lemma 7.1.6. ⇒⇒⇒) By definition. ⇐⇐⇐) Each of 1. and 2. is by cases on the

derivation λxn.M ∈M respectively M1M2 ∈M.

Lemma B.1.1. Let i ∈ {1, 2, 3}.

1. On Mi, ⋄ is reflexive and symmetric but not transitive.

2. (a) Let M, (N1N2) ∈Mi. We have M ⋄ {N1, N2} iff M ⋄ (N1N2).

(b) Let M,λxI .N ∈ Mi such that ∀I ′. xI′ 6∈ fv(M). We have M ⋄ N iff

M ⋄ (λxI .N).

(c) Let M,N [(xIi

i := Ni)p] ∈Mi and M = {N}∪{Ni | i ∈ {1, . . . , p}} ⊂ Mi.

If M ⋄M then M ⋄N [(xIi

i := Ni)p].

3. Let M1[(x
Ii
i := Ni)p],M2[(x

Ii
i := Ni)p] ∈ Mi and M = {M1,M2} ∪ {Ni | i ∈

{1, . . . , p}}. If ⋄M then M1[(x
Ii
i := Ni)p] ⋄M2[(x

Ii
i := Ni)p].
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4. Let M ∈ Mi and {I1, . . . , In} = {I | xI occurs in M}. If i ∈ {1, 2} then

deg(M) = min(I1, . . . , In). If i = 3 then ∀i ∈ {1, . . . , n}. deg(M) � Ii.

5. Let M = {M} ∪ {Ni | 1 ≤ i ≤ p} ⊂ Mi. We have:

(a) (⋄M and ∀j ∈ {1, . . . , p}. deg(Nj) = Ij) iff M [(xIi

i := Ni)p] ∈Mi.

(b) If ⋄M and ∀j ∈ {1, . . . , p}. deg(Nj) = Ij, then deg(M [(xIi
i := Ni)p]) =

deg(M).

6. Let M,N, P ∈ Mi. If ⋄{M,N, P}, deg(N) = I, deg(P ) = J and xI 6∈

fv(P ) ∪ {yJ} then M [xI := N ][yJ := P ] = M [yJ := P ][xI := N [yJ := P ]].

7. Let M,N, P ∈Mi. If M ⋄ P and fv(M) = fv(N) then N ⋄ P .

8. Let i ∈ {1, 2} and M,N ∈ Mi where deg(N) = n and xn ∈ fv(M). We have:

M [xn := N ] ∈M iff M,N ∈ M and M ⋄N .

Proof of Lemma B.1.1.

1. For reflexivity, we show by induction on M ∈Mi that if xI , xJ ∈ fv(M) then

I = J . Symmetry is by definition of ⋄. For failure of transitivity take z1, y2

and z2 for the case i ∈ {1, 2} and z⊘, y(1) and z(1) for the case i = 3.

2. 2a. Let M, (N1N2) ∈ Mi. Let M ⋄ {N1, N2}. Assume xI1 ∈ fv(M) and xI2 ∈

fv(N1N2). Then xI2 ∈ fv(N1) or xI2 ∈ fv(N2). In either case, by hypothesis

and definition of ⋄, I1 = I2. Therefore M ⋄ N1N2. Let M ⋄ N1N2. Assume

xI1 ∈ fv(M) and xI2 ∈ fv(N1). Then by definition of ⋄, I1 = I2. Assume

xI1 ∈ fv(M) and xI2 ∈ fv(N2) then by definition of ⋄, I1 = I2. Therefore

M ⋄ {N1, N2}.

2b. Let M,λxI .N ∈ Mi such that ∀I ′. xI′ 6∈ fv(M). Let M ⋄ N . Assume

yI1 ∈ fv(M) and yI2 ∈ fv(λxI .N). Then yI2 ∈ fv(N) \ {xI} ⊆ fv(N). By

definition of ⋄, I1 = I2. Therefore M ⋄ λxI .N . Let M ⋄ λxI .N . Assume

yI1 ∈ fv(M) and yI2 ∈ fv(N). Because ∀I ′. xI′ 6∈ fv(M) and yI1 ∈ fv(M) then

x 6= y. Therefore yI2 ∈ fv(λxI .N). By hypothesis and definition of ⋄, I1 = I2.

Therefore M ⋄N .

2c. Let M,N [(xIi

i := Ni)p] ∈ Mi, M = {N} ∪ {Ni | i ∈ {1, . . . , p}} ⊂ Mi,

and M ⋄ M . Assume yI1 ∈ fv(M) and yI2 ∈ fv(N [(xIi

i := Ni)p]). Therefore

yI2 ∈ fv(N) or yI2 ∈ fv(Ni) for a i ∈ {1, . . . , p}. In either case, by hypothesis

and definition of ⋄, I1 = I2. Therefore M ⋄N [(xIi

i := Ni)p].

3. By 2c, M1 ⋄M2[(x
Ii
i := Ni)p] and Nj ⋄M2[(x

Ii
i := Ni)p] ∀ 1 ≤ j ≤ p, and, by 2c

again and by 1, M1[(x
Ii
i := Ni)p] ⋄M2[(x

Ii
i := Ni)p].

4. By induction on M .
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5. Direction⇐⇐⇐) of 5a. is by definition of substitution because substitution is only

defined on such conditions.

We prove direction⇒⇒⇒) of 5a. and 5b. by induction on M . Let i ∈ {1, 2}.

– Let M = yI . If there exists j ∈ {1, . . . , p} such that yI = xIj then

M [(xIi
i := Ni)p] = Nj ∈ Mi. Also deg(M [(xIi

i := Ni)p]) = deg(Nj) =

Ij = I = deg(M). If there is no j ∈ {1, . . . , p} such that yI = xIj then

M [(xIi
i := Ni)p] = M ∈ Mi. Also deg(M [(xIi

i := Ni)p]) = deg(M).

– Let M = λyI .M1 such that yI ∈ fv(M1) and ∀I ′. ∀j ∈ {1, . . . , p}. yI ′ 6∈

fv(Nj)∪{x
Ij
j }. By 2b., ⋄{M1}∪ {Nj | j ∈ {1, . . . , p}}. By IH, M1[(x

Ii
i :=

Ni)p] ∈ M2 and deg(M1[(x
Ii
i := Ni)p]) = deg(M1). Therefore, M [(xIi

i :=

Ni)p] = λyI .M1[(x
Ii
i := Ni)p] ∈ M2 because yI ∈ fv(M1[(x

Ii
i := Ni)p]).

Also, deg(M [(xIi
i := Ni)p]) = deg(M1[(x

Ii
i := Ni)p]) = deg(M1) = deg(M).

– Let M = M1M2 such that M1 ⋄ M2. By 2a., ⋄{M1,M2} ∪ {Nj | j ∈

{1, . . . , p}}. Let P1 = M1[(x
Ii
i := Ni)p] and P2 = M2[(x

Ii
i := Ni)p]. By IH,

P1 ∈ M2, P2 ∈ M2, deg(P1) = deg(M1), and deg(P2) = deg(M2). By 3.,

P1 ⋄ P2. Therefore, M [(xIi
i := Ni)p] = P1P2 ∈ M2. Finally, one obtains

deg(M [(xIi
i := Ni)p]) = min(P1, P2) = min(deg(M1), deg(M2)) = deg(M).

The proof for i = 3 is similar

6. By induction on M using 2c. and 5a.

7. If xI ∈ fv(N) = fv(M) and xJ ∈ fv(P ) then since M ⋄ P , I = J .

8. By induction on M .

– By definition of substitution, xn[xn := N ] ∈ M iff xn, N ∈ M and xn ⋄N .

– LetM = λym.M ′ such that ∀m′. ym′

6∈ fv(N)∪{xn}. Then (λym.M ′)[xn :=

N ] ∈ M ⇒⇒⇒ λym.M ′[xn := N ] ∈ M and ym ∈ fv(M ′) \ fv(N) (since

λym.M ′ ∈ M1) ⇒⇒⇒
Lemma 7.1.6 M ′[xn := N ] ∈ M, ym ∈ fv(M ′[xn := N ])

and ym ∈ fv(M ′) \ fv(N)⇔⇔⇔ by IH M ′, N ∈ M, M ′ ⋄N , ym ∈ fv(M ′[xn :=

N ]) and ym ∈ fv(M ′) \ fv(N) ⇔⇔⇔ by 2b and Lemma 7.1.6 λym.M ′, N ∈ M and

λym.M ′ ⋄N .

– Let M = M1M2. Note that M1 ⋄M2. Then (M1M2)[x
n := N ] ∈ M ⇔⇔⇔

M1[x
n := N ]M2[x

n := N ] ∈M and ⋄{M1,M2, N} (because (M1M2)[x
n :=

N ] ∈Mi)⇔⇔⇔
by 5b and Lemma 7.1.6 M1[x

n := N ],M2[x
n := N ] ∈M,M1[x

n :=

N ] ⋄M2[x
n := N ], ⋄{M1,M2, N} and deg(M1) = deg(M1[x

n := N ]) ≤

deg(M2[x
n := N ]) = deg(M2)⇔⇔⇔

by IH M1,M2, N ∈M, ⋄{M1,M2, N} and

deg(M1) ≤ deg(M2)⇔⇔⇔
by 2a and Lemma 7.1.6 M1M2, N ∈M and (M1M2)⋄N .
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Proof of Theorem 7.1.11. We only prove 2. Let M ∈ M2. First we prove that if

M _β N then fv(M) = fv(N), deg(M) = deg(N), and M ∈M iff N ∈M. We prove

this result by induction on the derivation M _β N and the by case on the last rule

of the derivation. We only prove the case M = (λxn.M1)M2 and N = M1[n := M2]

such that ∀m. xm ∈ fv(M2) and deg(M2) = n (derivation of M _β N is of length

1). Because M ∈ M2 then xn ∈ fv(M1) and (λxn.M1) ⋄ M2. One obtains that

fv(M) = (fv(M1) \ {x
n}) ∪ fv(M2) = fv(N) because xn ∈ fv(M1). Also deg(M) =

min(deg(λxn.M1), deg(M2)) = min(deg(M1), n). By Lemma B.1.1.4, because xn ∈

fv(M1) and deg(xn) = n then deg(M1) ≤ n = deg(M2). By Lemma B.1.1.2b, M1 ⋄

M2. Therefore deg(M) = deg(M1) and by Lemma B.1.1.5b, deg(N) = deg(M1) =

deg(M). Let us now prove that M ∈ M⇔ N ∈ M. This result is easily obtained

using Lemma B.1.1.8.

Lemma B.1.2. Let i ∈ {1, 2, 3}, −◮∈ {_,_∗}, r ∈ {β, βη, h}, p ≥ 0 and M,N, P,N1, . . . , Np ∈

Mi.

1. If M −◮r N , P −◮r Q, and M ⋄ P then N ⋄Q.

2. If M −◮r N , M ⋄ P , and deg(P ) = I then M [xI := P ] −◮r N [xI := P ].

3. If N −◮r P , M ⋄N , and deg(N) = I then M [xI := N ] −◮
∗
r M [xI := P ].

4. If M _∗
r N , P _∗

r P
′, M ⋄ P , and deg(P ) = I then M [xI := P ] _∗

r N [xI :=

P ′].

Proof of Lemma B.1.2.

1. The result is obtained because by Lemma 7.1.11, fv(N) ⊆ fv(M) and fv(Q) ⊆

fv(P ).

2. Note that, by Lemma 1, N ⋄ P . Case _r is by induction on M using Lem-

mas B.1.1.5b and B.1.1.6. Case _∗
r is by induction on the length of M _∗

r N

using the result for case _r.

3. Note that, by Lemma 1, M ⋄ P and by Lemma 7.1.11, deg(P ) = deg(N) = I.

Case _r is by induction on M . Case _∗
r is by induction on the length of

M _∗
r N using the result for case _r.

4. Use 2. and 3.

The next lemma shows that the lifting of a term to higher or lower degrees, is

a well behaved operation with respect to all that matters (free variables, reduction,

joinability, substitution, etc.).

Lemma B.1.3. Let p ≥ 0, i ∈ {1, 2} and M,N,N1, N2, . . . , Np ∈Mi.
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1. (a) deg(M+) = deg(M)+1, (M+)− = M and xn ∈ fv(M+) iff xn−1 ∈ fv(M).

(b) If deg(M) > 0 then M− ∈ Mi, deg(M−) = deg(M) − 1, (M−)+ = M

and (xn ∈ fv(M−)⇔ xn+1 ∈ fv(M)).

(c) Let M ⊂Mi. Then,

i. ⋄M iff ⋄M +.

ii. If deg(M ) > 0 then ⋄M iff ⋄M−.

iii. M ∈ M + iff (M− ∈ M and deg(M) > 0).

(d) M ∈M iff M+ ∈M ∩Mi.

(e) If deg(M) > 0 then M ∈M iff M− ∈M.

2. Let M = {M}∪{Ni | i ∈ {1, . . . , p}} ⊂ Mi. If ⋄M then (M [(xni

i := Ni)p])
+ =

M+[(xni+1
i := Ni

+)p].

3. If deg(M), deg(N) > 0, and M ⋄ N then (M [xn+1 := N ])− = M−[xn :=

N−].

Proof of Lemma B.1.3.

1. 1a. and 1b. are by induction on M . For 1(c)i. use 1a. For 1(c)ii. use 1b. As

to 1(c)iii., if M ∈ M + then M = P+ where P ∈ M and by 1a., deg(M) =

deg(P ) + 1 > 0 and M− = (P+)− = P . Hence, M− ∈ M and deg(M) > 0.

On the other hand, if M− ∈ M and deg(M) > 0 then by 1b., M = P+

and (M−)+ = M ∈ M +. 1d. is by induction on M using 1a., 1(c)i. and

Lemma 7.1.6. Finally, for 1e., by 1b. and 1d., M = (M−)+ ∈M⇔⇔⇔ M− ∈M.

2. By induction on M (by 1(c)i. and Lemma B.1.1.5, we have M [(xni

i := Ni)p] ∈

Mi and M+[(xni+1
i := Ni

+)p] ∈Mi).

3. By induction on M (by 1(c)ii. and Lemma B.1.1.5, we have M [xn+1 := N ] ∈

Mi and M−[xn := N−] ∈Mi).

Lemma B.1.4. Let r ∈ {η, βη}, −◮∈ {_,_∗}, p ≥ 0, i ∈ {1, 2} and M,N ∈Mi.

1. If M −◮r N then M+ −◮r N
+.

2. If deg(M) > 0 and M −◮r N then M− −◮r N
−.

3. If M −◮r N
+ then M− −◮r N .

4. If M+ −◮r N then M −◮r N
−.
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Proof of Lemma B.1.4.

1. The case r ∈ {η} and −◮=_ is by induction on M _r N using Lemma B.1.5,

for case _βη use the results for _β (Lemma B.1.5) and _η, case _∗
r is by

induction on the length of M _∗
r N using the result for case _r.

2. Similar to 1.

3. By Lemma 7.1.11.2, Lemma B.1.5 and 2 above, M− −◮ N .

4. Similar to 3.

Lemma B.1.5. Let −◮∈ {_β,_η,_βη,_h,_
∗
β,_

∗
η,_

∗
βη,_

∗
h}, i ≥ 0, p ≥ 0 and

M,N,N1, . . . , Np ∈M3. We have:

1. M+i ∈ M3 and deg(M+i) = i :: deg(M) and xK occurs in M+i iff K = i :: L

and xL occurs in M .

2. M ⋄N iff M+i ⋄N+i.

3. Let M ⊆M3 then ⋄M iff ⋄M
+i

.

4. (M+i)−i = M .

5. If ⋄{M} ∪ {Nj | j ∈ {1, . . . , p}} and ∀j ∈ {1, . . . , p}. deg(Nj) = Lj then

(M [(x
Lj

j := Nj)p])
+i = M+i[(x

i::Lj

j := N+i
j )p].

6. If M −◮ N then M+i −◮ N+i.

7. If deg(M) = i :: L then:

(a) M = P+i for some P ∈M3, deg(M−i) = L and (M−i)+i = M .

(b) If ∀j ∈ {1, . . . , p}. deg(Nj) = i :: Kj and ⋄{M} ∪ {Nj | j ∈ {1, . . . , p}}

then (M [(x
i::Kj

j := Nj)p])
−i = M−i[(x

Kj

j := N−i
j )p].

(c) If M −◮ N then M−i −◮ N−i.

8. If M −◮ N+i then there is P ∈M3 such that M = P+i and P −◮ N .

9. If M+i −◮ N then there is P ∈M3 such that N = P+i and M −◮ P .

Proof of Lemma B.1.5.

1. We only prove the lemma by induction on M :

• If M = xL then M+i = xi::L ∈M3 and deg(xi::L) = i :: L = i :: deg(xL).
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• If M = λxL.M1 then M1 ∈ M3, L � deg(M1) and M+i = λxi::L.M+i
1 .

By IH, M+i
1 ∈ M3 and deg(M+i

1 ) = i :: deg(M1) and xK occurs in M+i
1

iff K = i :: K ′ and yK ′

occurs in M1. So i :: L � i :: deg(M1) =

deg(M+i
1 ). Hence, λxi::L.M+i

1 ∈M3. Moreover, deg(M+i) = deg(M+i
1 ) =

i :: deg(M1) = i :: deg(M). If yK occurs in M+i then either yK = xi::L,

so it is done because xL occurs in M . Or yK occurs in M+i
1 . By IH,

K = i :: K ′ and yK ′

occurs in M1. So yK ′

occurs in M . If yK occurs in

M then either yK = xL and then yi::K occurs in M+i. Or yK occurs in

M1. Then by IH, yi::K occurs in M+i
1 . So, yi::K occurs in M+i.

• If M = M1M2 then M1,M2 ∈ M3, deg(M1) � deg(M2), M1 ⋄M2 and

M+i = M+i
1 M+i

2 . By IH, M+i
1 ,M+i

2 ∈ M3, deg(M+i
1 ) = i :: deg(M1),

deg(M+i
2 ) = i :: deg(M2), y

K occurs in M+i
1 iff K = i :: K ′ and yK ′

occurs

in M1, and yK occurs in M+i
2 iff K = i :: K ′ and yK ′

occurs in M2. Let

xL ∈ fv(M+i
1 ) and xK ∈ fv(M+i

2 ) then, using IH, L = i :: L′, K = i :: K ′,

xL′

occurs in M1 and xK ′

occurs in M2. Using M1 ⋄ M2, we obtain

L′ = K ′, so L = K. Hence, M+i
1 ⋄M

+i
2 . Because deg(M1) � deg(M2) then

deg(M+i
1 ) = i :: deg(M1) � i :: deg(M2) = deg(M+i

2 ). So, M+i ∈ M3.

Moreover, deg(M+1) = deg(M+i
1 ) = i :: deg(M1) = i :: deg(M). If xL

occurs in M+i then either xL occurs in M+i
1 and using IH, L = i :: L′ and

xL′

occurs in M1, so xL′

occurs in M . Or xL occurs in M+i
2 and using

IH, L = i :: L′ and xL′

occurs in M2, so xL′

occurs in M . If xL occurs in

M then either xL occurs in M1 so by IH xi::L occurs in M+i
1 , hence xi::L

occurs in M+i. Or xL occurs in M2 so by IH xi::L occurs in M+i
2 , hence

xi::L occurs in M+i.

2. Assume M ⋄N . Let xL ∈ fv(M+i) and xK ∈ fv(N+i) then by Lemma B.1.5.1,

L = i :: L′, K = i :: K ′, xL′

∈ fv(M) and xK ′

∈ fv(N). Using M ⋄N we obtain

K ′ = L′ and so K = L.

Assume M+i ⋄N+i. Let xL ∈ fv(M) and xK ∈ fv(N) then by Lemma B.1.5.1,

xi::L ∈ fv(M+i) and xi::K ∈ fv(N+i). Using M+i ⋄N+i we obtain i :: K = i :: L

and so K = L.

3. Let M ⊆M3.

Assume ⋄M . Let M,N ∈ M
+i

. Then by definition, M = P+i and N = Q+i

such that P,Q ∈ M . Because by hypothesis P ⋄ Q then by Lemma B.1.5.2,

M ⋄N .

Assume ⋄M
+i

. Let M,N ∈ M then M+i, N+i ∈ M
+i

. Because by hypothesis

M+i ⋄N+i then by Lemma B.1.5.2, M ⋄N .

4. By Lemma B.1.5.1, M+i ∈ M3 and deg(M+i) = i :: deg(M). We prove the

lemma by induction on M .
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• Let M = xL then M+i = xi::L and (M+i)−i = xL.

• Let M = λxL.M1 such that M1 ∈ M3 and L � deg(M1). Then,

(M+i)−i = (λxi::L.M+i
1 )−i = λxL.(M+i

1 )−i =IH λxL.M1.

• Let M = M1M2 such that M1,M2 ∈ M3, M1 ⋄ M2 and deg(M1) �

deg(M2). Then, (M+i)−i = (M+i
1 M+i

2 )−i = (M+i
1 )−i(M+i

2 )−i =IH M1M2.

5. By 3, ⋄{M+i}∪{N+i
j | j ∈ {1, . . . , p}}. By 1. and Lemma B.1.1.5a, M [(x

Lj

j :=

Nj)p] and M+i[(x
i::Lj

j := N+i
j )p] ∈M3. By induction on M :

• Let M = yK . If ∀j ∈ {1, . . . , p}. yK 6= x
Lj

j then yK [(x
Lj

j := Nj)p] = yK.

Hence (yK[(x
Lj

j := Nj)p])
+i = yi::K = yi::K[(x

i::Lj

j := N+i
j )p]. If ∃j ∈

{1, . . . , p}. yK = x
Lj

j then yK [(x
Lj

j := Nj)p] = Nj . Hence (yK [(x
Lj

j :=

Nj)p])
+i = N+i

j = yi::K[(x
i::Lj

j := N+i
j )p].

• Let M = λyK.M1 such that ∀K ′. ∀j ∈ {1, . . . , p}. yK ′

6∈ fv(Nj) ∪ {x
Lj

j }.

Then M [(x
Lj

j := Nj)p] = λyK.M [(x
Lj

j := Nj)p]. By Lemma B.1.1.2b,

⋄{M1} ∪ {Nj | j ∈ {1, . . . , p}}, and by IH, (M1[(x
Lj

j := Nj)p])
+i =

M+i
1 [(x

i::Lj

j := N+i
j )p]. Hence, (M [(x

Lj

j := Nj)p])
+i = λyi::K.(M1[(x

Lj

j :=

Nj)p])
+i = λyi::K.M+i

1 [(x
i::Lj

j := N+i
j )p] = (λyK.M1)

+i[(x
i::Lj

j := N+i
j )p].

• Let M = M1M2. M [(x
Lj

j := Nj)p] = M1[(x
Lj

j := Nj)p]M2[(x
Lj

j := Nj)p].

By Lemma B.1.1.2a, ⋄{M1} ∪ {Nj | j ∈ {1, . . . , p}} and ⋄{M2} ∪ {Nj |

j ∈ {1, . . . , p}}. By IH, (M1[(x
Lj

j := Nj)p])
+i = M+i

1 [(x
i::Lj

j := N+i
j )p]

and (M2[(x
Lj

j := Nj)p])
+i = M+i

2 [(x
i::Lj

j := N+i
j )p]. Hence (M [(x

Lj

j :=

Nj)p])
+i = (M1[(x

Lj

j := Nj)p])
+i(M2[(x

Lj

j := Nj)p])
+i = M+i

1 [(x
i::Lj

j :=

N+i
j )p]M

+i
2 [(x

i::Lj

j := N+i
j )p] = M+i[(x

i::Lj

j := N+i
j )p].

6. By Lemma B.1.5.1, if M,N ∈M3 then M+i, N+i ∈M3.

• Let −◮ be _β. By induction on M _β N .

– Let M = (λxL.M1)M2 _β M1[x
L := M2] = N where deg(M2) =

L. By Lemma B.1.5.1, deg(M+i
2 ) = i :: L. Therefore M+i =

(λxi::L.M+i
1 )M+i

2 _β M
+i
1 [xi::L := M+i

2 ] = (M1[x
L := M2])

+i.

– Let M = λxL.M1 _β λxL.N1 = N such that M1 _β N1. By IH,

M+i
1 _β N

+i
1 , hence M+i = λxi::L.M+i

1 _β λx
i::L.N+i

1 = N+i.

– Let M = M1M2 _β N1M2 = N such that M1 _β N1. By IH,

M+i
1 _β N

+i
1 , hence M+i = M+i

1 M+i
2 _β N

+i
1 M+i

2 = N+i.

– Let M = M1M2 _β M1N2 = N such that M2 _β N2. By IH,

M+i
2 _β N

+i
2 , hence M+i = M+i

1 M+i
2 _β N

+i
1 M+i

2 = N+i.

• Let −◮ be _∗
β. By induction on _∗

β using _β.

• Let −◮ be _η. We only do the base case. The inductive cases are as for

_β. Let M = λxL.NxL _η N where xL 6∈ fv(N). By Lemma B.1.5.1,

xi::L 6∈ fv(N+i) Then M+i = λxi::L.N+ixi::L _η N
+i.
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• Let −◮ be _∗
η. By induction on _∗

η using _η.

• Let −◮ be _βη, _βη, _h or _∗
h. By the previous items.

7. (a) By induction on M :

• Let M = yi::L then yL ∈ M3 and deg((yi::L)−i) = deg(yL) = L and

((yi::L)−i)+i = yi::L.

• Let M = λyK.M1 such that M1 ∈ M3 and K � deg(M1). Because

deg(M1) = deg(M) = i :: L, by IH, M1 = P+i for some P ∈ M3,

deg(M−i
1 ) = L and (M−i

1 )+i = M1. Because K � i :: L then K =

i :: L :: K ′ for some K ′. Let Q = λyL::K ′

.P . By Lemma B.1.5.4,

P = (P+i)−i = M−i
1 then deg(P ) = L. Because L � L :: K ′ then Q ∈

M3 and Q+i = M . Moreover, using Lemma B.1.5.4, deg(M−i) =

deg(Q) = deg(P ) = L and (M−i)+i = P+i = M .

• Let M = M1M2 such that M1,M2 ∈ M3, M1 ⋄M2 and deg(M1) �

deg(M2). Then deg(M) = deg(M1) � deg(M2), so deg(M2) = i ::

L :: L′ for some L′. By IH M1 = P+i
1 for some P1 ∈M3, deg(M−i

1 ) =

L and (M−i
1 )+i = M1. Again by IH, M2 = P+i

2 for some P2 ∈

M3, deg(M−i
2 ) = L :: L′ and (M−i

2 )+i = M2. If yK1 ∈ fv(P1) and

yK2 ∈ fv(P2) then by Lemma B.1.5.1, K ′
1 = i :: K1, K

′
2 = i :: K2,

xK ′
1 ∈ fv(M1) and xK ′

2 ∈ fv(M2). Thus K ′
1 = K ′

2, so K1 = K2 and

P1 ⋄ P2. Because deg(P1) = deg(M−i
1 ) = L � L :: L′ = deg(M−i

2 ) =

deg(P2) then Q = P1P2 ∈ M3 and Q+i = (P1P2)
+i = P+i

1 P+i
2 = M .

Moreover, by Lemma B.1.5.4 deg(M−i) = deg(Q) = deg(P1) = L

and (M−i)+i = Q+i = M .

(b) By the previous item, there exist M ′, N ′
1, . . . , N

′
n ∈ M3 such that M =

M ′+i and ∀j ∈ {1, . . . , p}. Nj = N ′+i
j . By Lemma B.1.5.3, ⋄{M ′} ∪

{N ′
j | j ∈ {1, . . . , p}}. By Lemma B.1.5.4, M−i = M ′ and ∀j ∈

{1, . . . , p}. N−i
j = N ′

j. So, ⋄{M−i} ∪ {N−i
j | j ∈ {1, . . . , p}}. By

Lemma B.1.1.5a, M [(x
i::Kj

j := Nj)p],M
−i[(x

Kj

j := N−i
j )p] ∈ M3 and

deg(M [(x
i::Kj

j := Nj)p]) = deg(M) = i :: L. We prove the result by

induction on M :

• Let M = yi::L. If (∀j ∈ {1, . . . , p}. yi::L 6= x
i::Kj

j ) then yi::L[(x
i::Kj

j :=

Nj)p] = yi::L. Hence (yi::L[(x
i::Kj

j := Nj)p])
−i = yL = yL[(x

Kj

j :=

N−i
j )p]. If ∃1 ≤ j ≤ p, yi::L = x

i::Kj

j then yi::L[(x
i::Kj

j := Nj)p] = Nj .

Hence (yi::L[(x
i::Kj

j := Nj)p])
−i = N−i

j = yL[(x
Kj

j := N−i
j )p].

• Let M = λyK .M1 such that M1 ∈M3, K � deg(M1), and ∀K ′. ∀j ∈

{1, . . . , p}. yK ′

6∈ fv(Nj) ∪ {x
i::Kj

j }. Then, M [(x
i::Kj

j := Nj)p] =

λyK.M1[(x
i::Kj

j := Nj)p]. By Lemma B.1.1.2b, ⋄{M1} ∪ {Nj | j ∈

{1, . . . , p}}. By definition deg(M) = deg(M1). By IH, (M1[(x
i::Kj

j :=
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Nj)p])
−i = M−i

1 [(x
Kj

j := N−i
j )p]. Because deg(M1) = i :: L �

K then K = i :: L :: K ′ for some K ′. Hence, (M [(x
i::Kj

j :=

Nj)p])
−i = λyL::K ′

.(M1[(x
i::Kj

j := Nj)p])
−i = λyL::K ′

.M−i
1 [(x

Kj

j :=

N−i
j )p] = (λyK .M1)

−i[(x
Kj

j := N−i
j )p].

• Let M = M1M2 such that M1,M2 ∈ M3, M1 ⋄M2 and deg(M1) �

deg(M2). Let P1 = M1[(x
i::Kj

j := Nj)p] and P2 = M2[(x
i::Kj

j := Nj)p].

Then, M [(x
i::Kj

j := Nj)p] = P1P2. By Lemma B.1.1.2a, ⋄{M1}∪{Nj |

j ∈ {1, . . . , p}} and ⋄{M2} ∪ {Nj | j ∈ {1, . . . , p}}. By definition

deg(M) = deg(M1) � deg(M2). Therefore deg(M2) = i :: L :: L′ for

some L′. By IH, P−i
1 = M−i

1 [(x
Kj

j := N−i
j )p] and P−i

2 = M−i
2 [(x

Kj

j :=

N−i
j )p]. Finally, (M [(x

i::Kj

j := Nj)p])
−i = P−i

1 P−i
2 = M−i

1 [(x
Kj

j :=

N−i
j )p]M

−i
2 [(x

Kj

j := N−i
j )p] = M−i[(x

Kj

j := N−i
j )p].

(c) Using Lemma B.1.5.4, Lemma 7.1.11 and the first item, we prove that

M−i, N−i ∈M3.

• Let −◮ be _β. By induction on M _β N .

– Let M = (λxK .M1)M2 _β M1[x
K := M2] = N where deg(M2) =

K. Because M ∈ M3 then M1 ∈ M3. Because i :: L =

deg(M) = deg(M1) � K thenK = i :: L :: K ′. By Lemma B.1.5.7,

deg(M−i
2 ) = L :: K ′. Hence, M−i = (λxL::K ′

.M−i
1 )M−i

2 _β

M−i
1 [xL::K ′

:= M−i
2 ] = (M1[x

K := M2])
−i.

– Let M = λxK .M1 _β λxK .N1 = N such that M1 _β N1.

Because M ∈ M3, M1 ∈ M3 and K � deg(M1). By defi-

nition deg(M) = deg(M1). Because i :: L = deg(M1) � K,

K = i :: L :: K ′ for some K ′. By IH, M−i
1 _β N−i

1 , hence

M−i = λxL::K ′

.M−i
1 _β λx

L::K ′

.N−i
1 = N−i.

– Let M = M1M2 _β N1M2 = N such that M1 _β N1. Because

M ∈M3 then M1 ∈M3. By definition deg(M) = deg(M1) = i ::

L. By IH, M−i
1 _β N

−i
1 , hence M−i = M−i

1 M−i
2 _β N

−i
1 M−i

2 =

N−i.

– Let M = M1M2 _β M1N2 = N such that M2 _β N2. Because

M ∈ M3 then M2 ∈ M3. By definition deg(M2) � deg(M1) =

deg(M) = i :: L. So deg(M2) = i :: L :: L′ for some L′. By IH,

M−i
2 _β N

−i
2 , hence M−i = M−i

1 M−i
2 _β N

−i
1 M−i

2 = N−i.

• Let −◮ be _∗
β. By induction on _∗

β. using _β.

• Let −◮ be _η. We only do the base case. The inductive cases are

as for _β. Let M = λxK .NxK _η N where xK 6∈ fv(N). Because

i :: L = deg(M) = deg(N) � K then K = i :: L :: K ′ for some K ′.

By Lemma B.1.5.7, N = N ′+i for some N ′ ∈M3. By Lemma B.1.5.7,

N ′ = N−i. By Lemma B.1.5.1, xL::K ′

6∈ fv(N−i). Then M−i =
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λxL::K ′

.N−ixL::K ′

_η N
−i.

• Let −◮ be _∗
η. By induction on _∗

η using _η.

• Let −◮ be _βη, _βη, _h or _∗
h. By the previous items.

8. By 1., deg(N+i) = i :: deg(N). By Lemma 7.1.11, deg(M) = deg(N+i). By 7.,

M = M ′+i such that M ′ ∈ M3. By 4., M ′ = (M ′+i)−i = M−i. By 7.,

M−i −◮ (N+i)−i. By 4., (N+i)−i = N .

9. By 1., deg(M+i) = i :: deg(M). By Lemma 7.1.11, deg(M+i) = deg(N). By 7.,

N = N ′+i such that N ′ ∈ M3. By 4., M = (M+i)−i By 7., (M+i)−i −◮ N−i.

By 4., N−i = (N ′+i)−i = N ′.

B.1.2 Confluence of _∗
β and _∗

βη

In this section we establish the confluence of _∗
β and _∗

βη using the standard parallel

reduction method.

Definition B.1.6. Let r ∈ {β, βη}. We define the binary relation
ρr
→ onMi, where

i ∈ {1, 2, 3}, by:

(PR1) M
ρr
→ M

(PR2) If M
ρr
→M ′ and λxI .M, λxI .M ′ ∈Mi then λxI .M

ρr
→ λxI .M ′.

(PR3) If M
ρr
→M ′, N

ρr
→ N ′ and MN,M ′N ′ ∈Mi then MN

ρr
→M ′N ′

(PR4) If M
ρr
→ M ′, N

ρr
→ N ′ and (λxI .M)N,M ′[xI := N ′] ∈ Mi then (λxI .M)N

ρr
→

M ′[xI := N ′]

(PR5) If M
ρβη
→ M ′, xI 6∈ fv(M) and λxI .MxI ∈Mi then λxI .MxI

ρβη
→ M ′

We denote the transitive closure of
ρr
→ by

ρr

։. When M
ρr
→ N (resp. M

ρr

։ N),

we can also write N
ρr
← M (resp. N

ρr

և M). If rel , rel ′ ∈ {
ρr
→,

ρr

։,
ρr
←,

ρr

և}, we write

M1 rel M2 rel ′ M3 instead of M1 rel M2 and M2 rel ′ M3.

We now prove the relation between _r for r ∈ {β, βη} and
ρr
→.

Lemma B.1.7. Let r ∈ {β, βη}, i ∈ {1, 2, 3} and M ∈Mi.

1. If M _r M
′ then M

ρr
→M ′.

2. If M
ρr
→ M ′ then M ′ ∈ Mi, M _∗

r M
′, fv(M ′) ⊆ fv(M), deg(M) = deg(M ′)

and if i ∈ {1, 2}, fv(M ′) = fv(M).

3. If M
ρr
→M ′, N

ρr
→ N ′ and M ⋄N then M ′ ⋄N ′.
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Proof of Lemma B.1.7.

1. By induction on the derivation of M _r M
′ and then by case on the last

rule used in the derivation. We prove the case where M = (λxI .M1)M2 _β

M1[x
I := M2] = M ′. such that deg(M2) = I and ∀I ′. xI ′ 6∈ fv(M2). By

definitionM ∈Mi andM1,M2 ∈Mi. By Lemma B.1.1.1 and Lemma B.1.1.2,

M1 ⋄M2. By Lemma B.1.1.5a, M ′ ∈Mi. Using rules (PR1) and (PR4)

2. By induction on the derivation of M
ρr
→M ′ using Lemmas 7.1.11 and B.1.2.4.

3. M ′ ⋄N ′ since by 2., fv(M ′) ⊆ fv(M) and fv(N ′) ⊆ fv(N ′) and M ⋄N .

Lemma B.1.8. Let r ∈ {β, βη}, i ∈ {1, 2, 3}, M,N ∈ Mi, N
ρr
→ N ′, deg(N) = I,

and M ⋄N . We have:

1. M [xI := N ]
ρr
→M [xI := N ′].

2. If M
ρr
→M ′ then M [xI := N ]

ρr
→ M ′[xI := N ′].

Proof of Lemma B.1.8. By Lemma B.1.7.2, deg(N ′) = deg(N) = I and fv(N ′) ⊆

fv(N), and by Lemma B.1.7.3, M ⋄N ′.

1. By Lemma B.1.1.5a, M [xI := N ],M [xI := N ′] ∈Mi.

Let i ∈ {1, 2}. By induction on M :

– Let M = yn. If xI = yn then M [xI := N ] = N
ρr
→ N ′ = M [xI := N ′]. If

xI 6= yn then M [xI := N ] = M
ρr
→M = M [xI := N ′].

– Let M = λyn.M1 such that yn ∈ fv(M1) and ∀m. ym 6∈ fv(N). By

Lemma B.1.1.2b, M1 ⋄N . By IH, M1[x
I := N ]

ρr
→ M1[x

I := N ′]. Hence,

M [xI := N ] = λyn.M1[x
I := N ]

ρr
→ λyn.M1[x

I := N ′] = M [xI := N ′]

– Let M = M1M2 such that M1 ⋄M2. By Lemma B.1.1.2a, {M1,M2} ⋄N .

By IH M1[x
I := N ]

ρr
→ M1[x

I := N ′] and M2[x
I := N ]

ρr
→ M2[x

I :=

N ′]. Hence, M [xI := N ] = M1[x
I := N ]M2[x

I := N ]
ρr
→ M1[x

I :=

N ′]M2[x
I := N ′] = M [xI := N ′]

The proof for i = 3 is similar.

2. By Lemma B.1.7.3, M ′ ⋄ N ′. By induction on M
ρr
→ M ′ using 1., Lem-

mas B.1.1.2, B.1.1.3, B.1.1.5a, and B.1.7.3. We only consider one inter-

esting case where (λyJ .M1)M2

ρβ
→ M ′

1[y
J := M ′

2], M1

ρβ
→ M ′

1, M2

ρβ
→ M ′

2,

(λyJ .M1)M2,M
′
1[y

J := M ′
2] ∈ Mi, and ∀J ′. yJ ′

6∈ fv(N) ∪ {xI} ∪ fv(M2). Be-

cause (λyJ .M1)M2 ∈ Mi, by definition, M1,M2 ∈ Mi. By Lemma B.1.7.2,

M ′
1,M

′
2 ∈Mi. By Lemma B.1.1.5a,M ′

1⋄M
′
2 and deg(M ′

2) = J . By Lemma B.1.1.2,

M1⋄N andM2⋄N . By Lemma B.1.7.3, M ′
1⋄N andM ′

2⋄N . By Lemma B.1.7.3,
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M ′
1 ⋄N

′ and M ′
2 ⋄N

′. By Lemma B.1.7.2, deg(N ′) = I . By Lemma B.1.1.5a,

M1[x
I := N ],M2[x

I := N ],M ′
1[x

I := N ′],M ′
2[x

I := N ′] ∈Mi. By Lemma B.1.1.2,

M1 ⋄ M2. By Lemma B.1.1.3. M1[x
I := N ] ⋄ M2[x

I := N ] and M ′
1[x

I :=

N ′] ⋄ M ′
2[x

I := N ′]. By Lemma B.1.1.5b, deg(M1[x
I := N ]) = deg(M1),

deg(M2[x
I := N ]) = deg(M2), and deg(M ′

2[x
I := N ′]) = deg(M ′

2) = J .

By Lemma B.1.1.5a, M ′
1[x

I := N ′][yJ := M ′
2[x

I := N ′]] ∈ Mi. Therefore

λyJ .M1[x
I := N ] ∈ Mi By Lemma B.1.1.2, (λyJ .M1[x

I := N ]) ⋄M2[x
I :=

N ]. Therefore (λyJ .M1[x
I := N ])M2[x

I := N ] ∈ Mi. By Lemma B.1.1.6,

M ′
1[x

I := N ′][yJ := M ′
2[x

I := N ′]] = M ′
1[y

J := M ′
2][x

I := N ′]. Hence,

(λyJ .M1[x
I := N ])M2[x

I := N ]
ρβ
→ M ′

1[x
I := N ′][yJ := M ′

2[x
I := N ′]] and

so, ((λyJ .M1)M2)[x
I := N ]

ρβ
→M ′

1[y
J := M ′

2][x
I := N ′].

Lemma B.1.9. Let r ∈ {β, βη}, i ∈ {1, 2, 3} and M ∈Mi.

1. If M = xI ρr
→ N then N = xI .

2. If M = λxI .P
ρβ
→ N then N = λxI .P ′ where P

ρβ
→ P ′.

3. If M = λxI .P
ρβη
→ N then one of the following holds:

• N = λxI .P ′ where P
ρβη
→ P ′.

• P = P ′xI where xI 6∈ fv(P ′) and P ′ ρβη
→ N .

4. If M = PQ
ρr
→ N then one of the following holds:

• N = P ′Q′, P
ρr
→ P ′, Q

ρr
→ Q′, P ⋄Q, and P ′ ⋄Q′.

• P = λxI .P ′, N = P ′′[xI := Q′], deg(Q) = deg(Q′) = I, P ′ ρr
→ P ′′,

Q
ρr
→ Q′, P ′ ⋄Q and P ′′ ⋄Q′.

Proof of Lemma B.1.9. 1. By induction on the derivation of xI ρr
→ N .

2. By induction on the derivation of λxI .P
ρβ
→ N using Lemma B.1.7.2.

3. By induction on the derivation of λxI .P
ρβη
→ N using Lemma B.1.7.2.

4. By induction on the derivation of PQ
ρr
→ N using Lemma B.1.7.2 and B.1.7.3.

Lemma B.1.10. Let r ∈ {β, βη}, i ∈ {1, 2, 3} and M,M1,M2 ∈Mi.

1. If M2
ρr
←M

ρr
→ M1 then there exists M ′ ∈Mi such that M2

ρr
→ M ′ ρr

← M1.

2. If M2

ρr

ևM
ρr

։ M1 then there exits M ′ ∈Mi such that M2

ρr

։ M ′
ρr

և M1.

Proof of Lemma B.1.10. 1. Both cases (r = β and r = βη) are by induction on M .

We only do the βη case making discriminate use of Lemma B.1.9.

• If M = xI , by Lemma B.1.9, M1 = M2 = xI . Take M ′ = xI .
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• If N2P2

ρβη
← NP

ρβη
→ N1P1 where N2

ρβη
← N

ρβη
→ N1 and P2

ρβη
← P

ρβη
→ P1. Then,

by IH, ∃N ′, P ′ ∈ Mi such that N2

ρβη
→ N ′ ρβη

← N1 and P2

ρβη
→ P ′ ρβη

← P1. By

definition, N1 ⋄ P1. By Lemma B.1.7.2, deg(N1) = deg(N ′) and deg(P1) =

deg(P ′). By Lemma B.1.7.3, N ′ ⋄ P ′. If i ∈ {1, 2} then N ′P ′ ∈ Mi. If

i = 3 then deg(N1) � deg(P1), so deg(N ′) � deg(P ′) and N ′P ′ ∈ Mi. Hence,

N2P2

ρβη
→ N ′P ′ ρβη

← N1P1.

• If P1[x
I := Q1]

ρβη
← (λxI .P )Q

ρβη
→ P2[x

I := Q2] where P1

ρβη
← P

ρβη
→ P2 and

Q1

ρβη
← Q

ρβη
→ Q2. Then, by IH, ∃P ′, Q′ ∈ Mi such that P1

ρβη
→ P ′ ρβη

← P2 and

Q1

ρβη
→ Q′ ρβη

← Q2. By Lemma B.1.1.5a, deg(Q1) = deg(Q2) = I, P1 ⋄ Q1 and

P2 ⋄Q2. Hence, by Lemma B.1.8.2, P1[x
I := Q1]

ρβη
→ P ′[xI := Q′]

ρβη
← P2[x

I :=

Q2].

• If (λxI .P1)Q1

ρβη
← (λxI .P )Q

ρβη
→ P2[x

I := Q2] where P
ρβη
→ P1, P

ρβη
→ P2, Q1

ρβη
←

Q
ρβη
→ Q2 and ∀I ′. xI′ 6∈ fv(Q). By IH, ∃P ′, Q′ ∈Mi such that P1

ρβη
→ P ′ ρβη

← P2

and Q1

ρβη
→ Q′ ρβη

← Q2. By Lemma B.1.1.1 and Lemma B.1.1.2b, P ⋄ Q. By

Lemma B.1.7.3, P ′ ⋄ Q′. By Lemma B.1.1.5a, deg(Q2) = I and P2 ⋄ Q2. By

Lemma B.1.7.2, deg(Q′) = I. By Lemma B.1.1.5a, P ′[xI := Q′] ∈Mi. Hence,

(λxn.P1)Q1

ρβη
→ P ′[xn := Q′] and by Lemma B.1.8.2, P2[x

n := Q2]
ρβη
→ P ′[xn :=

Q′].

• If P1Q1

ρβη
← (λxI .PxI)Q

ρβη
→ P2[x

I := Q2] where P
ρβη
→ P1, Px

I
ρβη
→ P2, Q1

ρβη
←

Q
ρβη
→ Q2, and ∀I ′. xI′ 6∈ fv(Q) ∪ fv(P ). By Lemma B.1.1.5a, deg(Q2) = I.

By Lemma B.1.7.2, deg(Q1) = I. By Lemma B.1.1.1 and Lemma B.1.1.2,

⋄{P, xI , Q}. By Lemma B.1.7.3, ⋄{P1, x
I , Q1}. By Lemma B.1.7.2, deg(P ) =

deg(P1) and xI 6∈ fv(P1). If i ∈ {1, 2} then P1x
I ∈Mi. If i = 3 then deg(P ) �

I, so deg(P1) � I and PxI ∈ Mi. Hence PxI ⋄ Q and by Lemma B.1.1.5a,

P1Q1 = (P1x
I)[xI := Q1] ∈ Mi. Moreover, PxI

ρβη
→ P1x

I and we conclude as

in the third item.

• If λxI .N2

ρβη
← λxI .N

ρβη
→ λxI .N1 where N2

ρβη
← N

ρβη
→ N1. By IH, there is

N ′ ∈ Mi such that N2

ρβη
→ N ′ ρβη

← N1. If i ∈ {1, 2} then xI ∈ fv(N1),

so by Lemma B.1.7.2, xI ∈ fv(N), hence λxI .N ′ ∈ Mi. If i = 3 then

by Lemma B.1.7.2, I � deg(N1) = deg(N ′), so λxI .N ′ ∈ Mi. Hence,

λxn.N2

ρβη
→ λxn.N ′ ρβη

← λxn.N1.

• If M1

ρβη
← λxI .PxI

ρβη
→ M2 where M1

ρβη
← P

ρβη
→ M2. By IH, there is M ′ ∈ Mi

such that M2

ρβη
→ M ′ ρβη

← M1.

• If M1

ρβη
← λxI .PxI

ρβη
→ λxI .P ′, where P

ρβη
→ M1, Px

I
ρβη
→ P ′ and xI 6∈ fv(P ). By

the ⋄ property, for all J , xJ 6∈ fv(P ). By Lemma B.1.9:
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– Either P ′ = P ′′xI and P
ρβη
→ P ′′. By IH, there is M ′ ∈ Mi such that

P ′′ ρβη
→ M ′ ρβη

← M1. By Lemma B.1.7.2, xI 6∈ fv(P ′′) and deg(P ′′) ≤ n.

Hence, M2 = λxI .P ′′xI
ρβη
→ M ′ ρβη

← M1.

– Or P = λyI .P ′′ and P ′ = P ′′′[yI := xI ] such that P ′′ ρβη
→ P ′′′ and where

x 6= y. If i ∈ {1, 2} then yI ∈ fv(P ′′), so by Lemma B.1.7.2, yI ∈

fv(P ′′′) and λyI .M ′′′ ∈ Mi. If i = 3 then by Lemma B.1.7.2, deg(P ′′′) =

deg(P ′′) � I and for all J , xJ 6∈ fv(P ′′′). So λyI.M ′′′ ∈ Mi. Hence, P =

λyI .P ′′ ρβη
→ λyI.P ′′′. Moreover, λxI .P ′ = λxI .P ′′′[yI := xI ] = λyI .P ′′′. We

conclude using as in the sixth item.

2. First show by induction on M
ρr

։ M1 (and using 1.) that if M2
ρr
← M

ρr

։ M1

then there is M ′ ∈ Mi such that M2

ρr

։ M ′ ρr
← M1. Then use this to show 2. by

induction on M
ρr

։ M2.

Proof of Theorem 7.1.13.

1. By Lemma B.1.10.2,
ρr

։ is confluent. By Lemma B.1.7.1 and B.1.7.2, M
ρr

։ N

iff M _∗
r N . Then _∗

r is confluent.

2. ⇐⇐⇐) is by definition of ≃β . ⇒⇒⇒) is by induction on M1 ≃β M2 using 1.

B.1.3 The types of the indexed calculi (Sec. 7.2)

Proof of Lemma 7.2.3. 1. The⇒⇒⇒) directions are by definition, and the⇐⇐⇐) direc-

tions are by induction on the derivations of U�T ∈ GITy for 1a., of U ⊓ V ∈

GITy for 1b., and of eU ∈ GITy for 1c.

2. 2a. By induction on T .

2b. By induction on U .

∗ Let U = U1 ⊓U2 such that U1, U2 ∈ ITy2. Because ⊓ is commutative,

let deg(U1) = n and deg(U2) = n′ such that n′ ≥ n. By IH, U1 =

⊓m
i=1~ej(1:n),iVi and U2 = ⊓m+m′

i=m+1~ej(1:n′),iVi such that m,m′ ≥ 1, ∃i ∈

{1, . . . , m}. Vi ∈ Ty2, and ∃i ∈ {m + 1, . . . , m′}. Vi ∈ Ty2. Let ∀i ∈

{1, . . . , m}. V ′
i = Vi. Let ∀i ∈ {m+1, . . . , m+m′}. V ′

i = ~ej(n+1:n′),iVi.

Therefore U1 ⊓ U2 = ⊓m+m′

i=1 ~ej(1:n),iV
′
i and m+m′ ≥ 1.

∗ Let U = eU1 such that U1 ∈ ITy2. Then deg(U) = n = n′ + 1 =

deg(U1) + 1 By IH, U1 = ⊓m
i=1~ej(1:n′),iVi such that m ≥ 1 and ∃i ∈

{1, . . . , m}. Vi ∈ Ty2. Therefore U = ⊓m
i=1e~ej(1:n′),iVi.

∗ The case U ∈ Ty2 is trivial.

2c. By induction on U .
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∗ Let U = U1 ⊓ U2 then by 1b., U1, U2 ∈ GITy and deg(U1) = deg(U2).

By IH, U1 = ⊓m
i=1~ej(1:n),iVi and U2 = ⊓m+m′

i=m+1~ej(1:n),iVi such that

m,m′ ≥ 1 and ∀i ∈ {1, . . . , m′}. Vi ∈ Ty2∩GITy. Therefore U1⊓U2 =

⊓m+m′

i=1 ~ej(1:n),iVi.

∗ Let U = eU1 then by 1c., U1 ∈ GITy. Also deg(U) = n = n′ +

1 = deg(U1) + 1 By IH, U1 = ⊓m
i=1~ej(1:n′),iVi such that m ≥ 1 and

∀i ∈ {1, . . . , m}. Vi ∈ Ty2 ∩ GITy. Therefore U = ⊓m
i=1e~ej(1:n′),iVi.

∗ The cases U = U1�T and U = a are trivial.

2d. ⇐⇐⇐) By 1. ⇒⇒⇒) By 2., deg(U) ≥ 0 = deg(T ). Hence, by 1., U�T ∈

GITy.

B.1.4 The type systems ⊢1 and ⊢2 for λIN and ⊢3 for λLN

(Sec. 7.3)

Proof of Lemma 7.3.4. 1. By induction on the derivation Γ ⊑ Γ′ and then by

case on the last rule of the derivation.

– Let Γ = Γ′ using rule (ref) then use rule (⊑c).

– Let Γ ⊑ Γ′ be derived from Γ ⊑ Γ′′ and Γ′′ ⊑ Γ′ using rule (tr). By

IH, dom(Γ) = dom(Γ′) and Γ, (xI : U) ⊑ Γ′′, (xI : U ′). Therefore xI 6∈

dom(Γ′′). Again by IH, dom(Γ′′) = dom(Γ′) and Γ′′, (xI : U ′) ⊑ Γ′, (xI :

U ′). Therefore, using rule (tr), Γ, (xI : U) ⊑ Γ′, (xI : U ′). Also, dom(Γ) =

dom(Γ′).

– Let Γ = Γ1, (y
I ′ : U1) ⊑ Γ1, (y

I ′ : U2) = Γ′ be derived from U1 ⊑ U2

and yI ′ 6∈ dom(Γ1) using rule (⊑c). Therefore dom(Γ) = dom(Γ′) Using

rule (⊑c), Γ, (xI : U) = Γ1, (y
I ′ : U1), (x

I : U) ⊑ Γ1, (y
I ′ : U1), (x

I : U ′).

Using rule (⊑c) again, Γ1, (y
I ′ : U1), (x

I : U ′) ⊑ Γ1, (y
I ′ : U2), (x

I : U ′) =

Γ′, (xI : U ′). Therefore using rule (tr), Γ ⊑ Γ′.

2. We prove the direction ⇒⇒⇒) by induction on the size of the derivation Γ ⊑ Γ′

and then by case on the last rule of the derivation.

– Let Γ = Γ′ using rule (ref) then we are done because Γ = (xIi
i : Ui)n and

by rule (ref), ∀i ∈ {1, . . . , n}. Ui ⊑ Ui.

– Let Γ ⊑ Γ′ be derived from Γ ⊑ Γ′′ and Γ′′ ⊑ Γ′ using rule (tr). By IH,

Γ = (xIi
i : Ui)n, Γ′′ = (xIi

i : U ′′
i )n, and ∀i ∈ {1, . . . , n}. Ui ⊑ U ′′

i . By IH

again Γ′′ = (xIi
i : U ′′

i )n, Γ′ = (xIi
i : U ′

i)n, and ∀i ∈ {1, . . . , n}. U ′′
i ⊑ U ′

i .

Therefore, using rule (tr), ∀i ∈ {1, . . . , n}. Ui ⊑ U ′
i .

– Let Γ, (xI : U1) ⊑ Γ, (xI : U2) be derived from U1 ⊑ U2 and xI 6∈ dom(Γ)

using rule (⊑c) and we are done.
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We prove the direction ⇐⇐⇐) by induction on n. If n = 0 then it is done. Let

Γ = Γ1, (x
In : Un), Γ′ = Γ′

1, (x
In : Un) and ∀i ∈ {1, . . . , n}. Ui ⊑ U ′

i , such that

Γ1 = (xIi
i : Ui)m and Γ′

1 = (xIi
i : U ′

i)m. By IH, Γ1 ⊑ Γ′
1. By 1., Γ ⊑ Γ′.

3. First we prove the direction ⇒⇒⇒) by induction on the derivation of Γ ⊢j U ⊑

Γ′ ⊢j U
′ and the by case on the last rule of the derivation.

– Let Γ ⊢j U = Γ′ ⊢j U
′ using rule (ref) then it is done because Γ = Γ′ and

U = U ′ and by rule (ref), Γ ⊑ Γ and U ⊑ U .

– Let Γ ⊢j U ⊑ Γ′ ⊢j U ′ be derived from Γ ⊢j U ⊑ Γ′′ ⊢j U ′′ and

Γ′′ ⊢j U
′′ ⊑ Γ′ ⊢j U

′ using rule (tr). By IH, Γ ⊑ Γ′′, Γ′′ ⊑ Γ′, U ⊑ U ′′,

and U ′′ ⊑ U ′. Therefore using rule (tr), Γ ⊑ Γ′ and U ⊑ U ′.

– Let Γ ⊢j U ⊑ Γ′ ⊢j U ′ using rule (⊑〈〉) then we are done using the

premises.

The direction⇐⇐⇐) is obtained using rule (⊑〈〉).

4. We prove this result by induction on the derivation of U1 ⊑ U2 and then by

case on the last rule of the derivation.

– Case (ref) is trivial.

– Let U1 ⊑ U2 be derived from U1 ⊑ U and U ⊑ U2 using rule (tr). By IH,

deg(U1) = deg(U) = deg(U2) and (U1 ∈ GITy iff U ∈ GITy iff U2 ∈ GITy).

– Let U1 = U2 ⊓ U ⊑ U2 be derived from deg(U2) = deg(U) (and U ∈ GITy

in ITy2) using rule (⊓E). Then deg(U1) = deg(U2) = deg(U). Let j = 2.

Using Lemma 7.2.3.1b, U1 ∈ GITy iff U2 ∈ GITy.

– Let U1 = U ′
1 ⊓ U

′′
1 ⊑ U ′

2 ⊓ U
′′
2 = U2 be derived from U ′

1 ⊑ U ′
2 and

U ′′
1 ⊑ U ′′

2 (and deg(U ′
1) = deg(U ′′

1 ) in ITy3) using rule (⊓). By IH,

deg(U ′
1) = deg(U ′

2), deg(U ′′
1 ) = deg(U ′′

2 ), U ′
1 ∈ GITy iff U ′

2 ∈ GITy, and

U ′′
1 ∈ GITy iff U ′′

2 ∈ GITy. In ITy2, deg(U1) = min(deg(U ′
1), deg(U ′′

1 )) =

min(deg(U ′
2), deg(U ′′

2 )) = deg(U2). Also, using Lemma 7.2.3.1b, we prove

U1 ∈ GITy iff U2 ∈ GITy. In ITy3, deg(U ′
2) = deg(U ′

1) = deg(U ′′
1 ) =

deg(U ′′
2 ) and deg(U1) = deg(U ′

1) = deg(U ′
2) = deg(U2).

– Let U1 = U ′
1�T1 ⊑ U ′

2�T2 = U2 be derived from U ′
2 ⊑ U ′

1 and T1 ⊑ T2

using rule (�). By IH, deg(U ′
1) = deg(U ′

2), deg(T1) = deg(T2), U
′
1 ∈

GITy iff U ′
2 ∈ GITy, and T1 ∈ GITy iff T2 ∈ GITy. In ITy2, deg(U1) =

min(deg(U ′
1), deg(T1)) = min(deg(U ′

2), deg(T2)) = deg(U2). Also, using

Lemma 7.2.3.1a, we prove U1 ∈ GITy iff U2 ∈ GITy. In ITy3, deg(U1) =

⊘ = deg(U2).

– Let U1 = eU ′
1 ⊑ eU ′

2 = U2 be derived from U ′
1 ⊑ U ′

2 using rule (⊑exp). By

IH, deg(U ′
1) = deg(U ′

2) and U ′
1 ∈ GITy iff U ′

2 ∈ GITy. In ITy2, deg(U1) =
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deg(U ′
1) + 1 = deg(U ′

2) + 1 = deg(U2). Also using Lemma 7.2.3.1c, we

prove U1 ∈ GITy iff U2 ∈ GITy. In ITy3, deg(U1) = i :: deg(U ′
1) = i ::

deg(U ′
2) = deg(U2).

5. We prove this result by induction on the derivation of Γ1 ⊑ Γ2 and then by

case on the last rule of the derivation.

– Case (ref) is trivial.

– Let Γ1 ⊑ Γ2 be derived from Γ1 ⊑ Γ and Γ ⊑ Γ2 using rule (tr). By IH,

deg(Γ1) = deg(Γ) = deg(Γ2).

– Let Γ1 = Γ, (xI : U1) ⊑ Γ, (xI : U2) = Γ2 such that xI 6∈ fv(Γ) be derived

from U1 ⊑ U2 using rule (⊑c). We conclude using 5.

6. This result is proved by a simple induction on a derivation of the form Ψ1 ⊑ Ψ2

and then by case on the last rule used in the derivation.

The most interesting case is in ITy3, if U1 = U ′
1 ⊓ U

′′
1 ⊑ U ′

2 ⊓ U
′′
2 = U2 derived

from U ′
1 ⊑ U ′

2, U
′′
1 ⊑ U ′′

2 , and deg(U ′
1) = deg(U ′′

1 ) using rule (⊓). To prove that

U ′
2 ⊓ U

′′
2 ∈ ITy3 we need to prove that deg(U ′

2) = deg(U ′′
2 ). This is obtained

using 4.

7. We prove this result by induction on the derivation of Γ1 ⊑ Γ2 and then by

case on the last rule of the derivation.

– If Γ1 = Γ2 is derived using rule (ref) then we are done.

– Let Γ1 ⊑ Γ2 be derived from Γ1 ⊑ Γ and Γ ⊑ Γ2 using rule (tr). By IH,

Γ1 ∈ GTyEnv⇔ Γ ∈ GTyEnv⇔ Γ2 ∈ GTyEnv.

– Let Γ1 = Γ, (yn : U1) ⊑ Γ, (yn : U2) = Γ2 such that yn 6∈ dom(Γ) be

derived from U1 ⊑ U2 using rule (⊑c). If Γ1 ∈ GTyEnv then Γ ∈ GTyEnv

and U1 ∈ GITy. By 4., U2 ∈ GITy and therefore Γ2 ∈ GTyEnv. This other

direction is similar.

Lemma B.1.11. In the relevant context (ITy2, Ty2, TyEnv2 or Typing2), we have:

1. If U ⊑ V ⊓ a then U = U ′ ⊓ a.

2. Let U1 ⊑ U2.

(a) If U2 ∈ GITy and deg(U2) = n then U1 = ⊓m
i=1~ej(1:n),iTi and U2 =

⊓m′

i=1
~e′j(1:n),iT

′
i , such that m,m′ ≥ 1, ∀i ∈ {1, . . . , m}. Ti ∈ Ty2, ∀i ∈

{1, . . . , m′}. T ′
i ∈ Ty2 and ∀i ∈ {1, . . . , m′}. ∃k ∈ {1, . . . , m}. ~ej(1:n),k =

~e′j(1:n),i ∧ Tk ⊑ T ′
i .
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(b) Let U1 = ⊓m
i=1~ej(1:ni),i(Vi�Ti) and U2 = ⊓p

i=1
~e′j(1:mi),i(V

′
i �T

′
i ). If U1 ∈

GITy and deg(U1) = n then ∀i ∈ {1, . . . , m}. ∀k ∈ {1, . . . , p}. ni = mk =

n and ∀k ∈ {1, . . . , p}. ∃i ∈ {1, . . . , m}. ~ej(1:n),i = ~e′j(1:n),k∧V
′
k ⊑ Vi∧Ti ⊑

T ′
k.

3. If eU ⊑ V then V = eU ′ where U ⊑ U ′.

4. If U�T ⊑ V and U�T ∈ GITy then V = ⊓p
i=1(Ui�Ti) where p ≥ 1 and

∀i ∈ {1, . . . , p}. Ui ⊑ U ∧ T ⊑ Ti.

5. If ⊓m
i=1~ej(1:ni),i(Vi�Ti) ⊑ V where V ∈ GITy, deg(V ) = n and m ≥ 1 then

∀i ∈ {1, . . . , m}. ni = n and V = ⊓p
i=1
~e′j(1:n),i(V

′
i �T

′
i ) where p ≥ 1 and

∀i ∈ {1, . . . , p}. ∃k ∈ {1, . . . , m}. ~ej(1:n),k = ~e′j(1:n),i ∧ V
′
i ⊑ Vk ∧ Tk ⊑ T ′

i .

6. If Ψ1 ⊑ Ψ2 then deg(Ψ1) = deg(Ψ2) and Ψ1 is good iff Ψ2 is good.

7. If U ⊑ U ′
1 ⊓ U

′
2 then U = U1 ⊓ U2 where U1 ⊑ U ′

1 and U2 ⊑ U ′
2.

8. If Γ ⊑ Γ′
1 ⊓ Γ′

2 then Γ = Γ1 ⊓ Γ2 where Γ1 ⊑ Γ′
1 and Γ2 ⊑ Γ′

2.

Proof of Lemma B.1.11.

1. By induction on U ⊑ V ⊓ a.

2. By induction on the derivation of U1 ⊑ U2 using Lemmas 7.2.3.

2a. By induction on the derivation of U1 ⊑ U2 and then by case on the last

rule of the derivation.

∗ Case (ref). The result is trivial using Lemma 7.2.3.2c.

∗ Case (tr). There exists U3 such that U1 ⊑ U3 and U3 ⊑ U2. By

Lemma 7.3.4.4, U1, U3 ∈ GITy and deg(U1) = deg(U2) = deg(U3) = n.

By IH, U3 = ⊓m3

i=1
~e′′j(1:n),iT

′′
i , U2 = ⊓m2

i=1
~e′j(1:n),iT

′
i , where m2, m3 ≥ 1,

∀i ∈ {1, . . . , m3}. T
′′
i ∈ Ty2, ∀i ∈ {1, . . . , m2}. T

′
i ∈ Ty2 and ∀i ∈

{1, . . . , m2}. ∃k ∈ {1, . . . , m3}. ~e′′j(1:n),k = ~e′j(1:n),i ∧ T
′′
k ⊑ T ′

i . By IH

again, U1 = ⊓m1

i=1~ej(1:n),iTi where m1 ≥ 1, ∀i ∈ {1, . . . , m1}. Ti ∈ Ty2

and ∀i ∈ {1, . . . , m3}. ∃k ∈ {1, . . . , m1}. ~ej(1:n),k = ~e′′j(1:n),i∧Tk ⊑ T ′′
i .

Therefore ∀i ∈ {1, . . . , m2}. ∃k ∈ {1, . . . , m1}. ~ej(1:n),k = ~e′j(1:n),i ∧

Tk ⊑ T ′
i using rule (tr).

∗ Case (⊓E). There exists U3 ∈ GITy ∩ ITy2 such that U1 = U2 ⊓

U3 and deg(U3) = deg(U2). Therefore, by Lemma 7.2.3.2c. U2 =

⊓m
i=1~ej(1:n),iTi such that m ≥ 1 and ∀i ∈ {1, . . . , m}. Ti ∈ Ty2 and

U3 = ⊓m+m′

i=m+1~ej(1:n),iTi such that m′ ≥ 1 and ∀i ∈ {m + 1, . . . , m +

m′}. Ti ∈ Ty2. Finally, we have U1 = U2 ⊓ U3 = ⊓m+m′

i=1 ~ej(1:n),iTi such

that m + m′ ≥ 1 and ∀i ∈ {1, . . . , m + m′}. Ti ∈ Ty2, and trivially
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we have that ∀i ∈ {1, . . . , m}. ∃k ∈ {1, . . . , m + m′}. ~ej(1:n),k =

~ej(1:n),i ∧ Tk ⊑ Ti by picking k = i for each i.

∗ Case (⊓). Then, U1 = U ′
1⊓U

′′
1 , U2 = U ′

2⊓U
′′
2 , U ′

1 ⊑ U ′
2, and U ′′

1 ⊑ U ′′
2 .

By Lemma 7.2.3.2c, U2 = ⊓m
i=1
~e′j(1:n),iT

′
i such that m ≥ 1 and

∀i ∈ {1, . . . , m}. T ′
i ∈ Ty2. By Lemma 7.2.3.1b and Lemma 7.3.4.4,

U1, U
′
2, U

′′
2 , U

′
1, U

′′
1 ∈ GITy and deg(U2) = deg(U1) = deg(U ′

2) = deg(U ′′
2 ) =

deg(U ′
1) = deg(U ′′

1 ) = n. Because ⊓ is commutative, let us choose

that m = m1 +m2, U
′
2 = ⊓m1

i=1
~e′j(1:n),iT

′
i , and U ′′

2 = ⊓m1+m2

i=m1+1
~e′j(1:n),iT

′
i .

We have that m1, m2 ≥ 1. By IH, we obtain U ′
1 = ⊓

m′
1

i=1~ej(1:n),iTi and

U ′′
1 = ⊓

m′
1+m′

2

i=m′
1
+1~ej(1:n),iTi such that m′

1, m
′
2 ≥ 1, ∀i ∈ {1, . . . , m′

1 +

m′
2}. Ti ∈ Ty2, ∀i ∈ {1, . . . , m1}. ∃k ∈ {1, . . . , m

′
1}. ~ej(1:n),k =

~e′j(1:n),i ∧ Tk ⊑ T ′
i and ∀i ∈ {m1 + 1, . . . , m1 + m2}. ∃k ∈ {m

′
1 +

1, . . . , m′
1 + m′

2}. ~ej(1:n),k = ~e′j(1:n),i ∧ Tk ⊑ T ′
i . Therefore U1 = U ′

1 ⊓

U ′′
1 = ⊓

m′
1
+m′

2

i=1 ~ej(1:n),iTi. Finally, one obtains that ∀i ∈ {1, . . . , m1 +

m2}. ∃k ∈ {1, . . . , m
′
1 +m′

2}. ~ej(1:n),k = ~e′j(1:n),i ∧ Tk ⊑ T ′
i .

∗ Case (�) is trivial.

∗ Case (⊑exp). There exists U ′
1 and U ′

2 such that U1 = eU ′
1, U2 = eU ′

2

and U ′
1 ⊑ U ′

2. By Lemma 7.2.3.1c, U ′
2 ∈ GITy. Also, deg(U2) = n =

n′ + 1 where deg(U ′
2) = n′. By IH, we obtain U ′

1 = ⊓m
i=1~ej(1:n′),iTi,

U ′
2 = ⊓m′

i=1
~e′j(1:n′),iT

′
i , such that m,m′ ≥ 1, ∀i ∈ {1, . . . , m}. Ti ∈

Ty2, ∀i ∈ {1, . . . , m
′}. T ′

i ∈ Ty2, and also ∀i ∈ {1, . . . , m′}. ∃k ∈

{1, . . . , m}. ~ej(1:n′),k = ~e′j(1:n′),i ∧ Tk ⊑ T ′
i . Therefore, U1 = eU ′

1 =

⊓m
i=1e~ej(1:n′),iTi, U

′
2 = ⊓m′

i=1e~e
′
j(1:n′),iT

′
i , and ∀i ∈ {1, . . . , m′}. ∃k ∈

{1, . . . , m}. e~ej(1:n′),k = e~e′j(1:n′),i ∧ Tk ⊑ T ′
i .

2b. We do case (tr):

⊓m
i=1~ej(1:ni),i(Vi�Ti) ⊑ V V ⊑ ⊓p

i=1
~e′j(1:mi),i(V

′
i �T

′
i )

⊓m
i=1~ej(1:ni),i(Vi�Ti) ⊑ ⊓

p
i=1
~e′j(1:mi),i(V

′
i �T

′
i ) .

By Lemma 7.3.4.4, V ∈ GITy and deg(V ) = n. By 2a., we have ∀i ∈

{1, . . . , m}. ni = n and V = ⊓q
i=1

~e′′j(1:n),iT
′′
i where q ≥ 1, ∀i ∈ {1, . . . , q}. T ′′

i ∈

Ty2, and ∀i ∈ {1, . . . , q}. ∃k ∈ {1, . . . , m}. ~e′′j(1:n),i = ~ej(1:n),k ∧ Vk�Tk ⊑

T ′′
i . If T ′′

i = a then, by 1., Vi�Ti = V ′ ⊓ a. Absurd. Hence, ∀i ∈

{1, . . . , q}. T ′′
i = Wi�T

′′′
i and V = ⊓q

i=1
~e′′j(1:n),i(Wi�T

′′′
i ). By IH, ∀k ∈

{1, . . . , q}. ∃i ∈ {1, . . . , m}. ~ej(1:n),i = ~e′′j(1:n),k ∧ Wk ⊑ Vi ∧ Ti ⊑ T ′′′
k .

Again by IH, ∀i ∈ {1, . . . , p}. mj = m and ∀k ∈ {1, . . . , p}. ∃i ∈

{1, . . . , q}. ~e′′j(1:n),i = ~e′j(1:n),k ∧ V
′
k ⊑ Wi ∧ T

′′′
i ⊑ T ′

k. Hence, ∀k ∈

{1, . . . , p}. ∃i ∈ {1, . . . , m}. ~e′j(1:n),k = ~ej(1:n),i ∧ V
′
k ⊑ Vi ∧ Ti ⊑ T ′

k.

3. By induction on eU ⊑ V .

4. By 2a., V = ⊓p
i=1T

′
i where p ≥ 1 and ∀i ∈ {1, . . . , p}. U�T ⊑ T ′

i . If T ′
i = a

then, by 1., U�T = U ′ ⊓ a. Absurd. Hence, T ′
i = Ui�Ti. Hence, by 2b.,
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∀i ∈ {1, . . . , p}. Ui ⊑ U ∧ T ⊑ Ti.

5. By 2a., ∀i ∈ {1, . . . , m}. ni = n and V = ⊓p
i=1
~e′j(1:n),iT

′′
i where p ≥ 1 and

∀i ∈ {1, . . . , p}. ∃k ∈ {1, . . . , m}. ~ej(1:n),k = ~e′j(1:n),i ∧ Vk�Tk ⊑ T ′′
i . Let

i ∈ {1, . . . , p}. If T ′′
i = a then, by 1., Vk�Tk = U ′ ⊓ a. Absurd. Hence,

T ′′
i = V ′

i �T
′
i . Finally, By 4., V ′

i ⊑ Vk and Tji
⊑ T ′

i .

6. Using previous items and Lemmas 7.3.4.4 and 7.3.4.7.

7. By induction on U ⊑ U ′
1 ⊓ U

′
2.

– Case (ref): Let U ′
1 ⊓ U

′
2 ⊑ U ′

1 ⊓ U
′
2.

By rule (ref), U ′
1 ⊑ U ′

1 and U ′
2 ⊑ U ′

2.

– Case (tr): Let

U ⊑ U ′′ U ′′ ⊑ U ′
1 ⊓ U

′
2

U ⊑ U ′
1 ⊓ U

′
2 .

By IH, U ′′ = U ′′
1 ⊓ U

′′
2 such that U ′′

1 ⊑ U ′
1 and U ′′

2 ⊑ U ′
2. Again by IH,

U = U1 ⊓ U2 such that U1 ⊑ U ′′
1 and U2 ⊑ U ′′

2 . So by rule (tr), U1 ⊑ U ′
1

and U2 ⊑ U ′
2.

– Case (⊓E): Let

U ∈ GITy deg(U ′
1 ⊓ U

′
2) = deg(U)

(U ′
1 ⊓ U

′
2) ⊓ U ⊑ U ′

1 ⊓ U
′
2 .

By rule (ref), U ′
1 ⊑ U ′

1 and U ′
2 ⊑ U ′

2. Moreover:

∗ If deg(U) = deg(U ′
1 ⊓ U

′
2) = deg(U ′

1) then by rule (⊓E), U
′
1 ⊓ U ⊑ U ′

1.

We are done.

∗ If deg(U) = deg(U ′
1 ⊓ U

′
2) = deg(U ′

2) then by rule (⊓E), U
′
2 ⊓ U ⊑ U ′

2.

We are done.

– Case (⊓): Let

U1 ⊑ U ′
1 U2 ⊑ U ′

2

U1 ⊓ U2 ⊑ U ′
1 ⊓ U

′
2 .

Then we are done.

– Case (⊑exp): Let

U ⊑ U ′
1 ⊓ U

′
2

eU ⊑ eU ′
1 ⊓ eU

′
2.

By IH, U = U1 ⊓U2 such that U1 ⊑ U ′
1 and U2 ⊑ U ′

2. So, eU = eU1 ⊓ eU2

and by rule (⊑exp), eU1 ⊑ eU ′
1 and eU2 ⊑ eU ′

2.

8. By induction on Γ ⊑ Γ′
1 ⊓ Γ′

2.

– Case (ref): Let Γ′
1 ⊓ Γ′

2 ⊑ Γ′
1 ⊓ Γ′

2.

By rule (ref), Γ′
1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2.

– Case (tr): Let

Γ ⊑ Γ′′ Γ′′ ⊑ Γ′
1 ⊓ Γ′

2

Γ ⊑ Γ′
1 ⊓ Γ′

2 .

By IH, Γ′′ = Γ′′
1 ⊓ Γ′′

2 such that Γ′′
1 ⊑ Γ′

1 and Γ′′
2 ⊑ Γ′

2. Again by IH,

Γ = Γ1⊓Γ2 such that Γ1 ⊑ Γ′′
1 and Γ2 ⊑ Γ′′

2. So by rule (tr), Γ1 ⊑ Γ′
1 and

Γ2 ⊑ Γ′
2.
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– Case (⊑c): Let

U1 ⊑ U2

Γ, (yn : U1) ⊑ Γ, (yn : U2) where Γ, (yn : U2) = Γ′
1 ⊓ Γ′

2.

∗ If Γ′
1 = Γ′′

1, (y
n : U ′

2) and Γ′
2 = Γ′′

2, (y
n : U ′′

2 ) such that U2 = U ′
2 ⊓ U

′′
2

then by 7, U1 = U ′
1 ⊓ U

′′
1 such that U ′

1 ⊑ U ′
2 and U ′′

1 ⊑ U ′′
2 . Hence

Γ = Γ′′
1 ⊓ Γ′′

2 and Γ, (yn : U1) = Γ1 ⊓ Γ2 where Γ1 = Γ′′
1, (y

n : U ′
1) and

Γ2 = Γ′′
2, (y

n : U ′′
1 ) such that Γ1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2 by rule (⊑c).

∗ If yn 6∈ dom(Γ′
1) then Γ = Γ′

1 ⊓ Γ′′
2 where Γ′′

2, (y
n : U2) = Γ′

2. Hence,

Γ, (yn : U1) = Γ′
1 ⊓ Γ2 where Γ2 = Γ′′

2, (y
n : U1). By rules (ref)

and (⊑c), Γ′
1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2.

∗ If yn 6∈ dom(Γ′
2) then similar to the above case.

Lemma B.1.12. In the relevant context (ITy3, Ty3, TyEnv3 or Typing3), we have:

1. If T ∈ Ty3 then deg(T ) = ⊘.

2. Let U ∈ ITy3. If deg(U) = L = (ni)m then U = ωL or U = ~eL ⊓
p
i=1 Ti where

p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3.

3. Let U1, U2 ∈ ITy3 and U1 ⊑ U2.

(a) If U1 = ωK then U2 = ωK.

(b) If U1 = ~eKU then U2 = ~eKU
′ and U ⊑ U ′.

(c) If U2 = ~eKU then U1 = ~eKU
′ and U ⊑ U ′.

(d) If U1 = ⊓p
i=1~eK(Ui�Ti) where p ≥ 1 then U2 = ωK or U2 = ⊓q

j=1~eK(U ′
j�T

′
j)

where q ≥ 1 and ∀j ∈ {1, . . . , q}. ∃i ∈ {1, . . . , p}. U ′
j ⊑ Ui ∧ Ti ⊑ T ′

j.

4. If U ∈ ITy3 and U ⊑ U ′
1 ⊓ U

′
2 then U = U1 ⊓ U2 where U1 ⊑ U ′

1 and U2 ⊑ U ′
2.

5. If Γ ∈ TyEnv3 and Γ ⊑ Γ′
1⊓Γ′

2 then Γ = Γ1⊓Γ2 where Γ1 ⊑ Γ′
1 and Γ2 ⊑ Γ′

2.

Proof of Lemma B.1.12.

1. By definition.

2. By induction on U .

• If U = a (deg(U) = ⊘), nothing to prove.

• If U = V�T (deg(U) = ⊘), nothing to prove.

• If U = ωL, nothing to prove.

• If U = U1 ⊓ U2 (deg(U) = deg(U1) = deg(U2) = L), by IH we have four

cases:
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– If U1 = U2 = ωL then U = ωL.

– If U1 = ωL and U2 = ~eL⊓
k
i=1Ti where k ≥ 1 and ∀i ∈ {1, . . . , k}. Ti ∈

Ty3 then U = U2 (since ωL is a neutral).

– If U2 = ωL and U1 = ~eL⊓
k
i=1Ti where k ≥ 1 and ∀i ∈ {1, . . . , k}. Ti ∈

Ty3 then U = U1 (since ωL is a neutral).

– If U1 = ~eL ⊓
p
i=1 Ti and U2 = ~eL ⊓

p+q
i=p+1 Ti where p, q ≥ 1, ∀i ∈

{1, . . . , p+ q}. Ti ∈ Ty3 then U = ~eL ⊓
p+q
i=1 Ti.

• If U = en1
V (L = deg(U) = n1 :: deg(V ) = n1 :: K), by IH we have two

cases:

– If V = ωK , U = en1
ωK = ωL.

– If V = ~eK ⊓
p
i=1 Ti where p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3 then

U = ~eL ⊓
p
i=1 Ti where p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3.

3. 3a. By induction on U1 ⊑ U2.

3b. By induction on K. We do the induction step. Let U1 = eiU . By

induction on eiU ⊑ U2 we obtain U2 = eiU
′ and U ⊑ U ′.

3c. Same proof as in the previous item.

3d. By induction on the derivation of U1 ⊑ U2 and then by case on the last

rule of the derivation:

• By rule (ref), U1 = U2.

• Case (tr): Let

⊓p
i=1~eK(Ui�Ti) ⊑ U U ⊑ U2

⊓p
i=1~eK(Ui�Ti) ⊑ U2 .

By IH, either U = ωK and then by 3a., we obtain U2 = ωK . Or

U = ⊓q
j=1~eK(U ′

j�T
′
j) such that q ≥ 1 and ∀j ∈ {1, . . . , q}. ∃i ∈

{1, . . . , p}. U ′
j ⊑ Ui ∧ Ti ⊑ T ′

j . Then by IH again, U2 = ωK or

U2 = ⊓r
k=1~eK(U ′′

k �T ′′
k ) where r ≥ 1 and ∀k ∈ {1, . . . , r}. ∃j ∈

{1, . . . , q}. U ′′
k ⊑ U ′

j ∧ T
′
j ⊑ T ′′

k . Finally, using rule (tr), we obtain

∀k ∈ {1, . . . , r}. ∃i ∈ {1, . . . , p}. U ′′
k ⊑ Ui ∧ Ti ⊑ T ′′

k .

• By rule (⊓E), U2 = ωK or U2 = ⊓q
j=1~eK(U ′

j�T
′
j) where q ∈ {1, . . . , p}

and ∀j ∈ {1, . . . , q}. ∃i ∈ {1, . . . , p}. Ui = U ′
j ∧ Ti = T ′

j .

• Case (⊓) is by IH.

• Case (�) is trivial.

• Case (⊑exp): Let

⊓p
i=1~eL(Ui�Ti) ⊑ U2

⊓p
i=1~eK(Ui�Ti) ⊑ eiU2 where K = i :: L.

By IH, U2 = ωL and so eiU2 = ωK or U2 = ⊓q
j=1~eL(U ′

j�T
′
j) so

eiU2 = ⊓q
j=1~eK(U ′

j�T
′
j) where q ≥ 1 and ∀j ∈ {1, . . . , q}. ∃i ∈

{1, . . . , p}. U ′
j ⊑ Ui ∧ Ti ⊑ T ′

j .

4. By induction on U ⊑ U ′
1 ⊓ U

′
2.
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• Case (ref): Let U ′
1 ⊓ U

′
2 ⊑ U ′

1 ⊓ U
′
2. By rule (ref), U ′

1 ⊑ U ′
1 and U ′

2 ⊑ U ′
2.

• Case (tr): Let

U ⊑ U ′′ U ′′ ⊑ U ′
1 ⊓ U

′
2

U ⊑ U ′
1 ⊓ U

′
2 .

By IH, U ′′ = U ′′
1 ⊓ U

′′
2 such that U ′′

1 ⊑ U ′
1 and U ′′

2 ⊑ U ′
2. Again by IH,

U = U1 ⊓ U2 such that U1 ⊑ U ′′
1 and U2 ⊑ U ′′

2 .

So by rule (tr), U1 ⊑ U ′
1 and U2 ⊑ U ′

2.

• Case (⊓E): Let (U ′
1 ⊓ U

′
2) ⊓ U ⊑ U ′

1 ⊓ U
′
2.

By rule (ref), U ′
1 ⊑ U ′

1 and U ′
2 ⊑ U ′

2. Moreover deg(U) = deg(U ′
1 ⊓ U

′
2) =

deg(U ′
1) then by rule (⊓E), U ′

1 ⊓ U ⊑ U ′
1.

• Case (⊓): Let

U1 ⊑ U ′
1 U2 ⊑ U ′

2

U1 ⊓ U2 ⊑ U ′
1 ⊓ U

′
2 .

Then we are done.

• Case (⊓): Let
V2 ⊑ V1 T1 ⊑ T2

V1�T1 ⊑ V2�T2 .

Then U ′
1 = U ′

2 = V2�T2 and U = U1 ⊓ U2 such that U1 = U2 = V1�T1

and we are done.

• Case (⊑exp): Let

U ⊑ U ′
1 ⊓ U

′
2

eU ⊑ eU ′
1 ⊓ eU

′
2.

Then by IH U = U1 ⊓ U2 such that U1 ⊑ U ′
1 and U2 ⊑ U ′

2. So, eU =

eU1 ⊓ eU2 and by rule (⊑exp), eU1 ⊑ eU ′
1 and eU2 ⊑ eU ′

2.

5. By induction on Γ ⊑ Γ′
1 ⊓ Γ′

2.

• Case (ref): Let Γ′
1 ⊓ Γ′

2 ⊑ Γ′
1 ⊓ Γ′

2.

By rule (ref), Γ′
1 ⊑ Γ′

1 and Γ′
2 ⊑ Γ′

2.

• Case (tr): Let

Γ ⊑ Γ′′ Γ′′ ⊑ Γ′
1 ⊓ Γ′

2

Γ ⊑ Γ′
1 ⊓ Γ′

2 .

By IH, Γ′′ = Γ′′
1 ⊓ Γ′′

2 such that Γ′′
1 ⊑ Γ′

1 and Γ′′
2 ⊑ Γ′

2. Again by IH,

Γ = Γ1⊓Γ2 such that Γ1 ⊑ Γ′′
1 and Γ2 ⊑ Γ′′

2. So by rule (tr), Γ1 ⊑ Γ′
1 and

Γ2 ⊑ Γ′
2.

• Case (⊑c): Let

U1 ⊑ U2

Γ, (yL : U1) ⊑ Γ, (yL : U2) where Γ, (yL : U2) = Γ′
1 ⊓ Γ′

2.

– If Γ′
1 = Γ′′

1, (y
L : U ′

2) and Γ′
2 = Γ′′

2, (y
L : U ′′

2 ) such that U2 = U ′
2 ⊓ U

′′
2

then by 4, U1 = U ′
1 ⊓ U

′′
1 such that U ′

1 ⊑ U ′
2 and U ′′

1 ⊑ U ′′
2 . Hence

Γ = Γ′′
1 ⊓ Γ′′

2 and Γ, (yL : U1) = Γ1 ⊓ Γ2 where Γ1 = Γ′′
1, (y

L : U ′
1) and

Γ2 = Γ′′
2, (y

L : U ′′
1 ) such that Γ1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2 by rule (⊑c).

– If yL 6∈ dom(Γ′
1) then Γ = Γ′

1 ⊓ Γ′′
2 where Γ′′

2, (y
L : U2) = Γ′

2. Hence,

Γ, (yL : U1) = Γ′
1 ⊓ Γ2 where Γ2 = Γ′′

2, (y
L : U1). By rule (ref)

and (⊑c), Γ′
1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2.

– If yL 6∈ dom(Γ′
2) then similar to the above case.
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Lemma B.1.13. Let j ∈ {1, 2, 3}, Γ,Γ1,Γ2 ∈ TyEnvj and U,U1, U2 ∈ ITyj.

1. Let ok(Γ), ok(Γ1), and ok(Γ2)

(a) Γ1 ⊓ Γ2 ∈ TyEnvj and ok(Γ1 ⊓ Γ2).

(b) If j ∈ {1, 2} and Γ1,Γ2 ∈ GTyEnv then Γ1 ⊓ Γ2 ∈ GTyEnv.

(c) eΓ ∈ TyEnvj and ok(eΓ).

(d) If j ∈ {1, 2} and Γ ∈ GTyEnv then eΓ ∈ GTyEnv.

(e) If j = 2, dom(Γ1) = dom(Γ2) and Γ1,Γ2 ∈ GTyEnv then Γ1 ⊓ Γ2 ⊑ Γ1.

2. (a) If ((j = 2 and deg(U) ≥ I ) or (j = 3 and deg(U) � I )) then U−I ∈ ITyj.

(b) If ((j = 2 and deg(Γ) ≥ I ) or (j = 3 and deg(Γ) � I )) then Γ−I ∈

TyEnvj.

3. Let j ∈ {2, 3}, Γ1 ⊑ Γ2, and U1 ⊑ U2.

(a) ok(Γ1)⇔ ok(Γ2).

(b) If ((j = 2 and U1 ∈ GITy and deg(U1) ≥ I ) or (j = 3 and deg(U1) � I ))

then U−I
1 ⊑ U ′−I .

(c) If ((j = 2 and Γ1 ∈ GTyEnv and deg(Γ1) ≥ I ) or (j = 3 and deg(Γ1) �

I )) then Γ−I
1 ⊑ Γ−I

2 .

4. Let j ∈ {2, 3} and Γ1 ⋄ Γ2. If ((j = 2, deg(Γ1) ≥ I , and deg(Γ2) ≥ I ) or

(j = 3, deg(Γ1) � I , and deg(Γ2) � I )) then Γ−I
1 ⋄ Γ−I

2 .

5. ok(envø
M).

Proof of Lemma B.1.13.

1. Let Γ1 = (xIi
i : Ui)⊎Γ′

1 and Γ2 = (xIi
i : U ′

i)⊎Γ′
2 such that dj(dom(Γ′

1), dom(Γ′
2)).

Because ok(Γ1) and ok(Γ2) then ok(Γ′
1), ok(Γ′

2), and ∀i ∈ {1, . . . , n}. deg(Ui) =

Ii = deg(U ′
i). Therefore, Γ1 ⊓ Γ2 = {xIi 7→Ui ⊓ U

′
i | i ∈ {1, . . . , n}} ∪ Γ′

1 ∪ Γ′
2.

1a. In the case j ∈ {1, 2}, we have ∀i ∈ {1, . . . , n}. Ui ⊓ U
′
i ∈ ITyj there-

fore Γ1 ⊓ Γ2 ∈ TyEnvj. In the case j = 3, we use the fact that ∀i ∈

{1, . . . , n}. deg(Ui) = deg(U ′
i) to obtain ∀i ∈ {1, . . . , n}. Ui ⊓ U

′
i ∈ ITy3,

and finally, Γ1 ⊓ Γ2 ∈ TyEnv3.

Because ∀i ∈ {1, . . . , n}. deg(Ui) = Ii = deg(U ′
i) then we obtain ∀i ∈

{1, . . . , n}. deg(Ui ⊓ U
′
i) = Ii. Therefore ok(Γ1 ⊓ Γ2).

1b. Because Γ1,Γ2 ∈ GTyEnv then by definition Γ′
1,Γ

′
2 ∈ GTyEnv and ∀i ∈

{1, . . . , n}. Ui, U
′
i ∈ GITy. Therefore ∀i ∈ {1, . . . , n}. Ui ⊓ U

′
i ∈ GITy.

Finally, we obtain Γ1 ⊓ Γ2 ∈ GTyEnv.
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1c. Let Γ = (xIi
i : Ui)n. By hypothesis, ∀i ∈ {1, . . . , n}. deg(Ui) = Ii.

Let j ∈ {1, 2}. We have eΓ = (xIi+1
i : eUi)n ∈ TyEnvj . So ∀i ∈

{1, . . . , n}. deg(eUi) = deg(Ui) + 1 = Ii + 1. Let j = 3 and e = ek. We

have ekΓ = (xk::Ii
i : ekUi)n ∈ TyEnvj. So, ∀i ∈ {1, . . . , n}. deg(ekUi) =

k :: deg(Ui) = k :: Ii.

1d. Let Γ = (xIi
i : Ui)n. Because Γ ∈ GTyEnv then ∀i ∈ {1, . . . , n}. Ui ∈ GITy.

Because eΓ = (x
I ′i
i : eUi)n. Therefore, ∀i ∈ {1, . . . , n}. eUi ∈ GITy and

eΓ ∈ GTyEnv.

1e. Let Γ1 = (xni

i : Ui)n and Γ2 = (xni

i : Vi)n. By definition, we have

∀i ∈ {1, . . . , n}. deg(Ui) = ni = deg(Vi) ∧ Ui, Vi ∈ GITy. Therefore, using

rule (⊓E) ∀i ∈ {1, . . . , n}. Ui⊓Vi ⊑ Ui. We have Γ1⊓Γ2 = (xni

i : Ui⊓Vi)n.

Hence, by Lemma 7.3.4.2, Γ1 ⊓ Γ2 ⊑ Γ1.

2. 2a. Let j = 2 and m = deg(U) ≥ I = n. By Lemma 7.2.3.2b, U is of the form

⊓k
i=1~ej(1:m),iVi such that k ≥ 1 and ∃i ∈ {1, . . . , k}. Vi ∈ Ty2. Therefore

U−n = ⊓k
i=1~ej(n:m),iVi ∈ ITy2.

Let j = 3 and K = deg(U) � I = L. Therefore K = L :: L′. By

Lemma B.1.12.2:

∗ Either U = ωK . Therefore, U−L = ωL′

∈ ITy3.

∗ Or U = ~eK ⊓
p
i=1 Ti where p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3.

Therefore, U−L = ~eL′ ⊓p
i=1 Ti ∈ ITy3.

2b. Let j = 2, m = deg(Γ) ≥ I = n, and Γ = (xni

i : Ui)p. Therefore

∀i ∈ {1, . . . , p}. ni ≥ m∧ deg(Ui) ≥ m and Γ−n = (xni−n
i : Ui

−n)p. Using

2a., we obtain Γ−n ∈ TyEnv2.

Let j = 3, K = deg(Γ) � I = L, and Γ = (xLi

i : Ui)p. Therefore

∀i ∈ {1, . . . , p}. Li � K � L ∧ Li = L :: L′
i ∧ deg(Ui) � K � L and

Γ−L = (x
L′

i

i : U−L
i )p. Using 2a., we obtain Γ−L ∈ TyEnv3.

3. 3a. By Lemma 7.3.4.2, Γ1 = (xIi
i : Ui)n and Γ2 = (xIi

i : U ′
i)n and ∀i ∈

{1, . . . , n}. Ui ⊑ U ′
i . By Lemma 7.3.4.4, ∀i ∈ {1, . . . , n}. deg(Ui) =

deg(U ′
i). Assume ok(Γ1) then ∀i ∈ {1, . . . , n}. Ii = deg(Ui) = deg(U ′

i),

and so ok(Γ2). Assume ok(Γ2) then ∀i ∈ {1, . . . , n}. Ii = deg(U ′
i) =

deg(Ui), and so ok(Γ1).

3b. Let j = 2. Let deg(U1) = n. By Lemma 7.3.4.4, deg(U1) = deg(U2) = n

and U1, U2 ∈ GITy. Using Lemma B.1.11.2a we obtain U1 = ⊓m
i=1~ej(1:n),iTi,

U2 = ⊓m′

i=1
~e′j(1:n),iT

′
i , where m,m′ ≥ 1, ∀i ∈ {1, . . . , m}. Ti ∈ Ty2, ∀i ∈

{1, . . . , m′}. T ′
i ∈ Ty2 and ∀i ∈ {1, . . . , m′}. ∃k ∈ {1, . . . , m}. ~ej(1:n),k =

~e′j(1:n),i ∧ Tk ⊑ T ′
i . Because k = I ≤ n then U−k

1 = ⊓m
i=1~ej(k+1:n),iTi and

U−k
2 = ⊓m′

i=1
~e′j(k+1:n),iT

′
i . Because U1 ∈ GITy then by Lemma 7.2.3.1, one
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can prove that ∀i ∈ {1, . . . , m}. Ti ∈ GITy. Therefore using rules (⊑exp)

and (⊓E), one can prove U−I
1 ⊑ U−I

2 .

Let j = 3. Let I = K. Let deg(U1) = L = K :: K ′. By Lemma B.1.12.2:

– If U1 = ωL then by Lemma B.1.12.3a, U2 = ωL and by rule (ref),

U−K
1 = ωK ′

⊑ ωK ′

= U−K
2 .

– If U1 = ~eL ⊓
p
i=1 Ti where p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3, then by

Lemma B.1.12.3b, U2 = ~eLV and ⊓p
i=1Ti ⊑ V . Hence, by rule (⊑exp),

U−K
1 = ~eK ′ ⊓p

i=1 Ti ⊑ ~eK ′V = U−K
2 .

3c. By Lemma 7.3.4.2, Γ1 = (xIi
i : Ui)n, Γ2 = (xIi

i : U ′
i)n, and ∀i ∈ {1, . . . , n}. Ui ⊑

U ′
i . If j = 2 then because deg(Γ1) ≥ I = k and Γ1 ∈ GTyEnv, by definition

we have ∀i ∈ {1, . . . , n}. deg(Ui) ≥ k ∧ Ui ∈ GITy. If j = 3 then because

deg(Γ1) � I = K, by definition we have ∀i ∈ {1, . . . , n}. deg(Ui) � K. In

both cases, by 3b., ∀i ∈ {1, . . . , n}. U−K
i ⊑ U ′

i
−I and by Lemma 7.3.4.2,

Γ−I
1 ⊑ Γ−I

2 .

4. Let xI1 ∈ dom(Γ−I
1 ) and xI2 ∈ dom(Γ−I

2 ).

If j = 2 then xI+I1 ∈ dom(Γ1) and xI+I2 ∈ dom(Γ2), hence I + I1 = I + I2 and

so I1 = I2.

If j = 3 then xI ::I1 ∈ dom(Γ1) and xI ::I2 ∈ dom(Γ2), hence I :: I1 = I :: I2 and

so I1 = I2.

5. By definition, if fv(M) = {xL1

1 , . . . , xLn
n } then envø

M = (xLi

i : ωLi)n and by

definition, ∀i ∈ {1, . . . , n}. deg(ωLi) = Li.

Proof of Theorem 7.3.5. We prove 1. and 2. simultaneously. We prove the results

by induction on the derivation M : 〈Γ ⊢j U〉 and then by case on the last rule of

the derivation.

First let us deal with the case where i ∈ {1, 2}.

• Let xn : 〈(xn : T ) ⊢1 T 〉 such that T ∈ GITy and deg(T ) = n be derived

using rule (ax) (for system ⊢1). We have deg(xn) = n = deg(T ). By definition

xn ∈M.

• Let x0 : 〈(x0 : T ) ⊢2 T 〉 such that T ∈ GITy using rule (ax) (for system ⊢2).

We have deg(x0) = 0 = deg(T ) using Lemma 7.2.3.2a. By definition x0 ∈M.

• Let λxn.M : 〈Γ ⊢i U�T 〉 be derived fromM : 〈Γ, (xn : U) ⊢i T 〉 using rule (�I)

and where Γ = (xIi
i : Ui)n. By IH,M ∈Mi∩M, Γ, (xn : U) ∈ TyEnvi∩GTyEnv,

T ∈ ITyi ∩ GITy, deg(U) ≥ deg(M) = deg(T ), ok(Γ), deg(U) = n, deg(Γ) ≥

deg(M), and dom(Γ, (xn : U)) = fv(M). Therefore xn ∈ fv(M) and we obtain

λxn.M ∈ Mi ∩ M. If i = 2 then T ∈ Ty2. Because U ∈ GITy, we obtain
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U�T ∈ ITyi∩GITy. If i = 2 then U�T ∈ Ty2. Also, Γ ∈ TyEnvi∩GTyEnv. By

Lemma 7.2.3.2a, if i = 2 then deg(U�T ) = deg(T ) = 0. We have deg(U�T ) =

deg(T ) = deg(M) = deg(λxn.M). Because dom(Γ, (xn : U)) = fv(M) then

dom(Γ) = fv(λxn.M).

• Let M1M2 : 〈Γ1⊓Γ2 ⊢i T 〉 be derived from M1 : 〈Γ1 ⊢i U�T 〉, M2 : 〈Γ2 ⊢i U〉,

and Γ1 ⋄ Γ2 using rule (�E). By IH, M1,M2 ∈ Mi ∩M, Γ1,Γ2 ∈ TyEnvi ∩

GTyEnv, U�T, U ∈ ITyi ∩ GITy, deg(Γ1) ≥ deg(M1) = deg(U�T ), deg(Γ2) ≥

deg(M2) = deg(U), ok(Γ1), ok(Γ2), dom(Γ1) = fv(M1), and dom(Γ2) = fv(M2).

By Lemma 7.2.3.1a, T ∈ ITy2∩GITy. If i = 2 then U�T, T ∈ Ty2 and therefore

by Lemma 7.2.3.2a, deg(U�T ) = deg(T ) = 0. Because Γ1 ⋄ Γ2, dom(Γ1) =

fv(M1), and dom(Γ2) = fv(M2) then M1 ⋄M2. Also, deg(M1) = deg(U�T ) ≤

deg(U) = deg(M2). Therefore M1M2 ∈ Mi ∩M. Because deg(T ) ≤ deg(U),

we obtain deg(M1M2) = deg(M1) = deg(U�T ) = deg(T ). By Lemma B.1.13,

Γ1⊓Γ2 ∈ TyEnvi∩GTyEnv and ok(Γ1⊓Γ2). Because ok(Γ1⊓Γ2), then deg(Γ1⊓

Γ2) = min(deg(Γ1), deg(Γ2)) ≥ min(deg(M1), deg(M2)) = deg(M1M2). Finally,

dom(Γ1 ⊓ Γ2) = dom(Γ1) ∪ dom(Γ2) = fv(M1) ∪ fv(M2) = fv(M1M2).

• Let M : 〈Γ1 ⊓ Γ2 ⊢i U1 ⊓ U2〉 be derived from M : 〈Γ1 ⊢i U1〉 and M :

〈Γ2 ⊢i U2〉 using rule (⊓I). By IH, M ∈ Mi ∩M, Γ1,Γ2 ∈ TyEnvi ∩ GTyEnv

U1, U2 ∈ ITyi ∩ GITy, deg(Γ1) ≥ deg(M) = deg(U1), deg(Γ2) ≥ deg(M) =

deg(U2), ok(Γ1), ok(Γ2), dom(Γ1) = fv(M) = dom(Γ2), and if i = 2 and

deg(U1) = deg(U2) ≥ k then M−k : 〈Γ−k
1 ⊢2 U

−k
1 〉 and M−k : 〈Γ−k

2 ⊢2 U
−k
2 〉.

By Lemma B.1.13, Γ1 ⊓ Γ2 ∈ TyEnvi ∩ GTyEnv and ok(Γ1 ⊓ Γ2). Because

ok(Γ1 ⊓ Γ2), then deg(Γ1 ⊓ Γ2) = min(deg(Γ1), deg(Γ2)) ≥ deg(M). Because

deg(U1) = deg(U2) then U1 ⊓ U2 ∈ ITyi ∩ GITy. We have deg(M) = deg(U1) =

deg(U2) = deg(U1 ⊓ U2). Also, dom(Γ1 ⊓ Γ2) = dom(Γ1) ∪ dom(Γ2) = fv(M).

Finally, let i = 2 and k ∈ {0, . . . , deg(M)} (deg(M) = deg(U1⊓U2)). We want

to prove that M−k : 〈Γ1 ⊓ Γ−k
2 ⊢2 U1 ⊓ U

−k
2 〉. By IH, M−k : 〈Γ−k

1 ⊢2 U
−k
1 〉

and M−k : 〈Γ−k
2 ⊢2 U

−k
2 〉. Therefore using rule (⊓I), M

−k : 〈Γ−k
1 ⊓ Γ−k

2 ⊢2

U−k
1 ⊓ U

−k
2 〉, and we have Γ−k

1 ⊓ Γ−k
2 = Γ1 ⊓ Γ−k

2 and U−k
1 ⊓ U

−k
2 = U1 ⊓ U

−k
2 .

• Let M+ : 〈eΓ ⊢i eU〉 be derived from M : 〈Γ ⊢i U〉 using rule (exp). By IH,

M ∈ Mi ∩M, Γ ∈ TyEnvi ∩ GTyEnv, U ∈ ITyi ∩ GITy, deg(Γ) ≥ deg(M) =

deg(U), ok(Γ), dom(Γ) = fv(M), and if i = 2 and deg(U) ≥ k then M−k :

〈Γ−k ⊢2 U−k〉. By Lemma B.1.3.1d, M ∈ Mi ∩ M. By Lemma B.1.13,

eΓ ∈ TyEnvi ∩ GTyEnv and ok(eΓ). By Lemma 7.2.3.1c, eU ∈ ITyi ∩ GITy.

Also, using Lemma B.1.3.1a, deg(M+) = deg(M) + 1 = deg(U) + 1 = deg(eU)

and deg(eΓ) = deg(Γ)+1 ≥ deg(M)+1 = deg(M+). Let Γ = (x
nj

j : Uj)n then

eΓ = (x
nj+1
j : eUj)n. Therefore fv(M) = {x

nj

j | j ∈ {1, . . . , n}} dom(eΓ) =

{x
nj+1
j | 1 ∈ {1, . . . , n}} = fv(M+) using Lemma B.1.3.1a. Finally, let i = 2
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and k ∈ {0, . . . , deg(eU)}. Therefore k ∈ {0, . . . , deg(U) + 1}. If k = 0 then

we are done. If k = k′ + 1 such that k′ ∈ {0, . . . , deg(U)} then (M+)−k =

(M+)−k′+1 = M−k′

using Lemma B.1.3.1a, (eΓ)−k = (eΓ)−k′+1 = Γ−k′

, and

(eU)−k = (eU)−k′+1 = U−k′

. Because k′ ∈ {0, . . . , deg(U)} and by IH, we

obtain (M+)−k : 〈(eΓ)−k ⊢2 (eU)−k〉.

• Let M : 〈Γ′ ⊢2 U
′〉 be derived from M : 〈Γ ⊢2 U〉 and Γ ⊢2 U ⊑ Γ′ ⊢2 U

′

using rule (⊑). By Lemma 7.3.4.3, Γ′ ⊑ Γ and U ⊑ U ′. By IH, M ∈

M2 ∩ M, Γ ∈ TyEnv2 ∩ GTyEnv, U ∈ ITy2 ∩ GITy, deg(Γ) ≥ deg(M) =

deg(U), ok(Γ), dom(Γ) = fv(M) and if deg(U) ≥ k then M−k : 〈Γ−k ⊢2

U−k〉. By Lemma 7.3.4, Γ′ ∈ TyEnv2 ∩ GTyEnv, U ′ ∈ ITy2 ∩ GITy, deg(Γ′) =

deg(Γ) ≥ deg(M) = deg(U) = deg(U ′), and dom(Γ′) = dom(Γ) = fv(M). By

Lemma B.1.13.3a, ok(Γ′). Let k ∈ {0, . . . , deg(U ′)} then because deg(U ′) =

deg(U) by IH, M−k : 〈Γ−k ⊢2 U
−k〉. By Lemmas B.1.13.3b and B.1.13.3c,

Γ′−k ⊑ Γ−k and U−k ⊑ U ′−k. By Lemma 7.3.4.3, Γ−k ⊢2 U
−k ⊑ Γ′−k ⊢2 U

′−k.

By Rule (⊑), M−k : 〈Γ′−k ⊢2 U
′−k〉.

We now deal with the case where i = 3.

• Let x⊘ : 〈(x⊘ : T ) ⊢3 T 〉 be derived using rule (ax) (for system ⊢3). By

Lemma B.1.12.1 we have deg(x⊘) = ⊘ = deg(T ).

• Let M : 〈envø
M ⊢3 ω

deg(M)〉 be derived using rule (ω). By definition M ∈ M3,

ωdeg(M) ∈ ITy3, and dom(envø
M) = fv(M). It is easy to check that envø

M ∈

TyEnv3. We have deg(M) = deg(ωdeg(M)). By Lemma B.1.13.5, ok(envø
M).

Let envø
M = (xLi

i : ωLi)n By Lemma B.1.1.4, ∀i ∈ {1, . . . , n}. deg(M) � Li.

Therefore, by definition of deg(envø
M) � deg(M). Finally, let deg(M) � K.

We want to prove M−K : 〈(envø
M)−K ⊢3 (ωdeg(M))−K〉. We have deg(M) =

K :: K ′ for some K ′. By Lemma B.1.5, M−K ∈ M3, deg(M−K) = K ′,

∀i ∈ {1, . . . , n}. Li = K :: L′
i, and fv(M−K) = {xL′

1 , . . . , xL′
n}. We have

(envø
M)−K = (x

L′
i

i : ωL′
i)n = envø

M−K . We also have (ωdeg(M))−K = (ωK::K ′

)−K =

ωK ′

= ωdeg(M−K). Therefore, using rule (ω), M−K : 〈envø
M−K ⊢3 ω

deg(M−K)〉.

• Let λxL.M : 〈Γ ⊢3 U�T 〉 be derived from M : 〈Γ, (xL : U) ⊢3 T 〉 using

rule (�I) and where Γ = (xLi

i : Ui)n. By IH, M ∈ M3, Γ, (xL : U) ∈ TyEnv3,

T ∈ ITy3, deg(U) � deg(M) = deg(T ), ok(Γ), deg(U) = L, deg(Γ) � deg(T ),

and dom(Γ, (xL : U)) = fv(M). Therefore xL ∈ fv(M). By hypothesis T ∈ Ty3.

By Lemma B.1.12.1, we have deg(M) = deg(T ) = ⊘. Therefore λxL.M ∈M3.

Because Γ, (xL : U) ∈ TyEnv3, we have Γ ∈ TyEnv3 and U ∈ ITy3. We obtain

U�T ∈ ITy3. We have deg(U�T ) = ⊘ = deg(M) = deg(λxL.M). Because

dom(Γ, (xL : U)) = fv(M) then dom(Γ) = fv(λxL.M). Finally, deg(Γ) �

deg(T ) = deg(U�T ).
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• Let λxL.M : 〈Γ ⊢3 ω
L�T 〉 such that xL 6∈ dom(Γ) be derived from M : 〈Γ ⊢3

T 〉 using rule (�′
I) and where Γ = (xLi

i : Ui)n. By IH, M ∈ M3, Γ ∈ TyEnv3,

T ∈ ITy3, deg(Γ) � deg(T ) = deg(M), ok(Γ), and dom(Γ) = fv(M). Therefore

xL 6∈ fv(M). By hypothesis T ∈ Ty3. By Lemma B.1.12.1, we have deg(M) =

deg(T ) = ⊘. Therefore λxL.M ∈ M3. We have ωL�T ∈ ITy3. We have

deg(ωL�T ) = ⊘ = deg(M) = deg(λxL.M). Because dom(Γ) = fv(M) and

xL 6∈ fv(M), we obtain dom(Γ) = fv(λxL.M). Finally, deg(Γ) � deg(T ) =

deg(ωL�T ).

• Let M1M2 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉 be derived from M1 : 〈Γ1 ⊢3 U�T 〉, M2 : 〈Γ2 ⊢3

U〉, and Γ1 ⋄ Γ2 using rule (�E). By IH, M1,M2 ∈ M3, Γ1,Γ2 ∈ TyEnv3,

U�T, U ∈ ITy3, deg(Γ1) � deg(M1) = deg(U�T ), deg(Γ2) � deg(M2) =

deg(U), ok(Γ1), ok(Γ2), dom(Γ1) = fv(M1), and dom(Γ2) = fv(M2). By hy-

pothesis U�T ∈ Ty3 and therefore T ∈ Ty3. By Lemma B.1.12.1, we have

deg(M1) = deg(M1�M2) = deg(T ) = ⊘. Because Γ1 ⋄ Γ2, dom(Γ1) = fv(M1),

and dom(Γ2) = fv(M2) then M1 ⋄ M2. Therefore M1M2 ∈ M3. We have

deg(M1M2) = deg(M1) = ⊘ = deg(T ). By Lemma B.1.13, Γ1 ⊓ Γ2 ∈ TyEnv3

and ok(Γ1 ⊓ Γ2). We trivially have deg(Γ1 ⊓ Γ2) � deg(T ) = ⊘. Finally,

dom(Γ1 ⊓ Γ2) = dom(Γ1) ∪ dom(Γ2) = fv(M1) ∪ fv(M2) = fv(M1M2).

• Let M : 〈Γ ⊢3 U1 ⊓ U2〉 be derived from M : 〈Γ ⊢3 U1〉 and M : 〈Γ ⊢3 U2〉

using rule (⊓I). By IH, M ∈ M3, Γ ∈ TyEnv3 U1, U2 ∈ ITy3, deg(M) =

deg(U1), deg(M) = deg(U2), deg(Γ) � deg(M), ok(Γ),, dom(Γ) = fv(M),

and if deg(U1) = deg(U2) � K then M−K : 〈Γ−K ⊢3 U−K
1 〉 and M−K :

〈Γ−K ⊢3 U
−K
2 〉. Because deg(U1) = deg(U2) then U1 ⊓ U2 ∈ ITy3. We have

deg(M) = deg(U1) = deg(U2) = deg(U1 ⊓ U2). Finally, let deg(U1 ⊓ U2) � K.

Therefore deg(M) = deg(U1 ⊓ U2) � K. We want to prove that M−K :

〈Γ−K ⊢2 U1 ⊓ U
−K
2 〉. By IH, M−K : 〈Γ−K ⊢3 U−K

1 〉 and M−k : 〈Γ−k ⊢3

U−K
2 〉. Therefore using rule (⊓I), M

−K : 〈Γ−K ⊢3 U
−K
1 ⊓ U−K

2 〉, and we have

U−K
1 ⊓ U−K

2 = U1 ⊓ U
−K
2 .

• Let M+j : 〈ejΓ ⊢3 ejU〉 be derived from M : 〈Γ ⊢3 U〉 using rule (exp).

By IH, M ∈ M3, Γ ∈ TyEnv3, U ∈ ITy3, deg(Γ) � deg(M) = deg(U),

ok(Γ), dom(Γ) = fv(M), and if deg(U) � K then M−K : 〈Γ−K ⊢3 U−K〉.

By Lemma B.1.5.1, M+j ∈ M3. By Lemma B.1.13, ejΓ ∈ TyEnv3 and

ok(ejΓ). By definition ejU ∈ ITy3. Also, By Lemma B.1.5.1, deg(M+j) =

j :: deg(M) = j :: deg(U) = deg(ejU). Let Γ = (xLi

i : Ui)n. Because

ok(Γ), ∀i ∈ {1, . . . , n}. Li = deg(Ui). Therefore ejΓ = (xj::Li

i : ejUi)n.

Because deg(Γ) � deg(U) then deg(Γ) = L and ∀i ∈ {1, . . . , n}. Li � L.

Therefore ∀i ∈ {1, . . . , n}. j :: Li � j :: L. We then have deg(ejΓ) �

j :: L � j :: deg(U) = deg(ejU). Also, fv(M) = {xL1

1 , . . . , x
Ln
n } and so
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dom(ejΓ) = {xj::L1

1 , . . . , xj::Ln
n } = fv(M+j) using Lemma B.1.5.1. Finally, let

deg(ejU) = j :: deg(U) � K. If K = ⊘ then we are done. Otherwise

K = j :: K ′ for some K ′ such that deg(U) � K ′. We have (M+j)−K =

(M+j)−j::K ′

= M−K ′

using Lemma B.1.5.4, (ejΓ)−K = (ejΓ)−j::K ′

= Γ−K ′

,

and (ejU)−K = (ejU)−j::K ′

= U−K ′

. Because deg(U) � K ′ and by IH, we

obtain (M+j)−K : 〈(ejΓ)−K ⊢3 (ejU)−K〉.

• Let M : 〈Γ′ ⊢3 U
′〉 be derived from M : 〈Γ ⊢3 U〉 and Γ ⊢3 U ⊑ Γ′ ⊢3 U

′

using rule (⊑). By Lemma 7.3.4.3, Γ′ ⊑ Γ and U ⊑ U ′. By IH, M ∈ M3,

Γ ∈ TyEnv3, U ∈ ITy3, deg(Γ) � deg(M) = deg(U), ok(Γ), dom(Γ) = fv(M)

and if deg(U) � K then M−K : 〈Γ−K ⊢3 U
−K〉. By Lemma 7.3.4, Γ′ ∈ TyEnv3,

U ′ ∈ ITy3, deg(Γ′) = deg(Γ) � deg(M) = deg(U) = deg(U ′), and dom(Γ′) =

dom(Γ) = fv(M). By Lemma B.1.13.3a, ok(Γ′). Let deg(U ′) � K then because

deg(U ′) = deg(U) by IH, M−K : 〈Γ−K ⊢3 U−K〉. By Lemmas B.1.13.3b

and B.1.13.3c, Γ′−K ⊑ Γ−K and U−K ⊑ U ′−K . By Lemma 7.3.4.3, Γ−K ⊢3

U−K ⊑ Γ′−K ⊢3 U
′−K . By Rule (⊑), M−K : 〈Γ′−K ⊢3 U

′−K〉.

Proof of Remark 7.3.6.

1. Let M : 〈Γ1 ⊢3 U1〉 and M : 〈Γ2 ⊢3 U2〉. By Theorem 7.3.5.2a, dom(Γ1) =

dom(Γ2). Let Γ1 = (xIi
i : Vi)n and Γ2 = (xIi

i : V ′
i )n. By Theorem 7.3.5.2,

∀i ∈ {1, . . . , n}. deg(Vi) = deg(V ′
i ) = Ii. By rule (⊓E), Vi ⊓ V

′
i ⊑ Vi and

Vi ⊓ V
′
i ⊑ V ′

i . Hence, by Lemma 7.3.4.2, Γ1 ⊓ Γ2 ⊑ Γ1 and Γ1 ⊓ Γ2 ⊑ Γ2 and

by rules (⊑) and (⊑〈〉), M : 〈Γ1 ⊓ Γ2 ⊢3 U1〉 and M : 〈Γ1 ⊓ Γ2 ⊢3 U2〉. Finally,

by rule (⊓I), M : 〈Γ1 ⊓ Γ2 ⊢3 U1 ⊓ U2〉.

2. By Lemma 7.2.3.2, U = ⊓m
i=1~ej(1:n),iTi where m ≥ 1, and ∀i ∈ {1, . . . , m}. Ti ∈

Ty2 ∩ GITy. Let i ∈ {1, . . . , m}. By Lemma 7.2.3.2, deg(Ti) = 0 and by

rule (ax), x0 : 〈(x0 : Ti) ⊢2 Ti〉. Hence, xn : 〈(xn : ~ej(1:n),iTi) ⊢2 ~ej(1:n),iTi〉 by

n applications of rule (exp). Now, by m − 1 applications of (⊓I), x
n : 〈(xn :

U) ⊢2 U〉.

3. By Lemma B.1.12, either U = ωL so by rule (ω), xL : 〈(xL : ωL) ⊢3 ω
L〉. Or

U = ⊓p
i=1~eLTi where p ≥ 1, and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3. Let i ∈ {1, . . . , p}.

By rule (ax), x⊘ : 〈(x⊘ : Ti) ⊢3 Ti〉, hence by rule (exp), xL : 〈(xL : ~eLTi) ⊢3

~eLTi〉. Now, by rule (⊓′I), x
L : 〈(xL : U) ⊢3 U〉.

4. By rule (⊓E) and since ωdeg(U) is a neutral.
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B.1.5 Subject reduction and expansion properties of our

type systems (Sec. 7.4)

Subject reduction and expansion properties for ⊢1 and ⊢2 (Sec.7.4.1)

Proof of Lemma 7.4.1. 1. By induction on the derivation of xn : 〈Γ ⊢1 T 〉 and

then by case on the last rule of the derivation.

– Case (ax): trivial.

– Case (⊓I): Let

xn : 〈Γ1 ⊢1 U1〉 xn : 〈Γ2 ⊢1 U2〉

xn : 〈Γ1 ⊓ Γ2 ⊢1 U1 ⊓ U2〉 .

By IH, Γ1 = (xn) : U1 and Γ2 = (xn : U2). Therefore Γ1 ⊓ Γ2 = (xn :

U1 ⊓ U2)

– Case (exp): Let

xn : 〈Γ ⊢1 U〉

xn+1 : 〈eΓ ⊢1 eU〉.

By IH, Γ = (xn : U). Therefore eΓ = (xn+1 : eU).

2. We prove this result by induction on the derivation of λxn.M : 〈Γ ⊢1 T1�T2〉

and then by case on the last rule of the derivation:

– Case (�I): Trivial.

– Case (⊓I): Let

λxn.M : 〈∆ ⊢1 T1�T2〉 λxn.M : 〈∆′ ⊢1 T1�T2〉

λxn.M : 〈∆ ⊓∆′ ⊢1 T1�T2〉 .

By IH, M : 〈∆, (xn : T1) ⊢1 T2〉 and M : 〈∆′, (xn : T2) ⊢1 T2〉. Using

rule (⊓I), M : 〈∆ ⊓∆′, (xn : T2) ⊢1 T2〉.

3. By induction on the derivation of MN : 〈Γ ⊢1 T 〉 and then by case on the last

rule of the derivation.

– Case (�E): Let

M : 〈Γ1 ⊢1 U�T 〉 N : 〈Γ2 ⊢1 U〉 Γ1 ⋄ Γ2

MN : 〈Γ1 ⊓ Γ2 ⊢1 T 〉 .

Then we are done with n = 1, m = 0 and T ′
1�T1 = U�T .

– Case (⊓I): Let

MN : 〈Γ1 ⊢1 U1〉 MN : 〈Γ2 ⊢1 U2〉

MN : 〈Γ1 ⊓ Γ2 ⊢1 U1 ⊓ U2〉 .

By Theorem 7.3.5, deg(U1) = deg(U2) = m. By IH, Γ1 = Γ′
1 ⊓ Γ′′

1, U1 =

⊓n1

i=1~ej(1:m),iTi, n1 ≥ 1, M : 〈Γ′
1 ⊢1 ⊓

n1

i=1~ej(1:m),i(T
′
i�Ti)〉 and N : 〈Γ′′

1 ⊢1

⊓n1

i=1~ej(1:m),iT
′
i 〉. Again by IH, Γ2 = Γ′

2⊓Γ′′
2, U2 = ⊓n2

i=n1+1~ej(1:m),iTi, n2 ≥ 1,

M : 〈Γ′
2 ⊢1 ⊓

n2

i=n1+1~ej(1:m),i(T
′
i�Ti)〉 and N : 〈Γ′′

2 ⊢1 ⊓
n2

i=n1+1~ej(1:m),iT
′
i 〉.

Therefore Γ1 ⊓ Γ2 = Γ′
1 ⊓ Γ′

2 ⊓ Γ′′
1 ⊓ Γ′′

2, and U1 ⊓ U2 = ⊓n2

i=1~ej(1:m),iTi.

Finally, using rule (⊓I), M : 〈Γ′
1 ⊓ Γ′

2 ⊢1 ⊓
n2

i=1~ej(1:m),i(T
′
i�Ti)〉 and N :

〈Γ′′
1 ⊓ Γ′′

2 ⊢1 ⊓
n2

i=1~ej(1:m),iT
′
i 〉.

– Case (exp): Let

MN : 〈Γ ⊢1 U〉

M+N+ : 〈eΓ ⊢1 eU〉.
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We have m = deg(eU) = deg(U) + 1 = m′ + 1. By IH, Γ = Γ1 ⊓ Γ2,

U = ⊓n
i=1~ej(1:m′),iTi, n ≥ 1, M : 〈Γ1 ⊢1 ⊓

n
i=1~ej(1:m′),i(T

′
i�Ti)〉 and N :

〈Γ2 ⊢1 ⊓
n
i=1~ej(1:m′),iT

′
i 〉. Therefore, eΓ = eΓ1 ⊓ eΓ2, eU = ⊓n

i=1e~ej(1:m′),iTi,

and using rule (exp), M+ : 〈eΓ1 ⊢1 ⊓
n
i=1e~ej(1:m′),i(T

′
i�Ti)〉 and N+ :

〈eΓ2 ⊢1 ⊓
n
i=1e~ej(1:m′),iT

′
i 〉.

Proof of Lemma 7.4.2. 1. By induction on the derivation of xn : 〈Γ ⊢2 U〉 and then

by case on the last rule of the derivation.

• Case (ax): trivial.

• Case (⊓I): Let

xn : 〈Γ1 ⊢2 U1〉 xn : 〈Γ2 ⊢2 U2〉

xn : 〈Γ1 ⊓ Γ2 ⊢2 U1 ⊓ U2〉 .

By IH, Γ1 = (xn) : U1 and Γ2 = (xn : U2). Therefore Γ1 ⊓ Γ2 = (xn : U1 ⊓ U2)

• Case (exp): Let

xn : 〈Γ ⊢2 U〉

xn+1 : 〈eΓ ⊢2 eU〉.

By IH, Γ = (xn : U). Therefore eΓ = (xn+1 : eU).

• Case (⊑): Let

xn : 〈Γ ⊢2 U〉 Γ ⊢2 U ⊑ Γ′ ⊢2 U
′

xn : 〈Γ′ ⊢2 U
′〉 .

By IH, Γ = (xn : U). By Lemma 7.3.4, Γ′ = (xn : U ′′) such that U ′′ ⊑ U and

also U ⊑ U ′. Therefore using rule (tr), U ′′ ⊑ U ′.

2. By induction on the derivation of λxn.M : 〈Γ ⊢2 U〉 and then by case on the

last rule of the derivation. We have four cases:

• Case (�I): If

M : 〈Γ, xn : U ⊢2 T 〉

λxn.M : 〈Γ ⊢2 U�T 〉.

We are done.

• Case (⊓I): Let

λxn.M : 〈Γ1 ⊢2 U1〉 λxn.M : 〈Γ2 ⊢2 U2〉

λxn.M : 〈Γ1 ⊓ Γ2 ⊢2 U1 ⊓ U2〉 .

By Theorem 7.3.5, U1 ⊓ U2 ∈ GITy. deg(U1) = deg(U2) = m, Γ1,Γ2 ∈ GTyEnv,

and dom(Γ1) = dom(Γ2). By Lemma B.1.13.1e, Γ1⊓Γ2 ⊑ Γ1 and Γ1⊓Γ2 ⊑ Γ2.

By IH we have: U1 = ⊓k
i=1~ej(1:m),i(Vi�Ti), U2 = ⊓k+l

i=k+1~ej(1:m),i(Vi�Ti), ∀i ∈

{1, . . . , k}. M : 〈Γ1, x
n : ~ej(1:m),iVi ⊢2 ~ej(1:m),iTi〉, and ∀i ∈ {k+1, . . . , k+l}. M :

〈Γ2, x
n : ~ej(1:m),iVi ⊢2 ~ej(1:m),iTi〉. Hence U1 ⊓ U2 = ⊓k+l

i=1~ej(1:m),i(Vi�Ti), where

k, l ≥ 1 and by Lemma 7.3.4 and rule (⊑), ∀i ∈ {1, . . . , k+l}. M : 〈Γ1⊓Γ2, x
n :

~ej(1:m),iVi ⊢2 ~ej(1:m),iTi〉.

• Case (exp): Let

λxn.M : 〈Γ ⊢2 U〉

λxn+1.M+ : 〈eΓ ⊢2 eU〉.
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By IH, because deg(U) = m − 1, U = ⊓k
i=1~ej(1:m−1),i(Vi�Ti) where k ≥ 1

and ∀i ∈ {1, . . . , k}. M : 〈Γ, xn : ~ej(1:m−1),iVi ⊢2 ~ej(1:m−1),iTi〉. Therefore

eU = ⊓k
i=1e~ej(1:m−1),i(Vi�Ti) and by rule (exp), ∀i ∈ {1, . . . , k}. M+ : 〈Γ, xn+1 :

e~ej(1:m−1),iVi ⊢3 e~ej(1:m−1),iTi〉.

• Case (⊑): Let

λxn.M : 〈Γ ⊢2 U〉 Γ ⊢2 U ⊑ Γ′ ⊢2 U
′

λxn.M : 〈Γ′ ⊢2 U
′〉 .

By Lemma 7.3.4.3, Γ′ ⊑ Γ and U ⊑ U ′. By Theorem 7.3.5, U,U ′ ∈ GITy and

deg(U) = deg(U ′) = m. By IH, U = ⊓k
i=1~ej(1:m),i(Vi�Ti), where k ≥ 1 and ∀i ∈

{1, . . . , k}. M : 〈Γ, xn : ~ej(1:m),iVi ⊢2 ~ej(1:m),iTi〉. By Lemma B.1.11.5, U ′ =

⊓p
i=1
~e′j(1:m),i(V

′
i �T

′
i ), where p ≥ 1, and ∀i ∈ {1, . . . , p}. ∃l ∈ {1, . . . , k}. ~ej(1:m),l =

~e′j(1:m),i ∧ V
′
i ⊑ Vl ∧ Tl ⊑ T ′

i . Let i ∈ {1, . . . , p}. Because by Lemma 7.3.4

Γ, xn : ~ej(1:m),lVl ⊢2 ~ej(1:m),lTl ⊑ Γ′, xn : ~e′j(1:m),iV
′
i ⊢2

~e′j(1:m),iT
′
i , then using

rule (⊑) we obtain M : 〈Γ′, xn : ~e′j(1:m),iV
′
i ⊢2

~e′j(1:m),iT
′
i 〉.

3. By induction on the derivation of MN : 〈Γ ⊢2 U〉 and then by case on the last

rule of the derivation.

• Case (�E): Let

M : 〈Γ1 ⊢i U�T 〉 N : 〈Γ2 ⊢i U〉 Γ1 ⋄ Γ2

MN : 〈Γ1 ⊓ Γ2 ⊢i T 〉 .

Then we are done by taking k = 1 and because by Lemma 7.2.3.2a, deg(T ) =

m = 0.

• Case (exp): Let

MN : 〈Γ ⊢i U〉

(MN)+ : 〈eΓ ⊢i eU〉.

We have MN+ = M+N+ and deg(eU) = m = deg(U) + 1 = m′ + 1. By IH,

U = ⊓k
i=1~ej(1:m′),iTi where k ≥ 1, Γ = Γ1⊓Γ2, M : 〈Γ1 ⊢2 ⊓

k
i=1~ej(1:m′),i(Ui�Ti)〉,

and N : 〈Γ2 ⊢2 ⊓
k
i=1~ej(1:m′),iUi〉. Therefore, eU = ⊓k

i=1e~ej(1:m′),iTi and eΓ =

eΓ1 ⊓ eΓ2. By rule (exp), M+ : 〈eΓ1 ⊢2 ⊓
k
i=1e~ej(1:m′),i(Ui�Ti)〉, and N+ :

〈eΓ2 ⊢2 ⊓
k
i=1e~ej(1:m′),iUi〉.

• Case (⊓I):

MN : 〈Γ1 ⊢i V1〉 MN : 〈Γ2 ⊢i V2〉

MN : 〈Γ1 ⊓ Γ2 ⊢i V1 ⊓ V2〉 .

By Theorem 7.3.5.2a, deg(MN) = deg(V1) = deg(V2) = deg(V1 ⊓ V2) =

m. By IH, V1 = ⊓k1

i=1~ej(1:m),iTi V2 = ⊓k
i=k1+1~ej(1:m),iTi where k > k1 ≥

1, Γ1 = Γ′
1 ⊓ Γ′′

1, Γ2 = Γ′
2 ⊓ Γ′′

2, M : 〈Γ′
1 ⊢2 ⊓

k1

i=1~ej(1:m),i(Ui�Ti)〉, M :

〈Γ′
2 ⊢2 ⊓

k
i=k1+1~ej(1:m),i(Ui�Ti)〉, N : 〈Γ′′

1 ⊢2 ⊓
k1

i=1~ej(1:m),iUi〉, and N : 〈Γ′′
2 ⊢2

⊓k
i=k1+1~ej(1:m),iUi〉. Therefore, V1 ⊓ V2 = ⊓k

i=1~ej(1:m),iTi, Γ1 ⊓ Γ2 = (Γ′
1 ⊓

Γ′
2) ⊓ (Γ′′

1 ⊓ Γ′′
2), and by rule (⊓I), M : 〈Γ′

1 ⊓ Γ′
2 ⊢2 ⊓

k
i=1~ej(1:m),i(Ui�Ti)〉 and

N : 〈Γ′′
1 ⊓ Γ′′

2 ⊢2 ⊓
k
i=1~ej(1:m),iUi〉.

• Case (⊑): Let

MN : 〈Γ ⊢2 U〉 Γ ⊢2 U ⊑ Γ′ ⊢2 U
′

MN : 〈Γ′ ⊢2 U
′〉 .
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By Theorem 7.3.5.2, deg(MN) = deg(U) = deg(U ′) = m and U,U ′ ∈ GITy. By

Lemma 7.3.4.3, Γ′ ⊑ Γ and U ⊑ U ′. By IH, U = ⊓k
i=1~ej(1:m),iTi where k ≥ 1,

Γ = Γ1 ⊓ Γ2, M : 〈Γ1 ⊢2 ⊓
k
i=1~ej(1:m),i(Ui�Ti)〉, and N : 〈Γ2 ⊢2 ⊓

k
i=1~ej(1:m),iUi〉.

By Lemma B.1.11.8, Γ′ = Γ′
1 ⊓ Γ′

2 such that Γ′
1 ⊑ Γ1 and Γ′

2 ⊑ Γ2. By

Lemma B.1.11.2a and using the commutativity of ⊓, U = ⊓k′

i=1~ej(1:m),iT
′
i such

that k′ ≤ k and ∀i ∈ {1, . . . , k′}. Ti ⊑ T ′
i . Finally, by rule (⊑), M : 〈Γ′

1 ⊢2

⊓k′

i=1~ej(1:m),i(Ui�T
′
i )〉, and N : 〈Γ′

2 ⊢2 ⊓
k′

i=1~ej(1:m),iUi〉.

Lemma B.1.14 (Extra Generation for ⊢2).

1. If Mxn : 〈Γ, xn : U ⊢2 V 〉, deg(V ) = 0 and xn 6∈ fv(M) then V = ⊓k
i=1Ti where

k ≥ 1 and ∀i ∈ {1, . . . , k}. M : 〈Γ ⊢2 U�Ti〉.

2. If λxn.Mxn : 〈Γ ⊢2 U〉 and xn 6∈ fv(M) then M : 〈Γ ⊢2 U〉.

Proof of Lemma B.1.14.

1. By induction on the derivation of Mxn : 〈Γ, xn : U ⊢2 V 〉 and then by case on

the last rule of the derivation. We have three cases:

• Case (�E): Let

M : 〈Γ ⊢2 U�T 〉 xn : 〈xn : V ⊢2 U〉 Γ ⋄ (xn : V )

Mxn : 〈Γ, xn : V ⊢2 T 〉 where

V ⊑ U using Lemma 7.4.2.1 and Theorem 7.3.5.2a.

Then because U�T ⊑ V�T , we have M : 〈Γ ⊢2 V�T 〉.

• Case (⊓I): Let

Mxn : 〈Γ1, x
n : U ′

1 ⊢2 U1〉 Mxn : 〈Γ2, x
n : U ′

2 ⊢2 U2〉

Mxn : 〈Γ1 ⊓ Γ2, x
n : U ′

1 ⊓ U
′
2 ⊢2 U1 ⊓ U2〉 where

fv(M) = {xn1

1 , . . . , x
nm
m }, Γ1 = (xni

i : Vi)m, and Γ2 = (xni

i : V ′
i )m using

Theorem 7.3.5.2a.

By Theorem 7.3.5, U1⊓U2, U
′
1⊓U

′
2 ∈ GITy. and ∀i ∈ {1, . . . , m}. Vi, V

′
i ∈

GITy. By Lemma 7.2.3.1b, deg(U ′
1) = deg(U ′

2), deg(U1) = deg(U2) =

0, and ∀i ∈ {1, . . . , m}. deg(Vi)V
′
i . By Lemma 7.2.3.1b, deg(U1) =

deg(U2) = 0. By IH, U1 = ⊓k
i=1Ti, U2 = ⊓k+l

i=k+1Ti, where k, l ≥ 1,

∀i ∈ {1, . . . , k}. M : 〈Γ1 ⊢2 U
′
1�Ti〉, and ∀i ∈ {k + 1, . . . , k + l}. M :

〈Γ2 ⊢2 U ′
2�Ti〉. Using rule (⊓E), rule (�), Lemma 7.3.4.2, rule (⊑〈〉),

rule (⊑), we obtain ∀i ∈ {1, . . . , k + l}. M : 〈Γ1 ⊓ Γ2 ⊢2 U
′
1 ⊓ U

′
2�Ti〉.

• Case (⊑): Let

Mxn : 〈Γ, xn : U ⊢2 V 〉 Γ, xn : U ⊢2 V ⊑ Γ′, xn : U ′ ⊢2 V
′

Mxn : 〈Γ′, xn : U ′ ⊢2 V
′〉

using Lemma 7.3.4.2.

By Lemma 7.3.4, Γ′ ⊑ Γ, U ′ ⊑ U and V ⊑ V ′. By Lemma 7.3.4.4,

deg(V ) = deg(V ′) = 0. By IH, V = ⊓k
i=1Ti where k ≥ 1 and ∀i ∈

{1, . . . , k}. M : 〈Γ ⊢2 U�Ti〉. By Theorem 7.3.5, V ∈ GITy. By

Lemma B.1.11.2, V ′ = ⊓p
i=1T

′
i where 1 ≤ p and ∀i ∈ {1, . . . , p}. ∃j ∈

{1, . . . , k}. Tj ⊑ T ′
i . By rule (�) and Lemma 7.3.4.3, one obtains ∀i ∈ {1, . . . , p}∃j ∈ {

Therefore, by rule (⊑), ∀i ∈ {1, . . . , p}. M : 〈Γ′ ⊢2 U
′�T ′

i 〉.
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2. By Theorem 7.3.5, m = deg(U) = deg(λxn.Mxn) = deg(Mxn) ≤ n and

λxn.Mxn ∈ M. Therefore, we have Mxn ∈ M and n = deg(xn) ≥ deg(M) =

deg(Mxn) = m. By Lemma 7.4.2.2, U = ⊓k
i=1~ej(1:m),i(Vi�Ti) where k ≥ 1 and

∀i ∈ {1, . . . , k}. Mxn : 〈Γ, xn : ~ej(1:m),iVi ⊢2 ~ej(1:m),iTi〉. If m > 0 then, by

Theorem 7.3.5.2d and by 1., ∀i ∈ {1, . . . , k}. M−mxn−m : 〈Γ−m, xn−m : Vi ⊢2

Ti〉 ∧M
−m : 〈Γ−m ⊢2 Vi�Ti〉. Now, by m applications of rule (exp), M : 〈Γ ⊢2

~ej(1:m),i(Vi�Ti)〉. Finally, by k − 1 applications of rule (⊓I), M : 〈Γ ⊢2 U〉.

Lemma B.1.15. Let i ∈ {1, 2, 3} and M : 〈Γ ⊢i U〉. We have:

1. If M : 〈∆ ⊢i V 〉 then dom(Γ) = dom(∆).

2. Assume N : 〈∆ ⊢i V 〉. We have Γ ⋄∆ iff M ⋄N .

3. If N is a subterm of M then there are ∆, V such that N : 〈∆ ⊢i V 〉.

4. If Γ = Γ1 ⊓ Γ2 ⊓ Γ3 then Γ1 ⋄ Γ2.

5. If Γ = Γ1 ⊓ Γ2 and Γ3 ⊑ Γ1 then Γ3 ⊓ Γ2 ⊑ Γ

Proof of Lemma B.1.15.

1. Corollary of Theorem 7.3.5.2a because dom(Γ) = fv(M) = dom(∆).

2. Use Theorem 7.3.5.2a.

3. By induction on the derivation of M : 〈Γ ⊢i U〉 and then by case on the last

rule of the derivation.

4. By Theorem 7.3.5.2a, dom(Γ) = deg(M). Let xn1 ∈ dom(Γ1) and xn2 ∈

dom(Γ2). Then, xn1 , xn2 ∈ dom(Γ) = deg(M). Finally, by Lemma B.1.1.1,

M ⋄M , and so n1 = n2 and Γ1 ⋄ Γ2.

5. By definition Γ1 = Γ′
1⊎Γ′′

1 and Γ2 = Γ′
2⊎Γ′′

2 be such that dj(dom(Γ′′
1), dom(Γ′′

2)),

Γ′
1 = (xIi

i : Ui)n, Γ′
2 = (xIi

i : Vi)n, and ∀i ∈ {1, . . . , n}. deg(Ui) = deg(Vi).

Therefore Γ = (xIi
i : Ui ⊓ Vi)n ⊎ Γ′′

1 ⊎ Γ′′
2. By Lemma 7.3.4.2, Γ3 = (xIi

i :

U ′
i)n⊎Γ′

3 such that Γ′
3 ⊑ Γ′′

1, dom(Γ′
3) = dom(Γ′′

1), and ∀i ∈ {1, . . . , n}. U ′
i ⊑ Ui.

Therefore we have Γ3⊓Γ2 = (xIi
i : U ′

i ⊓Vi)n⊎Γ′
3⊎Γ′′

2 Using rules (⊓) and (ref)

we obtain ∀i ∈ {1, . . . , n}. U ′
i ⊓ Vi ⊑ Ui ⊓ Vi. Finally, again by Lemma 7.3.4.2,

Γ3 ⊓ Γ2 ⊑ Γ.

Proof of Remark 7.4.3. By Lemma B.1.15.3, (λxn.M1)M2 is typable.

• Case ⊢1. By induction on the typing of (λxn.M1)M2. The only interesting

case is rule (�E) where M = (λxn.M1)M2 is the subterm in question:
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λxn.M1 : 〈Γ1 ⊢1 T1�T2〉 M2 : 〈Γ2 ⊢1 T1〉 Γ1 ⋄ Γ2

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢1 T2〉

By Lemma 7.4.1.2, M1 : 〈Γ1, x
n : T1 ⊢1 T2〉. By Theorem 7.3.5, n = deg(T1) =

deg(M2). Hence, (λxn.M1)M2 _β M1[x
n := M2].

• Case ⊢2. By induction on the typing of (λxn.M1)M2. We consider only the

rule (�E)

λxn.M1 : 〈Γ1 ⊢2 V�T 〉 M2 : 〈Γ2 ⊢2 V 〉 Γ1 ⋄ Γ2

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉

By Lemma 7.2.3.2, deg(V�T ) = 0. By Lemma 7.4.2.2, V�T = ⊓k
i=1(Vi�Ti)

where k ≥ 1 and ∀i ∈ {1, . . . , k}. M1 : 〈Γ1, x
n : Vi ⊢2 Ti〉. Hence k = 1,

V1 = V , T1 = T and M1 : 〈Γ1, x
n : V ⊢2 T 〉. By Theorem 7.3.5, deg(M2) =

deg(V ) = n. So, (λxn.M1)M2 _β M1[x
n := M2].

Proof of Lemma 7.4.4. By Lemma 7.3.7.3, Γ ⋄∆.

By induction on the derivation of M : 〈Γ, xn : U ⊢2 V 〉 (note that using Theo-

rem 7.3.5, xn ∈ fv(M)), making use of Theorem 7.3.5.

• Case (ax): Let

T ∈ GITy

x0 : 〈(x0 : T ) ⊢2 T 〉.

Because N : 〈∆ ⊢2 T 〉, then N = x0[x0 := N ] : 〈∆ ⊢2 T 〉.

• Case (�I): Let

M : 〈Γ, xn : U, ym : U ′ ⊢2 T 〉

λym.M : 〈Γ, xn : U ⊢2 U
′�T 〉.

Let ym be such that ∀m′. ym′

6∈ dom(∆). Since Γ ⋄∆, (Γ, ym : U ′) ⋄∆ and we

also have ym 6∈ dom(∆). By IH, M [xn := N ] : 〈(Γ ⊓ ∆), ym : U ′ ⊢2 T 〉. By

rule (�I), (λym.M)[xn := N ] = λym.M [xn := N ] : 〈Γ ⊓∆ ⊢2 U
′�T 〉.

• Case (�E): Let

M1 : 〈Γ1, x
n : U1 ⊢2 V�T 〉 M2 : 〈Γ2, x

n : U2 ⊢2 V 〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2, x
n : U1 ⊓ U2 ⊢2 T 〉

where xn ∈ fv(M1) ∩ fv(M2). (The cases xn ∈ fv(M1) \ fv(M2) are xn ∈

fv(M2) \ fv(M1) are similar.)

We have N : 〈∆ ⊢2 U1 ⊓ U2〉 and (Γ1 ⊓ Γ2) ⋄ ∆. By rules (⊓E) and (⊑),

N : 〈∆ ⊢2 U1〉 and N : 〈∆ ⊢2 U2〉. Now use IH and rule (�E).

• Case (⊓I): Let

M : 〈Γ1, x
n : U ′

1 ⊢2 U1〉 M : 〈Γ2, x
n : U ′

2 ⊢2 U2〉

M : 〈Γ1 ⊓ Γ2, x
n : U ⊢2 U1 ⊓ U2〉 (because xn ∈

fv(M) and using Theorem 7.3.5) where U = U ′
1 ⊓ U

′
2.

By Theorem 7.3.5, deg(U ′
1) = n = deg(U ′

2) and U ′
1, U

′
2 ∈ GITy. Using rule (⊓E),

U ⊑ U ′
1 and U ⊑ U ′

2. Using rules (⊑c), (ref), (⊑〈〉), and (⊑), M : 〈Γ1, x
n :

U ⊢2 U1〉 and M : 〈Γ2, x
n : U ⊢2 U2〉 By IH, M [xn := N ] : 〈Γ1 ⊓ ∆ ⊢2 U1〉

and M [xn := N ] : 〈Γ2 ⊓ ∆ ⊢2 U2〉 Therefore by rule (⊓I). M [xn := N ] :

〈Γ1 ⊓ Γ2 ⊓∆ ⊢2 U1 ⊓ U2〉.
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• Case (exp): Let

M : 〈Γ, xn : U ⊢2 V 〉

M+:〈eΓ, xn+1 : eU ⊢2 eV 〉.

We have N : 〈∆ ⊢2 eU〉 and eΓ ⋄∆. By Theorem 7.3.5, deg(N) = deg(eU) =

deg(U) + 1 > 0. Hence, by Lemmas B.1.3.1 and 7.3.5.2, N = P+ and P :

〈∆− ⊢2 U〉. Because eΓ⋄∆ then by Lemma B.1.13.4, Γ⋄∆−. By IH, M [xn :=

P ] : 〈Γ ⊓ ∆− ⊢2 V 〉. By rule (exp) and Lemma B.1.3.2, M+[xn+1 := N ] :

〈eΓ ⊓∆ ⊢2 eV 〉.

• Case (⊑): Let

M : 〈Γ′, xn : U ′ ⊢2 V
′〉 Γ′, xn : U ′ ⊢2 V

′ ⊑ Γ, xn : U ⊢2 V

M : 〈Γ, xn : U ⊢2 V 〉 (note

the use of Lemma 7.3.4).

By Lemma 7.3.4, dom(Γ) = dom(Γ′), Γ ⊑ Γ′, U ⊑ U ′ and V ′ ⊑ V . Hence

Γ′ ⋄ ∆, by rule (⊑) N : 〈∆ ⊢2 U
′〉 and, by IH, M [xn := N ] : 〈Γ′ ⊓ ∆ ⊢2 V

′〉.

By Lemma B.1.15.5, Γ ⊓∆ ⊑ Γ′ ⊓∆. Hence, Γ′ ⊓∆ ⊢2 V
′ ⊑ Γ ⊓∆ ⊢2 V and

M [xn := N ] : 〈Γ ⊓∆ ⊢2 V 〉.

Lemma B.1.16. If M : 〈Γ ⊢2 U〉 and M _β N then N : 〈Γ ⊢2 U〉.

Proof of Lemma B.1.16. By induction on the derivation ofM : 〈Γ ⊢2 U〉. Cases (�I),

(⊓I) and (⊑) are by IH. We give the remaining two cases.

• Case (�E): Let

M1 : 〈Γ1 ⊢2 U�T 〉 M2 : 〈Γ2 ⊢2 U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉 .

For the cases N = M1N2 where M2 _β N2 or N = N1M2 where M1 _β N1

use IH. Assume M1 = λxn.P and M1M2 = (λxn.P )M2 _β P [xn := M2] = N

where deg(M2) = n. By Lemma 7.2.3.2a, deg(U�T ) = 0. Because λxn.P :

〈Γ1 ⊢2 U�T 〉 then, by Lemma 7.4.2.2, P : 〈Γ1, x
n : U ⊢2 T 〉. By Lemma 7.4.4,

P [xn := M2] : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

• Case (exp): Let

M : 〈Γ ⊢2 U〉

M+ : 〈eΓ ⊢2 eU〉.

Because M+ _β N then by Lemma 7.1.11.2, deg(M+) = deg(N). By Lem-

mas B.1.3.1a and B.1.4.2, deg(N) = deg(M) + 1 > 0 and M _β N
−. By IH,

N− : 〈Γ ⊢2 U〉 and, by Lemma B.1.3.1b and rule (exp), N : 〈eΓ ⊢2 eU〉.

The next lemma will be used in the proof of subject expansion for β.

Lemma B.1.17. Let (λxn.M1)M2 : 〈Γ ⊢2 U〉 then Γ = Γ1 ⊓ Γ2 and there exists

V ∈ ITy2 such that M1 : 〈Γ1, (x
n : V ) ⊢2 U〉 and M2 : 〈Γ2 ⊢2 V 〉.

Proof of Lemma B.1.17. By induction on the derivation of (λxn.M1)M2 : 〈Γ ⊢2 U〉.

and then by case on the last rule of the derivation.

• Case (�E): Let

λxn.M1 : 〈Γ1 ⊢2 V�T 〉 M2 : 〈Γ2 ⊢2 V 〉 Γ1 ⋄ Γ2

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉 .

Since deg(V�T ) = 0, then by Lemma 7.4.2.2 M1 : 〈Γ1, (x
n : V ) ⊢2 T 〉.
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• Case (⊓I): Let

(λxn.M1)M2 : 〈Γ1 ⊢2 U1〉 (λxn.M1)M2 : 〈Γ2 ⊢2 U2〉

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢2 U1 ⊓ U2〉 .

By IH, Γ1 = Γ′
1 ⊓ Γ′

2, Γ2 = Γ′′
1 ⊓ Γ′′

2, ∃ V, V
′ ∈ ITy2, such that M1 : 〈Γ′

1, (x
n :

V ) ⊢2 U1〉, M2 : 〈Γ′
2 ⊢2 V 〉, M1 : 〈Γ′′

1, (x
n : V ′) ⊢2 U2〉, and M2 : 〈Γ′′

2 ⊢2 V
′〉. By

rule (⊓I), M1 : 〈Γ′
1⊓Γ′′

1, (x
n : V ⊓V ′) ⊢2 U1⊓U2〉, and M2 : 〈Γ′

2⊓Γ′′
2 ⊢2 V ⊓V

′〉.

Finally, we have Γ1 ⊓ Γ2 = Γ′
1 ⊓ Γ′′

1 ⊓ Γ′
2 ⊓ Γ′′

2 and V ⊓ V ′ ∈ ITy2.

• Case (exp): Let

(λxn.M1)M2 : 〈Γ ⊢2 U〉

(λxn+1.M1
+)M2

+ : 〈eΓ ⊢2 eU〉.

By IH, Γ = Γ1 ⊓ Γ2 and ∃V ∈ ITy2, such that M1 : 〈Γ1, (x
n : V ) ⊢2 U〉

and M2 : 〈Γ2 ⊢2 V 〉. So by rule (exp), M1
+ : 〈eΓ1, (x

n+1 : eV ) ⊢2 eU〉 and

M2
+ : 〈eΓ2 ⊢2 eV 〉.

• Case (⊑): Let

(λxn.M1)M2 : 〈Γ′ ⊢2 U
′〉 Γ′ ⊢2 U

′ ⊑ Γ ⊢2 U

(λxn.M1)M2 : 〈Γ ⊢2 U〉 .

By Lemma 7.3.4.3, Γ ⊑ Γ′ and U ′ ⊑ U . By IH, Γ′ = Γ′
1 ⊓ Γ′

2 and ∃V ∈ ITy2,

such that M1 : 〈Γ′
1, (x

n : V ) ⊢2 U
′〉 and M2 : 〈Γ′

2 ⊢2 V 〉. By Lemma B.1.11.8,

Γ = Γ1 ⊓ Γ2 such that Γ1 ⊑ Γ′
1 and Γ2 ⊑ Γ′

2. So by rule (⊑), M1 : 〈Γ1, (x
n :

V ) ⊢2 U〉 and M2 : 〈Γ2 ⊢2 V 〉.

Now, we give the basic block in the proof of subject expansion for β.

Lemma B.1.18. If N : 〈Γ ⊢2 U〉 and M _β N then M : 〈Γ ⊢2 U〉

Proof of Lemma B.1.18. By induction on the derivation of N : 〈Γ ⊢2 U〉 and then

by case on the last rule of the derivation.

• Case (ax): Let

T ∈ GITy

x0 : 〈(x0 : T ) ⊢2 T 〉 and M _β x
0.

By cases on M , we can show that M = (λy0.y0)x0. Because T ∈ GITy, by

rule (ax), y0 : 〈(y0 : T ) ⊢2 T 〉 then by rule (�I), λy
0.y0 : 〈() ⊢2 T�T 〉, and so

by rule (�E), (λy0.y0)x0 : 〈(x0 : T ) ⊢2 T 〉.

• Case (�I): Let

N : 〈Γ, (xn : U) ⊢2 T 〉

λxn.N : 〈Γ ⊢2 U�T 〉 and M _β λx
n.N .

By cases on M .

– If M is a variable this is not possible.

– If M = λxn.M ′ such that M ′ _β N and xn ∈ fv(M ′)∩ fv(N) then by IH,

M : 〈Γ, (xn : U) ⊢2 T 〉 and by rule (�I), M : 〈Γ ⊢2 U�T 〉.

– IfM is an application term then the reduction must be at the root. Hence,

M = (λym.M1)M2 _β M1[y
m := M2] = λxn.N where ym ∈ fv(M1) and

deg(M2) = m. There are two cases (M1 cannot be an application term):
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∗ If M1 = ym then M2 = λxn.N and deg(N) = deg(M2) = m. By The-

orem 7.3.5.2, m = deg(N) = deg(T ) = 0. So M = (λy0.y0)(λxn.N).

Because by Theorem 7.3.5.2, U�T ∈ GITy ∩ ITy2, by rule (ax), y0 :

〈(y0 : U�T ) ⊢2 U�T 〉, by rule (�I), λy
0.y0 : 〈() ⊢2 (U�T )�(U�T )〉,

and by rule (�E), (λy0.y0)(λxn.N) : 〈Γ ⊢2 U�T 〉.

∗ If M1 = λxn.M ′
1 such that ∀n′. xn′

6∈ fv(M2) ∪ {y
m} then M1[y

m :=

M2] = λxn.M ′
1[y

m := M2] = λxn.N and deg(M2) = m. Since

(λym.M ′
1)M2 _β M

′
1[y

m := M2] = N , by IH, (λym.M ′
1)M2 : 〈Γ, (xn :

U) ⊢2 T 〉. By Lemma B.1.17, Γ, (xn : U) = Γ1 ⊓ Γ2 and ∃V ∈ ITy

such that M ′
1 : 〈Γ1, (y

m : V ) ⊢2 T 〉 and M2 : 〈Γ2 ⊢2 V 〉. By

Theorem 7.3.5.2a, dom(Γ2) = fv(M2). Because xn 6∈ fv(M2) then

Γ = Γ′
1 ⊓ Γ2 and Γ1 = Γ′

1, (x
n : U). Hence by rule (�I), λx

n.M ′
1 :

〈Γ′
1, (y

m : V ) ⊢2 U�T 〉, again by rule (�I), λy
m.λxn.M ′

1 : 〈Γ′
1 ⊢2

V�U�T 〉, and since by Lemma B.1.15.4, Γ′
1 ⋄ Γ2, by rule (�E),

M = (λym.λxn.M ′
1)M2 : 〈Γ ⊢2 U�T 〉.

• Case (�E): Let

N1 : 〈Γ1 ⊢2 U�T 〉 N2 : 〈Γ2 ⊢2 U〉 Γ1 ⋄ Γ2

N1N2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉 and M _β N1N2.

– If M = M1N2 _β N1N2 where M1 ⋄ N2, N1 ⋄ N2 (by Lemma B.1.1)

and M1 _β N1 then by IH, M1 : 〈Γ1 ⊢2 U�T 〉, and by rule (�E),

M : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

– If M = N1M2 _β N1N2 where N1 ⋄M2, N1 ⋄N2 (by Lemma B.1.1) and

M2 _β N2 then by IH, M2 : 〈Γ2 ⊢2 U〉, and by rule (�E), M : 〈Γ1⊓Γ2 ⊢2

T 〉.

– If M = (λxn.M1)M2 _β M1[x
n := M2] = N1N2 where deg(M2) = n and

xn ∈ fv(M1). By cases on M1 (M1 cannot be an abstraction):

∗ If M1 = xn then M2 = N1N2, deg(N1N2) = deg(M2) = n, and

M = (λx0.x0)(N1N2) because by Theorem 7.3.5, n = deg(N1N2) =

deg(T ) = 0 and T ∈ GITy. By rule (ax), x0 : 〈(x0 : T ) ⊢2 T 〉, hence by

rule (�I), λx
0.x0 : 〈() ⊢2 T�T 〉, and by rule (�E), (λx0.x0)(N1N2) :

〈Γ1 ⊓ Γ2 ⊢2 T 〉.

∗ If M1 = M ′
1M

′′
1 then M1[x

n := M2] = M ′
1[x

n := M2]M
′′
1 [xn := M2] =

N1N2. So, M ′
1[x

n := M2] = N1 and M ′′
1 [xn := M2] = N2.

· If xn ∈ fv(M ′
1) and xn ∈ fv(M ′′

1 ) then (λxn.M ′
1)M2 _β N1 and

(λxn.M ′′
1 )M2 _β N2. By IH, (λxn.M ′

1)M2 : 〈Γ1 ⊢2 U�T 〉 and

(λxn.M ′′
1 )M2 : 〈Γ2 ⊢2 U〉. By Lemma B.1.17 twice, Γ1 = Γ′

1⊓Γ′′
1,

Γ2 = Γ′
2 ⊓ Γ′′

2, and ∃ V, V ′ ∈ ITy such that M ′
1 : 〈Γ′

1, (x
n : V ) ⊢2

U�T 〉, M2 : 〈Γ′′
1 ⊢2 V 〉, M ′′

1 : 〈Γ′
2, (x

n : V ′) ⊢2 U〉 and M2 :

〈Γ′′
2 ⊢2 V

′〉. Therefore, Γ1 ⊓ Γ2 = Γ′
1 ⊓Γ′′

1 ⊓ Γ′
2 ⊓ Γ′′

2. By rule (⊓I),
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M2 : 〈Γ′′
1 ⊓ Γ′′

2 ⊢2 V ⊓ V
′〉. Because by Lemma B.1.15.4, Γ′

1 ⋄ Γ′
2,

then by rule (�E), M ′
1M

′′
1 : 〈Γ′

1 ⊓ Γ′
2, (x

n : V ⊓ V ′) ⊢2 T 〉. Using

rule (�I), λx
n.M ′

1M
′′
1 : 〈Γ′

1 ⊓ Γ′
2 ⊢2 (V ⊓ V ′)�T 〉. Finally, by

rule (�E) and because by Lemma B.1.15.4, Γ′
1 ⊓ Γ′

2 ⋄ Γ′′
1 ⊓ Γ′′

2, we

obtain (λxn.M ′
1M

′′
1 )M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

· If xn ∈ fv(M ′
1) and xn 6∈ fv(M ′′

1 ) then M ′
1[x

n := M2] = N1 and

M ′′
1 = N2. We have (λxn.M ′

1)M2 _β N1, so by IH, (λxn.M ′
1)M2 :

〈Γ1 ⊢2 U�T 〉. By Lemma B.1.17, Γ1 = Γ′
1⊓Γ′′

1 and ∃V ∈ ITy such

that M ′
1 : 〈Γ′

1, (x
n : V ) ⊢2 U�T 〉 and M2 : 〈Γ′′

1 ⊢2 V 〉. Therefore

Γ1 ⊓ Γ2 = Γ′
1 ⊓ Γ′′

2 ⊓ Γ2. Because by Lemma B.1.15.4, Γ′
1 ⋄ Γ2,

by rule (�E), M
′
1M

′′
1 : 〈Γ′

1 ⊓ Γ2, (x
n : V ) ⊢2 T 〉, and by rule (�I),

λxn.M ′
1M

′′
1 : 〈Γ′

1⊓Γ2 ⊢2 V�T 〉. Finally, by rule (�E) and because

by Lemma B.1.15.4, Γ′
1⊓Γ2⋄Γ

′′
1, (λxn.M ′

1M
′′
1 )M2 : 〈Γ1⊓Γ2 ⊢2 T 〉.

· If xn 6∈ fv(M ′
1) and xn ∈ fv(M ′′

1 ) then the proof is similar to the

previous case.

• Case (⊓I): Let

N : 〈Γ1 ⊢2 U1〉 N : 〈Γ2 ⊢2 U2〉

N : 〈Γ1 ⊓ Γ2 ⊢2 U1 ⊓ U2〉 and M _β N .

By IH, M : 〈Γ1 ⊢2 U1〉 and M : 〈Γ2 ⊢2 U2〉, hence by rule (⊓I), M : 〈Γ ⊢2

U1 ⊓ U2〉.

• Case (exp): Let

N : 〈Γ ⊢2 U〉

N+ : 〈eΓ ⊢2 eU〉 and M _β N
+.

By Lemmas B.1.5.8 and B.1.5.4, M− _β N , and by IH, M− : 〈Γ ⊢2 U〉. By

Lemma B.1.3.1b, (M−)+ = M and by rule (exp), M : 〈eΓ ⊢2 eU〉 >.

• Case (⊑): Let

N : 〈Γ ⊢2 U〉 Γ ⊢2 U ⊑ Γ′ ⊢2 U
′

N : 〈Γ′ ⊢2 U
′〉 and M _β N .

By IH, M : 〈Γ ⊢2 U〉 and by rule (⊑), M : 〈Γ′ ⊢2 U
′〉.

Proof of Lemma 7.4.6.

1. 1 By induction on the length of the derivation ofM _∗
β N using Lemma B.1.16.

2. 2 By induction on the length of the derivation ofM _∗
β N using Lemma B.1.18.

Subject reduction and expansion properties for ⊢3 (Sec. 7.4.2)

Proof of Lemma 7.4.7. 1. By induction on the derivation xL : 〈Γ ⊢3 U〉. We have

five cases:

• Case (ax): Let x⊘ : 〈(x⊘ : T ) ⊢3 T 〉.

Then it is done using rule (ref).
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• Case (ω): Let xL : 〈(xL : ωL) ⊢3 ω
L〉.

Then it is done using rule (ref).

• Case (⊓I): Let

xL : 〈Γ ⊢3 U1〉 xL : 〈Γ ⊢3 U2〉

xL : 〈Γ ⊢3 U1 ⊓ U2〉 .

By IH, Γ = (xL : V ), V ⊑ U1 and V ⊑ U2 then by rule (⊓), V ⊑ U1 ⊓U2.

• Case (exp): Let

xL : 〈Γ ⊢3 U〉

xi::L : 〈eiΓ ⊢3 eiU〉.

Then by IH, Γ = (xL : V ) and V ⊑ U , so eiΓ = (xi::L : eiV ) and by

rule (⊑exp), eiV ⊑ eiU ,

• Case (⊑): Let

xL : 〈Γ′ ⊢3 U
′〉 Γ′ ⊢3 U

′ ⊑ Γ ⊢3 U

xL : 〈Γ ⊢3 U〉 .

By Lemma 7.3.4.3, Γ ⊑ Γ′ and U ′ ⊑ U and, by IH, Γ′ = (xL : V ′) and

V ′ ⊑ U ′. Then, by Lemma 7.3.4.2, Γ = (xL : V ), V ⊑ V ′ and, by

rule (tr), V ⊑ U .

2. By induction on the derivation λxL.M : 〈Γ ⊢3 U〉. We have five cases:

• Case (ω): Let λxL.M : 〈envø
λxL.M

⊢3 ω
deg(λxL.M)〉.

We are done.

• Case (�I): Let

M : 〈Γ, xL : U ⊢3 T 〉

λxL.M : 〈Γ ⊢3 U�T 〉.

Then deg(U�T ) = ⊘ and we are done.

• Case (⊓I): Let

λxL.M : 〈Γ ⊢3 U1〉 λxL.M : 〈Γ ⊢3 U2〉

λxL.M : 〈Γ ⊢3 U1 ⊓ U2〉 .

Then deg(U1⊓U2) = deg(U1) = deg(U2) = K. By IH, we have four cases:

– If U1 = U2 = ωK then U1 ⊓ U2 = ωK.

– If U1 = ωK , U2 = ⊓p
i=1~eK(Vi�Ti) where p ≥ 1 and ∀i ∈ {1, . . . , p}. M :

〈Γ, xL : ~eKVi ⊢3 ~eKTi〉 then U1 ⊓ U2 = U2 (ωK is a neutral element).

– If U2 = ωK , U1 = ⊓p
i=1~eK(Vi�Ti) where p ≥ 1 and ∀i ∈ {1, . . . , p}. M :

〈Γ, xL : ~eKVi ⊢3 ~eKTi〉 then U1 ⊓ U2 = U1 (ωK is a neutral element).

– If U1 = ⊓p
i=1~eK(Vi�Ti), U2 = ⊓p+q

i=p+1~eK(Vi�Ti) (hence U1 ⊓ U2 =

⊓p+q
i=1~eK(Vi�Ti)) where p, q ≥ 1 and ∀i ∈ {1, . . . , p+ q}. M : 〈Γ, xL :

~eKVi ⊢3 ~eKTi〉.

• Case (exp): Let

λxL.M : 〈Γ ⊢3 U〉

λxi::L.M+i : 〈eiΓ ⊢3 eiU〉.

We have deg(eiU) = i :: deg(U) = i :: K ′ = K. By IH, we have two

cases:

– If U = ωK ′

then eiU = ωK .
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– If U = ⊓p
j=1~eK ′(Vj�Tj), where p ≥ 1 and ∀j ∈ {1, . . . , p}. M :

〈Γ, xL : ~eK ′Vj ⊢3 ~eK ′Tj〉. So eiU = ⊓p
j=1~eK(Vj�Tj) and by rule (exp),

∀j ∈ {1, . . . , p}. M+i : 〈eiΓ, x
i::L : ~eKVj ⊢3 ~eKTj〉.

• Case (⊑): Let

λxL.M : 〈Γ ⊢3 U〉 Γ ⊢3 U ⊑ Γ′ ⊢3 U
′

λxL.M : 〈Γ′ ⊢3 U
′〉 .

By Lemma 7.3.4.3, Γ′ ⊑ Γ and U ⊑ U ′ and by Lemma 7.3.4.4, deg(U) =

deg(U ′) = K. By IH, we have two cases:

– If U = ωK then, by Lemma B.1.12.3a, U ′ = ωK .

– If U = ⊓p
i=1~eK(Vi�Ti), where p ≥ 1 and ∀i ∈ {1, . . . , p}. M : 〈Γ, xL :

~eKVi ⊢3 ~eKTi〉. By Lemma B.1.12.3d:

∗ Either U ′ = ωK .

∗ Or U ′ = ⊓q
i=1~eK(V ′

i �T
′
i ), where q ≥ 1 and ∀i ∈ {1, . . . , q}. ∃j ∈

{1, . . . , p}. V ′
i ⊑ Vj ∧ Tj ⊑ T ′

i . Let i ∈ {1, . . . , q}. Because, by

Lemma 7.3.4.3, (Γ, xL : ~eKVj ⊢3 ~eKTj) ⊑ (Γ′, xL : ~eKV
′
i ⊢3 ~eKT

′
i )

then M : 〈Γ′, xL : ~eKV
′
i ⊢3 ~eKT

′
i 〉.

3. Similar as the proof of 2.

4. By induction on the derivation MxL : 〈Γ, xL : U ⊢3 T 〉. We have only two

cases:

• Case (�E): Let

M : 〈Γ ⊢3 V�T 〉 xL : 〈(xL : U) ⊢2 V 〉 Γ ⋄ (xL : U)

MxL : 〈Γ, (xL : U) ⊢3 T 〉 us-

ing Theorem 7.3.5.

By 1., U ⊑ V . Because V�T ⊑ U�T , then we have M : 〈Γ ⊢3 U�T 〉.

• Case (⊑): Let

MxL : 〈Γ′, (xL : U ′) ⊢3 V
′〉

MxL : 〈Γ, (xL : U) ⊢3 V 〉 where Γ′, (xL : U ′) ⊢3 V ′ ⊑

Γ, (xL : U) ⊢3 V , using Lemma 7.3.4.

By Lemma 7.3.4, Γ ⊑ Γ′, U ⊑ U ′, and V ′ ⊑ V . By IH, M : 〈Γ′ ⊢3 U
′�V ′〉

and by rule (⊑), M : 〈Γ ⊢3 U�V 〉.

Proof of Lemma 7.4.8. By Lemma 7.3.7.3, Γ ⋄∆. By Theorem 7.3.5, M,N ∈ M3,

deg(N) = deg(U) = L, ok(∆) and ok(Γ, xL : U). By Lemma B.1.13.1a, ok(Γ ⊓∆).

By Lemma B.1.1.5, M [xL := N ] ∈ M3. By Lemma 7.3.5.2a, xL ∈ fv(M). By

Lemma B.1.1.5, deg(M [xL := N ]) = deg(M).

We prove the lemma by induction on the derivation M : 〈Γ, xL : U ⊢3 V 〉.

• Case (ax): Let x⊘ : 〈(x⊘ : T ) ⊢3 T 〉 and N : 〈∆ ⊢3 T 〉.

Then x⊘[x⊘ := N ] = N : 〈∆ ⊢3 T 〉.

• Case (ω): Let M : 〈envø
fv(M)\{xL}

, (xL : ωL) ⊢3 ω
deg(M)〉 and N : 〈∆ ⊢3 ω

L〉.
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By rule (ω), M [xL := N ] : 〈envø
M [xL:=N ]

⊢3 ωdeg(M [xL:=N ])〉. Because xL ∈

fv(M), we have fv(M [xL := N ]) = (fv(M) \ {xL})∪ fv(N). We can prove that

envø
fv(M)\{xL}

⊓∆ ⊑ envø
(fv(M)\{xL})∪fv(N)

= envø
M [xL:=N ]

. Therefore, by rule (⊑),

M [xL := N ] : 〈envø
fv(M)\{xL}

⊓∆ ⊢3 ω
deg(M)〉.

• Case (�I): Let

M : 〈Γ, xL : U, yK : U ′ ⊢3 T 〉

λyK.M : 〈Γ, xL : U ⊢3 U
′�T 〉 such that ∀K ′. yK ′

6∈ fv(N) ∪

{xL}.

So (λyK.M)[xL := N ] = λyK.M [xL := N ]. By Lemma B.1.1.2b, M ⋄ N . By

Theorem 7.3.5, yK 6∈ dom(∆). By IH, M [xL := N ] : 〈Γ⊓∆, yK : U ′ ⊢3 T 〉. By

rule (�I), (λyK.M)[xL := N ] : 〈Γ ⊓∆ ⊢3 U
′�T 〉.

• Case (�′
I): Let

M : 〈Γ, xL : U ⊢3 T 〉 yK 6∈ dom(Γ, xL : U)

λyK.M : 〈Γ, xL : U ⊢3 ω
K�T 〉 such that ∀K ′. yK ′

6∈

fv(N) ∪ {xL}.

So (λyK .M)[xL := N ] = λyK .M [xL := N ]. By Lemma B.1.1.2b, M ⋄ N .

By IH, M [xL := N ] : 〈Γ ⊓ ∆ ⊢3 T 〉. By Theorem 7.3.5, yK 6∈ dom(∆). By

rule (�′
I), (λyK.M)[xL := N ] : 〈Γ ⊓∆ ⊢3 ω

K�T 〉.

• Case (�E): Let

M1 : 〈Γ1, x
L : U1 ⊢3 V�T 〉 M2 : 〈Γ2, x

L : U2 ⊢3 V 〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2, x
L : U1 ⊓ U2 ⊢3 T 〉

where we consider xL ∈ fv(M1) ∩ fv(M2), using Theorem 7.3.5.2a, and where

N : 〈∆ ⊢3 U1 ⊓ U2〉.

By Lemma B.1.1.2a, M1⋄N and M2⋄N . By rules (⊓E) and (⊑), N : 〈∆ ⊢3 U1〉

and N : 〈∆ ⊢3 U2〉. By IH M1[x
L := N ] : 〈Γ1 ⊓ ∆ ⊢3 V�T 〉 and M1[x

L :=

N ] : 〈Γ2⊓∆ ⊢3 V 〉. By Theorem 7.3.5.2a and Lemma B.1.1.3, Γ1⊓∆⋄Γ2⊓∆.

Finally by rule (�E), M [xL := N ] : 〈Γ1 ⊓ Γ2 ⊓∆ ⊢3 T 〉.

The cases xL ∈ fv(M1) \ fv(M2) or xL ∈ fv(M2) \ fv(M1) are similar.

• Case (⊓I): Let

M : 〈Γ, xL : U ⊢3 U1〉 M : 〈Γ, xL : U ⊢3 U2〉

M : 〈Γ, xL : U ⊢3 U1 ⊓ U2〉 .

Use IH and rule (⊓I).

• Case (exp): Let

M : 〈Γ, xL : U ⊢3 V 〉

M+i : 〈eiΓ, x
i::L : eiU ⊢3 eiV 〉 and N : 〈∆ ⊢3 eiU〉.

By Theorem 7.3.5, deg(N) = deg(eiU) = i :: deg(U). and N−i : 〈∆−i ⊢3 U〉.

By Lemma B.1.5, (N−i)+i = N and M ⋄ N−i. By IH, M [xL := N−i] : 〈Γ ⊓

∆−i ⊢3 V 〉. By rule (exp) and Lemma B.1.5.5, M+i[xi::L := N ] : 〈eiΓ ⊓∆ ⊢3

eiV 〉.

• Case (⊑): Let

M : 〈Γ′, xL : U ′ ⊢3 V
′〉 Γ′, xL : U ′ ⊢3 V

′ ⊑ Γ, xL : U ⊢3 V

M : 〈Γ, xL : U ⊢3 V 〉 (us-

ing Lemma 7.3.4).

324



Appendix B. Proofs of Part II

By Lemma 7.3.4, dom(Γ) = dom(Γ′), Γ ⊑ Γ′, U ⊑ U ′ and V ′ ⊑ V . Hence

N : 〈∆ ⊢3 U
′〉 and, by IH, M [xL := N ] : 〈Γ′ ⊓ ∆ ⊢3 V

′〉. It is easy to show

that Γ ⊓ ∆ ⊑ Γ′ ⊓∆. Hence, Γ′ ⊓ ∆ ⊢3 V
′ ⊑ Γ ⊓ ∆ ⊢3 V and M [xL := N ] :

〈Γ ⊓∆ ⊢3 V 〉.

The next lemma is needed in the proofs.

Lemma B.1.19.

1. If fv(N) ⊆ fv(M) then envø
M↾N = envø

N .

2. If ok(Γ1), ok(Γ2), fv(M) ⊆ dom(Γ1) and fv(N) ⊆ dom(Γ2) then (Γ1⊓Γ2)↾MN ⊑

(Γ1↾M) ⊓ (Γ2↾N).

3. ei(Γ↾M) = (eiΓ)↾M+i

Proof of Lemma B.1.19.

1. Let fv(M) = fv(N) ∪ {xL1

1 , . . . , x
Ln
n }. Then envø

M = envø
N , (x

Li

i : ωLi)n. and

envø
M↾N = envø

N .

2. By Lemma B.1.13.1a, ok(Γ1 ⊓ Γ2). Also, ok(Γ1↾M), ok(Γ2↾N) and dom((Γ1 ⊓

Γ2)↾MN) = fv(MN) = fv(M)∪fv(N) = dom(Γ1↾M)∪dom(Γ2↾N) = dom((Γ1↾M)⊓

(Γ2↾N)). Now, we show by cases that if ((Γ1⊓Γ2)↾MN)(xL) = U1 and ((Γ1↾M)⊓

(Γ2↾N))(xL) = U2 then U1 ⊑ U2:

• If xL ∈ fv(M)∩fv(N) then Γ1(x
L) = U ′

1, Γ2(x
L) = U ′′

1 , and U1 = U ′
1⊓U

′′
1 =

U2.

• If xL ∈ fv(M) \ fv(N) then:

– If xL ∈ dom(Γ2) then Γ1(x
L) = U2, Γ2(x

L) = U ′
1 and U1 = U ′

1 ⊓U2 ⊑

U2.

– If xL 6∈ dom(Γ2) then Γ1(x
L) = U2 and U1 = U2.

• If xL ∈ fv(N) \ fv(M) then:

– If xL ∈ dom(Γ1) then Γ1(x
L) = U ′

1, Γ2(x
L) = U2 and U1 = U ′

1 ⊓U2 ⊑

U2.

– If xL 6∈ dom(Γ1) then Γ2(x
L) = U2 and U1 = U2.

3. Let Γ = (x
Lj

j : Uj)n, (y
L′

j

j : U ′
j)p and let fv(M) = {xL1

1 , . . . , xLn
n }⊎{z

L′′
1

1 , . . . , z
L′′

m
m }.

such that dj({y
L′

1

1 , . . . , y
L′

p
p }, {z

L′′
1

1 , . . . , z
L′′

m
m }). Therefore Γ↾M = (x

Lj

j : Uj)n and

ei(Γ↾M) = (x
i::Lj

j : eiUj)n. Because eiΓ = (x
i::Lj

j : eiUj)n, (y
i::L′

j

j : eiU
′
j)p, and

by Lemma B.1.5.1, fv(M+i) = {xi::L1

1 , . . . , xi::Ln
n }⊎{z

i::L′′
1

1 , . . . , z
i::L′′

m
m } such that

dj({y
i::L′

1

1 , . . . , y
i::L′

p
p }, {z

i::L′′
1

1 , . . . , z
i::L′′

m
m }), then (eiΓ)↾M+i = (x

i::Lj

j : eiUj)n.

The next two theorems are needed in the proof of subject reduction.
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Theorem B.1.20. If M : 〈Γ ⊢3 U〉 and M _β N then N : 〈Γ↾N ⊢3 U〉.

Proof of Lemma B.1.20. By induction on the derivation M : 〈Γ ⊢3 U〉.

• Case (ω) follows by Theorem 7.1.11.2 and Lemma B.1.19.1.

• Case (�I): Let

M : 〈Γ, (xL : U) ⊢3 T 〉

λxL.M : 〈Γ ⊢3 U�T 〉 .

Then N = λxL.N ′ and M _β N ′. By IH, N ′ : 〈(Γ, (xL : U))↾N ′ ⊢3 T 〉. If

xL ∈ fv(N ′) then N ′ : 〈Γ↾fv(λxL.N ′), (x
L : U) ⊢3 T 〉 and by rule (�I), λx

L.N ′ :

〈Γ↾λxL.N ′ ⊢3 U�T 〉. Else N ′ : 〈Γ↾fv(λxL.N ′) ⊢3 T 〉 so by rule (�′
I), λx

L.N ′ :

〈Γ↾λxL.N ′ ⊢3 ω
L�T 〉 and since by Theorem 7.3.5.2 and Lemma 7.3.6.4, U ⊑ ωL,

by rule (⊑), λxL.N ′ : 〈Γ↾λxL.N ′ ⊢3 U�T 〉.

• Case (�′
I): Let

M : 〈Γ ⊢3 T 〉 xL 6∈ dom(Γ)

λxL.M : 〈Γ ⊢3 ω
L�T 〉 .

Then N = λxL.N ′ and M _β N
′. Because xL 6∈ fv(M) (using Theorem 7.3.5),

by Theorem 7.1.11.2, xL 6∈ fv(N ′). By IH, N ′ : 〈Γ↾fv(N ′)\{xL} ⊢3 T 〉 so by

rule (�′
I), λx

L.N ′ : 〈Γ↾λxL.N ′ ⊢3 ω
L�T 〉.

• Case (�E): Let

M1 : 〈Γ1 ⊢3 U�T 〉 M2 : 〈Γ2 ⊢3 U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉 .

Using Lemma B.1.19.2, case M1 _β N1 and N = N1M2 and case M2 _β

N2 and N = M1N2 are easy. Let M1 = λxL.M ′
1 and N = M ′

1[x
L := M2].

By Lemma 7.3.7.3 and Lemma B.1.1.2, M ′
1 ⋄ M2. If xL ∈ fv(M ′

1) then by

Lemma 7.4.7.2, M ′
1 : 〈Γ1, x

L : U ⊢3 T 〉. By Lemma 7.4.8, M ′
1[x

L := M2] :

〈Γ1 ⊓ Γ2 ⊢3 T 〉. If xL 6∈ fv(M ′
1) then by Lemma 7.4.7.3, M ′

1[x
L := M2] = M ′

1 :

〈Γ1 ⊢3 T 〉 and by rule (⊑), N : 〈(Γ1 ⊓ Γ2)↾N ⊢3 T 〉.

• Case (⊓I) is by IH.

• case (exp): Let

M : 〈Γ ⊢3 U〉

M+i : 〈eiΓ ⊢3 eiU〉.

If M+i _β N then by Lemma B.1.5.9, there is P ∈ M3 such that P+i = N

and M _β P . By IH, P : 〈Γ↾P ⊢3 U〉 and by rule (exp) and Lemma B.1.19.3,

N : 〈(eiΓ)↾N ⊢3 eiU〉.

• Case (⊑): Let

M : 〈Γ ⊢3 U〉 Γ ⊢3 U ⊑ Γ′ ⊢3 U
′

M : 〈Γ′ ⊢3 U
′〉 .

Then by IH, Lemma 7.3.4.3 and rule (⊑), N : 〈Γ′↾N ⊢3 U
′〉.

Theorem B.1.21. If M : 〈Γ ⊢3 U〉 and M _η N then N : 〈Γ ⊢3 U〉.

Proof of Lemma B.1.21. By induction on the derivation M : 〈Γ ⊢3 U〉.
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• Case (ω): Let M : 〈envø
M ⊢3 ω

deg(M)〉.

Then by Lemma 7.1.11.1, deg(M) = deg(N) and fv(M) = fv(N), and by

rule (ω), N : 〈envø
N ⊢3 ω

deg(N)〉.

• Case (�I): Let

M : 〈Γ, (xL : U) ⊢3 T 〉

λxL.M : 〈Γ ⊢3 U�T 〉 .

then we have two cases:

– M = NxL such that xL 6∈ fv(N) and so by Lemma 7.4.7.4, N : 〈Γ ⊢3

U�T 〉.

– N = λxL.N ′ and M _η N ′. By IH, N ′ : 〈Γ, (xL : U) ⊢3 T 〉 and by

rule (�I), N : 〈Γ ⊢3 U�T 〉.

• Case (�′
I): Let

M : 〈Γ ⊢3 T 〉 xL 6∈ dom(Γ)

λxL.M : 〈Γ ⊢3 ω
L�T 〉 .

Therefore by Theorem 7.3.5, xL 6∈ fv(M). Then N = λxL.N ′ and M _η N
′.

By Lemma 7.1.11.1, fv(M) = fv(N ′). By IH, N ′ : 〈Γ ⊢3 T 〉, and by rule (�′
I),

N : 〈Γ ⊢3 ω
L�T 〉.

• Case (�E): Let

M1 : 〈Γ1 ⊢3 U�T 〉 M2 : 〈Γ2 ⊢3 U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉 .

Then we have two cases:

– M1 _η N1 and N = N1M2. By IH N1 : 〈Γ1 ⊢3 U�T 〉 and by rule (�E),

N : 〈Γ1 ⊓ Γ2 ⊢3 T 〉.

– M2 _η N2 and N = M1N2. By IH N2 : 〈Γ2 ⊢3 U〉 and by rule (�E),

N : 〈Γ1 ⊓ Γ2 ⊢3 T 〉.

• Case (⊓I) is by IH and rule (⊓I).

• Case (exp): Let

M : 〈Γ ⊢3 U〉

M+i : 〈eiΓ ⊢3 eiU〉.

Then by Lemma B.1.5.9, there exists P ∈M3 such that P+i = N and M _η

P . By IH, P : 〈Γ ⊢3 U〉 and by rule (exp), N : 〈eiΓ ⊢3 eiU〉.

• Case (⊑): Let

M : 〈Γ ⊢3 U〉 Γ ⊢3 U ⊑ Γ′ ⊢3 U
′

M : 〈Γ′ ⊢3 U
′〉 .

Then by IH and rule (⊑), N : 〈Γ′ ⊢3 U
′〉.

Proof of Theorem 7.4.10. Proof is by induction on the reduction M _∗
βη N using

Theorem B.1.20 and Theorem B.1.21.
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Proof of Lemma 7.4.12. By Theorem 7.3.5.2, we have M [xL := N ] ∈ M3. By

Lemma B.1.1.5a, M ⋄ N and deg(N) = L. Let us prove the result by induction

on the derivation M [xL := N ] : 〈Γ ⊢3 U〉 and then by case on the last rule of the

derivation.

• Case (ax): Let y⊘ : 〈(y⊘ : T ) ⊢3 T 〉

Then M = x⊘ and N = y⊘. By rule (ax), x⊘ : 〈(x⊘ : T ) ⊢3 T 〉.

• Case (ω): Let M [xL := N ] : 〈envø
M [xL:=N ]

⊢3 ω
deg(M [xL:=N ])〉.

By Lemma B.1.1.5b, deg(M) = deg(M [xL := N ]). Therefore, by rule (ω),

M : 〈envø
fv(M)\{xL}

, (xL : ωL) ⊢3 ω
deg(M)〉 and N : 〈envø

N ⊢3 ω
L〉 and because

fv(M [xL := N ]) = (fv(M) \ {xL})∪ fv(N), envø
fv(M)\{xL}

⊓ envø
N = envø

M [xL:=N ]
.

• Case (�I): Let

M [xL := N ] : 〈Γ, (yK : W ) ⊢3 T 〉

λyK .M [xL := N ] : 〈Γ ⊢3 W�T 〉 where ∀K ′. yK ′

6∈ fv(N) ∪

{xL}.

By IH, ∃ V,Γ1,Γ2 such that M : 〈Γ1, x
L : V ⊢3 T 〉, N : 〈Γ2 ⊢3 V 〉 and

(Γ, yK : W ) = Γ1 ⊓ Γ2. By Theorem 7.3.5.2a, fv(N) = dom(Γ2) and fv(M) =

dom(Γ1) ∪ {x
L}. Because yK 6∈ fv(N), xK 6∈ dom(Γ2) and Γ1 = ∆1, y

K : W .

Hence M : 〈∆1, y
K : W,xL : V ⊢3 T 〉. By rule (�I), λy

K .M : 〈∆1, x
L : V ⊢3

W�T 〉. Finally, Γ = ∆1 ⊓ Γ2.

• Case (�′
I): Let

M [xL := N ] : 〈Γ ⊢3 T 〉 yK 6∈ dom(Γ)

λyK.M [xL := N ] : 〈Γ ⊢3 ω
K�T 〉 where ∀K ′. yK ′

6∈ fv(N)∪

{xL}.

By IH, ∃ V,Γ1,Γ2 such that M : 〈Γ1, x
L : V ⊢3 T 〉, N : 〈Γ2 ⊢3 V 〉 and

Γ = Γ1 ⊓ Γ2. Since yK 6∈ dom(Γ1) ∪ {x
L}, λyK.M : 〈Γ1, x

L : V ⊢3 ω
K�T 〉.

• Case (�E): Let

M1[x
L := N ] : 〈Γ1 ⊢3 W�T 〉 M2[x

L := N ] : 〈Γ2 ⊢3 W 〉

M1[x
L := N ]M2[x

L := N ] : 〈Γ1 ⊓ Γ2 ⊢3 T 〉 where

Γ1 ⋄ Γ2 and M = M1M2.

By Lemmas B.1.1.1 and B.1.1.2a, M1 ⋄M2, We have three cases:

– If xL ∈ fv(M1) ∩ fv(M2) then by IH, ∃ V1, V2,∆1,∆2,∆
′
1,∆

′
2 such that

M1 : 〈∆1, (x
L : V1) ⊢3 W�T 〉, M2 : 〈∆′

1, (x
L : V2) ⊢3 W 〉, N : 〈∆2 ⊢3 V1〉,

N : 〈∆′
2 ⊢3 V2〉, Γ1 = ∆1 ⊓ ∆2 and Γ2 = ∆′

1 ⊓ ∆′
2. Because M1 ⋄M2,

then by Lemma B.1.15.2, (∆1, (x
L : V1)) ⋄ (∆′

1, (x
L : V2)). Then, by

rule (�E), M1M2 : 〈∆1 ⊓ ∆′
1, (x

L : V1 ⊓ V2) ⊢3 T 〉 and by rule (⊓′I),

N : 〈∆2 ⊓∆′
2 ⊢3 V1 ⊓ V2〉. Finally, Γ1 ⊓ Γ2 = ∆1 ⊓∆2 ⊓∆′

1 ⊓∆′
2.

– If xL ∈ fv(M1) \ fv(M2) then M2[x
L := N ] = M2 and by IH, ∃ V,∆1,∆2

such thatM1 : 〈∆1, (x
L : V ) ⊢3 W�T 〉, N : 〈∆2 ⊢3 V 〉, and Γ1 = ∆1⊓∆2.
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Because M1 ⋄ M2, then by Lemma B.1.15.2, (∆1, (x
L : V )) ⋄ Γ2. By

rule (�E), M1M2 : 〈∆1 ⊓ Γ2, (x
L : V ) ⊢3 T 〉 and Γ1 ⊓ Γ2 = ∆1 ⊓∆2 ⊓ Γ2.

– If xL ∈ fv(M2) \ fv(M1) then M1[x
L := N ] = M2 and by IH, ∃ V,∆1,∆2

such that M2 : 〈∆1, (x
L : V ) ⊢3 W 〉, N : 〈∆2 ⊢3 V 〉, and Γ2 = ∆1 ⊓∆2.

Because M1 ⋄ M2, then by Lemma B.1.15.2, (∆1, (x
L : V )) ⋄ Γ1. By

rule (�E), M1M2 : 〈Γ1 ⊓∆1, (x
L : V ) ⊢3 T 〉 and Γ1 ⊓ Γ2 = Γ1 ⊓∆1 ⊓∆2.

• Case (⊓I): Let

M [xL := N ] : 〈Γ ⊢3 U1〉 M [xL := N ] : 〈Γ ⊢3 U2〉

M [xL := N ] : 〈Γ ⊢3 U1 ⊓ U2〉 .

By IH, ∃ V1, V2,∆1,∆2,∆
′
1,∆

′
2 such that M : 〈∆1, x

L : V1 ⊢3 U1〉, M : 〈∆′
1, x

L :

V2 ⊢3 U2〉, N : 〈∆2 ⊢3 V1〉, N : 〈∆′
2 ⊢3 V2〉, and Γ = ∆1 ⊓∆2 = ∆′

1 ⊓∆′
2. By

rule (⊓′I), M : 〈∆1 ⊓∆′
1, x

L : V1 ⊓V2 ⊢3 U1 ⊓U2〉 and N : 〈∆2 ⊓∆′
2 ⊢3 V1 ⊓V2〉.

Finally, Γ = ∆1 ⊓∆2 ⊓∆′
1 ⊓∆′

2.

• Case (exp): Let

M [xL := N ] : 〈Γ ⊢3 U〉

M+j [xj::L := N+j ] : 〈ejΓ ⊢3 ejU〉 using Lemma B.1.5.5.

By IH, ∃ V,Γ1,Γ2 such that M : 〈Γ1, x
L : V ⊢3 U〉, N : 〈Γ2 ⊢3 V 〉 and Γ =

Γ1 ⊓ Γ2. So by rule (exp), M+j : 〈ejΓ1, x
j::L : ejV ⊢3 ejU〉, N : 〈ejΓ2 ⊢3 ejV 〉

and ejΓ = ejΓ1 ⊓ ejΓ2.

• Case (⊑): Let

M [xL := N ] : 〈Γ′ ⊢3 U
′〉 Γ′ ⊢3 U

′ ⊑ Γ ⊢3 U

M [xL := N ] : 〈Γ ⊢3 U〉 .

By Lemma 7.3.4.2, Γ ⊑ Γ′ and U ′ ⊑ U . By IH, ∃ V,Γ′
1,Γ

′
2 such that M :

〈Γ′
1, x

L : V ⊢3 U
′〉, N : 〈Γ′

2 ⊢3 V 〉 and Γ′ = Γ′
1 ⊓ Γ′

2. By Lemma B.1.12.5,

Γ = Γ1⊓Γ2, Γ1 ⊑ Γ′
1, and Γ2 ⊑ Γ′

2. Finally, by rule (⊑), M : 〈Γ1, x
L : V ⊢3 U〉

and N : 〈Γ2 ⊢3 V 〉.

The next lemma is useful to prove that subject expansion w.r.t. β holds in ⊢3.

Lemma B.1.22. If M [xL := N ] : 〈Γ ⊢3 U〉, L � deg(M), and ix = fv((λxL.M)N)

then (λxL.M)N : 〈Γ↑ix ⊢3 U〉.

Proof of Lemma B.1.22. Let deg(U) = K. By Theorem 7.3.5.2, M [xL := N ] ∈M3.

By Lemma B.1.1.5a, M ⋄ N and deg(N) = L. By definition λxL.M ∈ M3. By

Lemma B.1.1.2a, λxL.M ⋄N . By definition, (λxL.M)N ∈M3. By Lemma B.1.1.5b

and Theorem 7.3.5.2, deg(Γ) � deg(U) = K = deg(M [xL := N ]) = deg(M) =

deg((λxL.M)N). So L � K and there exists K ′ such that L = K :: K ′. We have

two cases:

• If xL ∈ fv(M) then, by Lemma 7.4.12, ∃ V,Γ1,Γ2 such that M : 〈Γ1, x
L :

V ⊢3 U〉, N : 〈Γ2 ⊢3 V 〉, and Γ = Γ1 ⊓ Γ2. By Theorem 7.3.5.2, ok(Γ1)

and ok(Γ2). By Lemma B.1.13.1a, ok(Γ1 ⊓ Γ2). So, it is easy to prove, using

Lemma B.1.13.5, that ok(Γ↑ix). By Lemma 7.3.7.3, (Γ1, x
L : V )⋄Γ2, so Γ1⋄Γ2.
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By Theorem 7.3.5.2, deg(Γ1) � deg(M) = deg(U) = K and L = deg(N) =

deg(V ) � deg(Γ2). By Lemma B.1.12.2, we have two cases :

– If U = ωK then by Lemma 7.3.7.2, (λxL.M)N : 〈Γ↑ix ⊢3 U〉.

– If U = ~eK ⊓
p
i=1 Ti where p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3 then by

Theorem 7.3.5.2, M−K : 〈Γ−K
1 , xK ′

: V −K ⊢3 ⊓
p
i=1Ti〉. By rule (⊑), ∀i ∈

{1, . . . , p}. M−K : 〈Γ−K
1 , xK ′

: V −K ⊢3 Ti〉, so by rule (�I), λx
K ′

.M−K :

〈Γ−K
1 ⊢3 V

−K�Ti〉. Again by Theorem 7.3.5.2, N−K : 〈Γ−K
2 ⊢3 V

−K〉 and

because Γ1⋄Γ2, then by Lemma B.1.13.4, Γ−K
1 ⋄Γ

−K
2 , so by rule (�E), ∀i ∈

{1, . . . , p}. (λxK ′

.M−K)N−K : 〈Γ−K
1 ⊓ Γ−K

2 ⊢3 Ti〉. Finally by rules (⊓I)

and (exp), (λxL.M)N : 〈Γ1 ⊓ Γ2 ⊢3 U〉, so (λxL.M)N : 〈Γ↑ix ⊢3 U〉.

• If xL 6∈ fv(M) then M : 〈Γ ⊢3 U〉. By Theorem 7.3.5.2, ok(Γ). So, it is easy

to prove, using Lemma B.1.13.5, that ok(Γ↑ix). By Lemma B.1.12.2, we have

two cases :

– If U = ωK then by Lemma 7.3.7.2, (λxL.M)N : 〈Γ↑ix ⊢3 U〉.

– If U = ~eK⊓
p
i=1Ti where p ≥ 1 and ∀i ∈ {1, . . . , p}. Ti ∈ Ty3, and by Theo-

rem 7.3.5.2, M−K : 〈Γ−K ⊢3 ⊓
p
i=1Ti〉. By rule (⊑), ∀i ∈ {1, . . . , p}. M−K :

〈Γ−K ⊢3 Ti〉. Using Lemma B.1.5.1 and by induction on K, we can prove

that xK ′

6∈ fv(M−K). So by Theorem 7.3.5.2a, xK ′

6∈ dom(Γ−K). So by

rule (�′
I), λx

K ′

.M−K : 〈Γ−K ⊢3 ω
K ′

�Ti〉. By rule (ω), N−K : 〈envø
N−K ⊢3

ωK ′

〉 and N : 〈envø
N ⊢3 ω

L〉. By Theorem 7.3.5.2, deg(envø
N) � deg(N) =

L. By Lemma 7.3.7.3, Γ ⋄ envø
N . By Lemma B.1.13.4, Γ−K ⋄ envø

N−K .

By rule (�E), ∀i ∈ {1, . . . , p}. (λxK ′

.M−K)N−K : 〈Γ−K ⊓ envø
N−K ⊢3

Ti〉. Finally by rules (⊓I) and (exp), (λxL.M)N : 〈Γ ⊓ envø
N ⊢3 U〉, so

(λxL.M)N : 〈Γ↑ix ⊢3 U〉.

Next, we give the main block for the proof of subject β-expansion.

Theorem B.1.23. If N : 〈Γ ⊢3 U〉 and M _β N then M : 〈Γ↑M ⊢3 U〉.

Proof of Lemma B.1.23. By induction on the derivation N : 〈Γ ⊢3 U〉 and then by

case on the last rule of the derivation.

• Case (ax): Let x⊘ : 〈(x⊘ : T ) ⊢3 T 〉 and M _β x
⊘.

Then M = (λyK.M1)M2, and x⊘ = M1[y
K := M2]. Because M ∈ M3 then

K � deg(M1). By Lemma B.1.22, M : 〈(x⊘ : T )↑M ⊢3 T 〉.

• Case (ω): Let N : 〈envø
N ⊢3 ω

deg(N)〉 and M _β N .

By Theorem 7.1.11.2, fv(N) ⊆ fv(M) and deg(M) = deg(N). We have

(envø
N)↑M = envø

M . By rule (ω), M : 〈envø
M ⊢3 ωdeg(M)〉. Hence, M :

〈(envø
N)↑M ⊢3 ω

deg(N)〉.
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• Case (�I): Let

N : 〈Γ, xL : U ⊢3 T 〉

λxL.N : 〈Γ ⊢3 U�T 〉 and M _β λx
L.N .

We have two cases:

– If M = λx.M ′ where M ′ _β N then by IH, M ′ : 〈(Γ, (xL : U))↑M
′

⊢3

T 〉. Since by Theorem 7.1.11.2 and Theorem 7.3.5.2a, xL ∈ fv(N) ⊆

fv(M ′) then we have (Γ, (xL : U))↑fv(M
′) = Γ↑fv(M

′)\{xL}, (xL : U) and

Γ↑fv(M
′)\{xL} = Γ↑λxL.M ′

. Hence, M ′ : 〈Γ↑λxL.M ′

, (xL : U) ⊢3 T 〉 and

finally, by rule (�I), λx
L.M ′ : 〈Γ↑λxL.M ′

⊢3 U�T 〉.

– IfM = (λyK.M1)M2 and λxL.N = M1[y
K := M2] then, because M ∈M3

then K � deg(M1), and by Lemma B.1.22, because M1[y
K := M2] : 〈Γ ⊢3

U�T 〉, we have (λyK.M1)M2 : 〈Γ↑(λyK .M1)M2 ⊢3 U�T 〉.

• Case (�′
I): Let

N : 〈Γ ⊢3 T 〉 xL 6∈ dom(Γ)

λxL.N : 〈Γ ⊢3 ω
L�T 〉 and M _β N .

Then this case is similar to the above case.

• Case (�E): Let

N1 : 〈Γ1 ⊢3 U�T 〉 N2 : 〈Γ2 ⊢3 U〉 Γ1 ⋄ Γ2

N1N2 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉 and M _β N1N2.

We have three cases:

– M = M1N2 where M1 _β N1 and M1 ⋄ N2 using Lemma B.1.1. By

IH, M1 : 〈Γ1↑
M1 ⊢3 U�T 〉. It is easy to show that (Γ1 ⊓ Γ2)↑

M1N2 =

Γ1↑
M1 ⊓ Γ2. Since M1 ⋄ N2, by Lemma 7.3.7.3, Γ1↑

M1 ⋄ Γ2. Finally, use

rule (�E).

– M = N1M2 where M2 _β N2. Similar to the above case.

– If M = (λxL.M1)M2 and N1N2 = M1[x
L := M2] then, because M ∈

M3 then L � deg(M1), and by Lemma B.1.22, (λxL.M1)M2 : 〈(Γ1 ⊓

Γ2)↑
(λxL.M1)M2 ⊢3 T 〉.

• Case (⊓I): Let

N : 〈Γ ⊢3 U1〉 N : 〈Γ ⊢3 U2〉

N : 〈Γ ⊢3 U1 ⊓ U2〉 and M _β N .

Then use IH.

• Case (exp): Let

N : 〈Γ ⊢3 U〉

N+j : 〈ejΓ ⊢3 ejU〉.

By Lemma B.1.5.8 then there is P ∈ M3 such that M = P+j and P _β N .

By IH, P : 〈Γ↑P ⊢3 U〉 and by rule (exp), M : 〈(ejΓ)↑M ⊢3 ejU〉 (it is easy to

prove that ej(Γ↑
P ) = (ejΓ)↑M).

• Case (⊑): Let

N : 〈Γ ⊢3 U〉 Γ ⊢3 U ⊑ Γ′ ⊢3 U
′

N : 〈Γ′ ⊢3 U
′〉 and M _β N .
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By Lemma 7.3.4.3, Γ′ ⊑ Γ and U ⊑ U ′. It is easy to show that Γ′↑M ⊑ Γ↑M

and hence by Lemma 7.3.4.3, Γ↑M ⊢3 U ⊑ Γ′↑M ⊢3 U
′. By IH, M : 〈Γ↑M ⊢3

U〉. Hence, by rule (⊑), we have M : 〈Γ′↑M ⊢3 U
′〉.

Proof of Theorem 7.4.14. By induction on the length of the derivation M _∗
β N

using Theorem B.1.23 and the fact that if fv(P ) ⊆ fv(Q) then (Γ↑P )↑Q = Γ↑Q.

B.2 Realisability semantics and their complete-

ness (Ch. 8)

B.2.1 Realisability (Sec. 8.1)

Proof of Lemma 8.1.2. 1. easy.

2. If M _∗
r N

+ where N ∈ M , then, by Lemma 7.1.11.1, Lemma B.1.3.1 and

Lemma B.1.4.3, M = P+ and P _β N . Because M ∈ SATr, P ∈ M and so

P+ = M ∈ M +.

3. If M _∗
r N

+i where N ∈ M , then by Lemma B.1.5.8, M = P+i such that

P ∈M3 and P _r N . Because M ∈ SATr, P ∈ M and so P+i = M ∈ M
+i

.

4. Let i ∈ {1, 2, 3}, M ∈ M 1  M 2 and N _∗
r M . If P ∈ M 1 such that P ⋄ N

then by Lemma B.1.2.1, P ⋄M . So, by definition, MP ∈ M 2. Because M 2 ⊆

Mi then MP ∈ Mi. In case i = 3, because MP ∈ M3, deg(M) � deg(P )

and by Lemma 7.1.11, deg(M) = deg(N). So NP ∈ Mi and NP _∗
r MP .

Because MP ∈ M 2 and M 2 ∈ SATr then NP ∈ M 2. Hence, N ∈ M 1  M 2.

5. Let M ∈ (M 1  M 2)
+ then M = N+ and N ∈ M 1  M 2. If P ∈ M 1

+

such that M ⋄ P then P = Q+, Q ∈ M 1 and MP = N+Q+ = (NQ)+. By

Lemma B.1.3.1(c)i, N ⋄ Q and hence NQ ∈ M 2 and MP ∈ M 2
+. Thus

M ∈ M 1
+  M 2

+.

6. Let M ∈ (M 1  M 2)
+i then M = N+i and N ∈ M 1  M 2. Let P ∈ M

+i

1

such that M ⋄ P . Then P = Q+i such that Q ∈ M 1. Because M ⋄ P then by

Lemma B.1.5.2, N ⋄ Q. So NQ ∈ M 2. Because M 2 ⊆ M3 then NQ ∈ M3.

Because (NQ)+i = N+iQ+i = MP then MP ∈ M
+i

2 . Hence, M ∈ M
+i

1  

M
+i

2 .

7. let M ∈ M +  M 2
+. Because M 1

+ ≀ M 2
+ then there is N ∈ M 1

+ such

that M ⋄ N . We have MN ∈ M 2
+ then MN = P+ where P ∈ M 2. Hence,

M = M1
+. Let N1 ∈ M 1 such that M1 ⋄ N1. We have N1

+ ∈ M 1
+. By

Lemma B.1.3.1(c)i, M ⋄N1
+ and we have (M1N1)

+ = M1
+N1

+ ∈ M 2
+. Hence

M1N1 ∈ M 2. Thus M1 ∈ M 1  M 2 and M = M1
+ ∈ (M 1  M 2)

+.
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8. Let M ∈ M
+i

1  M
+i

2 such that M
+i

1 ≀ M
+i

2 . By hypothesis, there exists

P ∈ M
+i

1 such that M ⋄ P . Then MP ∈ M
+i

2 . Hence MP = Q+i such

that Q ∈ M 2. Because M 2 ⊆ M3 then Q ∈ M3 and by Lemma B.1.5.1,

MP ∈ M3. Hence by definition M ∈ M3 and by Lemma B.1.5.1, deg(M) =

deg(Q+i) = i :: deg(Q). So by Lemma B.1.5.7, there exists M1 ∈ M3 such

that M = M+i
1 . Let N1 ∈ M 1 such that M1 ⋄ N1. By definition N+i

1 ∈ M
+i

1

and by Lemma B.1.5.2, M ⋄N+i
1 , i.e., M+i

1 ⋄N
+i
1 . So, MN+i

1 ∈ M
+i

2 . Hence,

M1N1 ∈ M 2. Thus, M1 ∈ M 1  M 2 and M = M+i
1 ∈ (M 1  M 2)

+i.

9. If M _∗
β N and N ∈M ∩Mn

2 then by Lemma 7.1.11.2, M ∈M ∩Mn
2 .

Proof of Lemma 8.1.4.

1. 1a. By induction on U using Lemma 8.1.2.

1b. We prove ∀x ∈ Var1. VARL
x ⊆ I(U) ⊆ML

3 by induction on U . Case U =

a: by definition. Case U = ωL: We have ∀x ∈ Var1. VARL
x ⊆M

L
3 ⊆M

L
3 .

Case U = U1⊓U2 (resp. U = eiV ): use IH since deg(U1) = deg(U2) (resp.

deg(U) = i :: deg(V ), ∀x ∈ Var1. (VARK
x )+i = VARi::K

x and (MK
3 )+i =

Mi::K
3 ). Case U = V�T : by definition, K = deg(V ) � deg(T ) = ⊘.

• Let x ∈ Var1, N1, . . . , Nk ∈M3 such that (∀i ∈ {1, . . . , k}. deg(Ni) �

⊘), and ⋄{x⊘, N1, . . . , Nk}. Let N ∈ I(V ) such that (x⊘N1 . . . Nk) ⋄

N . By IH, N ∈ MK
3 and deg(N) = K � ⊘. Again, by IH,

x⊘N1 . . . NkN ∈ I(T ). Thus x⊘N1 . . . Nk ∈ I(V�T ).

• Let M ∈ I(V�T ). Let x ∈ Var1 such that ∀L. xL 6∈ fv(M). By IH,

xK ∈ I(V ) then MxK ∈ I(T ) and, by IH, deg(MxK) = ⊘ (using

Lemma B.1.12.1). Thus deg(M) = ⊘.

1c By definition, xn ∈ VARn
x. We prove VARn

x ⊆ I(U) ⊆ M
n by induction

on U ∈ GITy. Case U = a: by definition. Case U = U ⊓ V (resp.

U = eU ′): use IH since by Lemma 7.2.3, U, V ∈ GITy and deg(U) =

deg(V ) (resp. U ′ ∈ GITy, deg(U) = deg(U ′) + 1, (VARn
x)+ = VARn+1

x and

(Mn
2 )+ = Mn+1

2 ). Case U = U�T : Lemma 7.2.3, U, T ∈ GITy and

m = deg(U) ≥ deg(T ) = n.

• Let xnN1 . . . Nk ∈ M2 and N ∈ I(U) such that (xnN1 . . . Nk) ⋄ N .

By IH, deg(N) = m ≥ n and N ∈ M
m. Therefore N ∈ M2. We

have xnN1 . . . NkN ∈ M2. Hence, xnN1 . . . NkN ∈ VARn
x. By IH,

xnN1 . . . NkN ∈ I(T ). Thus xnN1 . . . Nk ∈ I(U�T ).

• Let M ∈ I(U�T ). Let x ∈ Var1 such that ∀p. xp 6∈ fv(M). Hence,

M ⋄ xm. By IH, xm ∈ I(U). Then Mxm ∈ I(T ), and so by IH

Mxm ∈ M
n. By Lemma 7.1.6, M ∈ M and deg(M) ≤ m. Since

deg(Mxm) = min(deg(M), m) = n, deg(M) = n and so M ∈M
n.
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2. By induction of the derivation U ⊑ V .

Proof of Lemma 8.1.6.

• Case ⊢1 / ⊢2: Let i ∈ {1, 2}. We prove the result by induction on the

derivation of M : 〈(xni

i : Ui)n ⊢i U〉 and then by case on the last rule of

the derivation. First note, by Theorem 7.3.5 and Lemma 8.1.4.1c, M ∈ M2,

∀i ∈ {1, . . . , n}. Ui ∈ GITy ∧ deg(Ui) = ni ∧ Ni ∈ M
ni , and ∀V ∈ GITy ∩

ITy1. I(V ) 6= ∅. By Lemma B.1.1.5a, M [(xni

i := Ni)n] ∈M2.

– Case (ax) of ⊢1: Let

T ∈ GITy deg(T ) = n

xn : 〈(xn : T ) ⊢1 T 〉 and N1 ∈ I(T ).

Then xn[xn := N1] = N1 ∈ I(T ).

– Case (ax) of ⊢2: Let

T ∈ GITy

x0 : 〈(x0 : T ) ⊢2 T 〉 and N1 ∈ I(T ).

Then x0[x0 := N1] = N1 ∈ I(T ).

– Case (�I): Let

M : 〈(xni

i : Ui)n, (x
m : U) ⊢i T 〉

λxm.M : 〈(xni

i : Ui)n ⊢i U�T 〉 .

We take ∀i ∈ {1, . . . , n}. Ni ∈ I(Ui) ∧ ∀m
′. xm′

6∈ fv(Ni). By The-

orem 7.3.5, U, T ∈ GITy and deg(U) = m. Let N ∈ I(U) such that

(λxm.M)[(xni

i := Ni)n]⋄N . By Lemma 8.1.4, N ∈M
m. Since (λxm.M [(xni

i :=

Ni)n])⋄N , by Lemma B.1.1,M [(xni

i := Ni)n]⋄N andM [(xni

i := Ni)n][xm :=

N ] = M [(xni

i := Ni)n, x
m := N ] ∈ M2. Hence, by IH, M [(xni

i :=

Ni)n, x
m := N ] ∈ I(T ) and (λxm.M [(xn1

1 := N1)n])N _β M [(xni

i :=

Ni)n, x
m := N ] ∈ I(T ). Since, by Lemma 8.1.4, I(T ) is β-saturated

then (λxm.M [(xn1

1 := N1)n])N ∈ I(T ) and hence λxm.M [(xni

i := Ni)n] ∈

I(U) I(T ) = I(U�T ).

– Case (�E): Let

M1 : 〈Γ1 ⊢i U�T 〉 M2 : 〈Γ2 ⊢i U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢i T 〉 .

Let Γ1 = (xni

i : Ui)n, (y
mj

j : Vj)m, Γ2 = (xni

i : U ′
i)n, (z

pk

k : Wk)p and Γ1 ⊓

Γ2 = (xni

i : Ui ⊓ U
′
i)n, (y

mj

j : Vj)m, (z
pk

k : Wk)p. Let ∀i ∈ {1, . . . , n}. Pi ∈

I(Ui⊓U
′
i), ∀j ∈ {1, . . . , m}. Qj ∈ I(Vj) and ∀k ∈ {1, . . . , r}. Rk ∈ I(Wk)

where (M1M2)[(x
ni

i := Pi)n, (y
mj

j := Qj)m, (z
pk

k := Rk)p] ∈ M2. Let

N1 = M1[(x
ni

i := Pi)n, (y
mj

j := Qj)m] and N2 = M2[(x
ni

i := Pi)n, (z
pk

k :=

Rk)p]. By Theorem 7.3.5.2a, fv(M1) = dom(Γ1) and fv(M2) = dom(Γ2).

Hence, (M1M2)[(x
ni

i := Pi)n, (y
mj

j := Qj)m, (z
pk

k := Rk)p] = N1N2. By

Lemma B.1.1, N1 ∈ M2, N2 ∈ M2, and N1 ⋄ N2. By IH, N1 ∈ I(U)  

I(T ) and N2 ∈ I(U). Hence, N1N2 = (M1M2)[(x
ni

i := Pi)n, (y
mj

j :=

Qj)m, (z
pk

k := Rk)p] ∈ I(T ).

– Case (⊓I): Let

M : 〈(xni

i : Ui)n ⊢i U〉 M : 〈(xni

i : Vi)n ⊢i V 〉

M : 〈(xni

i : Ui ⊓ Vi)n ⊢i U ⊓ V 〉 (note the

use Theorem 7.3.5.2a).
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We have, ∀i ∈ {1, . . . , n}. Ni ∈ I(Ui ⊓ Vi) = I(Ui) ∩ I(Vi) By IH,

M [(xni

i := Ni)n] ∈ I(U) and M [(xni

i := Ni)n] ∈ I(V ). Hence, M [(xni

i :=

Ni)n] ∈ I(U ⊓ V ).

– Case (exp): Let

M : 〈(xni

i : Ti)n ⊢i U〉

M+ : 〈(xni+1
i : eTi)n ⊢i eU〉.

Let ∀i ∈ {1, . . . , n}. Ni ∈ I(eTi) = I(Ti)
+ where M+[(xni+1

i := Ni)n] ∈

M2. Then ∀i ∈ {1, . . . , n}. Ni = Pi
+∧Pi ∈ I(Ti). By Lemma B.1.3.1(c)i,

⋄{M,P1, . . . , Pn}. By IH, M [(xni

i := Pi)n] ∈ I(U). Hence, by lemma

B.1.3.2, M+[(xni+1
i := Pi

+)n] = (M [(xni

i := Pi)n])+ ∈ I(U)+ = I(eU).

– Case (⊑): Let
M : Γ ⊢2 U Γ ⊢2 U ⊑ Γ′ ⊢2 U

′

M : Γ′ ⊢2 U
′ .

By Lemma 7.3.4, we have Γ = (xni

i : Ui)n and Γ′ = (xni

i : U ′
i)n, where

∀i ∈ {1, . . . , n}. U ′
i ⊑ Ui, and U ⊑ U ′. By Lemma 8.1.4.2, ∀i ∈

{1, . . . , n}. Ni ∈ I(Ui). By IH,M [(xni

i := Ni)n] ∈ I(U
′). By Lemma 8.1.4.2,

M [(xni

i := Ni)n] ∈ I(U).

• Case ⊢3: We prove the result by induction on the derivation M : 〈(x
Lj

j :

Uj)n ⊢3 U〉 and then by case on the last rule of the derivation. First note,

by Theorem 7.3.5 and Lemma 8.1.4.1b, M ∈ M3, ∀j ∈ {1, . . . , n}. deg(Uj) =

Lj ∧ Nj ∈ M
Lj

3 , and ∀V ∈ ITy3. I(V ) 6= ∅. By Lemma B.1.1.5a, M [(x
Lj

j :=

Nj)n] ∈M3.

– Case (ax): Let x⊘ : 〈(x⊘ : T ) ⊢3 T 〉.

Let N ∈ I(T ) then x⊘[x⊘ := N ] = N ∈ I(T ).

– Case (ω): Let M : 〈envø
M ⊢3 ω

deg(M)〉.

Let envø
M = (x

Lj

j : ωLj)n so fv(M) = {xL1

1 , . . . , xLn
n }. By Lemma B.1.1.5,

deg(M [(x
Lj

j := Nj)n]) = deg(M) and M [(x
Lj

j := Nj)n] ∈ M
deg(M)
3 =

I(ωdeg(M)).

– Case (�I): Let

M : 〈(x
Lj

j : Uj)n, (x
K : V ) ⊢3 T 〉

λxK .M : 〈(x
Lj

j : Uj)n ⊢3 V�T 〉 such that ∀K ′. ∀j ∈

{1, . . . , n}. xK ′

6∈ fv(Nj).

We have, (λxK .M)[(x
Lj

j := Nj)n] = λxK .M [(x
Lj

j := Nj)n]. Let N ∈ I(V )

such that (λxK .M)[(x
Lj

j := Nj)n] ⋄N . By Theorem 7.3.5.2, deg(V ) = K.

Because N ∈ I(V ) and by Lemma 8.1.4.1, I(V ) ⊆ MK
3 , we have

deg(N) = K. By Lemma B.1.1.2 and Lemma B.1.1.5, M [(x
Lj

j := Nj)n] ⋄

N and M [(x
Lj

j := Nj)n][xK := N ] = M [(x
Lj

j := Nj)n, x
K := N ] ∈

M3. Hence, (λxK .M [(x
Lj

j := Nj)n])N ∈ M3 and (λxK .M [(x
Lj

j :=

Nj)n])N _r M [(x
Lj

j := Nj)n, (x
K := N)]. By IH,M [(x

Lj

j := Nj)n, (x
K :=

N)] ∈ I(T ). Because, by Lemma 8.1.4.1, I(T ) is r-saturated then

(λxK .M [(x
Lj

j := Nj)n])N ∈ I(T ) and finally λxK .M [(x
Lj

j := Nj)n] ∈

I(V ) I(T ) = I(V�T ).
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– Case (�′
I): Let

M : 〈(x
Lj

j : Uj)n ⊢3 T 〉 xK 6∈ dom((x
Lj

j : Uj)n)

λxK .M : 〈(x
Lj

j : Uj)n ⊢3 ω
K�T 〉 such that

∀K ′. ∀j ∈ {1, . . . , n}. xK ′

6∈ fv(Nj).

Let N ∈ I(ωK) = ML
3 such that (λxK .M)[(x

Lj

j := Nj)n] ⋄ N . By

Theorem 7.3.5.2a, xK 6∈ fv(M). We have, (λxK .M)[(x
Lj

j := Nj)n] =

λxK .M [(x
Lj

j := Nj)n]. Because N ∈ I(ωK) = MK
3 , by Lemma 8.1.4.1,

deg(N) = K. By Lemma B.1.1.2 and Lemma B.1.1.5, M [(x
Lj

j := Nj)n] ⋄

N and M [(x
Lj

j := Nj)n][xK := N ] = M [(x
Lj

j := Nj)n, x
K := N ] =

M [(x
Lj

j := Nj)n] ∈ M3. Hence, (λxK .M [(x
Lj

j := Nj)n])N ∈ M3 and

(λxK .M [(x
Lj

j := Nj)n])N _r M [(x
Lj

j := Nj)n, (x
K := N)]. By IH,

M [(x
Lj

j := Nj)n] ∈ I(T ). Because, by Lemma 8.1.4.1, I(T ) is r-saturated

then (λxK .M [(x
Lj

j := Nj)n])N ∈ I(T ) and so λxK .M [(x
Lj

j := Nj)n] ∈

I(ωK) I(T ) = I(ωK�T ).

– Case (�E): Let

M1 : 〈Γ1 ⊢3 V�T 〉 M2 : 〈Γ2 ⊢3 V 〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉 .

Let Γ1 = (x
Lj

j : Uj)n, (y
Kj

j : Vj)m, Γ2 = (x
Lj

j : U ′
j)n, (z

K ′
j

j : Wj)p

such that dj({yK1

1 , . . . , yKm
m }, {z

K ′
1

1 , . . . , z
K ′

p
p }) and Γ1 ⊓ Γ2 = (x

Lj

j : Uj ⊓

U ′
j)n, (y

Kj

j : Vj)m, (z
K ′

j

j : Wj)p. Let ∀j ∈ {1, . . . , n}. Pj ∈ I(Uj ⊓ U
′
j),

∀j ∈ {1, . . . , m}. Qj ∈ I(Vj), and ∀j ∈ {1, . . . , p}. Rj ∈ I(Wj). There-

fore, ∀j ∈ {1, . . . , n}. Pj ∈ I(Uj)∩I(U
′
j). By hypothesis, (M1M2)[(x

Lj

j :=

Pj)n, (y
Kj

j := Qj)m, (z
K ′

j

j := Rj)p] = N1N2 ∈ M3 where using The-

orem 7.3.5, N1 = M1[(x
Lj

j := Pj)n, (y
Kj

j := Qj)m] ∈ M3 and N2 =

M2[(x
Lj

j := Pj)n, (z
K ′

j

j := Rj)p] ∈M3 and N1 ⋄N2. By IH, N1 ∈ I(V ) 

I(T ) and N2 ∈ I(V ). Hence, N1N2 ∈ I(T ).

– Case (⊓I): Let

M : 〈(x
Lj

j : Uj)n ⊢3 V1〉 M : 〈(x
Lj

j : Uj)n ⊢3 V2〉

M : 〈(x
Lj

j : Uj)n ⊢3 V1 ⊓ V2〉 .

By IH, M [(x
Lj

j := Nj)n] ∈ I(V1) and M [(x
Lj

j := Nj)n] ∈ I(V2). Hence,

M [(x
Lj

j := Nj)n] ∈ I(V1 ⊓ V2).

– Case (exp): Let

M : 〈(xLk

k : Uk)n ⊢3 U〉

M+j : 〈(xj::Lk

k : ejUk)n ⊢3 ejU〉.

We take, ∀k ∈ {1, . . . , n}. Nk ∈ I(ejUk) = I(Uk)
+j. Then ∀k ∈

{1, . . . , n}. Nk = P+j
k ∧Pk ∈ I(Uk). By Lemma 8.1.4.1b, ∀k ∈ {1, . . . , n}. Pk ∈

MLk

3 . By Lemma B.1.5.3, ⋄{M}∪{Pk | k ∈ {1, . . . , n}}. By Lemma B.1.1.5,

M [(xLk

k := Pk)n] ∈ M3. By IH, M [(xLk

k := Pk)n] ∈ I(T ). Hence, by

Lemma B.1.5.5, M+j [(xj::Lk

k := Nk)n] = (M [(xLk

k := Pk)n])+j ∈ I(U)+j =

I(ejU).

– Case (⊑): Let
M : Γ ⊢3 U Γ ⊢3 U ⊑ Γ′ ⊢3 U

′

M : Γ′ ⊢3 U
′ .

By Lemma 7.3.4, we have Γ′ = (x
Lj

j : U ′
j)n and Γ = (x

Lj

j : Uj)n, such that

336



Appendix B. Proofs of Part II

∀j ∈ {1, . . . , n}. U ′
j ⊑ Uj and U ⊑ U ′. By Lemma 8.1.4.2, Nj ∈ I(Uj)

then, by IH, M [(x
Lj

j := Nj)n] ∈ I(U) and, by Lemma 8.1.4.2, M [(x
Lj

j :=

Nj)n] ∈ I(U ′).

Next we give a lemma concerning reductions in λIN that will be used in the rest

of the article.

Lemma B.2.1.

1. If M [yI1 := xI2 ] _β N then M _β N
′ where N = N ′[yI1 := xI2 ].

2. If M [yI1 := xI2 ] has a β-normal form then M has a β-normal form.

3. Let k ≥ 1. If MxI1
1 . . . x

Ik
k is normalisable then M is normalisable.

4. Let k ≥ 1, i ∈ {1, . . . , k}, l ≥ 0, xIi
i N1 . . . Nl be in normal form and M

be closed. If MxI1
1 . . . x

Ik
k _∗

β xIi
i N1 . . . Nl then for some m ≥ i and n ≤ l,

M _∗
β λx

I1
1 . . . . λx

Im
m .xIi

i M1 . . .Mn where n + k = m + l, Mj ≃β Nj for every

j ∈ {1, . . . , n} and Nn+j ≃β x
Im+j

m+j for every j ∈ {1, . . . , k −m}.

Proof of Lemma B.2.1.

1. By induction on M [yI1 := xI2 ] _β N .

2. M [yI1 := xI2 ] _∗
β P where P is in β-normal form. The proof is by induction

on M [yI1 := xI2 ] _∗
β P using 1.

3. By induction on k ≥ 1. We only prove the basic case. The proof is by cases.

– If MxI1
1 _∗

β M
′xI1

1 where M ′xI1
1 is in β-normal form and M _∗

β M
′ then

M ′ is in β-normal form and M is β-normalising.

– If MxI1
1 _∗

β (λyI1.N)xI1
1 _β N [yI1 := xI1

1 ] _∗
β P where P is in β-normal

form and M _∗
β λyI1.N then by 2., N has a β-normal form and so,

λyI1 .N has a β-normal form. Hence, M has a β-normal form.

4. By 3., M is normalisable, and, since M is closed, its normal form is as follows:

λxI1
1 . . . . λx

Im
m .zIM1 . . .Mn for n,m ≥ 0 and where each Mi is a normal form.

Using Theorem 7.1.13, xIi
i N1 . . . Nl ≃β (λxI1

1 . . . . λx
Im
m .zIM1 . . .Mn)xI1

1 . . . x
Ik
k .

Hence m ≤ k and xIi
i N1 . . . Nl ≃β z

IM1 . . .Mnx
Im+1

m+1 . . . x
Ik
k . Finally, zI = xIi

i ,

n ≤ l, i ≤ m, l = n+ k−m, ∀j ∈ {1, . . . , n}. Mj ≃β Nj , and ∀j ∈ {1, . . . , k−

m}. Nn+j ≃β x
Im+j

m+j .
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Proof of Example 8.1.9.

1. Let y ∈ Var2 and take M = {M ∈M
0 |M _∗

β y
0 ∨ (k ≥ 0∧ x ∈ Var1 ∧M _∗

β

x0N1 . . . Nk)}. The set M is β-saturated and ∀x ∈ Var1. VAR0
x ⊆ M ⊆ M

0.

Let I be a β1-interpretation such that I(a) = I(b) = M . If M ∈ [(a⊓b)�a]β1

then M is closed and M ∈ M  M . Since My0 ∈ M (because y0 ∈ M and

M ⋄y0), M is closed, and x0 6= y0, by Lemma 7.1.11.3, My0 _∗
β y

0. Hence, by

Lemma B.2.1.4, M _∗
β λy

0.y0. By Lemma 7.1.11.3, deg(M) = deg(λy0.y0) =

0 and M ∈M
0.

Conversely, let M ∈ M
0 and M _∗

β λy
0.y0. By Lemma 7.1.11.3, M is closed.

Let I be a β1-interpretation and N ∈ I(a ⊓ b). Because M is closed, we have

M ⋄N . Since I(a) is saturated, N ∈ I(a) and MN _∗
β N , then MN ∈ I(a)

and hence M ∈ I(a ⊓ b) I(a). Finally, M ∈ [(a ⊓ b)�a]β1
.

2 If λy0.y0 : 〈() ⊢1 (a ⊓ b)�a〉, then by Lemma 7.4.1.2, y0 : 〈(y0 : a ⊓ b) ⊢1 a〉

and by Lemma 7.4.1.1, a = a ⊓ b. Absurd because a 6= b.

3. Easy using rule (⊑).

4. Let y ∈ Var2 and M = {M ∈M⊘
3 | (k ≥ 0 ∧ x ∈ Var1 ∧M _∗

β x
⊘N1 . . . Nk) ∨

M _∗
β y⊘}. The set M is β-saturated and ∀x ∈ Var1. VAR⊘

x ⊆ M ⊆ M⊘
3 .

Take a β3-interpretation I such that I(a) = M . If M ∈ [id0]β3
then M is

closed and M ∈ M  M . Because y⊘ ∈ M and M ⋄ y⊘ then My⊘ ∈ M

and ((My⊘ _∗
β x⊘N1 . . . Nk where k ≥ 0 and x ∈ Var1) or My⊘ _∗

β y⊘).

Because M is closed and x⊘ 6= y⊘, by Lemma 7.1.11.2, My⊘ _∗
β y

⊘. Hence,

by Lemma B.2.1.4, M _∗
β λy

⊘.y⊘ and, by Lemma 7.1.11.2, M ∈M⊘
3 .

Conversely, let M ∈ M⊘
3 such that M is closed and M _∗

β λy
⊘.y⊘. Let I be

a β3-interpretation and N ∈ I(a) such that M ⋄N . By Lemma 8.1.4.1b, N ∈

M⊘
3 , so MN ∈ M⊘

3 . Since I(a) is β-saturated and MN _∗
β N , MN ∈ I(a).

Therefore M ∈ I(a) I(a) and M ∈ [id0]β3
.

5. By Lemma 8.1.8 and 4., [id1]β3
= [e1(a�a)]β3

= [a�a]+1
β3

= [id0]
+1
β3

= {M ∈

M
(1)
3 |M _∗

β λy
(1).y(1)}.

6. Let y ∈ Var2, M 1 = {M ∈ M⊘
3 | M _∗

β y⊘ ∨ (k ≥ 0 ∧ x ∈ Var1 ∧M _∗
β

x⊘N1 . . . Nk)} and M 2 = {M ∈M⊘
3 |M _∗

β y
⊘y⊘∨(k ≥ 0∧x ∈ Var1∧(M _∗

β

x⊘N1 . . . Nk ∨M _∗
β y

⊘(x⊘N1 . . . Nk)))}. The sets M 1, M 2 are β-saturated

and ∀x ∈ Var1. ∀i ∈ {1, 2}. VAR⊘
x ⊆ M i ⊆ M

⊘
3 . Let I be a β3-interpretation

such that I(a) = M 1 and I(b) = M 2. If M ∈ [d]β3
then M is closed (hence

M ⋄ y⊘) and M ∈ (M 1 ∩ (M 1  M 2))  M 2. Because y⊘ ∈ M 1 and

y⊘ ∈ M 1  M 2, y
⊘ ∈ M 1 ∩ (M 1  M 2) and My⊘ ∈ M 2. Since x⊘ 6= y⊘, by

Lemma 7.1.11.2, My⊘ _∗
β y

⊘y⊘. Hence, by Lemma B.2.1.4, M _∗
β λy

⊘.y⊘y⊘

and, by Lemma 7.1.11.2, deg(M) = ⊘ and M ∈M⊘
3 .
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Conversely, let M ∈ M⊘
3 such that M is closed and M _∗

β λy
⊘.y⊘y⊘. Let I

be a β3-interpretation and N ∈ I(a ⊓ (a�b)) = I(a) ∩ (I(a)  I(b)) such

that M ⋄N . By Lemma 8.1.4.1b and Lemma B.1.1.1, N ∈M⊘
3 and N ⋄N . So

NN,MN ∈M⊘
3 . Since I(b) is β-saturated, NN ∈ I(b) andMN _∗

β NN , we

have MN ∈ I(b) and hence M ∈ I(a⊓ (a�b)) I(b). Therefore, M ∈ [d]β3
.

7. Let f, y ∈ Var2 such that f 6= y and take M = {M ∈M⊘
3 | k, n ≥ 0∧x ∈ Var1∧

(M _∗
β (f⊘)n(x⊘N1 . . . Nk) ∨M _∗

β (f⊘)ny⊘)}. The set M is β-saturated

and ∀x ∈ Var1. VAR⊘
x ⊆ M ⊆ M⊘

3 . Let I be a β3-interpretation such that

I(a) = M . IfM ∈ [nat0]β3
thenM is closed andM ∈ (M  M ) (M  M ).

We have f⊘ ∈ M  M , y⊘ ∈ M and ⋄{M, f⊘, y⊘} then Mf⊘y⊘ ∈ M and

(Mf⊘y⊘ _∗
β (f⊘)n(x⊘N1 . . . Nk) or Mf⊘y⊘ _∗

β (f⊘)ny⊘) where n, k ≥ 0

and x ∈ Var1. Since M is closed and dj({x⊘}, {y⊘, f⊘}), by Lemma 7.1.11.2,

Mf⊘y⊘ _∗
β (f⊘)ny⊘ where n ≥ 1. Hence, by Lemma B.2.1.4, M _∗

β λf
⊘.f⊘

or M _∗
β λf⊘.λy⊘.(f⊘)ny⊘ where n ≥ 1. Moreover, by Lemma 7.1.11.2,

deg(M) = ⊘ and M ∈M⊘
3 .

Conversely, let M ∈ M⊘
3 such that M is closed and M _∗

β λf
⊘.f⊘ or M _∗

β

λf⊘.λy⊘.(f⊘)ny⊘ where n ≥ 1. Let I be a β3-interpretation, N ∈ I(a�a) =

I(a)  I(a) and N ′ ∈ I(a) such that ⋄{M,N,N ′}. By Lemma 8.1.4.1b,

N,N ′ ∈M⊘
3 , so MNN ′, (N)mN ′ ∈M⊘

3 , where m ≥ 0. It is easy to show, by

induction on m ≥ 0, that (N)mN ′ ∈ I(a). Since MNN ′ _∗
β (N)mN ′ where

m ≥ 0 and (N)mN ′ ∈ I(a) which is β-saturated, then MNN ′ ∈ I(a). Hence,

M ∈ (I(a) I(a)) (I(a) I(a)) and M ∈ [nat0]β3
.

8. By Lemma 8.1.8, [nat1]β3
= [e1nat0]β3

= [nat0]
+1
β3

. By 7., [nat1]β3
= [nat0]

+1
β3

=

{M ∈M
(1)
3 |M _∗

β λf
(1).f (1) ∨M _∗

β λf
(1).λy(1).(f (1))ny(1) where n ≥ 1}.

9. Let f, y ∈ Var2 and take M = {M ∈ M⊘
3 | k, n ≥ 0 ∧ deg(Qi) � (1) ∧ (M _∗

β

x⊘P1 . . . Pk ∨M _∗
β f⊘(x(1)Q1 . . . Qn) ∨M _∗

β y⊘ ∨M _∗
β f⊘y(1))}. The

set M is β-saturated and ∀x ∈ Var1. VAR⊘
x ⊆ M ⊆ M⊘

3 . Let I be a β3-

interpretation such that I(a) = M . If M ∈ [nat′0]β3
then M is closed and

M ∈ (M
+1
 M )  (M

+1
 M ). Let N ∈ M

+1
such that N ⋄ f⊘. We

have N _∗
β x(1)P+1

1 . . . P+1
k or N _∗

β y(1), for some k ≥ 0 and P1, . . . , Pk.

Therefore f⊘N _∗
β f

⊘(x(1)P+1
1 . . . P+1

k ) ∈ M or f⊘N _∗
β f

⊘y(1) ∈ M , thus

f⊘ ∈ M
+1
 M . We have f⊘ ∈ M

+1
 M , y(1) ∈ M

+1
and ⋄{M, f⊘, y(1)},

then Mf⊘y(1) ∈ M . Because M is closed and dj({x⊘, x(1), y⊘}, {y(1), f⊘}),

by Lemma 7.1.11.2, Mf⊘y(1) _∗
β f⊘y(1). Hence, by Lemma B.2.1.4, M _∗

β

λf⊘.f⊘ or M _∗
β λf

⊘.λy(1).f⊘y(1). Moreover, by Lemma 7.1.11.2, deg(M) =

⊘ and M ∈M⊘
3 .

Conversely, let M ∈ M⊘
3 such M is closed and M _∗

β λf⊘.f⊘ or M _∗
β

λf⊘.λy(1).f⊘y(1). Let I be an β3-interpretation, N ∈ I(e1a�a) = I(a)+1  
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I(a) and N ′ ∈ I(a)+1 where ⋄{M,N,N ′}. By Lemma 8.1.4.1b, N ∈ M⊘
3 and

N ′ ∈ M
(1)
3 , so MNN ′, NN ′ ∈ M⊘

3 . Since MNN ′ _∗
β NN

′, NN ′ ∈ I(a) and

I(a) is β-saturated then MNN ′ ∈ I(a). Hence, M ∈ (I(a)+1  I(a))  

(I(a)+1  I(a)) and M ∈ [nat′0]β3
.

B.2.2 Completeness challenges in λIN (Sec. 8.2)

Completeness for ⊢2 fails with more than one E-variable (Sec. 8.2.2)

Proof of Remark 8.2.2. 1. For every interpretation I, I(e1a�a) = I(e2a�a) =

I(a)+  I(a). Let M ∈ I(a)+  I(a). By Lemma 8.1.4.1c, deg(M) = 0. We

have M ⋄ λf 0.f 0. (λf 0.f 0)M _β M ∈ I(a)+  I(a). By Lemma 8.1.4.1a,

(λf 0.f 0)M ∈ I(a)+  I(a). Therefore, λy0.y0 ∈ [nat′′0]β2
.

2. If λf 0.f 0 : 〈() ⊢2 nat′′0〉, by Lemmas 7.4.2.2 and 7.4.2.1, f 0 : 〈f 0 : e1a�a ⊢2

e2a�a〉 and e1a�a ⊑ e2a�a. Thus, by Lemma B.1.11.4, e2a ⊑ e1a. Again,

by Lemma B.1.11.3, e1a = e2U where a ⊑ U . This is impossible because

e1 6= e2.

Completeness for ⊢2 with only one E-variable (Sec. 8.2.3)

Proof of Lemma 8.2.3. 1. We prove the result by induction on U and then by

case on the last rule.

– Let U = U1 ⊓ U2. By definition deg(U1), deg(U2) > 0. Therefore by

IH, e1U1
− = U1 and e2U2

− = U2. Finally, e1U
− = e1U1 ⊓ e1U2

− =

e1U1
− ⊓ e1U2

− = U1 ⊓ U2 = U .

– Let U = e1U1. Therefore e1U
− = e1e1U1

− = e1U1.

– Cases U = U1�T and U = a are trivial because by Lemma 7.2.3.2a,

deg(U) = 0.

2. If U− = V − then e1U
− = e1V

− and by 1., U = V .

Lemma B.2.2.

1. If deg(U) = n then DVarU is an infinite set {yn | y ∈ Var2}.

2. If U 6= V and deg(U) = deg(V ) = n then dj(DVarU ,DVarV ).

3. If yn ∈ DVarU then yn+1 ∈ DVare1U .

4. If yn+1 ∈ DVarU then yn ∈ DVarU−.
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Proof of Lemma B.2.2.

1. We prove this result by induction on n. Let n = 0 then we conclude by

definition. Let n = m + 1. Then DVarU = {yn+1 | yn ∈ DVarU−}. By IH,

DVarU− is an infinite set {ym | y ∈ Var2}. Therefore DVarU is an infinite set

{yn | y ∈ Var2}.

2. We prove the result by induction on n. Let n = 0 then we conclude by

definition. Let n = m + 1. Then DVarU = {yn+1 | yn ∈ DVarU−} and

DVarV = {yn+1 | yn ∈ DVarV −}. By Lemma 8.2.3.2, U− 6= V −, and by

definition, deg(U−) = deg(V −) = m By IH, dj(DVarU−,DVarV −). Therefore,

dj(DVarU ,DVarV ).

3. Because (e1U)− = U .

4. By definition.

Lemma B.2.3.

1. If Γ ⊆ BPreEnvn then e1Γ ⊆ BPreEnvn+1.

2. If Γ ⊆ BPreEnvn+1 then Γ− ⊆ BPreEnvn.

3. If Γ1 ⊆ BPreEnvn, Γ2 ⊆ BPreEnvm and m ≥ n then Γ1 ⊓ Γ2 ⊆ BPreEnvn.

Proof of Lemma B.2.3.

1. Because Γ ⊆ BPreEnvn, Γ = (yni

i : Ui)m such that ∀i ∈ {1, . . . , m}. deg(Ui) =

ni ∧ ni ≥ n ∧ yni

i ∈ DVarUi
. Therefore, e1Γ = (yni+1

i : e1Ui)m and by

Lemma B.2.2.3, ∀i ∈ {1, . . . , m}. deg(e1Ui) = ni +1∧ni +1 ≥ n + 1∧ yni+1
i ∈

DVare1Ui
. Finally, e1Γ ⊆ BPreEnvn+1.

2. Because Γ ⊆ BPreEnvn+1, Γ = (yni

i : Ui)m such that ∀i ∈ {1, . . . , m}. deg(Ui) =

ni ∧ ni ≥ n + 1 ∧ yni

i ∈ DVarUi
. Therefore, Γ− = (yni−1

i : Ui
−)m and ∀i ∈

{1, . . . , m}. deg(Ui
−) = n′

i ∧ ni = n′
i + 1 ∧ n′

i ≥ n ∧ y
n′

i+1
i ∈ DVarUi

. By

Lemma B.2.2.4, ∀i ∈ {1, . . . , m}. y
n′

i

i ∈ DVarUi
− . Finally, Γ− ⊆ BPreEnvn.

3. Note that BPreEnvm ⊆ BPreEnvn. Therefore Γ1,Γ2 ⊆ BPreEnvn. Let (Γ1 ⊓

Γ2)(x
p) = U1 ⊓ U2 such that Γ1(x

p) = U1 and Γ2(x
p) = U2. Then deg(U1) =

deg(U2) = p ≥ n and xp ∈ DVarU1
∩ DVarU2

. Hence, by Lemma B.2.2.2,

U1 = U2. Finally, we can prove that Γ1 ⊓ Γ2 = Γ1 ∪ Γ2 ⊂ BPreEnvn.

Lemma B.2.4.

1. (OPENn)+ = OPENn+1.

2. If y ∈ Var2 and (Mym) ∈ OPENn then M ∈ OPENn.
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3. If M ∈ OPENn, M ⋄N , N ∈M and deg(N) = m ≥ n then MN ∈ OPENn.

4. If deg(M) = n, m ≥ n, M ⋄ N , M ∈ M and N ∈ OPENm then MN ∈

OPENn.

Proof of Lemma B.2.4. 1. By Lemma B.1.3.1a. 2. By definition xi ∈ fv(Mym) and

i ≥ n. Because x 6= y then xi ∈ fv(M). Therefore M ∈ OPENn. 3. By hypothesis,

M ∈ M
n and xi ∈ fv(M) such that x ∈ Var1 and i ≥ n. By definition MN ∈ M

n

and therefore MN ∈ OPENn. 4. Similar to 3.

Proof of Lemma 8.2.8.

1. First we show that I(a) is β-saturated. Let M _∗
β N and N ∈ I(a).

• If N ∈ OPEN0 then N ∈ M
0 and xi for some x ∈ Var1, i ≥ 0 and

xi ∈ fv(N). By Lemma 8.1.2.9, M
0 is β-saturated and so, M ∈ M

0. By

Lemma 7.1.11.3, fv(M) = fv(N) and so, xi ∈ fv(M). Hence, M ∈ OPEN0

• If N ∈ {M ∈ M0
2 | M : 〈BPreEnv0 ⊢2 a〉} then ∃ Γ ⊆ BPreEnv0, such

that N : 〈Γ ⊢2 a〉. By subject expansion corollary 7.4.6, M : 〈Γ ⊢2 a〉

and by Lemma 7.1.11.3, deg(M) = deg(N). Hence, M ∈ {M ∈ M0
2 |

M : 〈BPreEnv0 ⊢2 a〉}.

Now we show that ∀x ∈ Var1. VAR0
x ⊆ I(a) ⊆M

0.

• Let x ∈ Var1 and M ∈ VAR0
x. Hence, M = x0N1 . . . Nk ∈ M

0, and

x0 ∈ fv(M). Thus, M ∈ OPEN0.

• Let M ∈ I(a). If M ∈ OPEN0 then M ∈ M
0. Else, ∃ Γ ⊆ BPreEnv0

such that M : 〈Γ ⊢2 a〉. Since by Theorem 7.3.5, M ∈ M and deg(M) =

deg(a) = 0, M ∈M
0.

2. By induction on U ∈ GITy.

• Let U = a: By definition of I and by 1.

• LetU = e1V : deg(V ) = n − 1 and, by Lemma 7.2.3, V ∈ GITy. By IH

and Lemma B.2.4.1, I(e1V ) = (I(V ))+ = (OPENn−1 ∪ {M ∈ M
n−1 | M :

〈BPreEnvn−1 ⊢2 V 〉})
+ = OPENn ∪ ({M ∈ M

n−1 | M : 〈BPreEnvn−1 ⊢2

V 〉})+.

– If M ∈ M
n−1 and M : 〈BPreEnvn−1 ⊢2 V 〉 then M : 〈Γ ⊢2 V 〉 where

Γ ⊆ BPreEnvn−1. By rule (exp) and Lemma B.2.3.1, M+ : 〈e1Γ ⊢2

e1V 〉 and e1Γ ⊆ BPreEnvn. Thus by Theorem 7.3.5.2, M+ ∈M
n and

M+ : 〈BPreEnvn ⊢2 e1V 〉.
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– If M ∈ M
n and M : 〈BPreEnvn ⊢2 e1V 〉 then M : 〈Γ ⊢2 e1V 〉

where Γ ⊆ BPreEnvn. By Theorem 7.3.5.2, and Lemma B.2.3.2,

M− : 〈Γ− ⊢2 V 〉 and Γ− ⊆ BPreEnvn−1. Thus, by Lemma B.1.3.(1b.

and 1d.), M = (M−)+ and M− ∈M
n−1. Hence, M− ∈ {M ∈M

n−1 |

M : 〈BPreEnvn−1 ⊢2 V 〉}.

Hence ({M ∈ M
n−1 | M : 〈BPreEnvn−1 ⊢2 V 〉})+ = {M ∈ M

n |

M : 〈BPreEnvn ⊢2 U〉} and finally, I(U) = OPENn ∪ {M ∈ M
n | M :

〈BPreEnvn ⊢2 U〉}.

• Let U = U1 ⊓ U2: By Lemma 7.2.3.1b, U1, U2 ∈ GITy and deg(U1) =

deg(U2) = n. By IH, I(U1 ⊓ U2) = I(U1) ∩ I(U2) = (OPENn ∪ {M ∈

M
n | M : 〈BPreEnvn ⊢2 U1〉}) ∩ (OPENn ∪ {M ∈ M

n |M : 〈BPreEnvn ⊢2

U2〉}) = OPENn ∪ ({M ∈ M
n |M : 〈BPreEnvn ⊢2 U1〉} ∩ {M ∈ M

n |M :

〈BPreEnvn ⊢2 U2〉}).

– If M ∈ M
n, M : 〈BPreEnvn ⊢2 U1〉 and M : 〈BPreEnvn ⊢2 U2〉 then

M : 〈Γ1 ⊢2 U1〉 and M : 〈Γ2 ⊢2 U2〉 where Γ1,Γ2 ⊆ BPreEnvn. By

Remark 7.3.6, M : 〈Γ1 ⊓Γ2 ⊢2 U1 ⊓U2〉. Because by Lemma B.2.3.3,

Γ1 ⊓ Γ2 ⊆ BPreEnvn, we obtain M : 〈BPreEnvn ⊢2 U1 ⊓ U2〉.

– If M ∈ M
n and M : 〈BPreEnvn ⊢2 U1 ⊓ U2〉 then M : 〈Γ ⊢2 U1 ⊓ U2〉

where Γ ⊆ BPreEnvn. By rule (⊑), M : 〈Γ ⊢2 U1〉 and M : 〈Γ ⊢2 U2〉.

Hence, M : 〈BPreEnvn ⊢2 U1〉 and M : 〈BPreEnvn ⊢2 U2〉.

We deduce that I(U1 ⊓ U2) = OPENn ∪ {M ∈ M
n | M : 〈BPreEnvn ⊢2

U1 ⊓ U2〉}.

• Let U = V�T : By Lemma 7.2.3, V, T ∈ GITy and let m = deg(V ) ≥

deg(T ) = 0. By IH, I(V ) = OPENm∪{M ∈M
m |M : 〈BPreEnvm ⊢2 V 〉}

and I(T ) = OPEN0 ∪ {M ∈ M
0 | M : 〈BPreEnv0 ⊢2 T 〉}. By definition,

I(V�T ) = I(V ) I(T ).

– Let M ∈ I(V ) I(T ). By Lemma B.2.2.1, let ym ∈ DVarV such that

y ∈ Var2, and ∀n, yn 6∈ fv(M). Then ym ⋄M . By remark 7.3.6, ym :

〈(ym : V ) ⊢2 V 〉. Hence, ym : 〈BPreEnvm ⊢2 V 〉 and so ym ∈ I(V )

and Mym ∈ I(T ).

∗ If Mym ∈ OPEN0 then since y ∈ Var2, by Lemma B.2.4.2, M ∈

OPEN0.

∗ If Mym ∈ {M ∈ M
0 | M : 〈BPreEnv0 ⊢2 T 〉} then Mym ∈ M

0

and Mym : 〈BPreEnv0 ⊢2 T 〉. So Mym : 〈Γ ⊢2 T 〉 where

Γ ⊆ BPreEnv0. Since ym ∈ fv(Mym) and since by Theorem 7.3.5,

dom(Γ) = fv(Mym), Γ = Γ′, (ym : V ′), and deg(V ′) = m.

Since Lym, V ′M ∈ BPreEnv0, deg(V ′) = m and ym ∈ DVarV ′ , by

Lemma B.2.2.2, V = V ′. So Mym : 〈Γ′, (ym : V ) ⊢2 T 〉 and by
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Lemma B.1.14.1, M : 〈Γ′ ⊢2 V�T 〉 and by Theorem 7.3.5.2, M ∈

M and deg(M) = 0. Since Γ′ ⊆ BPreEnv0, M : 〈BPreEnv0 ⊢2

V�T 〉. And so, M ∈ {M ∈M
0 |M : 〈BPreEnv0 ⊢2 V�T 〉}.

– Let M ∈ OPEN0 ∪ {M ∈ M
0 | M : 〈BPreEnv0 ⊢2 V�T 〉} and

N ∈ I(V ) = OPENm ∪ {M ∈M
m |M : 〈BPreEnvm ⊢2 V 〉} such that

M ⋄N . Then, deg(N) = m.

∗ Case M ∈ OPEN0. Since N ∈ M, by Lemma B.2.4.3, MN ∈

OPEN0 ⊆ I(T ).

∗ Case M ∈ {M ∈M
0 |M : 〈BPreEnv0 ⊢2 V�T 〉}, so M ∈M

0.

· If N ∈ OPENm then, by Lemma B.2.4.4, MN ∈ OPEN0 ⊆

I(T ).

· If N ∈ {M ∈ M
m | M : 〈BPreEnvm ⊢2 V 〉}, then M : 〈Γ1 ⊢2

V�T 〉 and N : 〈Γ2 ⊢2 V 〉 where Γ1 ⊆ BPreEnv0 and Γ2 ⊆

BPreEnvm. Because M ⋄N , then by Lemma B.1.15.2, Γ1 ⋄ Γ2.

So by rule (�E), MN : 〈Γ1 ⊓ Γ2 ⊢2 T 〉. By Lemma B.2.3.3,

Γ1 ⊓ Γ2 ⊆ BPreEnv0. Therefore MN : 〈BPreEnv0 ⊢2 T 〉. By

Theorem 7.3.5, MN ∈ M
0. Hence, MN ∈ {M ∈ M

0 | M :

〈BPreEnv0 ⊢2 T 〉} ⊆ I(T ).

In all cases, M ∈ I(V�T ).

We deduce that I(V�T ) = OPEN0 ∪ {M ∈ M
0 | M : 〈BPreEnv0 ⊢2

V�T 〉}.

Proof of Theorem 8.2.9. By definition we have: [U ]β2
= {M ∈ M2 | closed(M) ∧

M ∈
⋂

I∈Interpβ2 I(U)}.

1. Let M ∈ [U ]β2
. Then M is a closed term and M ∈ I(U). Hence, by

Lemma 8.2.8, M ∈ OPENn∪{M ∈M
n |M : 〈BPreEnvn ⊢2 U〉}. Because M is

closed, M 6∈ OPENn. Hence, M ∈ {M ∈ M
n | M : 〈BPreEnvn ⊢2 U〉} and so,

M : 〈Γ ⊢2 U〉 where Γ ⊆ BPreEnvn. Since M is closed, by Theorem 7.3.5.2a,

Γ = () and therefore M : 〈() ⊢2 U〉.

Conversely, let M ∈ M
n where M : 〈() ⊢2 U〉. By Theorem 7.3.5.2a, M is

closed. Let I be a β2-interpretation. By soundness Lemma 8.1.6, M ∈ I(U).

Thus, M ∈ [U ]β2
.

2. Let M ∈ [U ]β2
and M _∗

β N . By 1., M ∈ M
n and M : 〈() ⊢2 U〉. By subject

reduction Corollary 7.4.6, N : 〈() ⊢2 U〉. By Lemma 7.1.11.3, deg(N) =

deg(M) = n. By Theorem 7.3.5.2, N ∈M. Hence, by 1., N ∈ [U ]β2
.
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3. Let N ∈ [U ]β2
and M _∗

β N . By 1., N ∈ M
n and N : 〈() ⊢2 U〉. By subject

expansion Corollary 7.4.6, M : 〈() ⊢2 U〉. By Lemma 7.1.11.3, deg(N) =

deg(M) = n. By Theorem 7.3.5.2, M ∈M. Hence, by 1., M ∈ [U ]β2
.

B.2.3 Completeness for λLN (Sec. 8.3)

Proof of Lemma 8.3.2. 1. Let deg(U) = L1 and deg(V ) = L2 such that L1 = L ::

L′
1 and L2 = L :: L′

2. By Lemma B.1.12.2:

– Either U = ωL::L′
1 = eLω

L′
1.

– Or U = ~eL::L′
1
⊓p

i=1 Ti = ~eL~eL′
1
⊓p

i=1 Ti such that p ≥ 1 and ∀i ∈

{1, . . . , p}. Ti ∈ Ty3.

In both cases there exists U ′ such that U = eLU
′. Similarly, there exists V ′

such that V = eLV
′. If U−L = V −L then U ′ = V ′ and therefore U = V .

2. Easy induction on L

3. We have DVarU = {yL | y⊘ ∈ DVarU−L} and DVarV = {yL | y⊘ ∈ DVarV −L}.

By 1., U−L 6= V −L. By Lemma B.1.12, deg(U−L) = deg(V −L) = ⊘. Therefore

by definition, dj(DVarU−L,DVarV −L), and finally, dj(DVarU ,DVarV ).

4. We prove the result by induction on L. The case L = ⊘ is by definition.

Let L = i :: L′. By IH,
⋃

U∈ITyL′

3

DVarU = VarL
′

. Let yL ∈
⋃

U∈ITyL
3

DVarU

then yL′

∈ DVarU−i for some U ∈ ITyL
3 . We have, U−i ∈ ITyL′

3 . Therefore,

yL′

∈ VarL′

. Finally, yL ∈ VarL. Let yL ∈ VarL then yL′

∈ VarL
′

. Therefore,

yL′

∈ DVarU for some U ∈ ITyL′

3 . We have, eiU ∈ ITyL
3 . and eiU

−i = U .

Therefore, yL ∈ DVareiU . Finally, yL
⋃

U∈ITyL
3

DVarU .

5. Let yL ∈ DVarU then because eiU
−i = U , we obtain by definition yi::L ∈

DVareiU .

6. By definition.

Proof of Lemma 8.3.4.

1. Let Γ ⊆ BPreEnvL. By definition, we have Γ = (xLi

i : Ui)n such that

∀i ∈ {1, . . . , n}. xLi ∈ DVarUi
∧ Ui ∈ ITyLi

3 ∧ Li � L. Therefore ∀i ∈

{1, . . . , n}. deg(Ui) = Li, i.e., ok(Γ).

2. Let Γ ⊆ BPreEnvL then by definition Γ = (x
Lj

j : Uj)n such that ∀j ∈

{1, . . . , n}. xLj ∈ DVarUj
∧Uj ∈ ITy

Lj

3 ∧Lj � L. Therefore, eiΓ = (x
i::Lj

j : eiUj)n

and by Lemma 8.3.2.5, ∀j ∈ {1, . . . , n}. xi::Lj ∈ DVareiUj
∧ eiUj ∈ ITy

i::Lj

3 ∧ i ::

Lj � i :: L. By definition, we obtain eiΓ ⊆ BPreEnvi::L.
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3. Let Γ ⊆ BPreEnvi::L. then by definition Γ = (x
Lj

j : Uj)n such that ∀j ∈

{1, . . . , n}. xLj ∈ DVarUj
∧ Uj ∈ ITy

Lj

3 ∧ Lj � i :: L. By Lemma 8.3.2.6

and Lemma B.1.12, Γ = (x
i::L′

j

j : eiU
′
j)n such that ∀j ∈ {1, . . . , n}. xL′

j ∈

DVarU ′
j
∧Uj = eiU

′
j ∧Lj = i :: L′

j ∧Uj ∈ ITy
i::L′

j

3 ∧L′
j � L. We then have Γ−i =

(x
L′

j

j : U ′
j)n such that ∀j ∈ {1, . . . , n}. xL′

j ∈ DVarU ′
j
∧U ′

j ∈ ITy
L′

j

3 ∧L
′
j � L, i.e.,

Γ−i ⊆ BPreEnvL.

4. Let Γ1 ⊆ BPreEnvL, Γ2 ⊆ BPreEnvK , and L � K. By definition, we have Γ1 =

(xLi

i : Ui)n and Γ2 = (yKi

i : Vi)m such that ∀i ∈ {1, . . . , n}. xLi ∈ DVarUi
∧Ui ∈

ITyLi

3 ∧Li � L and ∀i ∈ {1, . . . , m}. yKi ∈ DVarVi
∧Vi ∈ ITyKi

3 ∧Ki � K. By 1,

ok(Γ1) and ok(Γ2), therefore Γ1 ⊓ Γ2 is well-defined. Let (Γ1 ⊓ Γ2)(x
L′

) = U .

Either xL′

∈ dom(Γ1) \ dom(Γ2) then by hypothesis, xL′

∈ DVarU , U ∈ ITyL′

3 ,

and L′ � L. Or xL′

∈ dom(Γ2) \ dom(Γ1) then by hypothesis, xL′

∈ DVarU ,

U ∈ ITyL′

3 , and L′ � K � L. Or xL′

∈ dom(Γ2)∩dom(Γ1) then U = U1⊓U2 such

that Γ1(x
L′

= U1) and Γ2(x
L′

= U2). By hypothesis, yL′

∈ DVarU1
∩ DVarU2

,

U1, U2 ∈ ITyL′

3 , and L′ � K � L. Because dom(U1) = dom(U2) = L′ then by

Lemma 8.3.2.3, we have U1 = U2. and U1 ⊓ U2 = U1 = U2 ∈ ITyL′

3 . We then

have that Γ1 ⊓ Γ2 ∈ BPreEnvL.

Proof of Lemma 8.3.6.

1. Let M ∈ (OPENL)+i then M = N+i such that N ∈ OPENL. By definition

N ∈ ML
3 such that xK ∈ fv(N), x ∈ Var1, and K � L. By Lemma B.1.5.1,

M ∈Mi::L
3 , xi::K ∈ fv(M), and i :: K � i :: L. Hence, M ∈ OPENi::L.

Let M ∈ OPENi::L. Then M ∈Mi::L
3 , xK ∈ fv(M), xK ∈ Var1, and K � i :: L.

Therefore, K = i :: K ′, K0 � L, and deg(M) = i :: L. By Lemma B.1.5,

M = N+i such that N ∈ ML
3 and xK ′

∈ fv(N). Hence N ∈ OPENL and

M ∈ (OPENL)+i.

2. Let y ∈ Var2, MyK ∈ OPENL, then MyK ∈ML
3 , xL′

∈ fv(MyK), and K ′ � L.

Because x 6= y then xL′

∈ fv(M). By definition, M ∈ ML
3 , therefore M ∈

OPENL.

3. By definition of OPENL.

4. By definition of OPENL.

Proof of Lemma 8.3.8.

1. We do two cases (r = βη and r = β).

Case r = βη. It is easy to see that ∀x ∈ Var1. VAR⊘
x ⊆ OPEN⊘ ⊆ Iβη(a). Now

we show that Iβη(a) is βη-saturated. Let M _∗
βη N and N ∈ Iβη(a).
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• If N ∈ OPEN⊘ then N ∈ M⊘
3 , x ∈ Var1, and xL ∈ fv(N) for some

L. By Theorem 7.1.11.2, fv(N) ⊆ fv(M) and deg(M) = deg(N), hence,

M ∈ OPEN⊘

• If N ∈ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢∗3 a〉} then N _∗

βη N ′ and

∃ Γ ⊆ BPreEnv⊘, such that N ′ : 〈Γ ⊢3 a〉. Hence M _∗
βη N ′ and

since by Theorem 7.1.11.2, deg(M) = deg(N ′), M ∈ {M ∈ M⊘
3 | M :

〈BPreEnv⊘ ⊢∗3 a〉}.

Case r = β. It is easy to see that ∀x ∈ Var1. VAR⊘
x ⊆ OPEN⊘ ⊆ Iβ(a). Now

we show that Iβ(a) is β-saturated. Let M _∗
β N and N ∈ Iβ(a).

• If N ∈ OPEN⊘ then N ∈ M⊘
3 , x ∈ Var1, and xL ∈ fv(N) for some

L. By Theorem 7.1.11.2, fv(N) ⊆ fv(M) and deg(M) = deg(N), hence,

M ∈ OPEN⊘

• If N ∈ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢3 a〉} then ∃ Γ ⊆ BPreEnv⊘, such

that N : 〈Γ ⊢3 a〉. By Theorem 7.4.14, M : 〈Γ↑M ⊢3 a〉. Since by The-

orem 7.1.11.2, fv(N) ⊆ fv(M), let fv(N) = {xL1

1 , . . . , xLn
n } and fv(M) =

fv(N) ∪ {x
Ln+1

n+1 , . . . , x
Ln+m

n+m }. So Γ↑M = Γ, (x
Ln+1

n+1 : ωLn+1, . . . , x
Ln+m

n+m :

ωLn+m). For each i ∈ {n + 1, . . . , n + m}, take Ui such that xLi

i ∈

DVarUi
. Then Γ, (x

Ln+1

n+1 : Un+1, . . . , x
Ln+m

n+m : Un+m) ⊆ BPreEnv⊘ and

by Remark.7.3.6.4 and rule (⊑), M : 〈Γ, (x
Ln+1

n+1 : Un+1, . . . , x
Ln+m

n+m :

Un+m) ⊢3 a〉. Thus M : 〈BPreEnv⊘ ⊢3 a〉 and since by Theorem 7.1.11.2,

deg(M) = deg(N), M ∈ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢3 a〉}.

2. By induction on U .

• U = a: By definition of Iβη.

• U = ωL: By definition, Iβη(ω
L) = ML

3 . Hence, OPENL ∪ {M ∈ ML
3 |

M : 〈BPreEnvL ⊢∗3 ω
L〉} ⊆ Iβη(ω

L). Let M ∈ Iβη(ω
L) where fv(M) =

{xL1

1 , . . . , xLn
n } then M ∈ML

3 . For each i ∈ {1, . . . , n}, take Ui such that

xLi

i ∈ DVarUi
. Then Γ = (xLi

i : Ui)n ⊆ BPreEnvL. By Lemma 7.3.7.2 and

Lemma 8.3.4, M : 〈Γ ⊢3 ω
L〉. Hence M : 〈BPreEnvL ⊢3 ω

L〉. Therefore,

Iβη(ω
L) ⊆ {M ∈ ML

3 | M : 〈BPreEnvL ⊢∗3 ω
L〉}. We deduce Iβη(ω

L) =

OPENL ∪ {M ∈ML
3 |M : 〈BPreEnvL ⊢∗3 ω

L〉}.

• U = eiV : L = i :: K and deg(V ) = K. By IH and Lemma 8.3.6,

Iβη(eiV ) = (Iβη(V ))+i = (OPENK ∪ {M ∈ MK
3 | M : 〈BPreEnvK ⊢∗3

V 〉})+i = OPENL ∪ ({M ∈MK
3 |M : 〈BPreEnvK ⊢∗3 V 〉})

+i.

– If M ∈ MK
3 and M : 〈BPreEnvK ⊢∗3 V 〉 then M _∗

βη N and N :

〈Γ ⊢3 V 〉 where Γ ⊆ BPreEnvK . By rule (exp), Lemmas B.1.5.6

and 8.3.4.2, N+i : 〈eiΓ ⊢3 eiV 〉, M
+i _∗

βη N
+i and eiΓ ⊆ BPreEnvL.

Thus M+i ∈ ML
3 and M+i : 〈BPreEnvL ⊢∗3 U〉.
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– If M ∈ ML
3 and M : 〈BPreEnvL ⊢∗3 U〉, then M _∗

βη N and N :

〈Γ ⊢3 U〉 where Γ ⊆ BPreEnvL. By Lemmas B.1.5, 7.3.5, and 8.3.4.3,

M−i _∗
βη N

−i, N−i : 〈Γ−i ⊢3 V 〉, and Γ−i ⊆ BPreEnvK , and M =

(M−i)+i. Therefore M−i ∈ {M ∈MK
3 |M : 〈BPreEnvK ⊢∗3 V 〉}.

Finally, ({M ∈ MK
3 | M : 〈BPreEnvK ⊢∗3 V 〉})

+i = {M ∈ ML
3 | M :

〈BPreEnvL ⊢∗3 U〉} and Iβη(U) = OPENL∪{M ∈ML
3 |M : 〈BPreEnvL ⊢∗3

U〉}.

• U = U1 ⊓U2: By IH, Iβη(U1 ⊓U2) = Iβη(U1)∩ Iβη(U2) = (OPENL ∪{M ∈

ML
3 |M : 〈BPreEnvL ⊢∗3 U1〉})∩(OPENL∪{M ∈ML

3 |M : 〈BPreEnvL ⊢∗3

U2〉}) = OPENL ∪ ({M ∈ ML
3 | M : 〈BPreEnvL ⊢∗3 U1〉} ∩ {M ∈ ML

3 |

M : 〈BPreEnvL ⊢∗3 U2〉}).

– If M ∈ ML
3 , M : 〈BPreEnvL ⊢∗3 U1〉 and M : 〈BPreEnvL ⊢∗3 U2〉 then

M _∗
βη N1, M _∗

βη N2, N1 : 〈Γ1 ⊢3 U1〉 and N2 : 〈Γ2 ⊢3 U2〉 where

Γ1,Γ2 ⊆ BPreEnvL. By confluence Theorem 7.1.13 and subject re-

duction Theorem 7.4.10, ∃ M ′ such that N1 _∗
βη M

′ and N2 _∗
βη

M ′, M ′ : 〈Γ1↾M ′ ⊢3 U1〉 and M ′ : 〈Γ2↾M ′ ⊢3 U2〉. Hence by Re-

mark 7.3.6, Lemma 7.1.11, Theorem 7.3.5.2a, and Lemma B.1.19.2,

M ′ : 〈(Γ1⊓Γ2)↾M ′ ⊢3 U1⊓U2〉 and, by Lemma 8.3.4.4, (Γ1⊓Γ2)↾M ′ ⊆

Γ1 ⊓ Γ2 ⊆ BPreEnvL. Thus, M : 〈BPreEnvL ⊢∗3 U1 ⊓ U2〉.

– If M ∈ ML
3 and M : 〈BPreEnvL ⊢∗3 U1 ⊓ U2〉 then M _∗

βη N ,

N : 〈Γ ⊢3 U1⊓U2〉 and Γ ⊆ BPreEnvL. By rule (⊑), N : 〈Γ ⊢3 U1〉 and

N : 〈Γ ⊢3 U2〉. Hence, M : 〈BPreEnvL ⊢∗3 U1〉 and M : 〈BPreEnvL ⊢∗3
U2〉.

We deduce that Iβη(U1 ⊓ T2) = OPENL ∪ {M ∈ ML
3 | M : 〈BPreEnvL ⊢∗3

U1 ⊓ U2〉}.

• U = V�T : Let deg(T ) = ⊘ � K = deg(V ). By IH, Iβη(V ) = OPENK ∪

{M ∈MK
3 |M : 〈BPreEnvK ⊢∗3 V 〉} and Iβη(T ) = OPEN⊘ ∪ {M ∈M⊘

3 |

M : 〈BPreEnv⊘ ⊢∗3 T 〉}. By definition, Iβη(V�T ) = Iβη(V ) Iβη(T ).

– Let M ∈ Iβη(V )  Iβη(T ) and, by Lemma 8.3.2, let yK ∈ DVarV

such that ∀K. yK 6∈ fv(M). Then M ⋄ yK . By remark 7.3.6.3, yK :

〈(yK : V ) ⊢∗3 V 〉. Hence yK : 〈BPreEnvK ⊢∗3 V 〉. Thus, yK ∈ Iβη(V )

and MyK ∈ Iβη(T ).

∗ If MyK ∈ OPEN⊘ then since y ∈ Var2, by Lemma 8.3.6, M ∈

OPEN⊘.

∗ If MyK ∈ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢∗3 T 〉} then MyK _∗

βη N

andN : 〈Γ ⊢3 T 〉 such that Γ ⊆ BPreEnv⊘, hence, λyK .MyK _βη

λyK.N . We have two cases:

· If yK ∈ dom(Γ) then Γ = ∆, (yK : V ) and by rule (�I), λy
K .N :

〈∆ ⊢3 V�T 〉.
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· If yK 6∈ dom(Γ), let ∆ = Γ. By rule (�′
I), λy

K.N : 〈∆ ⊢3

ωK�T 〉. By rule (⊑), since (∆ ⊢3 ω
K�T ) ⊑ (∆ ⊢3 V�T )

using Remark 7.3.6.4, we have λyK.N : 〈∆ ⊢3 V�T 〉.

Note that ∆ ⊆ BPreEnv⊘. Because λyK .MyK _βη M and

λyK.MyK _βη λy
K.N , by confluence Theorem 7.1.13 and sub-

ject reduction Theorem 7.4.10, there is M ′ such that M _βη M
′,

λyK.N _βη M ′, M ′ : 〈∆↾M ′ ⊢3 V�T 〉. Since ∆↾M ′ ⊆ ∆ ⊆

BPreEnv⊘, M : 〈BPreEnv⊘ ⊢∗3 V�T 〉.

– Let M ∈ OPEN⊘ ∪ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢∗3 V�T 〉} and

N ∈ Iβη(V ) = OPENK ∪ {M ∈ MK
3 | M : 〈BPreEnvK ⊢∗3 V 〉} such

that M ⋄N . Then, deg(N) = K � ⊘ = deg(M).

∗ If M ∈ OPEN⊘ then, by Lemma 8.3.6.3, MN ∈ OPEN⊘.

∗ If M ∈ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢∗3 V�T 〉} then:

· If N ∈ OPENK then, by Lemma 8.3.6.3, MN ∈ OPEN⊘.

· If N ∈ {M ∈ MK
3 | M : 〈BPreEnvK ⊢∗3 V 〉} then M _∗

βη

M1, N _∗
βη N1, M1 : 〈Γ1 ⊢3 V�T 〉 and N1 : 〈Γ2 ⊢3 V 〉

where Γ1 ⊆ BPreEnv⊘ and Γ2 ⊆ BPreEnvK . By Lemma B.1.2.1

and Theorem 7.1.11.2 deg(M) = deg(M1), deg(N) = deg(N1),

and M1 ⋄ N2. Therefore, MN _∗
βη M1N1. By rule (�E) and

Lemma 7.3.7.3, M1N1 : 〈Γ1 ⊓ Γ2 ⊢3 T 〉. By Lemma 8.3.4.4,

Γ1 ⊓ Γ2 ⊂ BPreEnv⊘. Therefore MN : 〈BPreEnv⊘ ⊢∗3 T 〉.

We deduce that Iβη(V�T ) = OPEN⊘ ∪ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢∗3

V�T 〉}.

3. We only do the case r = β. By induction on U .

• U = a: By definition of Iβ.

• U = ωL: By definition, Iβ(ωL) = ML
3 . Hence, OPENL ∪ {M ∈ ML

3 |

M : 〈BPreEnvL ⊢3 ωL〉} ⊆ Iβ(ωL). Let M ∈ Iβ(ωL) where fv(M) =

{xL1

1 , . . . , xLn
n } then M ∈ ML

3 . For each i ∈ {1, . . . , n}, we take Ui to

be the type such that xLi

i ∈ DVarUi
. Then Γ = (xLi

i : Ui)n ⊆ BPreEnvL.

By Lemma 7.3.7.2 and Lemma 8.3.4.1, M : 〈Γ ⊢3 ωL〉. Hence M :

〈BPreEnvL ⊢3 ω
L〉. Therefore, Iβ(ωL) ⊆ {M ∈ ML

3 | M : 〈BPreEnvL ⊢3

ωL〉}. Finally, Iβ(ωL) = OPENL ∪ {M ∈ML
3 |M : 〈BPreEnvL ⊢3 ω

L〉}.

• U = eiV : L = i :: K and deg(V ) = K. By IH and Lemma 8.3.6.1,

Iβ(eiV ) = (Iβ(V ))+i = (OPENK ∪ {M ∈ MK
3 | M : 〈BPreEnvK ⊢3

V 〉})+i = OPENL ∪ ({M ∈MK
3 |M : 〈BPreEnvK ⊢3 V 〉})

+i.

– If M ∈ MK
3 and M : 〈BPreEnvK ⊢3 V 〉 then M : 〈Γ ⊢3 V 〉 where

Γ ⊆ BPreEnvK . By rule (exp) and Lemma 8.3.4.2,M+i : 〈eiΓ ⊢3 eiV 〉

and eiΓ ⊆ BPreEnvL. Thus M+i ∈ML
3 and M+i : 〈BPreEnvL ⊢3 U〉.
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– If M ∈ ML
3 and M : 〈BPreEnvL ⊢3 U〉, then M : 〈Γ ⊢3 U〉 where

Γ ⊆ BPreEnvL. By Lemmas 7.3.5, and 8.3.4.3, M−i : 〈Γ−i ⊢3 V 〉

and Γ−i ⊆ BPreEnvK . Thus by Lemma B.1.5, M = (M−i)+i and

M−i ∈ {M ∈MK
3 |M : 〈BPreEnvK ⊢3 V 〉}.

Finally, ({M ∈ MK
3 | M : 〈BPreEnvK ⊢3 V 〉})

+i = {M ∈ ML
3 | M :

〈BPreEnvL ⊢3 U〉} and Iβ(U) = OPENL ∪ {M ∈ ML
3 |M : 〈BPreEnvL ⊢3

U〉}.

• U = U1 ⊓ U2: By IH, Iβ(U1 ⊓ U2) = Iβ(U1) ∩ Iβ(U2) = (OPENL ∪ {M ∈

ML
3 |M : 〈BPreEnvL ⊢3 U1〉})∩(OPENL∪{M ∈ML

3 |M : 〈BPreEnvL ⊢3

U2〉}) = OPENL ∪ ({M ∈ ML
3 | M : 〈BPreEnvL ⊢3 U1〉} ∩ {M ∈ ML

3 |

M : 〈BPreEnvL ⊢3 U2〉}).

– If M ∈ ML
3 , M : 〈BPreEnvL ⊢3 U1〉 and M : 〈BPreEnvL ⊢3 U2〉 then

M : 〈Γ1 ⊢3 U1〉 and M : 〈Γ2 ⊢3 U2〉 where Γ1,Γ2 ⊆ BPreEnvL. Hence

by Remark 7.3.6.1, M : 〈Γ1 ⊓ Γ2 ⊢3 U1 ⊓U2〉 and, by Lemma 8.3.4.4,

Γ1 ⊓ Γ2 ⊂ BPreEnvL. Thus M : 〈BPreEnvL ⊢3 U1 ⊓ U2〉.

– If M ∈ML
3 and M : 〈BPreEnvL ⊢3 U1 ⊓U2〉 then M : 〈Γ ⊢3 U1 ⊓U2〉

and Γ ⊆ BPreEnvL. By rule (⊑), M : 〈Γ ⊢3 U1〉 and M : 〈Γ ⊢3 U2〉.

Hence, M : 〈BPreEnvL ⊢3 U1〉 and M : 〈BPreEnvL ⊢3 U2〉.

We deduce that Iβ(U1 ⊓ T2) = OPENL ∪ {M ∈ ML
3 | M : 〈BPreEnvL ⊢3

U1 ⊓ U2〉}.

• U = V�T : Let deg(T ) = ⊘ � K = deg(V ). By IH, Iβ(V ) = OPENK ∪

{M ∈ MK
3 | M : 〈BPreEnvK ⊢3 V 〉} and Iβ(T ) = OPEN⊘ ∪ {M ∈ M⊘

3 |

M : 〈BPreEnv⊘ ⊢3 T 〉}. Note that Iβ(V�T ) = Iβ(V ) Iβ(T ).

– Let M ∈ Iβ(V ) Iβ(T ) and, by Lemma 8.3.2, let yK ∈ DVarV such

that ∀K. yK 6∈ fv(M). Then M ⋄ yK. By remark 7.3.6.3, yK : 〈(yK :

V ) ⊢∗3 V 〉. Hence yK : 〈BPreEnvK ⊢3 V 〉. Thus, yK ∈ Iβ(V ) and

MyK ∈ Iβ(T ).

∗ If MyK ∈ OPEN⊘ then since y ∈ Var2, by Lemma 8.3.6.2, M ∈

OPEN⊘.

∗ If MyK ∈ {M ∈ M⊘
3 |M : 〈BPreEnv⊘ ⊢3 T 〉} then MyK : 〈Γ ⊢3

T 〉 such that Γ ⊆ BPreEnv⊘. By Theorem 7.3.5.2a, dom(Γ) =

fv(MyK) and yK ∈ fv(MyK), Γ = ∆, (yK : V ′). Since (yK :

V ′) ∈ BPreEnv⊘, by Lemma 8.3.2.3, V = V ′. So MyK : 〈∆, (yK :

V ) ⊢3 T 〉 and by Lemma B.1.14.1, M : 〈∆ ⊢3 V�T 〉. Note that

∆ ⊆ BPreEnv⊘, hence M : 〈BPreEnv⊘ ⊢3 V�T 〉.

– Let M ∈ OPEN⊘ ∪ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢3 V�T 〉} and

N ∈ Iβ(V ) = OPENK ∪ {M ∈ MK
3 | M : 〈BPreEnvK ⊢3 V 〉} such

that M ⋄N . Then, deg(N) = K � ⊘ = deg(M).
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∗ If M ∈ OPEN⊘ then, by Lemma 8.3.6.3, MN ∈ OPEN⊘.

∗ If M ∈ {M ∈M⊘
3 |M : 〈BPreEnv⊘ ⊢3 V�T 〉} then

· If N ∈ OPENK then, by Lemma 8.3.6.4, MN ∈ OPEN⊘.

· If N ∈ {M ∈ MK
3 | M : 〈BPreEnvK ⊢3 V 〉} then M : 〈Γ1 ⊢3

V�T 〉 and N : 〈Γ2 ⊢3 V 〉 where Γ1 ⊆ BPreEnv⊘ and Γ2 ⊆

BPreEnvK . By rule (�E) and Lemma 7.3.7.3, MN : 〈Γ1 ⊓

Γ2 ⊢3 T 〉. By Lemma 8.3.4.4, Γ1 ⊓ Γ2 ⊆ BPreEnv⊘. Therefore

MN : 〈BPreEnv⊘ ⊢3 T 〉.

We deduce that Iβ(V�T ) = OPEN⊘ ∪ {M ∈ M⊘
3 | M : 〈BPreEnv⊘ ⊢3

V�T 〉}.

B.3 Embedding of a system close to CDV in our

type system ⊢3

Let us now present a sketched proof of the embedding of a restricted version [27,

28], which we call RCDV, of the well known intersection type system CDV, both

introduced by Coppo, Dezani, and Venneri [28] and recalled by Van Bakel [4], in

our type system ⊢3.

Let us provide an alternative presentation of RCDV’s normalised types:

ϕ∈RCDVTyVar (a countably infinite set of type variables)

φ ∈RCDVTy ::=ϕ | σ�φ

σ ∈RCDVITy ::= ω | φ1 ∩ · · · ∩ φn, where n ≥ 1

Even though we provide an alternative presentation of RCDV we shall prefix

entities and rules names of this system with “RCDV” in this section.

Let the form ∩nσi be a notation for φ1 ∩ · · · ∩ φn. A basis (set of type assign-

ments) is written B (∈ RCDVBasis) and ∩nBi is similar to our intersection of type

environments (without indexes).

Let us now recall their type system (the original version of RCDV is presented

in a natural deduction fashion):

x : φ ⊢ x : φ
(RCDV-Ax)

B1 ⊢M : φ1 · · · Bn ⊢M : φn

∩nBi ⊢M : ∩nφi
(RCDV- ∩ I)

⊢M : ω
(RCDV-ω)

B1 ⊢M : σ�φ B2 ⊢ N : σ

B1 ∩ B2 ⊢MN : φ
(RCDV-�E)

B , x : σ ⊢M : φ

B ⊢ λx.M : σ�φ
(RCDV-�I)

B ⊢M : φ x does not occur in B

B ⊢ λx.M : ω�φ
(RCDV-a)
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Coppo, Dezani and Venneri [28] allow the ω type to be a normalised type in

their RCDV system. They then consider many restrictions on normalised types and

in their typing rules to disallow the use of ω at many places, which is why we chose

to consider an alternative presentation of their system.

Let us now define an erasure function on our types and type environments.

Informally, this erasure remove all the indexes and expansion variables from our

different syntactic objects. Let us assume that there exists a bijective function

bijtyvar from TyVar to RCDVTyVar. The erasure on types is as follows: er(a) =

bijtyvar(a), er(U�T ) = er(U)�er(T ), er(U1 ⊓ U2) = er(U1) ∩ er(U2), er(ωL) = ω and

er(eiU) = er(U). One can check that the erasure of a type in ITy3 is in RCDVTy

and that the erasure of a type in Ty3 is in RCDVITy. We trivially extend the erasure

function to type environments.

Let us define a decoration function to decorate λ-terms. Let dec(x) = x⊘,

dec(λx.M) = λx⊘.dec(M) and dec(MN) = dec(M)dec(N). One can check (by

induction on the structure of M) that the decoration of an undecorated λ-term M

(such that each variable is decorated with the index ⊘) is in M⊘
3 . In our simple

embedding the untyped λ-calculus is embedded in M⊘
3 which is the range of our

decoration function.

Let us prove that if φ ∈ RCDVTy is a normalised type then there exists T ∈ Ty3

such that er(T ) = φ, if σ ∈ RCDVITy is a normalised intersection type then there

exists U ∈ ITy3 such that er(U) = σ, if B ∈ RCDVBasis then there exists a type

environment Γ such that er(Γ) = B , and if B ⊢ M : σ then there exists Γ and U

such that er(Γ) = B , er(U) = σ, and dec(M) : 〈Γ↑dec(M) ⊢3 U〉.

Let φ ∈ RCDVTy be a normalised type and σ ∈ RCDVITy be a normalised inter-

section type. We now provide a sketch of the proof (by induction on the structures

of φ and σ) that there exists T ∈ Ty3 such that er(T ) = φ and that there exists

U ∈ ITy3 such that er(U) = σ: let φ = ϕ then there exists a ∈ TyVar such that

bijtyvar(a) = ϕ and er(a) = bijtyvar(a) = ϕ; let φ = σ�φ′ then σ is a normalised

intersection type and φ′ is a normalised type, by induction hypothesis there exists

T ∈ Ty3 such that er(T ) = φ′ and U ∈ ITy3 such that er(U) = σ, so er(U�T ) = φ;

let σ = ∩nφi then for all i, φi is a normalised type, by induction hypothesis, for all

i, there exists Ti ∈ Ty3 such that er(Ti) = φi, so, er(T1 ⊓ · · · ⊓ Tn) = σ; let σ = ω

then take U = ω⊘ for example.

Let us provide a sketch of the proof that if B ⊢M : σ then there exists Γ and U

such that er(Γ) = B , er(U) = σ and dec(M) : 〈Γ↑dec(M) ⊢3 U〉.

• (RCDV-Ax): let x : φ ⊢ x : φ. We proved that there exists T ∈ Ty3 such that

er(T ) = φ and x⊘ : 〈(x⊘ : T ) ⊢3 T 〉 by rule (ax).

• (RCDV-ω): let ⊢M : ω then using rule (ω), dec(M) : 〈envø
dec(M) ⊢3 ω

⊘〉.

• (RCDV-�I): let B ⊢ λx.M : σ�φ such that B , x : σ ⊢ M : φ. By induction
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hypothesis, there exists Γ′ and T such that er(Γ′) = (B , x : σ), er(T ) = φ

and dec(M) : 〈Γ′↑dec(M) ⊢3 T 〉. Because x ∈ fv(M) then we can prove that

x⊘ ∈ fv(dec(M)) and Γ′↑dec(M) = Γ↑dec(λx.M), (x⊘ : U) such that er(U) = σ.

By rule (�I), λx
⊘.dec(M) : 〈Γ↑dec(λx.M) ⊢3 U�T 〉.

• (RCDV-a): let B ⊢ λx.M : ω�φ such that B ⊢ M : φ and where x does not

occur in B . By induction hypothesis, there exists Γ and T such that er(Γ) = B ,

er(T ) = φ and dec(M) : 〈Γ↑dec(M) ⊢3 T 〉. Because x does not occur in B then

x 6∈ fv(M) and by rule (�′
I), λx

⊘.dec(M) : 〈Γ↑dec(λx.M) ⊢3 ω
⊘�T 〉.

• (RCDV-�E): let B1 ∩ B2 ⊢ MN : φ such that B1 ⊢ M : σ�φ and B2 ⊢ N : σ.

By induction hypothesis we can prove that there exit Γ1, Γ2, U and T such that

er(Γ1) = B1, er(Γ2) = B2, er(U) = σ, er(T ) = φ, dec(M) : 〈Γ1↑
dec(M) ⊢3 U�T 〉

and dec(N) : 〈Γ2↑
dec(N) ⊢3 U〉. Because Γ1↑

dec(M) and Γ2↑
dec(N) are compatible

then by rule (�E), MN : 〈Γ1↑
dec(M) ⊓ Γ2↑

dec(N) ⊢3 T 〉 and we can prove that

Γ1↑
dec(M) ⊓ Γ2↑

dec(N) = (Γ1 ⊓ Γ2)↑
dec(MN) and that er(Γ1 ⊓ Γ2) = ⊓{B1,B2}.

• (RCDV- ∩ I): let ∩nBi ⊢ M : ∩nφi such that Bi ⊢ M : φi, for all i. Then we

can conclude using Remark 7.3.6.

The type system introduced at the beginning of this section can then be embed-

ded into our type system without making use of expansion variables and restraining

the space of meaning M3 to the basisM⊘
3 .

Unfortunately, as mentioned in Ch. 9, we do not believe that it would be pos-

sible to embed RCDV in our system such that we would make use of the expansion

variables “as much as possible”.
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son application a l’élimination des coupures dans l’analyse et la théorie des
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[97] R. Labib-Sami. Typer avec (ou sans) types auxilières.

361



Bibliography

[98] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type

inference algorithm. ACM Transanctions on Programming Languages and

Systems, 20(4):707–723, jul 1998.

[99] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers.

Searching for type-error messages. In Jeanne Ferrante and Kathryn S. McKin-

ley, editors, ACM SIGPLAN 2007 Conf. PLDI. ACM, 2007.

[100] Xavier Leroy. An overview of types in compilation. In In Lecture Notes in

Computer Science, pages 1–8. Springer-Verlag, 1998.

[101] Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment.

In POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 291–302, New York, NY, USA,

1991. ACM.
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