
Uniform circuits, N Boolean proof nets

Virgile Mogbil1⋆ and Vincent Rahli2⋆

1 LIPN – UMR7030, Université Paris 13 – CNRS, France
2 ULTRA, Heriot-Watt University, Scotland

Abstract. The relationship between Boolean proof nets of multiplica-
tive linear logic (APN) and Boolean circuits has been studied [Ter04]
in a non-uniform setting. We refine this results by taking care of uni-
formity: the relationship can be expressed in term of the (Turing) poly-
nomial hierarchy. We give a proofs-as-programs correspondence between
proof nets and deterministic as well as non-deterministic Boolean circuits
with a uniform depth-preserving simulation of each other. The Boolean
proof nets class mNBN (poly) is built on multiplicative and additive lin-
ear logic with a polynomial amount of additive connectives as the non-
deterministic circuit class NNC (poly) is with non-deterministic variables.
We obtain uniform-APN = NC and mNBN (poly) = NNC (poly) = NP .

1 Introduction

Linear Logic (LL) is a refinement of classical and intuitionist logic [Gir87]. The
conjunction/disjunction are split into the multiplicative (M) and additive (A)
connectives. The exponentials give a logical status to the structural rules of
classical and intuitionist sequent calculus. The study of LL revealed the proof
nets [Gir87,DR89]: a parallel syntax for logical proofs where some inessential
sequential information are removed. In this way the global and sequential se-
quent calculus cut-elimination becomes local and parallel in the proof nets. The
well known Curry-Howard isomorphism is a correspondence between proofs and
programs which associates cut-elimination in proofs and execution in programs.
We study its extension to models of parallel computation using proof nets.

Boolean circuits [Vol99,BS90] are a standard model of parallel computation
as Turing machine are a model of sequential computation. Several important
complexity classes are defined in terms of Boolean circuits, including NC. NC
can be thought of as the problems being efficiently solved on a parallel computer
just as the class P can be thought of as the tractable problems. Because a
circuit has a fixed input size, Boolean circuits are so-called non-uniform models
of computation: inputs of different lengths are processed by different circuits.
A uniformity condition is often imposed on circuit families so that each circuit
can be computed by some resource-bounded Turing machine. For instance NC is
defined to be the set of Boolean functions that can be decided by uniform Boolean
circuits of polynomial size in the length of the inputs and polylogarithmic depth.

⋆ Work partially supported by projects GEOCAL (ACI) and NO-CoST (ANR)



The depth is the time on a parallel computer where the size is the number of
processors.

K. Terui (NII, Japan) introduced a proof-as-programs correspondence be-
tween a multiplicative Boolean proof nets class (APN) and Boolean circuits
such that cut-elimination corresponds to evaluation [Ter04]. Defining a parallel
cut-elimination in proof nets, the Terui’s main result is APN = non-uniform
NC. This is the first time that a logical depth is taken into account: it makes
possible to achieve a seed up over sequential computation. Without restricting
the depth in NC or non-uniform NC, one obtains respectively P or P/poly.
P/poly is the complexity class of languages recognized by a polynomial-time
Turing machine with a polynomial-bounded advice function. So K. Terui gives a
corollary: polynomially-sized multiplicative Boolean proof nets class is equivalent
to P/poly. Our paper is firstly motivated by an algorithmic point of view, and
therefore an important issue is the uniformity of circuits, because only a uniform
circuit family (Cn)n∈N can be regarded as an implementation of an algorithm.
Indeed a description of the circuit Cn for inputs of size n can be obtained easily
when the value of n is known: we need an efficient algorithm to built Cn given
n, where different notions of efficient give rise to different notions of uniformity
[Ruz81,All89,BIS90]. We introduce a suitable notion of uniformity for proof nets
and adapt the proofs between proof nets and Boolean circuits to satisfy the
uniformity condition. The method gives the uniform counter part of the Terui’s
results i.e. a proof nets characterisation of both NC and P .

Note that P/poly is not generally considered a practical class for computing.
Indeed it contains every undecidable unary language, none of which can be solved
in general by real computers. However P/poly is an important theoretical class
because of the following fact: if NP ⊆ P/poly then the polynomial hierarchy
collapses to Σ2P (i.e. NP with NP Oracle), and if NP is not a subset of P/poly
then P 6= NP [KL80,CK06]. Our work is motivated by such theoretical point of
view and the logical study of complexity classes. We study a non-deterministic
extension of the parallel Curry-Howard isomorphism in a uniform setting always
by giving a uniform depth-preserving simulation of each classes. On one hand
there are several characterizations of non-determinism in circuits [Ven92,Wol94].
We use NNC (poly) a class equivalent to NP , which is defined in the same way
as NC but using at most a polynomial amount of non-deterministic variables.
On the other hand, as suggested by K. Terui we enrich proof nets with addi-
tive connectives, because additive allow us to incorporate non-determinism. An
encoding of a co-NP problem in the intuitionist fragment of MALL [MT03] illus-
trates why additives could be used. Contrary to the multiplicative case, the proof
nets with additives have never been convincing: in the original syntax [Gir87],
the additive connective N is associated to a box and the cut-elimination does
not satisfy the Church-Rosser property. Nevertheless if a such proof net does
not contain the connective N in its conclusions then it has a unique normal form
[Tor03]. Our encoding and the defined Boolean proof nets satisfy this property,
so we restrict our attention to this setting. Strong normalization and confluence
of the additive proof nets have been studied in various directions [Tor03], in the

2



polarized fragment of LL [LdF04] or recently with a set of linkings on a formula
[HvG03,HvG05]. We have not yet fully explored this last approach which seems
to give another kind of speed-up.

After some background on Boolean circuits in section 2, we present the Terui’s
approach extended to the uniform case in section 3. The circuit gates are un-
bounded like (∧n)n∈N and (∨n)n∈N. In particular the stCONN2 gates which test
the reachability between two nodes of the undirected graph given in input, are
used to simulate the cut-elimination of proof nets. In the first subsection the
definitions concerning MLLu (a n-ary variant of MLL) and Boolean type are
presented as in [Ter04]. We define the uniformity for Boolean proof net fami-
lies: the class mBN denotes just uniform-APN . Then, we improve the Terui’s
results with two theorems (Thm.2, Thm.5): the translation and simulation be-
tween NC and mBN are done in logspace. Section 4 is devoted to the uniform
non-deterministic Boolean proof nets called mNBN (poly). We define the proof
nets for MuALL which is the fragment MLLu extended with additive connec-
tives. We remind the standard definitions of the additives connectives: the slices
and the cut-elimination. We easily obtain a parallel reduction theorem because of
the particular setting. We introduce an extended version of the Boolean type for
the non-deterministic variables. In the last section we establish the translation
and the simulation theorems which imply NNC (poly) = mNBN (poly) = NP .

2 Background

– Boolean circuits –

Let Fn denote the set of all Boolean functions f : {0, 1}n → {0, 1} for some
n ∈ N. A basis is a finite set consisting of Boolean functions or sequences of
Boolean functions (fi)i∈N where fi ∈ Fi. The standard basis are B0 = {¬,∧,∨}
and B1 = {¬, (∧n)n∈N, (∨n)n∈N}.

A Boolean circuit over a basis B is a directed acyclic graph with n + 1
sources or inputs (vertices with no in-going edges), one sink or output (a vertex
with no out-going edges) and all nodes in B. Sources are labelled by literals
from {x1, . . . , xn} ∪ {1} and nodes of in-degree k are labelled by one of the k-
ary Boolean functions of B. A Boolean circuit (a circuit for short) computes a
function in Fn in a natural way. Nodes are called gates, and in-degree and out-
degree are called fan-in and fan-out respectively. The circuits over basis without
infinite families of Boolean functions (as B0), are called bounded fan-in circuits.
The other circuits are called unbounded fan-in circuits.

We say that a family of circuits C = (Cn)n∈N computes a function f :
{0, 1}∗ → {0, 1} (or recognizes a language LC ∈ {0, 1}∗) if for every n the circuit
Cn computes the restriction of f to Fn. I.e. ∀x ∈ {0, 1}∗, C|x|(x) = f(x).

Let C be a circuit, the size denoted size(C) is the number of gates of C. The
depth denoted d(C) is the length of a longest directed path.

A non-deterministic Boolean circuit C with m non-deterministic variables is
a circuit with n + m + 1 sources labelled by {x1, . . . , xn} ∪ {y1, . . . , ym} ∪ {1}.

3



It computes a function f ∈ Fn as follows: for x ∈ {0, 1}n, f(x) = 1 iff there
exist a setting of the non-deterministic variables {y1, . . . , ym} which makes the
circuit output 1. We denote C(x, y) the same circuit as C without distinction
between non-deterministic variables and deterministic gates, x ∈ LC the lan-
guage recognized by C, if ∃w ∈ {0, 1}m a witness s.t. C(x, w) = 1. When needed
we abusively denote C(x) and C(x, y) the distinct circuits.

– Circuit uniformity –

As briefly presented in the introduction, there are different notions of circuit
uniformity [Vol99]. In order to obtain a class containing P , it is necessary to
impose a ”P -uniform” condition on circuit families. That is, the description of
the nth circuit can be provided by a deterministic Turing machine operating in
polynomial time [All89]. But P -uniformity is too weak to define subclasses of P ;
this leads one to consider L-uniformity [Ruz81]: the description is computable
in logspace. It is the same when we want to consider the subclass of NC with
O(log n) depth (called NC1): DLOGTIME-uniformity requires a somewhat more
careful definition. Informally, there is a deterministic linear time in O(log s(Cn))
Turing machine that, given n and a name of a gate g can determine all the wanted
information about gate g (like sort, predecessors, ...) belonging to the circuit Cn

of size s. Unfortunately all these notions are more and more restrictive.
In our work we focus on a uniform approach of the well established relation-

ship between non-uniform NC and the multiplicative Boolean proof net class
APN . For the sake of simplicity we consider the L-uniformity: it is sufficient
to investigate all classes containing L. Actually, only NC1 and constant depth
classes of circuits and proof nets need a uniformity notion stronger than the
L-uniformity. Moreover the NC class remains the same if stronger notions of
uniformity than L-uniformity are used [Ruz81].

The direct connection language of a family C = (Cn)n∈N over basis B, denoted
LDC(C), is the set of tuples 〈y, g, p, b〉, where for y = 1n, we have: g is the number
of a gate v in Cn, and p ∈ {0, 1}∗ is a binary word such that
- if p = ε then b is the number of the function from B labeling v,
- if p = bin(k) then b is the number of the kth predecessor gate to v.

A circuit family (Cn)n∈N is L-uniform if its direct connection language can
be recognized in logspace by a deterministic Turing machine. Without precisions,
we use in the rest of this paper the term uniform as a shorthand for L-uniform.

– Circuit classes –

The classes NCi and ACi for i > 0 are the functions computable by uniform
families of polynomial size, O(login) depth circuits over B0 and B1 respectively.
ACi(stCONN2) correspond to ACi over B1 ∪ {stCONN2}. We denote NC the
uniform circuit families which have polynomial size and polylogarithmic depth,
i.e. NC = ∪i>0NCi. We define AC in the same way. L, NL and P are in the
time-space hierarchy of the Turing machines. The well known hierarchy is:

AC0 ( NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ AC2 ⊆ · · · ⊆ NC ⊆ P

∀i ∈ N, ACi ⊆ ACi(stCONN2) ⊆ ACi+1

4



The class NNCi(f(n)) is the class of languages accepted by L-uniform-NCi

circuit families with at most O(f(n)) non-deterministic variables, where n is the
length of the input. We define NACi(f(n)) in the same way, but using ACi. We
abusively denote NNCi(poly) when f(n) is a polynomial function. If f(n) = log n
then the amount of non-deterministic variables can be described by a polynomial
number of NC gates [Wol94]:

NNCi(log n) = NCi, and then NNC (log n) = ∪i>0NNCi(log n) = NC.

So we don’t consider these classes but we investigate the following classes [Wol94]:

NNC (poly) = ∪j>0NNC (nj) = NP and ∀i ∈ N∗, NNCi(poly) = NP.

NAC(poly) = ∪j>0NAC(nj) = NP and ∀i ∈ N, NACi(poly) = NP.

3 Uniform Boolean proof nets

– MLLu and Boolean type –

We recall in this section some basic definitions gave by Terui in [Ter04].
The formulas of MLLu are built on literals by n-ary versions of multiplicative
conjunction and disjunction, for every n > 2. The negation of a non-literal
formula is defined by de Morgan’s duality (reversing the order of subformulas).

A sequent of MLLu is of the form ⊢ Γ , where Γ is a multiset of formulas.

The rules of MLLu are given in Fig.1(a) with the convention
−→
A ≡ A1, . . . , An

and
←−
A ≡ An, . . . , A1.

⊢ A, A⊥
(axiom)

⊢ Γ, C ⊢ ∆, C⊥

⊢ Γ, ∆
(cut)

⊢ Γ, A ⊢ Γ, B

⊢ Γ, ANB
N

(a) (b)
⊢ Γ1, A1 . . . ⊢ Γn, An

⊢ Γ1, . . . , Γn, �n(
−→
A)

�
n
⊢ Γ, An, . . . , A1

⊢ Γ, On(
←−
A )

O
n ⊢ Γ, Ai

⊢ Γ, A1 � A2

�i
i=1,2

Fig. 1. (a) MLLu (a+b) MuALL

The corresponding links (Fig.2(a)) are of three sorts called: axiom-link, �
n-

link and O
n-link. Each link has several ports. The ports numbered 0 are called the

principal ports, while others are called auxiliary ports. By convention a principal
port is always written below the link whereas an auxiliary port is above it.

A pseudo net is a triple 〈L, σ,∼〉 s.t. L is a finite set of links, σ : L →
{•} ∪ {�n, On}n>1 and ∼ is a symmetric relation on (L, N)2.

A link p with σ(p) = • (�n, O
n, resp.) stands for an axiom-link (�n-link,

O
n-link, resp.). When (p, n) ∼ (q, m), we say that there is an edge between (p, n)

and (q, m), where (p, n) stands for the port number n of link p. A cut in a pseudo

5



(a) (b)
•

0 0
�

1 n

0
O

n 1

0

N

1 2

0

�

1 2

0

�1

1

0

�2

1

0

Fig. 2. (a) Multiplicative and (b) additive links

net is an unordered pair of link p, q s.t. (p, 0) ∼ (q, 0): we call it an ax-cut when
either p or q is an axiom-link, otherwise we call it a m-cut.

A proof net of type ⊢ Γ is a pseudo net P inferred by a sequent calculus proof
of ⊢ Γ ′ where Γ is a decoration of Γ ′ i.e. formulas of the form p : A (see Fig. 5 for
an example) (a proof net of type ⊢ p : A is simply called a proof net of type A) .
The pseudo nets inferred in Fig.3(a) are respectively: tensorp1,...,pn

q (P1, . . . , Pn),
parpn,...,p1

q (P ) and axp, cutp,q(P, Q).

(a) (b)

P1 Pn

�

p1 pn

1 n

0

P

O

pn p1

n 1

0

P Q
p q

0 0

•

P Q

� � N

p1 p2r1
1

r1
k

r2
1

r2
k

r1 rk q

1 2 1 2 1 2

0 0 0

P

�1

p

q

1

0

P

�2

p

q

1

0

Fig. 3. (a) Multiplicative and (b) additive proof net constructors

The size |P | is the number of links in P . The depth d(A) of a formula A is

given by d(α) = d(α⊥) = 1 and d(�n(
−→
A )) = d(On(

←−
A )) = max(d(A1), . . . , d(An))

+ 1, with
−→
A ≡ A1, . . . , An. Given a derivation π of ⊢ Γ inferring P , its depth

d(π) is the maximal depth of cut formulas in it. The depth d(P ) of a proof net
P is defined to be min{d(π)|π is a derivation of ⊢ Γ inferring P for some Γ}.

Boolean values are represented with the type B =O
3(α⊥, α⊥, �2(α, α)).

There are exactly two cut-free proof nets of this type (true and false resp.)
Fig.4(a): b1 ≡ parp,q,r

s (tensorp,q
r (axp, axq)), b0 ≡ parq,p,r

s (tensorp,q
r (axp, axq)).

A Boolean proof net with n inputs −→p ≡ p1, . . . , pn and one output is a

proof net P (−→p ) of type: ⊢ p1 : B⊥[A1], . . . , pn : B⊥[An], q : �
m+1(B,

−→
C ), for

some
−→
A ≡ A1, . . . , An and

−→
C ≡ C1, . . . , Cm (garbage due to the multiplicative

framework) where B[A] denote the formula B where all occurrences of α are

substituted by A. Given
−→
b ≡ bi1 , . . . , bin

, P (
−→
b ), of type �

m+1(B,
−→
C ), denotes

the proof net obtained by connecting, ∀j ∈ {1, . . . , n} (ij ∈ {0, 1}), bij
to pj by a

cut. P (
−→
b ) reduces to a cut-free proof net of the shape tensor(bi,

−→
Q), i ∈ {0, 1}:

we say that P (
−→
b ) evaluates to bi. Let w ≡ i1 . . . in ∈ {0, 1}n. P (−→p ) represents

a function f : {0, 1}n → {0, 1} if P (bi1 , . . . , bin
) evaluates to bf(w). Thus, the

language accepted by P (−→p ) is f−1(1).

6



APN i for i ∈ N, is the class of languages recognized by non-uniform Boolean
proof net families of polynomial size and O(logi n)-depth. APN=

⋃
i∈N

APN i.

– Uniform proof nets –

In the framework of polynomial size proof nets, we consider an extended
description of a proof net P which is equivalent to the triple defining a pseudo
net. We call it Conf(P ), the configuration of P .

Let P = {Pn}n∈N be a family of Boolean proof nets. Links are identified by
binary words. For all n ∈ N, we fix the inputs p1, . . . , pn of Pn to be identified by
0, . . . , bin(n− 1) respectively, and the output to be identified by bin(n) (where
bin is the function which associates to a number in decimal base its value in
binary base). Conf(P) denotes the set of tuples in {1}∗× (W \{ǫ})×W 2×{0, 1}
(W is the set of binary words), s.t. for y = 1n:

– in 〈y, u, ǫ, ǫ, 1〉, u identifies a Pn link.
– in 〈y, u, s, ǫ, 1〉, s is the sort’s identifier of the link identified by u.
– in 〈y, u, v, bin(i), 1〉, u identifies a link connected by its principal port (or

one of its two principal ports in the case of an axiom) to the port i of the
link identified by v.

– in 〈y, u, a, b, 0〉, u, a, b are the same informations as above but are not con-
cerned with Pn (i.e. the edges which does not appear in Pn).

Remark that if Pn ∈ P then Conf(Pn) is the set of tuples that belong to
Conf(P ) s.t. the first word is of size n. A proof net family {Pn}n∈N of polynomial
size s is L-uniform (resp. P -uniform) iff there is a function which computes
Conf(Pn) from 1n in space O(log s) (resp. in time sO(1)), for all n ∈ N. For all
i ∈ N, uniform APN i is denoted mBN i.

– Uniform Terui’s translation of NC –

The conditional (if-then-else, Fig.4(b)) is the base of the Terui’s gates trans-
lations: given two proof nets P1 and P2 of types ⊢ Γ, p1 : A and ⊢ ∆, p2 : A resp.,
one can build a proof net condp1,p2

r [P1, P2](q) of type ⊢ Γ, ∆, q : B[A]⊥, r : A�A.
Given a cut between bi and q we have with the convention that the first compo-
nent is considered as the output, the rest being the garbage:

condp1,p2
r [P1, P2](b1)→

∗ tensorp1,p2
r (P1, P2),

condp1,p2
r [P1, P2](b0)→

∗ tensorp2,p1
r (P2, P1).

Disjunction, conjunction and duplication are based on the conditional: let n > 2
be an integer and C ≡ �

n(B[A1], . . . ,B[An]),

or(p1, p2) ≡ cond[b1, axp1
](p2) of type ⊢ p1 : B⊥, p2 : B[B]⊥, q : B � B,

and(p1, p2) ≡ cond[axp1
, b0](p2) of type ⊢ p1 : B⊥, p2 : B[B]⊥, q : B � B,

copyn(p) ≡ cond[tensor(
−→
b1 ), tensor(

−→
b0 )](p) of type ⊢ p : B⊥[C], q : C � C.

The composition (Fig.4(c)) of two translated circuits is defined as follows: let

Γ ≡ p′1 : A′
1, . . . , p

′
n : A′

n and ∆ ≡ q′1 : B′
1, . . . , q

′
n : B′

m, let P (
−→
p′ ) and Q(

−→
q′ ) be

7



(a)

�

O

�

O

•
•

•
•

≡ b1 ≡ b0

(b)

P2 P1

⊗
•

p2 p1

q r

(c)

O

O
�

•

•

•
•

•

P

Q

p

q r
s

Fig. 4. (a) The Boolean b1 and b0 (b) The conditional (c) The composition

proof nets of type ⊢ Γ, p : �
1+m(B,

−→
C ) and ⊢ q : B⊥[A], ∆, r : �

1+m′

(B,
−→
D),

respectively. Then:

compp,q,r
s [P, Q](

−→
p′ ,
−→
q′ ) is of type ⊢ Γ [A], ∆, s : �

1+m′+m(B,
−→
D,
−−→
C[A]).

With this composition one can construct n-ary versions of conjunction and
disjunction. The translation of a Boolean circuit follows from composition of
gate translations and duplication for fan-out management:

Theorem 1 ([Ter04]). For every unbounded fan-in Boolean circuit C of size
s and depth d over the basis B1(stCONN2), there is a Boolean proof net of size
O(s5) and depth O(d), which accepts the same set as C does.

Lemma 1. Let Σ be a finite alphabet. If g : Σ∗ → Σ∗ and f : Σ∗ → Σ∗ are
computable in logspace and the f output is polynomial in its input, then g ◦ f is
computable in logspace.

Theorem 2. Let i ∈ N. The Terui translation of a Boolean circuit family in
ACi(stCONN2), by a Boolean proof net family in mBN i is logspace.

Remark 1. In order to simplify this result we consider a translation of a circuit
where the garbage of each translated gate is propagated directly to the output
of the proof net. This version is equivalent to the one presented by Terui but in
which some reductions have been performed.

Proof. Let C = {Cn}n∈N be a L-uniform Boolean circuit family in ACi(stCONN2).
By uniformity, there is a logspace function f s.t. for every n ∈ N, f(1n) =
LDC(Cn). Let P = {Pn}n∈N be the Boolean proof net family obtained by trans-
lation of C. We show that there is a logspace function f ′ built from f s.t. for
every n ∈ N, f ′(1n) = Conf(Pn). In order to do that, we use a function fd→c,
logspace in the inputs of f , which associates Conf(Pn) to LDC(Cn) for all n ∈ N.
Let fd→c = f3 ◦ f2 ◦ f1 where we call module the composition of the translated
gate and its translated fan-out, and (k, j ∈ {1, . . . , size(Cn)}):

– f1 copies out its inputs adding to tuples which indicate that a gate v is the
kth predecessor of a gate u, that gate u is the jth successor of gate v.
Then f1 computes for every gate its module composed with a pseudo net
allowing garbage propagation, adding the identifier of the translated gate,
and for each output, an identifier differentiating it from others.

– f2 copies out and completes the information given by the modules created
by f1 with the help of the information added to LDC(Cn). That is, it adds

8



information about edges between an output of a module and an input of
another module, with the help of information added about translated gates
and edges between gates.

– f3 organizes tuples and deletes useless information.

LDC(Cn) like Conf(Pn) has a polynomial size. An identifier of a gate or a
link is logspace. At each step, these functions memorize a constant number of
identifiers, so f1, f2 and f3 are logspace. Then fd→c is logspace. By lemma 1,
f ′ = fd→c ◦ f is logspace in the inputs of f . �

– Parallel cut-elimination –

The elimination of a cut between two axioms cannot always be performed in
parallel. So K. Terui considers another reduction step named tightening reduction
which reduces a maximal sequence of cut axioms to an axiom. Such maximal
sequence (ax-sequence) is defined as a set of axioms, each linked with another
in this set s.t. there are not other axioms that verify this property.

If Q is obtained from P by elimination of all ax-cuts simultaneously (m-cuts,
ax-sequences, resp.) then we write P ⇒ax Q (P ⇒m Q, P ⇒t Q, resp.). We
write P ⇒ Q if P ⇒ax Q or P ⇒m Q or P ⇒t Q.

Theorem 3 (parallel cut-elimination, [Ter04]). There is a sequence of par-
allel reductions P ⇒ P1 · · · ⇒ Pk, s.t. Pk is cut-free and k 6 3× d(P ).

– Uniform Terui’s simulation in NC –

We consider proof nets with links belonging to a fixed set L0 with the conven-
tion O

n-link is of sort O, and a �
n-link is of sort �. A configuration Θ consists

of the following Boolean values : alive(p), sort(p, s), edge(p, 0, q, i), for every
p, q ∈ L0, s ∈ {•, �, O} and i < |L0|.

A link p ∈ L0 is said to be alive in Θ if alive(p) = 1. Given a proof net P =
〈L, σ,∼〉, we write Θ ∈ Conf(P ) if for every p ∈ L0, alive(p) = 1 ⇐⇒ p ∈ L
and for every alive links p, q in Θ, the following holds : sort(p, s) = 1 ⇐⇒ σ(p)
is of sort s and edge(p, 0, q, i) = 1 ⇐⇒ (p, 0) ∼ (q, i).

Lemma 2 ([Ter04]). There is an unbounded fan-in Boolean circuit C of size
O(|P0|

3) and constant depth with stCONN2 gates s.t. whenever Θ ∈ Conf(P ) is
given as input of C and P ⇒ P’, it outputs a configuration Θ′ ∈ Conf(P ′).

Theorem 4 ([Ter04]). For every Boolean proof net P of size s and depth d,
there is a Boolean circuit C over the basis B1(stCONN2) of size O(s4) and depth
O(d) which accepts the same set as P does.

Theorem 5. Let i ∈ N. The Terui simulation of a Boolean proof net family in
mBN i by a Boolean circuit family in ACi(stCONN2), is logspace.

Proof. Let P = {Pn}n∈N be a L-uniform Boolean proof net family in APN i.
By uniformity there is a logspace function f s.t. for all n ∈ N, f(1n) = Conf(Pn).
Let C = {Cn}n∈N be the Boolean circuit family obtained by simulation of P .
We show that there is a logspace function f ′ built from f s.t. for every n ∈ N,

9



f ′(1n) = LDC(Cn). In order to do that, we use a function fc→d, logspace in the
inputs of f , which associates LDC(Cn) to Conf(Pn) for all n ∈ N. The simulation
introduced by Terui is divided in three steps: creation of initial configuration,
simulation of parallel cuts elimination and check of the the last configuration.

– fc→d builds the part of the first configuration which represents the inputs
of the proof net using the inputs of the Boolean circuit. It builds the part
which represents the proof net using its input. Only a constant number of
identifiers of links are memorized.

– fc→d builds the circuit which simulates parallel cuts elimination. This part is
only dependent of the size and depth of the proof net and not of its structure.

– fc→d builds the circuit which check the result contained in the last configu-
ration. This building is only dependent of the size of the proof net.

Conf(Pn) like LDC(Cn) has a polynomial size. An identifier of a gate or a link
is logspace. At each step, fc→d memorizes a constant number of identifiers, so it
is logspace. By lemma 1, f ′ = fc→d ◦ f is logspace in the inputs of f . �

Corollary 1. mBN = NC and P is the class of those languages for which there
is a uniform polynomial size family of (multiplicative) Boolean proof nets.

4 Non-deterministic Boolean proof nets mNBN ()

In this section we introduce the unbounded fan-in version of multiplicative lin-
ear logic (MLLu) extended with the binary additive connectives. We denote it
MuALL. The formulas of MuALL are built from literals by MLLu connectives
and by binary additive conjunction N and additive disjunction �. The sequent
calculus rules are given in Fig.1(a+b).

The added links are called N-link, �1-link and �2-link (Fig.2(b)). The infer-
ence rules for the new links follow the sequent calculus rules as expected. The
resulting proof nets are depicted in Fig. 3(b). In a derivation, the two premises
of a N-rule, with the same context Γ , infer two proof nets called components.
Each identical conclusion coming from the two components are merged with a
binary co-additive-links (denoted �-links or coad-links). So a N-link arrives with
an additive box bounding a (possibly empty) set of coad-links and the two com-
ponents. This is described in Fig.3(b) with the associated ports. As previously
the cuts are just edges between principal ports.

– Slices and additive cut-elimination –

A slice of a proof net P is a proof net sl(P ) which may contain some unary
N1 and N2 links: for every N-link one of the premises is chosen. Then the non-
corresponding component, the additive box and the coad-links are erased. In a
slice, the additive cut-elimination between a �i-link and a Nj-link, for i, j ∈
{1, 2}, is simply to check the consistency: if i = j then the additive links are
removed propagating the cut on the unique premises.

10



We define as usual [Gir87] the additive cut-elimination, denoted →a. The
cut-elimination between a N-link and a �i-link (i ∈ {1, 2}) is the choice of the
ith N-link’s premise and the same erasing as a slice. A cut-elimination with a
coad-link is more complicated: the cut proof net is swallowed and duplicated in
the additive box. The duplicated conclusions are merged with coad-links.

The cut-elimination with a coad-link is not confluent. A standard example is
the proof net of type ⊢ ANA, A⊥, cut to the proof net of type ⊢ A⊥

NA⊥, A. This
produces two possible proof nets of type ⊢ ANA, A⊥

NA⊥ where the N-link of
the additive box is one of the formulas, the other being a coad-link. Nevertheless
the proof nets are stable by cut-elimination [Dan90,Tor03]. Roughly speaking if
the conclusions of the proof nets are N-free then the cut-elimination is confluent.

– Parallel reduction theorem –

It is difficult to have an additive cut-elimination from a parallel point of view
(denoted ⇒a). We need a strategy e.g. as the parallel tightening reduction, one
could want to reduce first the N-links in parallel. But it is difficult to bound
the number of parallel reduction steps because of the coad-links (it depends
on maximal nesting of the additive boxes it contains). In the non-deterministic
Boolean proof nets framework, it is somewhat different as explained after in
lemma 3: proof nets are always cut against an additive witness s.t. this cut is
eliminated equivalently to a slice choice. So we start the parallel reductions by
choosing a slice, then additive cut-elimination becomes trivial and confluent:
⇒a is only the disjoint consistency check done in parallel. We write ⇒ if one of
the parallel reduction occurs (i.e. ⇒t,⇒ax,⇒m or ⇒a). Because in a slice each
sequence of all distinct parallel reductions strictly decrease the depth, we have:

Theorem 6 (parallel cut-elimination). For every consistent slice sl, there
is a sequence of parallel reductions sl(P ) ⇒ P1 ⇒ · · · ⇒ Pk s.t. Pk is cut-free
and k 6 4× d(P ) + 1.

– Extended Boolean type for non-deterministic variables –

We define a non-deterministic Boolean type as Be = (B�α⊥), (αNα). There

...
⊢ B ⊢ α, α⊥

(ax)

⊢ B � α⊥, α
(�)

...
⊢ B ⊢ α, α⊥

(ax)

⊢ B � α⊥, α
(�)

⊢ B � α⊥, αNα
(N)

7→
N

� �

b0 b1

�

Fig. 5. From a sequent calculus proof of Be to the chosen proof net

are four proof nets of this (yet strange) type. Two of them have the same behavior
as the (deterministic) Boolean type B. The two others can be arbitrarily used
for our purpose: let the proof net depicted in Fig.5 be our choice of one of them.
With this proof net we are able to internally choose between b0 or b1 using a slice

11



or equivalently by cut elimination with a witness as explained in the beginning
of this section. Without loss of generality, for an arbitrary C, we allow an input
type to be of the form Be[C] = Be[B[C]/B, id/α] = (B[C] � id⊥)O(idNid)
where id = αOα⊥ is a technical trick to simplify reductions in the translation
and in the simulation.

– mNBN () description and hierarchy –

A non-deterministic Boolean proof net with n inputs and O(f(n)) additive

links is a proof net P (
−→
b ) of type (for some

−→
D = D1, . . . , Dk and m = f(n)):

⊢ p1 :B⊥[A1], . . . , pn :B⊥[An], q :�1+k+m(B,
−→
D,
−→
id), r :Om(

−−−−−−→
id⊥Nid⊥).

Clearly, for w a proof net of type �
m(
−−−−→
id � id) and

−→
b ≡ bi1 , . . . , bin

(∀j ∈
{1, . . . , n}, ij ∈ {0, 1}), the proof net cut(P (

−→
b ), w) reduces to a cut-free proof

net of type �
1+k+m(bi,

−→
D,
−→
id) (i ∈ {0, 1}): we say that P (

−→
b ) evaluates to bi if

there exists such a w. The language accepted by a non-deterministic Boolean
proof net is defined in the same way as for Boolean proof nets in section 3.

Similarly to the Terui APN hierarchy and to the NNC () hierarchy, we define
the mNBN () hierarchy: a uniform family (Pn)n∈N of non-deterministic Boolean
proof nets accepts a language X ⊆ {0, 1}∗ if Pn is n-ary and accepts X ∩{0, 1}n

for every n > 1. A language X⊆{0, 1}∗ belongs to the class mNBN i(poly) iff X
is accepted by a uniform polynomial size, logi-depth family of non-deterministic
Boolean proof nets with a polynomial number of additive links.

5 NNC(poly) = mNBN (poly)

In order to obtain the equality between NNC (poly) and mNBN (poly), we use
the class NAC(poly) whose relations with NNC (poly) were described in section 2.

– translation of NAC(poly) –

Let C(x) be a circuit of input length n belonging to a family in NACi(poly)
for an arbitrary i ∈ N. By definition C(x, y) and C(x) have the same dimensions
and m =| y |= nO(1). Thus C(x, y) ∈ ACi w.r.t. the size of x, if we just omit
the distinction between non-deterministic variables and deterministic variables.
As in [Ter04] (see section 3) let P be the translation of C(x, y). For each y we
cut the built proof net P with exactly one representation of Be. We manage the
garbage as it can be seen in Fig.6 to obtain the proof net T . Such translated
proof net is in mNBN i(poly). Let sl be a slice of T . We have the following
parallel reduction from sl(T ):

P

O O

O
�

O

Ni1

�

bi1

Nim

�

bim

⇒m ⇒ax

P

O
�

O

bi1
bim

Ni1 Nim

⇒∗

B
−→
D

�

O

Ni1 Nim

Another way could be to choose a witness w, i.e a proof net of type �
m(
−−−−→
id � id),

and then to reduce the cut between T and w. By only one additive parallel reduc-

12



P

O O

O
�

O

N

� �

b0 b1

� N

� �

b0 b1

�

Fig. 6. translation

tion we obtain confluently a multiplicative proof net: it corresponds to C(−, w).
From the translation it immediately holds that to have a slice or a witness is
equivalent in this setting, as is stated in this lemma:

Lemma 3. Let C ∈ NAC(poly) be a circuit family and let P = (Pn)n∈N be the
uniform non-deterministic Boolean proof net family obtained by the translation
of C. Let C(x, y) ∈ AC be the deterministic circuit family corresponding to C
s.t. |y |= m. We have x ∈ LC, the language recognized by C
⇐⇒ ∃w ∈ {0, 1}m a witness s.t. Cn(x, w) = 1

⇐⇒ ∃sl a slice of Pn s.t. sl(Pn(x))⇒∗
�

1+n+m(b1,
−→
D,−→α ), O16j6m(Nij

(α))

⇐⇒ ∃w a witness of type �
m(
−−−−→
id � id) s.t. cut(Pn(x), w)⇒∗

�
1+l+m(b1,

−→
D,
−→
id)

⇐⇒ x ∈ LP , which is the language recognized by P

Theorem 7 (translation). Let i ∈ N. For every Boolean circuit C ∈ NACi(poly)
of size s and depth d, there is a Boolean proof net in mNBN i(poly) of size O(s5)
and depth O(d) which accepts the same set/language as C does.

Proof. Let C ∈ NACi(poly) be a circuit of input length n. Let s = size(C) and
d = d(C). Let m =|y |= nO(1) 6 s be the amount of non-deterministic variables.
Following Terui’s theorem, every gate of fan-in f and fan-out o can be encoded by
a proof net of size O(f4 + o) 6 O(s4) and of constant depth. The depth increase
is linear in d. Because C(x, y) and C have the same dimensions, we obtain the
same result as Terui. The last construction due to the non-deterministic variables
translation doesn’t change the proof net dimensions: we add O(m+ s) links and
a constant to the depth. �

– Cut-elimination simulation –

Let P ∈ mNBN i(poly) be a proof net of size s and depth d. Let NACi(poly)
(stCONN) corresponds to NACi(poly) over B1 ∪ {stCONN}. In order to have a
corresponding non-deterministic circuit C ∈ NACi(poly)(stCONN), we represent
P by a set of Boolean values: the configurations that we extend to take care of
additive sorts and a box(p, q) relation to describe that p is associated to the
additive box of the N-link q. After that in the same way as [Ter04] (see section
3), the cut-elimination in P is simulated by the construction of layers of a circuit
for each parallel cut-elimination step s.t. the evaluation of the constructed circuit
C simulates the cut-elimination procedure. For simplicity we describe it following

13



the parallel reductions as in lemma 3 with the help of non-deterministic variables,
one for each link of the proof net:

– The circuit simulates the choice of a slice (its edges) s.t. every distinct choice
can be done in parallel, depending on the non-deterministic variables:

- selection of one premise for each N-links, with the help of a constant
depth circuit of size O(s3),

- selection of one premise for each coad-links depending on the selected
premise of the associated N-links, with the help of a constant depth
circuit of size O(s4). Moreover we ”erase” the coad-links themselves: by
updating the alive value of a coad-link and the edge values concerning
its incident edges and by linking the premise and the conclusion of a
coad-link, with the help of a constant depth circuit of size O(s5),

- selection of one component associated to each N-links using a stCONN
gate, with the help of a constant depth circuit of size O(s4).

– The cut between a witness (depending on the non-deterministic variables)
and the modified slice is reduced in a known result due to our choice of the
id type. This is done by a constant depth circuit of size O(s5).

– Finally as many time as 4×d(P )+1 we simulate one parallel reduction of the
modified slice (⇒, in the same way as in [Ter04] with the help of a constant
depth circuit of size O(s3) that simulate ⇒a). We check consistency at each
step with the help of a constant depth circuit of size O(s3).

The most essential cost is due to the erasing of the coad-links and the elim-
ination of the cut between a witness and a slice of a Boolean proof net. Each
small circuit used here can be found in the appendix with precise depth and size.

Theorem 8 (simulation). Let i ∈ N. For every Boolean proof net P ∈ mNBN i(poly)
of size s and depth d, there is a Boolean circuit in NACi(poly)(stCONN) of size
O(s5) and depth O(d) which accepts the same set/language as P does.

Since the considered non-deterministic circuit class collapse we can replace
NACi(poly)(stCONN) by NACi(poly) in the previous theorem.

6 Conclusion

Focusing on uniformity, we strengthened the connection between proof nets and
deterministic Boolean circuits by giving a uniform depth-preserving simulation
of each other. This kind of Curry-Howard isomorphism for models of parallel
computation as been extended to the non deterministic case. Because the uni-
formity arguments apply to the translation and simulation theorems, we have:

Theorem 9. ∀i ∈ N, mNBN i(poly) = NACi(poly) = NP .

Corollary 2. mNBN (poly) = NNC (poly) = NP .

14



The substitution on the non-deterministic Boolean type Be deals with id
to simplify the general case which can also be treated without difficulties. The
most simple form of non-deterministic Boolean is 1 � 1 i.e. just replace id =
αOα⊥ by 1: the semantic is clearly the same but the fragment of linear logic
considered is extended to neutrals. Even without this, the Boolean proof nets
of type ⊢ B⊥, . . . ,B⊥,BN. . .NB are in a way canonical (up to substitutions)
but the simulation is more complicated. A more general work can be done using
the additive fragment expressiveness fully: a garbage is no more needed but the
cut-elimination is no more confluent. Other approaches are interesting like the
additives à la Hughes and van Glabbeek [HvG03,HvG05]: we believe to realize
a stronger seed-up.

References

[All89] Eric W. Allender. P-uniform circuit complexity. Journal of the Association for
Computing Machinery, 36(4):912–928, 1989.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uni-
formity within NC1. J. of Comput. and System Science, 41(3):274–306, 1990.

[BS90] R. B. Boppana and M. Sipser. The complexity of finite functions. MIT Press,
1990.

[CK06] S. Cook and J. Krajicek. Consequences of the provability of NP⊆P/poly, 2006.
[Dan90] V. Danos. La logique linéaire appliquée à l’étude de divers processus de nor-

malisation (et principalement du λ-calcul). PhD thesis, Univ. Paris VII, 1990.
[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive

for Mathematical Logic, 28(3):181–203, 1989.
[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.
[HvG03] D. J. D. Hughes and R. J. van Glabbeek. Proof nets for unit-free

multiplicative-additive linear logic. In Proc. IEEE Logic in Comput. Sci., 2003.
[HvG05] D. J. D. Hughes and R. J. van Glabbeek. Proof nets for unit-free

multiplicative-additive linear logic. ACM Trans. on Comput. Logic, 2005.
[KL80] R. Karp and R. Lipton. Some connections between nonuniform and uniform

complexity classes. In Proc. 12th ACM Symp. on Theory of Computing, pages
302–309, 1980.

[LdF04] O. Laurent and L. Tortora de Falco. Slicing polarized additive normalization.
Linear Logic in Computer Science, 2004.

[MT03] H. Mairson and K. Terui. On the computational complexity of cut-elimination
in linear logic. Theoretical Computer Science, 2841:23–36, 2003.

[Ruz81] W. Ruzzo. On uniform circuit complexity. J. of Computer and System Science,
21:365–383, 1981.

[Ter04] K. Terui. Proof nets and boolean circuits. In Proc. IEEE Logic in Comput.
Sci., pages 182–191, 2004.

[Tor03] L. Tortora De Falco. Additives of linear logic and normalization - part i: a
(restricted) church-rosser property. T.C.S., 294(3):489–524, 2003.

[Ven92] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes.
Siam J. Comput., 21(4):655–670, 1992.

[Vol99] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts
in Theoretical Computer Science. Springer Verlag, 1999.

[Wol94] Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups.
Theoretical Computer Science, 125(2):295–313, 1994.

15



A Some corollaries

As a corollary for the theorem 7, we have:

Corollary 3. For every Boolean circuit C ∈ NNCi(poly) of size s and depth d
there is a Boolean proof net in mNBN (poly) of size O(s5) and depth O(d) which
accept the same set/language as C does.

The most essential cost of the simulation of a Boolean proof net in mNBN i(poly)
(i ∈ N) by a boolean circuit in NNCi(poly), is due to the translates of stCONN
gates (a log-depth circuit of size O(n4) for a n-ary gate). Thus as a corollary for
the theorem 8, we have:

Corollary 4. For every Boolean proof net P ∈ mNBN i(poly) (i ∈ N) of size
s and depth d, there is a Boolean circuit in NNCi+2(poly) of size O(s12) and
depth O(d) which accepts the same set/language as P does.

B Non-deterministic simulation

In this section, we adopt these conventions:

– alive(p) is write p
– sort(p, s) is write p(s)
– edge(p, 0, q, i) is write (p, q, i)

The circuit on Fig. 7, depicts the selection of one premise of a N-links. The
two ouputs are the new values for the edge values. This circuit is realized for
all links p, q and r. For all links p and q, the new value of an edge(p, 0, q, 1) or
an edge(p, 0, q, 2) value corresponds to the conjunction of its values at ouputs of
these circuits. We obtain a circuit (named Sg) of size n3j and constant depth,
with nj the number of links.

Gp (q, p, 1) (r, p, 2) p(N/N)

∧
¬

¬

∧ ∧ ∧ ∧

∨ ∨

Fig. 7. selection of one premise of a N-link

It is the same for the selection of one premise of a coad-links (Fig. 8), but
it depend on the selected premise of the associated N-links. The two ouputs are

16



the new values for the edge values. This circuit is realized for all links p, q, r and
t. For all links p and q, the new value of an edge(p, 0, q, 1) or an edge(p, 0, q, 2)
value corresponds to the conjunction of its values at ouputs of these circuits. We
obtain a circuit of size n4j and constant depth, with nj the number of links.

Gt (q, p, 1) (r, p, 2) box(p, t)

∧
¬

¬

∧ ∧ ∧ ∧

∨ ∨

Fig. 8. selection of one premise of a coad-link

The circuit on Fig. 9, depicts the erasing of information on unary coad-
links. This circuit is realized for all links p, q, r, t and i. First, the new value
of a edge value corresponds to the disjunction of its values at the first output
(edge(q, 0, t, i) on the Fig. 9) of these circuits. Second, the new value of an edge,
a box, or an alive value corresponds to the conjunction of its values at the five
last outputs of these circuits and at the output just created. We obtain a circuit
of size n5j and constant depth, with nj the number of links.

(q, t, i) box(p, r) (q, p, 1) (q, p, 2) (p, t, i) p

∨

∧

¬

∨ ∧ ∧ ∧ ∧ ∧
(q, t, i) box(p, r) (q, p, 1) (q, p, 2) (p, t, i) p

Fig. 9. erasing of a unary coad-link

The circuit on Fig. 10, depicts the erasing of the useless components of each
additive box. The part above the mark -2- is realized for all links q, r and i. This
circuit above the mark -3- is realized for all links p. The new value of an edge
or an alive value corresponds to the conjunction of its values at ouputs of these
circuits. We obtain a circuit of size n4j and constant depth, with nj the number
of links.

17



Sg

(r, q, i)

the entire proof net, p: the first vertices and r: the last

stCONN(p, r)
¬

∧

∧

∨

¬

∧

∀q, r, i

initial value

new value←

↑

used ∀
p,
(p, , ),
( , p, )

-1-

-2-

-3-

Fig. 10. erasing of a useless component in a slice

Since the cut between a witness and the modified slice is reduced in a known
result, the following circuit on Fig. 11 depicts elimination of this cut. This circuit
is realized for all links p, q, t, y and v. For all links p and q, the new value of
an edge(p, 0, q, 1) or an edge(p, 0, q, 2) value corresponds to the conjunction of
its values at ouputs of these circuits. For an edge(p, 0, q, 0) value, we realize a
disjunction. We obtain a circuit of size n5j and constant depth, with nj the
number of links.

p q t u v p(�)q(N) t(O)u(•) v(•) (u, v, 0)(u, p, 1)(v, p, 2)(p, q, 1)(p, q, 2) (q, t, i) (t, w, i)

∧ ∧ ∧ ∨ ∨
∀i

∨
∀w, i

¬

∧

¬

∨ ∧ ∧

(u, v, 0) (u, p, 1) (v, p, 2)

Fig. 11. fast cut-elimination of a witness cut to a boolean proof net

The circuit on Fig. 12 allows to check consistency of a slice. It is of size n3j

and constant depth, with nj the number of links.

18



p(N) q(�1) (t, p, 2) (p, q, 0)

∧

∨

¬

∧

∀p, q, t

old value

new value

Fig. 12. check of consistency property

C Some proofs

– Descriptions of proof nets –

The description of a Boolean proof net (the triples defining a pseudo net
introduced in section 3.3) can expressed as following:

Definition 1 (triple(P)). Let P = {Pn}n∈N be a family of Boolean proof nets.
Links are identified by binary numbers. For all n ∈ N, we fix the inputs p1, . . . , pn

of Pn to be identified by O, . . . , bin(n − 1) respectively, and the output to be
identified by bin(n). triple(P) denotes the set of tuples in {1}∗× (W \ {ε})×W 2

(where W is the set of binary words), s.t. for y = 1n:

• 〈y, u, ǫ, ǫ〉, u identifies a link belonging to Pn.
• 〈y, u, s, ǫ〉, s identifies the sort of the link identified by u.
• 〈y, u, v, bin(i)〉, u identifies a link connected by its principal port (or one of

its two principal ports in the case of an axiom) to the port i of the link
identified by v.

Let Pn be a Boolean proof net belonging to the family {Pi}i∈N. We’ll show
that there exists a function f computable in space O(log(n)), which associates
Conf(Pn) to 1n iff. there exists a function g computable in space O(log(n)),
which associate triple(Pn) to 1n. In order to do that, we will use two function h
and h′, both logspace in n, which associate respectively triple(Pn) to Conf(Pn)
and Conf(Pn) to triple(Pn).

For every tuple belonging to its input, h write this tuple, without its last
word, on its ouput, if the last word is 1.

The function h′ handles the links by decreasing order on their identifiers,
after having found the biggest identifier amoung the tuples 〈 , , ǫ, ǫ〉, t. For all
identifier of link i ∈ {0, . . . , t}, if the tuple 〈 , i, ǫ, ǫ〉 is in the input of h′, it copy
out on its output with the fifth word 1, else with 0. It works similarly for the
tuples whose the forth word is ǫ (or none of the four).

Functions h and h′ memorize a constant number of tuples, of identifier of
links and of counters of size logspace in n.

19



– Proof of lemma 1 –

Proof. We don’t want to memorize the output of f on a input w. We have to
notice that at each step of the computation of g on f(w), it’s necessary to read
only one bit of f(w). Thus, it’s sufficient to maintain a counter (on the binary
base) of size O(log(n)) (where n is the size of w), because of the polynomial size
of the output of f . Then, we simulate the computation of g, in space O(log(n)),
on the input f(w) without write it entirely. Each time we need to read a bit, we
use a space O(log(n)) to find it. Hence, we use a space O(log(n)) to compute
g ◦ f . �

– Proof of theorem 6 –

Proof. As in a multiplicative framework, only elimination of ax-cuts cannot
be performed in parallel in a slice of a proof-net built with multiplicative and
additive links. Hence, we’ll show that the sequence ⇒t;⇒ax;⇒a;⇒m decrease
the depth a slice of a proof-net. Let P be a proof-net and sl(P ) one of its
consistent slice.

– Let Q such that sl(P ) ⇒t Q. If the only one cuts of sl(P ) are some cuts
of ax-sequences, they are all removed. Then, the depth of Q is 0 which if
less or equal to the depth of sl(P ). Else, there exist some other cuts in
sl(P ). Let π be any sequentialization of sl(P )). Let {A1, . . . , Ak} (where
k ∈ N), the set of ax-sequences of sl(P ). For all i ∈ {1, . . . , k}, the formulae
(of depth pi) associates to the ports of the axiom which substitute the ax-
sequence Ai are the same than those of any axiom in this ax-sequence. Let
p = max(p1, . . . , pk). After reduction of all the ax-sequences, the depths of
the cut-formulae (which are not between two axioms) in π remain unchanged.
If the maximal depth (q) of cuts (we define the depth of a cut as the depth of
formulae associated to the ports of the links connected by this cut) in sl(P ),
which are not cuts between two axioms, is less than p, then the depth of Q
is q < p = d(sl(P )). Else, the depth of Q is the same than the one of sl(P ):
q ≥ p.

– Let R such that Q⇒Ax R. If the only one cuts of Q are ax-cuts, they are all
removed. Then, the depth of R is 0 which if less than the depth of Q (since
these cuts are between two links whose one is not an axiom, see below).
Else, there exist some other cuts in Q. Let π be any sequentialization of Q.
Let {v1, . . . , vk} (where k ∈ N), the set of axioms which are cut to other
links than an axiom in Q. For all i ∈ {1, . . . , k}, let v1

i and v2
i be the two

principal ports of vi. Let vi cut by its port v1
i to the principal port u0

i of a
link ui (its only one principal port because ui cannot be an axiom). Let wi

the link connected to vi by v2
i . In π, the formula associated to u0

i is the same
than the one associated to v2

i , the dual of the one associated to v1
i . So, they

are the same depth pi. Let p = max(p1, . . . , pk). The elimination of this cut
remove, for all i ∈ {1, . . . , k}, vi and connect wi to ui. So, after elimination
of all the ax-cuts, the depths of cut-formulae (those which are not ax-cuts)
in π remain unchanged. If the maximal depth (q) of cuts in Q, which are not

20



ax-cuts, is less than p, then the depth of R is q < p = d(Q). Else, the depth
of R is the same than the one of Q: q ≥ p.

– R do not contain cuts involving axioms any more. The only one cuts of R
are m-cuts or additive cuts.
• Let S such that R ⇒a S. Let R contain m m-cuts and n additive cuts.

Let π be any sequentialization of R. An additive cut between two additive
links, in a consistent slice of a proof net, whose the formulae associated
to their principal ports in π are Ni(A) and �i(B, C) (i ∈ {1, 2}) is
replaced by a cut between two links whose the formulae associated to
the principal ports connected by the cut in π are A and B or A and
C. The deepest formulae in π (p be the greatest depth) are formulae
associate to m-cuts or formulae F1 ∈ {Ni1(A1), �1(B1, C1)}, . . . , Fk ∈
{Nik

(Ak), �ik
(Bk, Ck)}, where 0 ≤ k ≤ n and ∀j ∈ {1, . . . , k}, ij ∈

{1, 2}. The set of deepest cut-formulae contain now the formulae Ai, Bi

or Ai, Ci, for all i ∈ {1, . . . , k}), of depth p−1, which are cut-formulae. In
π, an additive cut of depth p generate cuts of depth at most p− 1 (since
Ni(A) or �i(B, C) (i ∈ {1, 2}) are formulae of depth d(A) + 1). The
other cuts, of depth q < p, generate cuts of depth at most q− 1 < p− 1.
• Let T such that S ⇒m T . Let π be any sequentialization of S. By

the previous item, the deepest cut-formulae are formulae in π, asso-
ciate to m-cuts. A m-cut between two links whose the formulae asso-
ciate to their principal ports in π are �(

−→
A ) and O(

←−
B ), is replaced by

n cuts between pairs of links whose formulae in π associate to ports
connected by cuts are Ai and Bi, for all i ∈ {1, . . . , n} where n ∈
N. The deepest cut-formulae in π (p be the greatest depth) are F1 ∈
{�k1(A1

1, . . . , A
k1

1 ), Ok1((Ak1

1 )⊥, . . . , (A1
1)

⊥)}, . . . , Fr ∈ {�
kk(A1

r, . . . , A
kr
r ),

O
kr ((Akr

r )⊥, . . . , (A1
r)

⊥)}, where r ∈ N and ∀j ∈ {1, . . . , r}, kj ∈ N.

Then, The deepest cut-formulae are some formulae Aj
i , (A

j
i )

⊥ where
i ∈ {1, . . . , r} and j ∈ {1, . . . , kr}, of depth p − 1. In π, a cut of depth
p generate some cuts of depth at most p − 1. Moreover, there exit at

least one cut at this depth since �(
−→
A ) or O(

←−
B ) (n ∈ N) are formu-

lae of depth max(d(A1), . . . , d(An)) + 1, so there exist a j ∈ {1, . . . , n}
such that Aj = max(d(A1), . . . , d(An)). The other cuts of depth q < p
generate cuts of depth at most q − 1 < p− 1.

�

21


