
Coq as a Metatheory for Nuprl with Bar

Induction

Vincent Rahli and Mark Bickford
http://www.nuprl.org

October 7, 2015

Vincent Rahli Bar Induction October 7, 2015 1/25

http://www.nuprl.org


Overall Story

Luitzen Egbertus Jan Brouwer

Mark Bickford

Robert L. Constable

Vincent Rahli Bar Induction October 7, 2015 2/25



Nuprl in a Nutshell

Similar to Coq and Agda

Extensional Intuitionistic Type Theory for partial functions

Consistency proof in Coq:
https://github.com/vrahli/NuprlInCoq

Cloud based & virtual machines: http://www.nuprl.org

JonPRL: http://www.jonprl.org
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Nuprl Stack
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Howe’s Computational Equality

ď is a simulation relation

Greatest fixpoint of the following relation: t rRs u if whenever
t computes to a value θpbq, then u also computes to a value
θpb1q such that b R b1.

Examples: K ď 1, xK, 1y ď x1, 1y

„ is a bisimulation relation (a „ b “ a ď b ^ b ď a)

Purely by computation:

map(f ,map(g,l)) „ map(f ˝ g,l)

ď and „ are congruences
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Howe’s Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can be cumbersome

„ saves us from having to prove well-formedness

It turned out that many equalities could be stated using „
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Nuprl Types

Based on Martin-Löf’s extensional type theory

Equality: a “ b P T

Dependent product: a:AÑ Bras

Dependent sum: a:Aˆ Bras

Universe: Ui
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Nuprl Types

Less “conventional types”

Partial: A

Disjoint union: A`B

Intersection: Xa:A.Bras

Union: Ya:A.Bras

Subset: ta : A | Brasu

Quotient: T {{E

Domain: Base

Simulation: t1 ď t2

(Void “ 0 ď 1 and Unit “ 0 ď 0)

Bisimulation: t1 „ t2

Image: ImgpA, f q

PER: perpRq
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Nuprl Types

Image type (Nogin & Kopylov)

Subset: ta : A | Brasu fi Imgpa:Aˆ Bras, π1q

Union: Ya:A.Bras fi Imgpa:Aˆ Bras, π2q
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Nuprl Types

PER type (inspired by Allen)

Top “ perpλ , .0 ď 0q

haltsptq “ ‹ ď plet x :“ t in ‹q

A[ B “ Xx :Base.X y :haltspxq.isaxiompx ,A,Bq

T {{E “ perpλx , y .px P T q [ py P T q [ pE x y qq
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Nuprl Types

Squashing

ÓT
tUnit | T u

ImgpT , λ .‹q
perpλx .λy .‹ ď x [ ‹ ď y [ T q

åT T {{True perpλx .λy .x P T [ y P T q

ÛT Top{{T perpλ .λ .T q
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Nuprl Refinements

Nuprl’s proof engine is called a refiner (TB)

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Example of a rule

H $ a:AÑ Bras text λx .bu
BY [lambdaFormation]

H, x : A $ Brxs text bu
H $ A P Ui text ‹u
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Nuprl PER Semantics Implemented in Coq

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Nuprl PER Semantics Implemented in Coq
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The More Inference Rules the Better!

All verified

Expose more of the metatheory

Encode Mathematical knowledge
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Intuitionistic Type Theory

We’ve proved these rules correct using our Coq model:

Brouwer’s Continuity Principle for numbers

ΠF :B Ñ N.Πf :B.åΣn:N.Πg :B.f “NNn g Ñ F pf q “N F pgq

(B “ N
N “ NÑ N)

Bar induction

{ On free choice sequences of closed terms without atoms

{ We can build indexed W types
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Weak Continuity

False in Nuprl (following Escardó and Xu)

ΠF :B Ñ N.Πf :B.Σn:N.Πg :B.f “NNn g Ñ F pf q “N F pgq

Easy in Coq model (almost purely by computation) because it
doesn’t have computational content

ΠF :B Ñ N.Πf :B.ÓΣn:N.Πg :B.f “NNn g Ñ F pf q “N F pgq

Harder in Coq because it has computational content: uses
named exceptions + ν (following Longley’s method)

ΠF :B Ñ N.Πf :B.åΣn:N.Πg :B.f “NNn g Ñ F pf q “N F pgq
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Strong Continuity

Actually what we proved in Coq is essentially

ΠF :B Ñ N.

åΣM :pΠn:N.NNn Ñ N`Unitq.
Πf :B.Σn:N. M n f “N`Unit inlpF pf qq

^Πm:N.islpM m f q Ñ m “N n

which is equivalent to weak continuity because (standard)

AC1,0å ñ (WCPå ðñ SCPå)
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Axiom of Choice

Trivial

Πa:A.Σb:B .P a b ñ Σf :BA.Πa:A.P a f paq

Harder to prove (AC0,0) in Coq: uses the axiom of choice and
free choice sequences

Πa:N.ÓΣb:N.P a b ñ ÓΣf :NN.Πa:N.P a f paq

Non-trivial to prove (AC0,n and AC1,n) in Nuprl

Πa:N.åΣb:B .P a b ñ åΣf :BN.Πa:N.P a f paq

Πa:B.åΣb:B .P a b ñ åΣf :BB.Πa:B.P a f paq
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Uniform Continuity

Follows from the Fan Theorem (every decidable bar is
uniform) and Weak Continuity (standard)

ΠF :C Ñ N.åΣn:N.Πf , g :C.f “2Nn g Ñ F pf q “N F pgq

(C “ 2N)

Following Escardó and Xu:

ΠF :C Ñ N.Σn:N.Πf , g :C.f “2Nn g Ñ F pf q “N F pgq

Vincent Rahli Bar Induction October 7, 2015 20/25



Bar Induction

Fan Theorem follows from Bar Induction on Decidable Bars
(BID)

H $ ÓpX 0 cq
BY [BID]

pdecq H, n : N, s : NNn $ B n s _  B n s

pbarq H, s : NN $ ÓDn : N. B n s

pimpq H, n : N, s : NNn
,m : B n s $ X n s

pindq
H, n : N, s : NNn

, x : p@m : N. X pn ` 1q extps, n,mqq
$ X n s
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Bar Induction

We proved BID for free choice sequences of numbers in Coq
following Dummett’s “standard” classical proof (easy)

We added free choice sequences of numbers to Nuprl’s model:
all Coq functions from N to N

What about sequences of terms?
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Bar Induction

We proved BID for free choice sequences of closed terms
without names (in Coq following Dummett’s “standard”

classical proof)

Harder because we had to turn our terms into a big W type: a
function from N to terms is now a term!

Why without names?

ν picks fresh names and we can’t compute the collection of all
names anymore (still doable I think)
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Law of Excluded Middle

LEM is false in Nuprl (Anand)

ΠP:P.P _  P

Follows from:  Πt:Base.tó _  t ó (call the function magic)
We can prove:
if magicpKq then K else ‹ ď if magicp‹q then K else ‹
We get: ‹ ď K

Squashed version is true in Coq (using LEM in Coq)

ΠP:P.ÓpP _  Pq
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Questions

Can we prove continuity for sequences of terms instead of B?

Can we prove BID/BIM on sequences of terms with atoms?

What does that give us? ­“ proof-theoretic strength?

Can I hope to be able to prove BID in Coq/Agda without
LEM/AC?
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