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Nuprl in a Nutshell

Similar to Coq and Agda )

Extensional Intuitionistic Type Theory for partial functions J

Consistency proof in Coq:
https://github.com/vrahli/NuprlInCoq

Cloud based & virtual machines: http://www.nuprl.org J

JonPRL: http://www. jonprl.org )
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Nuprl Stack

( Refiner J
( Inference rules J

( Allen's PER semantics J

[ Howe's computational equality J

[ An untyped applied lambda-calculus J
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Howe's Computational Equality

< is a simulation relation J

Greatest fixpoint of the following relation: t [R] u if whenever

t computes to a value 0(b), then u also computes to a value
G(b') such that b R b'.
Examples: 1 <1, (L1,1)<(1,1)

~ is a bisimulation relation (a ~b=a<b A b< a) ]

Purely by computation:

map(f,map(g,/)) ~ map(fog,l)

< and ~ are congruences ]
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Howe's Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can be cumbersome

~ saves us from having to prove well-formedness

Vincent Rahli

It turned out that many equalities could be stated using ~ J
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Nuprl Types

Based on Martin-Lof's extensional type theory ]

Equality: a=be T
Dependent product: a:A — BJa]
Dependent sum: a:A x BJa]

Universe: U;
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Nuprl Types

Less “conventional types” J

Partial: A Domain: Base

Disjoint union: A+B Simulation: t; < t,

Intersection: na:A.B|a] (Void =0<1and Unit = 0<0)
Union: ua:A.B|a] Bisimulation: t; ~
Subset: {a: A| B[a]} Image: Img(A, f)

Quotient: T//E PER: per(R)
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Nuprl Types

Image type (Nogin & Kopylov) ]

Subset: {a: A| B[a]} = Img(a:A x Bla], m)

Union: va:A.B[a] = Img(a:A x Bla], m,)
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Nuprl Types

PER type (inspired by Allen) J

Top = per(\,, .0 < 0)
halts(t) = * < (let x :=t in *)
A B = nx:Base. N y:halts(x).isaxiom(x, A, B)

T//E =per(MAx,y.(xe T)m(ye T)m(E x y))
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Nuprl Types

Squashing J
{Unit | T}
T per(Ax Ay < xmx<ynT)
Img(T, A_.*)
1T T//True per(Ax.A\y.xe TrmyeT)
T Top// T per(A_A_T)
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Nuprl Refinements

Nuprl's proof engine is called a refiner (TB)

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Example of a rule

H+ a:A — Bla] |ext Ax.b]
BY [lambdaFormation]
H,x: A+ B[x] |ext b]
H— Ae KJ; [ext *J
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Nuprl PER Semantics Implemented in Coq
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Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Nuprl PER Semantics Implemented in Coq

Models only
a finite number of universes

Coq

1

Universe 2
Universe 3 Universe 3

(universe1) 2T |
K Axiom of functional
Universe 0 e

Agda

s
S

Universe 0 <

~———

Uses
induction + impredicativity

Uses
induction-recursion
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The More Inference Rules the Better!

All verified

Expose more of the metatheory

Encode Mathematical knowledge

Vincent Rahli
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Intuitionistic Type Theory

We’'ve proved these rules correct using our Coq model:

Brouwer's Continuity Principle for numbers J

NFB - NNfB.]XnN.Ng:B.f =y, g — F(f) =n F(g)

(B=NY=N-N)

Bar induction )

2 On free choice sequences of closed terms without atoms

2 We can build indexed W types
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Weak Continuity

False in Nuprl (following Escardé and Xu) ]

NF:B - NNfB.EXnN.Ng:B.f =y, g — F(f) =n F(g)

Easy in Coq model (almost purely by computation) because it
doesn’t have computational content

NFB— NNfB.|XnN.Ng:B.f =y, g — F(f) =y F(g)

Harder in Coq because it has computational content: uses
named exceptions + v (following Longley's method)

NFB - NNfB.|XnN.Ng:B.f =y, g — F(f) =y F(g)
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Strong Continuity

Actually what we proved in Coq is essentially J

NF:B — N.
| ZM:(Nn:N.NY — N+Unit).
NFB.EnN. M nf =ype inl(F(f))
AMmN.is1(M m f) > m =y n

which is equivalent to weak continuity because (standard) ]

ACl,OJ = (WCPJ < SCPJ)
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Axiom of Choice

Trivial )

Na:AXb:B.Pab = Xf:B NaA.P af(a)

Harder to prove (ACop) in Coq: uses the axiom of choice and
free choice sequences

NaN.|ThN.Pab = |Xf:N'.NaN.P af(a)

Non-trivial to prove (ACo , and ACy ,) in Nuprl J

NaN.|Zh:B.Pab = |Zf:BY .NaN.P af(a)
NaB.|Sb:B.P ab — |EFBENaB.P af(a)
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Uniform Continuity

Follows from the Fan Theorem (every decidable bar is
uniform) and Weak Continuity (standard)

NFC— N.|XnN.Nf, g:C.f =y, g — F(f) =n F(g)

(€ =29

Following Escardé and Xu: J

NF.C - N.XnN.Nf, g C.f =m, g — F(f) =x F(g)
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Bar Induction

Fan Theorem follows from Bar Induction on Decidable Bars
(BID) J

H [(X0c)
BY [BID]
(dec) H,n:N,s:NV - Bns v —Bns
(bar) H,s:N¥p |In:N.Bns
(imp) H,n:N,s:NY" m:Bns-Xns
H,n:N,s : NV x:(Vm:N. X (n+1) ext(s,n, m))
(ind) FXns

ind
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Bar Induction

We proved BID for free choice sequences of numbers in Coq
following Dummett's “standard” classical proof (easy)

We added free choice sequences of numbers to Nuprl’s model:
all Coq functions from N to N

What about sequences of terms? J
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Bar Induction

We proved BID for free choice sequences of closed terms
without names (in Coq following Dummett's “standard”
classical proof)

Harder because we had to turn our terms into a big W type: a
function from N to terms is now a term!

Why without names? )

v picks fresh names and we can’t compute the collection of all
names anymore (still doable | think)
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Law of Excluded Middle

LEM is false in Nuprl (Anand) ]

nePP.P v —P

Follows from: —Mt:Base.t| v —t| (call the function magic)

We can prove:
if magic(l) then | else x < if magic(*) then | else
We get: * < L

Squashed version is true in Coq (using LEM in Coq) J

NPP.L(P v —P)
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Questions

Can we prove continuity for sequences of terms instead of 57 J

Can we prove BID/BIM on sequences of terms with atoms? J

What does that give us? = proof-theoretic strength?

LEM/AC?

Vincent Rahli
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