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Abstract:

Distributed programs are known to be extremely difficult to implement, test, ver-

ify, and maintain. This is due in part to the large number of possible unforeseen

interactions among components, and to the difficulty of precisely specifying what

the programs should accomplish in a formal language that is intuitively clear to the

programmers. We discuss here a methodology that has proven itself in building a

state of the art implementation of Multi-Paxos and other distributed protocols used

in a deployed database system. This article focuses on the basic ideas of formal

EventML programming illustrated by implementing a fault-tolerant consensus pro-

tocol and showing how we prove its safety properties with the Nuprl proof assistant.

Keywords: functional programming formal methods formal verification theorem

proving distributed systems fault tolerance event logic event-based programming

1 Introduction

Protocol Specification, Verification, and Synthesis. There is good evidence that appropriate

formal methods can substantially improve the reliability of distributed protocols and that such

methods are especially valuable for this kind of programming because of its intrinsic complexity.

We have invested in this line of work for several years, using constructive logic because it sup-

ports provably correct code synthesis from proofs and because aspects of distributed computing

are essentially constructive: agents make decisions according to some local information, and a

protocol specifies how that information is acquired. “Provably correct” here means that machine

checked proofs guarantee that programs satisfy desired correctness properties.

One reason that distributed systems are especially difficult to code correctly and maintain

is that there are many intricate failure scenarios to consider. Failure scenarios can be hard to

generate and testing them all is not usually possible. Model checkers are often used to verify that

distributed systems are correct [29, 1, 19]. However, only models of the actual code are verified

correct, and such tools may not be able to exhaustively search the space of failure scenarios.

Proof assistants, however, allow one to provide definitive arguments.

We use the EventML language to develop protocols. EventML works synergistically with the

Nuprl proof assistant [12, 2] which is closely related to the Coq [4, 13] proof assistant. Nuprl is

a programing/logical environment based on Constructive Type Theory (CTT) [12, 2], that allows

one to both prove mathematical results, and program and prove properties about these programs.

EventML. EventML is a domain-specific ML-like functional programming language for dis-

tributed protocols based on asynchronous message passing. It allows programming distributed

programs in an event-based style, hence the name “EventML”. The language provides combi-

nators to implement what can be regarded as event recognizers and event handlers. EventML
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is based on two formal models of distributed computing implemented in Nuprl: (1) the Logic

of Events (LoE) [5, 7] to specify and reason about the information flow of distributed program

runs, (2) a General Process Model (GPM) [6] to implement these information flows. The seman-

tic meaning of an EventML program is expressed both by a LoE formula and a GPM program.

Because of this dualism we also refer to EventML programs as constructive specifications.

Currently, EventML docks with Nuprl, but in principle can connect to any prover that imple-

ments LoE and GPM. Because every EventML type is a Nuprl type, docking means that any

Nuprl expression whose type is an EventML type can be imported into an EventML program.

The diagram below shows the interaction between EventML and Nuprl. Once we have ex-

tracted the semantic meaning of an EventML specification in terms of a LoE formula and a GPM

program, we automatically prove that the program satisfies the formula. It remains to interac-

tively prove that the LoE formula satisfies the desired correctness properties.

Computation Model. EventML’s computation model is based on GPM. A process that takes

inputs of type A, and outputs elements of type B, is an element of the following co-recursive

type (the definition of the Nuprl corec type is outside the scope of this paper): corec(λP.(A →
P× Bag(B))+Unit). Unit is a singleton type and + is the disjoint union type. Therefore, a

process is one of two things: a function that given an input of type A, generates a (possibly

empty) bag of outputs of type B, and becomes a possibly different process; or a special value,

which we call halt, that is used to denote a terminated process. Because GPM is implemented

in Nuprl, a process is a Nuprl program (i.e., an expression of Nuprl’s programming language,

an untyped λ -calculus) that can be executed by interpreting it according to the rules of Nuprl’s

computation system.

The Logic of Events. The Logic of Events (LoE) [5, 7], related to Lamport’s notion of causal

order [21], was developed to reason about events occurring in the execution of a distributed

system. LoE has been used among other things to verify consensus protocols [28] and cyber-

physical systems [3]. In the context of this paper, an event is an abstract entity corresponding to

the receipt of a message1; the message is called the primitive information of the event. An event

happens at a specific point in space/time. The space coordinate of an event is called its location,

and the time coordinate is given by a well-founded causal ordering on events that totally orders

all events at the same location. Using LoE one can describe systems in terms of the causal

relations among events and (ultimately) their primitive information.

Event orderings. To reason about a protocol in LoE, we reason about its possible runs. An

event ordering is an abstract representation of one run of a distributed system; it provides a

formal definition of a message sequence diagram as used by systems designers. It is a structure

consisting of: (1) a set of events; (2) a function loc that associates a location with each event;

(3) a function info that associates primitive information with each event; and (4) a well-founded

causal ordering relation, <, on events [21]. We express system properties as predicates on event

1 Events are formally more general than that in the sense that they might correspond to something else than just the receipt of

messages.
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orderings. A system satisfies such a property if every execution satisfies the predicate.

The message sequence diagram on the right depicts a simple event ordering.
L1 L2

`̀ echo`̀
•

e1
`̀ forward`̀ •e2

`̀ ackn`̀
•e3

Event e1 corresponds to the receipt of a message with

header `̀ echo`̀ at location L1. Upon receipt of that `̀ echo`̀

message, L1 forwards it to L2, which causes e2. Upon re-

ceipt of that `̀ forward`̀ message, L2 sends an acknowledgment to L1, which causes e3. Events

e1 and e3 have same location, and e1 happens causally before e2, which happens causally before

e3. We write e1 < e2, e2 < e3, and e1 <loc e3 (e <loc e′ is defined as e < e′ ∧ loc(e) = loc(e′)).

Event observers. In LoE, we specify systems by defining and combining event observers [5].

An event observer is a function that assigns to any event ordering eo and event e in that event

ordering eo, an unordered bag of outputs observed (or produced) at e. For example, the follow-

ing event observer of type Obs(Loc), where Loc is the type of locations, recognizes every event

and observes its location: λeo.λe.{loc(e)}. Event observers can therefore be regarded as com-

binations of event recognizers and event handlers. They effectively partition events into those

they “recognize” by associating values to those events, and those they do not. For example, the

base observer denoted vote’base recognizes the arrival of any message with header `̀ vote`̀

and handles that event by simply returning the content of the message2. We may define another

observer, call it X, which recognizes that, in the context of some protocol, certain `̀ vote`̀ mes-

sages signify that the protocol has completed and will assign to such an event a value that means

“send the ‘done’ message to Y.” X will recognize some but not necessarily all `̀ vote`̀ events;

and the values that it assigns to them differ from the values assigned by vote’base. We specify

systems in LoE and EventML by defining and combining such event observers that appropriately

classify system events.

We reason about event observers in terms of the event observer relation, which relates events,

observers, and observations: we say that the event observer X observes v at event e (in an event

ordering eo), and write v ∈ X(e), if v is a member of the bag (X eo e). For readability, our

notation suppresses eo. X recognizes e when (X eo e) is nonempty, in which case we also say

that e is an X-event.

An EventML specification describes event observers that produce and consume messages

(among other values), and especially, it describes a main observer that specifies the entire in-

formation flow of a system. Main observers output directed messages represented by pairs lo-

cation/message. Given a directed message (l,m), the communication system attempts to deliver

message m to location l. This directed message can be seen as the instruction “send message m

to location l”. This paper assumes that messages are delivered reliably but asynchronously, and

may be delivered more than once.

Automation. Formally verifying distributed protocols is not trivial and can be time consuming.

However, because we are using a tactic-based proof assistant in the style of LCF [18], there is

much room for automation. We have built two main automation tools to assist us in proving

properties of distributed systems.

From an EventML specification we automatically generate an inductive logical form (ILF),

a first order formula that characterizes the observations made by the main observer in terms of

the event observer relation. It characterizes the response to any event e in terms of observations

2 It associates the event with a singleton bag whose value is the message body.
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made at some causally prior event e′ < e. ILFs are the heart of our verification method, providing

a powerful way to prove program properties by induction on causal order.

In addition, we have automated some patterns of reasoning on state machines, because typical

specifications are composed of several small state machines.

Contributions. This paper introduces basic ideas of EventML, which implements a program-

ming paradigm in which programmers can flexibly use proof assistants to develop verified dis-

tributed programs. We show how EventML can be used to (1) define a non-trivial fault-tolerant

consensus protocol in Sec. 2, (2) prove the safety properties of this protocol using automation

tools in Sec. 3, and (3) generate a verified implementation in Sec. 4. Even though we illustrate

our methodology on a simple consensus protocol, we have successfully used this methodol-

ogy to implement industrial strength fault-tolerant distributed protocols such as Multi-Paxos.

See http://nuprl.org/KB/show.php?ID=709 for more details.

2 A Specification of 2/3 Consensus

Consider the following problem: A system has been replicated for fault tolerance. It responds to

commands identified by values in some type Cmd, a parameter of the specification. Commands

are issued to any of the system replicas, which must come to consensus on the order in which

those commands are to be performed, so that all replicas process commands in the same order.

Replicas may fail.3 We assume that all failures are crash failures, that is, a failed replica ceases

all communication with its surroundings. The 2/3 consensus protocol [8] tolerates up to F fail-

ures (another parameter of the specification) by using 3∗F+1 replicas. (An appealing feature of

the protocol is that with a small change, and using 5∗F+1 replicas, it can tolerate Byzantine fail-

ures.) Input events communicate proposals, which consist of slot number/command pairs. The

slot numbers are modeled by integers: (n,c) proposes that command c be the nth one performed.

The protocol is intended to decide which proposals to accept, and to broadcast those decisions to

clients (whose locations are also a parameter of the specification). Each copy of the replicated

system contains a module that carries out the consensus negotiations. To save space, this paper

describes only those modules (which we continue to call Replicas). An account of how these

consensus decisions are used may be found in the description of the Paxos protocol [30].

2.1 A Top-Down Look at the Protocol

This section shows how EventML can organize a top-down description of the protocol, decom-

posing it to a level at which our remaining task is to define a few event observers that act like state

machines. Sec. 2.2 describes one of those state machines, which performs the key computation

used to detect consensus. Sec. 2.3 shows how EventML defines an event observer to accomplish

that. Figures 1 and 2 provide the full EventML specification.

We begin by describing a structure common to many consensus protocols: Each slot n of an

array of commands gets filled whenever a quorum of agents reach consensus on which command

to place in n. Decisions result from holding elections, and we spawn a separate process to conduct

each one. In this case, for each slot number n, we hold an election to decide which proposals

of form (n, ) to accept. The tally from any particular ballot may be indecisive, so additional

rounds of balloting will be spawned as needed. The crucial decisions are when to begin a new

round of balloting, what constraints participants must observe in their successive votes, and how

3 It follows from the FLP impossibility result [14] that consensus might never be reached.
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Figure 1 2/3 consensus: Part 1
s p e c i f i c a t i o n t w o t h i r d s

(∗ ============ Parameters ============ ∗)

parameter Cmd, cmdeq : Type ∗ Cmd Deq (∗ Command type w i t h e q u a l i t y dec ider cmdeq ∗)

parameter F : I n t (∗ max number of f a i l u r e s ∗)

parameter reps : Loc Bag (∗ l o c a t i o n s of (3 ∗ F + 1) r e p l i c a s ∗)

parameter c l i e n t s : Loc Bag (∗ l o c a t i o n s of the c l i e n t s to be n o t i f i e d ∗)

(∗ ============ Imported Nuprl dec l a ra t i ons ============ ∗)

import l eng t h poss−maj l i s t−d i f f deq−member from−upto

(∗ ============ Type d e f i n i t i o n s ============ ∗)

type SlotNum = I n t type RoundNum = I n t

type Proposal = SlotNum ∗ Cmd type VotingRound = SlotNum ∗ RoundNum

type B a l l o t = VotingRound ∗ Cmd type Vote = B a l l o t ∗ Loc

(∗ ============ I n t e r f a c e ============ ∗)

i npu t propose : Proposal output n o t i f y : Proposal

i n t e r n a l vote : Vote i n t e r n a l decided : Proposal i n t e r n a l r e t r y : B a l l o t

(∗ ============ Quorum : a s t a t e machine ============ ∗)

(∗ −− f i l t e r −− ∗)

l e t new vote ( n , r ) ( ( ( n ’ , r ’ ) , cmd) , sender ) (cmds , l ocs ) =

( n , r ) = ( n ’ , r ’ ) & ! ( deq−member ( op =) sender l ocs ) ; ;

(∗ −− update −− ∗)

l e t upd quorum ( n , r ) l oc ( ( nr , c ) , sndr ) (cmds , l ocs ) =

i f new vote ( n , r ) ( ( nr , c ) , sndr ) (cmds , l ocs ) then ( c . cmds , sndr . l ocs ) e lse (cmds , l ocs ) ; ;

(∗ −− output −− ∗)

l e t roundout l oc ( ( ( n , r ) , cmd) , sender ) ( cmds , l ocs ) =

i f l eng t h cmds = 2 ∗ F then l e t ( k , cmd’ ) = poss−maj cmdeq (cmd. cmds) cmd i n

i f k = 2 ∗ F + 1 then decided ’bcast reps ( n , cmd’ )

e lse { r e t r y ’ s e n d l oc ( ( n , r +1) , cmd’ ) }
else {} ; ;

l e t when quorum ( n , r ) l oc v t s t a t e =

i f new vote ( n , r ) v t s t a t e then roundout l oc v t s t a t e e lse {} ; ;

(∗ −− s t a t e machine −− ∗)

observer QuorumState ( n , r ) = Memory(\ l oc . ( [ ] , [ ] ) , upd quorum ( n , r ) , vote ’base ) ; ;

observer Quorum ( n , r ) = ( when quorum ( n , r ) ) o ( vote’base , QuorumState ( n , r ) ) ; ;

to detect that consensus has been achieved (complicated by the fact that multiple rounds in the

same election may be occurring simultaneously).

Interface. An input event to the protocol is the arrival of a message with header `̀ propose`̀

whose body is a proposal—i.e., a value of type:

type Proposal = I n t ∗ Cmd

The type of commands is a parameter of the specification:

parameter Cmd, cmdeq : Type ∗ Cmd Deq

One subtlety: The protocol requires the ability to determine whether two values of Cmd are

equal. So we require an additional parameter, an “equality decider”—here called cmdeq—able

to perform that computation. The inputs to the protocol are messages with header `̀ propose`̀

and body of type Proposal

i npu t propose : Proposal

This declaration implicitly defines the base observer propose’base that detects these input

events and observes their data.

Outputs of the protocol are directed messages with header `̀ notify`̀ . The data component of

an output contains a Proposal value that has been accepted.

output n o t i f y : Proposal

This declaration does not introduce a base observer recognizing the arrival of `̀ notify`̀ mes-

sages, because those events occur outside our system. However, it implicitly declares the func-

tions notify’send and notify’bcast for creating directed messages. If m is the `̀ notify`̀
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Figure 2 2/3 consensus: part 2
(∗ ============ Round ============ ∗)

observer Round ( ( n , r ) , c ) =

Output (\ l oc . vo t e ’ bcas t reps ( ( ( n , r ) , c ) , l oc ) ) | | Once( Quorum ( n , r ) ) ; ;

(∗ ============ NewRounds: a s t a t e machine ============ ∗)

(∗ −− i npu t s −− ∗)

observer RoundInfo = r e t r y ’ b a s e | | ( (\ ( ( ( n , r ) , c ) , s ) .{ ( ( n , r ) , c )} ) o vote ’base ) ; ;

(∗ −− update −− ∗)

l e t upd round n l oc ( (m, r ’ ) , cmd) r = i f n = m & r < r ’ then r ’ e lse r ; ;

(∗ −− output −− ∗)

l e t when new round n l oc ( (m, r ’ ) , cmd) r = i f n = m & r < r ’ then { ( (m, r ’ ) , cmd)} else {} ; ;

(∗ −− s t a t e machine −− ∗)

observer NewRoundsState n = Memory(\ l oc . 0 , upd round n , RoundInfo ) ; ;

observer NewRounds n = ( when new round n ) o ( RoundInfo , NewRoundsState n ) ; ;

(∗ ============ Voter ============ ∗)

l e t dec i s i on n l oc ( n ’ , c ) = i f n = n ’ then n o t i f y ’ b c a s t c l i e n t s ( n , c ) e lse {} ; ;

observer N o t i f y n = Once ( ( dec i s i on n ) o decided’base ) ; ;

observer Rounds ( n , cmd) = Round ( ( n , 0 ) , cmd) | | (NewRounds n >>= Round ) ; ;

observer Voter ( n , cmd) = ( Rounds ( n ,cmd) u n t i l ( N o t i f y n ) ) | | ( N o t i f y n ) ; ;

(∗ ============ NewVoters : a s t a t e machine ============ ∗)

(∗ −− i npu t s −− ∗)

observer Proposal = propose’base | | ( (\ ( ( ( n , r ) , c ) , s ) .{ ( n , c )} ) o vote ’base ) ; ;

(∗ −− f i l t e r −− ∗)

l e t new proposal ( n ,cmd) (max, missing ) = n > max or deq−member ( op =) n missing ; ;

(∗ −− update −− ∗)

l e t upd rep l i ca ( n , cmd) (max , missing ) =

i f new proposal ( n , cmd) (max , missing ) then

i f n > max then ( n , missing ++ ( from−upto (max + 1) n ) )

e lse (max , l i s t−d i f f ( op =) missing [ n ] )

e lse (max, missing ) ; ;

(∗ −− output −− ∗)

l e t out proposal l oc ( n , cmd) s t a t e = i f new proposal ( n , cmd) s t a t e then {(n , cmd)} else {} ; ;

(∗ −− s t a t e machine −− ∗)

observer Repl i caState = Memory(\ l oc . ( 0 , [ ] ) , upd rep l i ca , Proposal ) ; ;

observer NewVoters = out proposal o ( Proposal , Repl i caState ) ; ;

(∗ ============ Repl i ca & Main program ============ ∗)

observer Repl i ca = NewVoters >>= Voter ; ; main SC where SC = Repl i ca @ reps

message with body p, then the expression (notify’send l p) is the directed message (l,m)
instructing that m be sent to l; and the expression (notify’bcast {l1, l2, . . .} p) is the bag

{(l1,m),(l2,m), . . .} of such instructions.

Typically, the complete interface of a system is defined in terms of its input messages, its out-

put messages, and its internal messages, i.e., messages that can only be produced and consumed

by the participants of the system. The internal messages exchanged by the participants of the

protocol presented in this section are as follows: `̀ vote`̀ messages, by which the replicas cast

their votes; `̀ decided`̀ messages, which inform replicas that consensus has been detected on a

particular proposal; and `̀ retry`̀ messages, which are described below.

Replicas. To characterize top-level agents in the protocol we will define the event observer

Replica. The main program, SC, executes the protocol:

main SC where SC = Repl i ca @ reps

The bag of locations reps, another parameter of the specification, denotes the locations at which

the replicas will execute. We may think of SC as the restriction of Replica to an observer that

responds only to events at the locations in reps, or as the result of installing an “instance” of

Replica at each of those locations. SC can be implemented by a finite number of instances,

while Replica cannot because it responds to events at all possible locations.

For each n, the protocol conducts a separate election to vote on proposals for the nth command.

Replica spawns subprocesses that cast votes in these elections and identify the winners. The
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spawning (delegation) operator “_>>=_” is an EventML primitive which is used by processes to

start sub-processes:4

observer Repl i ca = NewVoters >>= Voter

The event observer NewVoters decides when to spawn a new voting process. Voter is a

higher-order function; the values it returns are event observers that do the voting. When some

NewVoters-event e occurs and v ∈ NewVoters(e), Replica spawns a local instance of the

observer Voter(v). By local instance we mean this: each subprocess spawned at a NewVoters-

event e at location loc acts only at loc and can only react to messages arriving at loc after e. For

any e there will be at most one v such that v ∈ NewVoters(e). So a NewVoters-event spawns

only one subprocess. (Though it is not required, we typically apply delegation only to such

“singled-valued” observers.)

A note on terminology: SC requires several higher-order functions, such as Voter, that return

event observers. For convenience we will use “a Voter observer” or “a Voter” as a shorthand

for “an event observer returned by Voter.”

State machines. Informally, we will call an observer a state machine if it defines a distinct state

machine at each location. We will say that it reacts to an event if it recognizes the event or if the

event can cause its internal state to change.

NewVoters is a state machine. It reacts to `̀ proposal`̀ (from outside the system) and `̀ vote`̀

messages (from inside), and it filters those events. At any location loc, NewVoters recognizes

the first time that loc has received a proposal or vote about the nth command and, when it does,

outputs (a singleton bag containing) its value. If the value of such an event is (n,c), the ef-

fect of (NewVoters >>= Voter) is therefore to spawn a local instance of the event observer

Voter(n,c) at location loc. The initialization data (n,c) instructs that Voter to vote for (n,c)
on the first round.

Voter. Voter observers cast votes and tally the votes they receive to determine whether some

proposal has achieved consensus. A Voter will not announce a consensus for proposal (n,c)
unless it has received 2∗F+1 votes for (n,c) from 2∗F+1 different replicas.

We cannot guarantee that any particular poll of the Voter observers will achieve such a result.

Accordingly, for each n we allow arbitrarily many do-over polls: Successive polls for slot number

n are assigned consecutive integers called round numbers. Voting rounds (or just rounds for

short) are pairs of the form (n,r)—(slot number/round number). Ballots are pairs of the form

((n,r),c)—(voting round/command). Thus, a Voter casts votes for a particular proposal in a

particular round. Votes are pairs of the form (((n,r),c), loc)—(ballot/location). A voter includes

its location in each vote. By arranging that replicas ignore duplicate votes, we guarantee that the

protocol works even if messages get duplicated.

A Replica spawns Voter subprocesses to conduct separate elections for each slot number.

A Rounds observer uses essentially the same idiom to spawn Round observers that handle indi-

vidual balloting rounds within a single election. A Voter is, essentially, a Rounds process that

runs until its election has been decided:

observer Rounds ( n , c ) = Round ( ( n , 0 ) , c ) | | (NewRounds n >>= Round ) ; ;

observer Voter ( n , c ) = ( Rounds ( n , c ) u n t i l ( N o t i f y n ) ) | | ( N o t i f y n ) ; ;

4 We use the symbol “>>=” because the event observers have the structure of a monad having this combinator as its bind operation.
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where “_||_” performs parallel composition. For any event observers A and B, the observer

(A until B) acts like A until a B-event occurs, at which point it terminates. We use this to

terminate any voting for n once consensus has been reached on n. Rounds, Round, NewRounds,

and Notify are also functions that return event observers.

A local instance of Round((n,r),c) conducts the voting for round (n,r) at a particular location.

By definition it will cast its vote in round (n,r) for (n,c). Therefore, the first component of

Rounds(n,c) ensures that Voter(n,c) votes for proposal (n,c) in round (n,0); other instances

of Round, spawned by the second component of Rounds, may cast votes for other proposals in

later rounds. Round (detailed in Sec. 2.2) inputs `̀ vote`̀ messages and outputs directed messages

of various kinds: `̀ vote`̀ ; `̀ decided`̀ ; and `̀ retry`̀ , an internal message calling for a new round

when a poll does not achieve consensus.

NewRounds(n) recognizes events that call for new rounds of voting for the nth command.

Thus (NewRounds n >>= Round) spawns instances of Round as required.

Notify(n) handles `̀ decided`̀ message with data (n,c) indicating that consensus has been

reached about the nth command, by sending notifications to the clients of the system indicating

that slot n has been filled with command c.

2.2 Detecting Consensus

Round((n,r),c) has two components:

observer Round ( ( n , r ) , c ) = Output (\ l oc . vo t e ’ bcas t reps ( ( ( n , r ) , c ) , l oc ) )

| | Once( Quorum ( n , r ) )

The first component multicasts a vote for (n,c) in round (n,r) to all locations in reps and then

terminates. The second executes the consensus-detecting process, Quorum(n,r), and terminates

once it has either announced a consensus or called for a new round. Once(A) is an observer that

acts like A but terminates after the first A-event. Because there is at most one Quorum(n,r) event

at any location the use of Once is logically redundant; but effects an optimization that guarantees

that a process is cleaned up once it has produced an output.

Quorum(n,r) produces an output as soon as it has received votes in round (n,r) from 2∗F+1

distinct locations. If all of them are votes for the same proposal, call it (n,d), it decides that (n,d)
has achieved consensus and sends appropriate `̀ decided`̀ messages (which will be handled by

Notify observers which will send `̀ notify`̀ messages). If the received votes are not unanimous

then it is possible that, however many more votes are tallied, no proposal will receive 2∗F+ 1

votes on this round. (Note that if F failures have occurred, no more votes will arrive, so Quorum

cannot wait for more votes or it might become permanently stuck.) In that case it sends a `̀ retry`̀

message to call for round (n,r+1). That `̀ retry`̀ message also tells the Voter that spawned the

Quorum how to vote in the new round. If some command d received a majority of the 2∗F+1

votes, the Voter must vote for (n,d). (If no command gets a majority, how it votes does not

matter to the logical correctness of the protocol.)

It is possible that a round will occur in which a Quorum(n, i) at one location detects a consen-

sus and a Quorum(n, j) at another location calls for a new round of voting. As a result, multiple

notifications may be sent about n, in a single round or in different rounds. Sec. 3 shows that, for

any n, all notifications about the nth command will agree on which command has been chosen.
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2.3 Implementing Quorum

Quorum(n,r) is a Mealy state machine: in response to inputs it may change state and pro-

duce outputs. Let us factor its definition. We first define QuorumState(n,r), a Moore ma-

chine whose state is the collection of votes for round (n,r) that the process has received thus

far. Quorum(n,r) observes QuorumState(n,r) and issues directed messages as appropriate.

EventML provides primitives for defining Moore machines. We use the primitive Memory to

define QuorumState:

observer QuorumState ( n , r ) = Memory(\ l oc . ( [ ] , [ ] ) , upd quorum ( n , r ) , vote ’base )

A QuorumState(n,r) state is a pair of lists (cmds,locs), where cmds is a list of commands

and locs is a list of locations. The state ([c1;c2; . . .], [l1; l2; . . .]) means that, in round (n,r), the

state machine has thus far received a vote from l1 for c1, a vote from l2 for c2, etc. By maintaining

that location list in addition to the command list, QuorumState can ignore duplicates; thus, as

mentioned above, we need not assume that messages are delivered only once. In the definition

of QuorumState, the arguments to Memory have the following meanings: (a) The expression

(\loc.([],[])) assigns the initial state to each location, i.e., a pair of empty lists. (b) The

transition function upd_quorum(n,r) computes the next state from the location and value of

the input event and the current state. If an input vote arrives for c from l, and l is not listed in

the current state, then upd_quorum adds c and l to its state, otherwise the current state stays

unchanged. (c) vote’base recognizes input `̀ vote`̀ events and supplies their values.

Memory is defined so that QuorumStatewill recognize every `̀ vote`̀ event, update its internal

state, and then return (a singleton bag containing) the value of the internal state before performing

that update. Had it been more convenient that QuorumState return the value of the internal state

after the update we would have used the primitive combinator State instead of Memory.

We define the observer Quorum from QuorumState using the primitive composition combi-

nator (f o (X1,...,Xn)), which combines the function f with the event observers X1, . . . ,

Xn. This combinator behaves as follows: for all i ∈ {1, . . . ,n}, if Xi observes xi at event e then

the event observer (f o (X1,...,Xn)) observes each value of the bag (f loc(e) x1 ... xn)
at event e. Quorum is defined as follows:

observer Quorum ( n , r ) = ( when quorum ( n , r ) ) o ( vote’base , QuorumState ( n , r ) )

This computes the response of Quorum(n,r) to event e by applying when_quorum(n,r) to

loc(e), and to the values observed at e by vote’base and QuorumState(n,r). Note that

Quorum(n,r) observes only votes, but not all of them since when_quorum(n,r) sometimes

returns an empty bag. If an input vote arrives for c from l, and l is listed in the current state,

then when_quorum does not output anything. Otherwise, it calls roundout, which requires the

most complex definition:

l e t roundout l oc ( ( ( n , r ) , c ) , sender ) ( cmds , l ocs ) =
i f l eng t h cmds = 2 ∗ F then l e t ( k , c ’ ) = poss−maj cmdeq ( c . cmds) c i n

i f k = 2 ∗ F + 1 then decided ’bcast reps ( n , c ’ )

e lse { r e t r y ’ s e n d l oc ( ( n , r +1) , c ’ ) }
else {}

The first argument loc is the location of the Quorum process calling roundout on receipt of

a vote; the second argument (((n,r),c),sender) matches the data from the input vote; and

the third argument (cmds,locs) matches the state when the input arrives. Therefore c.cmds,

9
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where the dot is the cons operation on lists, is the value of the command list that results from

processing the input.

We can now understand the outer conditional: If its condition is false then, even after the input

event, we have not seen 2 ∗F+ 1 votes; so Quorum returns an empty bag, and the input event

is not a Quorum(n,r)-event. Suppose now that the condition is true and consider the inner

conditional.

The poss-maj function, imported from EventML’s library (a snapshot of Nuprl’s library),

implements the Boyer-Moore majority vote algorithm. The pair (k,c’) satisfies the following

property: If there is a majority entry in the list c.cmds, c’ is its value and k is the number of

times c’ occurs in that list. The condition (k = 2 * F + 1) therefore tests whether the vote is

unanimous. If so, the function returns instructions that the choice of c’ be broadcast in appro-

priate `̀ decided`̀ messages; if not, it returns the instruction to send a `̀ retry`̀ message. Recall

that the declaration of `̀ retry`̀ messages introduces the operation retry’send, for construct-

ing directed messages. Therefore, retry’send loc ((n,r+1),c’) is the instruction to send

to loc a `̀ retry`̀ message with body ((n,r+1),c’). So Quorum sends a message to its own

location, which will be observed by NewRounds, which will spawn the round (n,r+1). The

message data directs the spawned instance of Round to vote for c’ in the new round.

3 The Safety Properties of 2/3 Consensus

From SC, our EventML specification of the 2/3 consensus protocol, we generate a LoE specifi-

cation and a GPM program that express SC’s semantic meaning in our two models of distributed

computing. We verify SC’s correctness using the LoE specification, and we execute it using the

GPM program. This section describes the formal verification, in the Nuprl proof assistant, of

this protocol using the LoE specification, and Sec. 4 below describes the process of generating

the GPM program and automatically verifying that it implements the LoE specification.

3.1 Agreement and Validity

The basic safety properties of any consensus protocol are agreement and validity. Both these

properties have been formally proved by induction on the causal order of events in Nuprl for

the 2/3 consensus protocol of Sec. 2. We state them in terms of notifications. Recall that system

properties are predicates on event orderings; we must prove that the predicates are true of all pos-

sible runs of the system consistent with the SC specification5 . Agreement says that notifications

never contradict one another:

∀e1,e2 : E. ∀l1, l2 : Loc. ∀n : Z. ∀c1,c2 : Cmd.
(notify’send l1 (n,c1)) ∈SC(e1) ∧ (notify’send l2 (n,c2)) ∈SC(e2) ⇒ c1 = c2

Validity says that any proposal decided on must be one that was proposed:

∀e : E. ∀l : Loc. ∀v : Proposal.
(notify’send l v) ∈SC(e) ⇒ ↓∃e′ : E. e′ < e ∧ v ∈propose’base(e′)

One subtlety: The reader can think of ↓∃ as a classical existential. The ↓ type operator, called

“squash”, enforces proof erasure, which is necessary here because, generally, there is no con-

structive way to pinpoint the exact `̀ propose`̀ event that led to a notification being sent. For

example, there might have been two such proposals sent, and once we receive them, we have no

way to distinguish between them if the content of these messages is identical.

5 The formal statements of these properties contain a universally quantified variable that the notation suppresses: eo, denoting an

event ordering.
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3.2 Assumptions

For every distributed system we assume that every internal or output message received must have

been sent by one of the agents of the system. Formally, we make a separate assumption for each

base observer that observes an internal or an output message. For example, if v∈ vote’base(e),
and e occurs at location loc, there must exist some e′ < e such that (vote’send loc v) ∈ SC(e′).
We also assume that reps is a bag of size 3∗F+1 without repetitions.

3.3 Automation

We have developed two automation tools that help us prove properties of distributed systems.

One is a rewriting tool that consists in using the ILFs mentioned in Sec. 1 in order to prove

properties by induction on causal order. The other one consists in the automation of standard

patterns of reasoning on state machines.

Inductive Logical Form. ILFs are declarative logical statements that precisely answer questions

such as: “What led the process at location l1 to send a vote to the process at location l2?”, in

terms of input messages’ content and state machines’ states. ILFs are automatically generated

from main observers using logical simplifications, and characterizations of the LoE combinators.

For example, one of the simplest but subtle such characterizations is the one for “_||_”: v ∈
X||Y(e) ⇐⇒ ↓(v ∈ X(e) ∨ v ∈ Y(e)). This says that v is produced by X||Y iff it is produced

by either of its components. The ↓, which enforces proof erasure, is needed because just by

knowing that X||Y produced v, we cannot in general know whether v was produced by X or Y .

For example, if identical replicas run in parallel, and receive the same inputs, then there is no

way to distinguish between their outputs if they do not label them with different tags.

Given a main observer X, we wrote a program that starts with a formula of the form v ∈ X(e),
and keeps on rewriting it using equivalences such as the one presented above, to finally generate

a formula of the form v ∈ X(e)⇐⇒ C, where C is a complete declarative characterization of X’s

outputs. In addition, our program also applies various logical simplifications to C. Finally, we

have built a proof tactic that automatically proves such double implications.

An ILF provides a characterization of all the messages sent by a system. Because it is of-

ten useful to get these characterizations for specific kinds of messages, we also generate ILF

instances for all the kinds of messages that the system outputs.

Fig. 3 shows the ILF instance for `̀ vote`̀ messages as generated by Nuprl. The details of

this formula are not critical for understanding our methodology. However, let us explain how

it characterizes the sending of `̀ vote`̀ messages. This formula says that a vote of the form

<<n,r>,c>,sender> (< , > is Nuprl’s pair constructor) is sent by SC at event e to location i (see

box 1) iff: (box 2): e happens at a replica location, which we call R; (box 3): i is also a replica

location; (box 4): there exists a proposal <n’,c’> that was received by R in a `̀ propose`̀ or `̀ vote`̀

message at a prior event e’; (box 5): <n’,r’> is such that n’ has never been received by R prior to

e’ (there is no important distinction between ReplicaStateFun and ReplicaState, which

maintains the list of proposed slot numbers); (box 6): <n’,r’> is such that no decision has been

made about n’ between e’ and e; finally, (box 7): either <n,c> is <n’,c’> and is being voted for

at the initial round r=0 in response to the `̀ propose`̀ or `̀ vote`̀ message mentioned above (see

box 4) that led to a new Voting process being spawned; (box 8): or <n,c> comes from a `̀ retry`̀

or `̀ vote`̀ message, and r is not the initial round, i.e., either some replica believed that consensus

could not have been reached at round r-1 (in case of a `̀ retry`̀ ), or R was still working on a

11
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Figure 3 ILF instance for `̀ vote`̀ messages
∀[Cmd:{T:Type| valueall-type(T)}]. ∀[clients,reps:bag(Id)]. ∀[cmdeq:EqDecider(Cmd)]. ∀[F:Z].
∀[f:headers_type{i:l}(Cmd)]. ∀[es:EO]. ∀[e:E]. ∀[i,sender:Id]. ∀[d,n,r:Z]. ∀[v:Cmd].

(<d, i, make-Msg(‘‘vote‘‘;<<<n, r>, c>, sender>)> ∈ main(Cmd;clients;cmdeq;F;reps;f)(e)
⇐⇒ loc(e) ↓∈ reps ∧ i ↓∈ reps ∧ (d = 0)

∧ (↓∃n’:Z. ∃c’:Cmd. ∃e’:{e’:E| e’ ≤loc e }.
((((header(e’) = ‘‘propose‘‘) ∧ <n’, c’> = body(e’))
∨ (has-es-info-type(es;e’;f;Z × Z × Cmd × Id)

∧ (header(e’) = ‘‘vote‘‘)
∧ (n’ = (fst(fst(fst(msgval(e’))))))
∧ (c’ = (snd(fst(msgval(e’)))))))

∧ (((fst(ReplicaStateFun(Cmd;f;es;e’))) < n’)
∨ (n’ ∈ snd(ReplicaStateFun(Cmd;f;es;e’))))

∧ (no Notify(Cmd;clients;f) n’ between e’ and e)
∧ (((<<<n, r>, c>, sender> = <<<n’, 0>, c’>, loc(e)>) ∧ (e = e’))

∨ (∃r’:Z. ∃c’’:Cmd. ((<<<n, r>, c>, sender> = <<<n’, r’>, c’’>, loc(e)>)
∧ (∃e1:{e1:E| e1 ≤loc e }

((((header(e1) = ‘‘retry‘‘) ∧ <<n’, r’>, c’’> = body(e1))
∨ (has-es-info-type(es.e’;e1;f;Z × Z × Cmd × Id)

∧ (header(e1) = ‘‘vote‘‘)
∧ (n’ = (fst(fst(fst(msgval(e1))))))
∧ (r’ = (snd(fst(fst(msgval(e1))))))
∧ (c’’ = (snd(fst(msgval(e1)))))))

∧ (NewRoundsStateFun(Cmd;f;n’;es.e’;e1) < r’) ∧ (e = e1)))))))))

1
2 3

4

5

6
7

8

smaller round number when it received r (in case of a `̀ vote`̀ ), and is now voting at round r.

Using such formulas we can easily trace back the outputs of a distributed system to the states

of its state machines, and to its inputs. For example, to prove SC’s validity property we start from

the characterization of `̀ notify`̀ messages and trace these messages back to `̀ proposals`̀ using

the various ILF instances.

State Machine Properties. As mentioned in Sec. 2.3, one can define Moore machines in

EventML using the Memory and State keywords. Reasoning about such state machines often

turns out to be a large part of the verification effort of a distributed program’s correctness. There-

fore, our system provides some automation to prove four kinds of local properties of Memory and

State state machines, called: invariant, ordering, progress, and memory.

Informally, a state machine invariant is a unary property about all possible states of the state

machine. A state machine ordering property is a binary property about all pairs of states ordered

in time. A state machine progress property w.r.t. some predicate P is a binary property about

all pairs of states ordered in time, such that P is true about at least one of the transitions made

between the two states, i.e., such that some progress characterized by P has been made between

the two states. A state machine memory property is a ternary property between an input, the

current state of the machine at the time it received this input, and a later state. Memory properties

are used to specify that state machines keep track of some parts of their inputs in their states.

We have proved in Nuprl, by induction on causal order, that Memory and State state machines

satisfy each of these properties if, among other things, they satisfy some transition property

regarding consecutive states (in the case of invariants, a base case is also necessary). Therefore,

to prove that a state machine satisfies an instance of one of these four properties, we simply have

to instantiate the corresponding general lemma and prove the simpler transition property.

We have developed an annotation language to state such properties in EventML, as well as

general Nuprl tactics that try to prove these properties automatically (and often succeed) using

logical simplifications and simple reasoners on lists, integers, etc. We illustrate invariants using

QuorumState (the other properties are described in a longer version of this paper [27]): an in-

variant of a QuorumState state of the form (cmds,locs) is that locs has no repeats and same

length as cmds. We call that invariant quorum_inv, which we state in EventML as follows:
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import no repeats l eng t h
i n v a r i a n t quorum inv on (cmds , l ocs ) i n ( QuorumState n i )

== no repeats : : Loc l ocs /\ l eng t h ( cmds) = l eng t h ( l ocs ) ; ;

The Nuprl tactic we have designed tries to automatically prove this statement by unfolding

QuorumState’s definition to a Memory observer and by instantiating the corresponding general

lemma. It (mainly) remains to prove that the base and induction properties are satisfied, which are

trivial to prove in this case. Because we have already proved the general principle by induction

on causal order, the tactic does not have to use induction on causal order to prove quorum_inv.

3.4 Proof Effort

Thanks to our automation tools and to the rich library of definitions, facts, and proof tactics

about LoE and GPM that we have developed over the years, we have specified 2/3 consensus and

have proved its two safety properties in Nuprl in merely two days. Proving these two properties

involved: automatically generating and proving 8 state machine properties; automatically gener-

ating and proving 1 ILF and 4 instances of that ILF; and interactively proving 8 other lemmas (3

of them being trivial, and therefore candidates for future automation).

4 Correct-by-Construction Program Generation

As mentioned in Sec. 1, the semantic meaning of an EventML program is both a LoE event

observer and a GPM program. We carry out our correctness proofs on the LoE description

of the main event observer. To trust the program we run, we prove that the GPM program

implements that LoE description, i.e., that it outputs exactly the same observations. Given an

EventML specification, proving that the corresponding GPM program satisfies the corresponding

LoE specification is trivial: For each EventML combinator C, there exists a corresponding LoE

combinator LC and a corresponding GPM combinator PC which provably implements LC.
For example, let X1 and X2 be event observers of type T , implementable by pr1 and pr2,

respectively. The LoE parallel combinator X1||X2 is defined as λeo.λe.(X1 eo e) + (X2 eo e),
where + is the append operation on bags. The GPM parallel combinator pr1||pr2 is defined as
follows (for simplicity we use the same symbol as for the LoE combinators):

λ l.fix













λ R.λ s.let p1,p2 = s in

if halted(p1)∧b halted(p2) then halt

else run





λ m.let p′1,out1 = p1(m) in
let p′2,out2 = p2(m) in
(R (p′1,p

′
2),out1 + out2)

















(pr1 l,pr2 l)

This function takes a location l and returns a process that runs p1 and p2 in parallel at l. This

process maintains a state s composed of two processes: its two components. Its initial state is

(pr1 l,pr2 l). If the current state s of the process is a pair (p1,p2), then if both p1 and p2 have

halted, i.e., they are the special halted process halt, then the process becomes halt. Otherwise,

the process waits for an input message m, and once it has received one, then (1) for i ∈ {1,2},

it applies6 pi to m to obtain a new process p′i and a bag of output values outi; (2) it outputs

out1 + out2 and recursively calls itself on the new state (p′1,p
′
2).

We proved that pr1||pr2 implements X1||X2. The same is true about the other combinators.

6 The application of a process p to a message m is defined as follows: if halted(p) then return (halt,{}), otherwise p is of the

form run( f ), and therefore, return (f m).
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5 Related Work

Much work has been done on specifying and reasoning about distributed systems [24, 17, 10, 11,

9, 19] (to only cite a few).

IOA. IOA [16, 15, 17] is a programming/specification language for describing asynchronous

distributed systems as I/O automata (labeled state transition systems) and stating their properties.

IOA can interact with a large range of tools such as type checkers, simulators, model checkers,

theorem provers, and there is support for synthesis of Java code. Both I/O automata and event

observers can specify I/O observations of distributed systems. While IOA is state-based, LoE is

event-based (states are implicitly maintained by recursive combinators). Also, our methodology

allows us to both prove protocol properties and generate code within Nuprl, and does not require

any translation to another language.

TLA. TLA is a temporal logic, based on first-order logic and set theory, that “provides a math-

ematical foundation for describing systems” [23]. TLA+ [23, 11] is a language for specifying

systems described in TLA. TLAPS “is a platform for the development and mechanical verifi-

cation of TLA+ proofs” [11]. To validate proofs, TLAPS uses a collection of theorem provers,

proof assistants, SMT solvers, and decision procedures. One can use a model checker to help

catch errors before attempting any proof. At its current stage, TLAPS allows one to prove safety

properties (the safety property of a variant of Paxos has been verified using TLAPS) but not

liveness/non-blocking properties (we have not yet proved such properties either). TLA+ does

not perform program synthesis.

seL4. Our approach is similar to the one taken by Klein et al. to verify the seL4 microkernel [20].

They use Haskell as their specification language, which roughly corresponds to the level of

abstraction of EventML in our framework. Then, they translate this code to an Isabelle/HOL

version. They prove that this executable specification refines an abstract one, which corresponds

to LoE’s level. Finally, they generate by hand a C implementation of the specification, which they

translate into Isabelle/HOL, in which they defined a model of C, and manually prove that this

implementation refines their executable specification. This corresponds to GPM’s level. Among

other things, our paper shows that a similar methodology can be used to design and implement

correct fault-tolerant distributed systems.

Verdi. More recently, Wilcox et al. developed Verdi [31], which is a framework, similar to ours,

to develop and reason about distributed systems using Coq. As in our framework they do not

have gaps between the code they verify and the code they run: they run OCaml code that they

extract from Coq. Verdi provides a compositional way of specifying distributed systems. This

is done by applying verified system transformers. For example, Paxos transforms a distributed

system into a crash-tolerant distributed system (they verified Raft [25] instead of Paxos). One

difference between our respective methods is that they verify systems by reasoning about the

evolution of the state of the world, while our approach relies on the notion of causal order.

6 Conclusion, Current and Future Work

Our methodology scales to more complicated and subtle distributed protocols. For example, we

have specified the Multi-Paxos protocol [22, 30] in EventML and proved its safety properties to

be correct in Nuprl. We have also built an ordered broadcast service that can switch between var-

ious consensus protocols [28]. To get efficient code, we have built in Nuprl a formal tool tuned to
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automatically optimize GPM programs and prove that the optimized code and the non-optimized

program are bisimilar [26]. We are also experimenting with compilers to Lisp and Scala. We

are now building support in EventML and Nuprl to: (1) abstract away from implementation de-

tails such as specific data structures, (2) automatically prove simple properties such as validity

properties, (3) replay large proofs in order to support modifications to specifications. This paper

only discussed safety properties. We have started proving progress and non-blocking properties

of the 2/3 consensus protocol. However, it turns out that these proofs are tedious. Next, we want

to build automation tools to assist us in proving such properties.
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