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Abstract10

Continuity is a key principle of intuitionistic logic that is generally accepted by constructivists but11

is inconsistent with classical logic. Most commonly, continuity states that a function from the Baire12

space to numbers, only needs approximations of the points in the Baire space to compute. More13

recently, another formulation of the continuity principle was put forward. It states that for any14

function F from the Baire space to numbers, there exists a (dialogue) tree that contains the values15

of F at its leaves and such that the modulus of F at each point of the Baire space is given by the16

length of the corresponding branch in the tree. In this paper we provide the first internalization of17

this “inductive” continuity principle within a computational setting. Concretely, we present a class18

of intuitionistic theories that validate this formulation of continuity thanks to computations that19

construct such dialogue trees internally to the theories using effectful computations. We further20

demonstrate that this inductive continuity principle implies other forms of continuity principles.21
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1 Introduction31

The continuity principle is a cornerstone in intuitionistic theories which is generally accepted
by constructivists but contradicts classical mathematics. In essence, the principle states that
functions on the Baire space (i.e., B ∶≡ Nat→ Nat) only need finite inputs, i.e., initial segments
of points of the Baire space, to produce outputs. Different variants of the continuity principle
have been developed to capture different levels of strictness in the notion of continuity
and different computational aspects. Perhaps the most common continuity principle is the
continuity principle for numbers, sometimes referred to as the weak continuity principle
(WCP) [24; 15; 4; 7; 38]. WCP states that given a function F ∈B→ Nat and an point α of
the Baire space B, F (α) can only depend on an initial segment of α, and the length of the
smallest such segment is the modulus of continuity of F at α. This is standardly formalized
as follows, where Bn ∶≡ {x ∶ Nat ∣ x < n} → Nat is the set of finite sequences of length n:

WCP ∶≡ΠF ∶B→ Nat.Πα∶B.∥Σn∶Nat.Πβ∶B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥
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35:2 Inductive Continuity via Brouwer Trees

However, as shown, e.g., by Kreisel [25, p.154], Troelstra [36, Thm.IIA], and Escardó and32

Xu [18; 40], continuity is not an extensional property in the sense that two (extensionally)33

equal functions might have different moduli of continuity. Therefore, to computationally34

realize continuity, the existence of a modulus of continuity has to be truncated as explained,35

e.g., in [18; 40; 32; 33], which is what the ∥_∥ operator achieves in WCP’s definition above.36

Brouwer used WCP, along with a consequence of Bar Induction called the Fan Theorem,
to derive the following uniform continuity principle (UCP) [7, p.113], which he then used to
prove that all real-valued function on the unit interval are uniformly continuous [24; 15; 4; 7;
38], where C ∶≡ Nat→ Bool is the Cantor space and Cn ∶≡ {x ∶ Nat ∣ x < n} → Bool:

UCP ∶≡ΠF ∶C→ Nat.Σn∶Nat.Πα, β∶C.(α=β∈Cn) → (F (α)=F (β)∈Nat)

Note that UCP does not need to be truncated as shown for example in [18].37

Another version of the continuity principle, which originates from the completeness of
Brouwer’s bar thesis and implies both WCP and UCP, has been recently studied [20; 22; 21; 19].
This principle, referred to here as the Inductive Continuity Principle (ICP), relies on a notion
of dialogue trees related to Brouwer trees [38] and reminiscent of Kleene trees [23]. This
tree-based technique of capturing continuity information, pioneered in [20; 22; 21; 19], and
reused for example in [9; 35; 3], consists in computing a tree that, given a function F from a
subset of B to numbers, contains the values of F at its leaves, and such that the amount
of information needed to compute these values, i.e., the modulus of continuity of F at each
point, is given by its branches. This can be formalized as follows where BSNat ∶≡ Nat→ SNat
for SNat a subtype of Nat (Bt and follow(d, α) are made formal in Sec. 3.2).1

ICP ∶≡ΠF ∶BSNat → Nat.∥Σd∶Bt.Πα∶BSNat.follow(d, α)=F (α)∈Nat∥

A number of theories have been shown to satisfy Brouwer’s continuity principle, or38

uniform variants, such as N-HAω by Troelstra [37, p.158], MLTT by Coquand and Jaber [13;39

12], System T by Escardó [19], MLTT by Xu [40], CTT by Rahli and Bickford [32], BTT by40

Baillon, Mahboubi and Pedrot [3], among others (see Sec. 6 for details). These proofs often41

rely on a semantic forcing-based approach [13; 12], where the forcing conditions capture the42

amount of information needed when applying a function to a sequence in the Baire space, or43

through suitable models that internalize (C-Spaces in [41]) or exhibit continuous behavior44

(e.g., dialogue trees in [19; 3]).45

Not only can functions on the Baire space be proved to be continuous, but using effectful46

computations one can in fact compute their modulus of continuity [28]. The TT◻C family47

of effectful extensional type theories, recalled in Sec. 2, was shown to be consistent with a48

version of WCP using a family of realizability models that allow validating this principle using49

effectful computations, and in particular using reference cells [11]. Building on this result, in50

this paper we identify a family of effectful type theories that are consistent with a variant51

of ICP, and prove this consistency result using effectful computations, namely references.52

Importantly, in addition to validating the continuity of TT◻C functions using dialogue53

trees, our work provides the first internalization of the principle into a computational system54

in the sense that we extend TT◻C with a variant of ICP in Sec. 3, and exhibit in Sec. 5 an55

effectful TT◻C program that realizes this axiom. The most challenging aspect of internalizing56

this dialogue-based technique is in proving termination of the computation of such trees.57

We further show in Sec. 4 that ICP encompasses both weak and uniform continuity. It is58

however still unknown whether ICP is in fact strictly stronger than the other principles.59

1 We use here Brouwer trees, which are equivalent to dialogue trees for functions on the Baire space [17].
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Figure 1 Core syntax (above) and small-step operational semantics (below)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⋆ (constant)

∣ n (number) ∣ inl(t) (left injection) ∣ δ (choice name)
∣ ⟨t1, t2⟩ (pair) ∣ inr(t) (right injection)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ {x ∶ t1 ∣ t2} (set) ∣ t1+t2 (disjoint union)
∣ Σx∶t1.t2 (sum) ∣ t1=t2∈t (equality) ∣ ∥t∥ (truncation)
∣ Ui (universe) ∣ Nat (numbers) ∣ pure (pure)
∣ t1 ∩ t2 (intersection)

t ∈ Term ∶∶= x (variable) ∣ !t (read) ∣ t1 <? t2 (less than)
∣ v (value) ∣ νx.t (fresh) ∣ t1 =? t2 (equality)
∣ t1 t2 (application) ∣ t1 ⋅⋅= t2 (write) ∣ let x = t1 in t2 (call-by-value)
∣ fix(t) (fixpoint) ∣ t1 + t2 (addition) ∣ let x, y = t1 in t2 (pair destructor)
∣ case t of inl(x) ⇒ t1 | inr(y) ⇒ t2 (injection destructor)

(λx.t) u w↦w t[x/u]
fix(v) w↦w v fix(v)
let x = v in t2 w↦w t2[x/v]
let x, y = ⟨t1, t2⟩ in t w↦w t[x/t1; y/t2]

n <? m w↦w inl(⋆), if n <m
n <? m w↦w inr(⋆), if n /<m
n =? m w↦w inl(⋆), if n =m
n =? m w↦w inr(⋆), if n /=m
n +m w↦w n +m

!δ w↦w read(w, δ)
δ ⋅⋅= t w↦write(w,δ,t) ⋆
νx.t w↦startνC(w) t[x/νC(w)]

case inl(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 w↦w t1[x/t]
case inr(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 w↦w t2[y/t]

2 Background60

This section reviews TT◻C [10] — a family of extensional type theories parameterized by a61

choice operator C and a metatheoretical modality ◻, which allows typing the choice operators.62

2.1 Metatheory63

Our metatheory is Agda’s type theory [2]. The results presented in this paper have been64

formalized in Agda: https://github.com/vrahli/opentt/. We use ∀,∃,∧,∨,→,¬ in place of65

Agda’s logical connectives in this paper, and use ⊺ for True and � for False. Agda provides a66

hierarchy of types annotated with universe labels which we omit for simplicity. Following67

Agda’s terminology, we refer to an Agda type as a set, and reserve the term type for TT◻C ’s68

types. We use P as the type of sets that denote propositions; N for the set of natural numbers;69

and B for the set of Booleans true and false. We use induction-recursion to define the forcing70

interpretation in Sec. 2.3, where we use function extensionality to interpret universes. We71

also use classical reasoning twice in the proof presented in Sec. 5.72

2.2 TT◻
C ’s Syntax and Operational Semantics73

Fig. 1 recalls TT◻C ’s syntax and operational semantics, where the blue boxes highlight the74

effecful components, and where x belongs to a set of variables Var. For simplicity, numbers75

are considered to be primitive and the constant ⋆ is used in place of a term when the76

particular term used is irrelevant. We use all letters as metavariables for terms and denote77

by t[x/u] the capture-avoiding substitution of all the free occurrences of x in t by u. We78

write if t1 then t2 else t3 for case t1 of inl(x) ⇒ t2 | inr(x) ⇒ t3, where x does not79

occur in t2 or t3, and t1;t2 for let x = t1 in t2 where x does not occur free in t2.80

Types are syntactic forms that are given semantics in Sec. 2.3 via a forcing interpretation.81

The type system contains standard types such as dependent products of the form Πx∶t1.t282

and dependent sums of the form Σx∶t1.t2. We write t1 → t2 for the non-dependent Π type;83

Unit for 0=0∈Nat; Void for 0=1∈Nat; ¬T for (T → Void); and Bool for Unit+Unit.84

MFCS 2023
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To capture the time progression notion which underlines choice operators, TT◻C is param-85

eterized by a Kripke frame [27; 26], consisting of a set of worlds W equipped with a reflexive86

and transitive binary relation ⊑. Let w range over W . We sometimes write w′ ⊒ w for w ⊑ w′.87

Let Pw be the collection of predicates on world extensions, i.e., functions in ∀w′ ⊒ w.P. Due88

to ⊑’s transitivity, if P ∈ Pw then for every w′ ⊒ w it naturally extends to a predicate in Pw′ .89

Let ∀⊑w(P ) stand for the fact that P ∈ Pw is true for all extensions of w, i.e., P w′ holds for90

all w′ ⊒ w. We sometime write ∀⊑w(w′.P ) instead of ∀⊑w(λw′.P ).91

Fig. 1’s lower part presents TT◻C ’s small-step call-by-name operational semantics, where92

t1 w1↦w2 t2 expresses that t1 reduces to t2 in one step of computation from the world w1 and93

potentially updating it so that the resulting world is w2. We omit the congruence rules such94

as: if t1 w1↦w2 t2 then t1(u) w1↦w2 t2(u). We denote by ↦∗ the reflexive transitive closure95

of ↦, i.e., a w1↦∗w2
b states that a computes to b in 0 or more steps. We write a ↦∗w b for96

∃(w′ ∶ W).a w↦∗w′ b, and a Z⇒w b for ∀⊑w(w′.a↦∗w′ b).97

TT◻C includes effecful notions that rely on worlds to record choices and provides operators98

to access and update choices. In this paper, for conciseness of presentation, we focus on99

one instance of choice operators as mutable references to natural numbers. Reference cells,100

which allow a program to indirectly access a particular object, are choice operators since101

they can point to different objects over their lifetime. See [10] for the general notion of choice102

operators. To define references to numbers2, we let the set of choices C ⊆ Term to be N. A103

choice stored in a reference cell is referred to through the reference’s name. To this end,104

TT◻C ’s computation system is parameterized by a set N of choice names, ranged over by δ,105

equipped with a decidable equality, and an operator that given a list of names, returns a106

name not in the list (N ∶≡ N for simplicity). This can be given by nominal sets [30]. We take107

worlds to be lists of cells, where a cell is a pair of a choice name and a choice, and ⊑ is the108

reflexive transitive closure of two operations that allow creating and updating reference cells.109

As shown in Fig. 1, a choice name δ can be used in a computation to access choices from110

a world using !δ w↦w read(w, δ), where the partial function read ∈ W → N → C accesses the111

content of the δ-cell in w if that cell exists.3 Choices can be made using (δ ⋅⋅= t) w↦write(w,δ,t) ⋆,112

where write(w, δ, t) updates the reference δ with the choice t if δ occurs in w, and otherwise113

returns w, and therefore w ⊑ write(w, δ, t). The computation returns ⋆, which is reminiscent114

of reference updates in OCaml for example, which are of type unit. Finally, new choice115

names can be generated using νx.t w↦startνC(w) t[x/νC(w)], where νC(w) returns a “fresh”116

name not occurring in the list w, which x gets replaced with in the expression above, and117

startνC(w) returns the list w extended with the pair ⟨νC(w), 0⟩, where 0 is the default value118

with which reference cells are filled, and therefore ∀(w ∶ W).w ⊑ startνC(w).4119

2.3 Forcing Interpretation120

TT◻C ’s semantics is similar to the one presented in [10], which we recall and extend in Fig. 2.121

Types are interpreted via a forcing interpretation defined using induction-recursion [16] as122

follows, where the forcing conditions are worlds: (1) the inductive relation w ⊨ T1≡T2 expresses123

type equality in the world w; (2) the recursive function w ⊨ t1≡t2∈T expresses equality in a124

type. We also define a Z⇒!w b as ∀⊑w(w′.a w′↦∗w′ b), capturing the fact that the computation125

2 Only relevant components of the choice operator are discussed. See worldInstanceRef.lagda for details.
3 In general, read, νC, startνC, and write are all parameters of TT◻

C
, as described in [10]. Here they too

are instantiated with references to numbers.
4 TT◻

C
also contains a quotienting type operator « used to assign types to computations that can compute

to different values in different worlds, such as choices !δ [11]. For readability, we elide it here.

https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda
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Figure 2 Forcing Interpretation
Numbers: w ⊨ Nat≡Nat ⇐⇒ True

w ⊨ t≡t′∈Nat ⇐⇒ ◻w(w′.∃(n ∶ N).t Z⇒w′ n ∧ t′ Z⇒w′ n)

Products: w ⊨ Πx∶A1.B1≡Πx∶A2.B2 ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)

w ⊨ f≡g∈Πx∶A.B ⇐⇒ ◻w(w′.∀(a1, a2 ∶ Term).w′ ⊨ a1≡a2∈A→ w′ ⊨ f a1≡g a2∈B[x/a1])

Sums: w ⊨ Σx∶A1.B1≡Σx∶A2.B2 ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)

w ⊨ p1≡p2∈Σx∶A.B ⇐⇒ ◻w(w′.∃(a1, a2, b1, b2 ∶ Term).w′ ⊨ a1≡a2∈A∧w′ ⊨ b1≡b2∈B[x/a1]∧p1 Z⇒w′

⟨a1, b1⟩ ∧ p2 Z⇒w′ ⟨a2, b2⟩)

Sets: w ⊨ {x ∶ A1 ∣ B1}≡{x ∶ A2 ∣ B2} ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)

w ⊨ a1≡a2∈{x ∶ A ∣ B} ⇐⇒ ◻w(w′.∃(b1, b2 ∶ Term).w′ ⊨ a1≡a2∈A ∧w′ ⊨ b1≡b2∈B[x/a1])

Disjoint unions: w ⊨ A1+B1≡A2+B2 ⇐⇒ w ⊨ A1≡A2 ∧w ⊨ B1≡B2

w ⊨ a1≡a2∈A+B ⇐⇒ ◻w(w′.∃(u, v ∶ Term).(a1 Z⇒w′ inl(u) ∧ a2 Z⇒w′ inl(v) ∧ w′ ⊨ u≡v∈A) ∨

(a1 Z⇒w′ inr(u) ∧ a2 Z⇒w′ inr(v) ∧w′ ⊨ u≡v∈B))

Equalities: w ⊨ (a1=b1∈A)≡(a2=b2∈B) ⇐⇒ w ⊨ A≡B ∧w ⊨ a1≡a2∈A ∧w ⊨ b1≡b2∈B

w ⊨ a1≡a2∈(a=b∈A) ⇐⇒ ◻w(w′.w′ ⊨ a≡b∈A)

Subsingletons: w ⊨ ∥A∥≡∥B∥ ⇐⇒ w ⊨ A≡B

w ⊨ a≡b∈∥A∥ ⇐⇒ ◻w(w′.w′ ⊨ a≡a∈A ∧w′ ⊨ b≡b∈A)

Purity: w ⊨ pure≡pure ⇐⇒ ⊺

w ⊨ a1≡a2∈pure ⇐⇒ namefree(a1) ∧ namefree(a2)

Binary intersections: w ⊨ A1 ∩B1≡A2 ∩B2 ⇐⇒ w ⊨ A1≡A2 ∧w ⊨ B1≡B2

w ⊨ a1≡a2∈A ∩B ⇐⇒ ◻w(w′.w′ ⊨ a1≡a2∈A ∧w′ ⊨ a1≡a2∈B)

Modality closure: w ⊨ T1≡T2 ⇐⇒ ◻w(w′.∃(T ′1, T ′2 ∶ Term).T1 Z⇒w′ T ′1 ∧ T2 Z⇒w′ T ′2 ∧w′ ⊨ T ′1≡T
′

2)

w ⊨ t1≡t2∈T ⇐⇒ ◻w(w′.∃(T ′ ∶ Term).T Z⇒w′ T ′ ∧w′ ⊨ t1≡t2∈T
′
)

can read using !δ but not write, and therefore does not change the initial world (this is used in126

Thm. 1). Fig. 2 defines in particular the semantics of pure, which is inhabited by name-free127

terms, where namefree(t) is defined recursively over t and returns false iff t contains a128

choice name δ or a fresh operator of the form νx.t. We also write Famw(A1, A2, B1, B2)129

for w ⊨ A1≡A2 ∧ ∀⊑w(w′.∀(a1, a2 ∶ Term).w′ ⊨ a1≡a2∈A1 → w′ ⊨ B1(a1)≡B2(a2)). This forcing130

interpretation is parameterized by a family of abstract modalities ◻, which we sometimes131

refer to simply as a modality, which is a function that takes a world w to its modality132

◻w ∈ Pw → P. We often write ◻w(w′.P ) for ◻wλw′.P . To guarantee that this interpretation133

yields a type system in the sense of Thm. 1, we require that the modalities satisfy certain134

properties detailed in [10] and reminiscent of standard modal axiom schemata [14].135

▶ Theorem 1 ([10]). TT◻C is a standard type system in the sense that its forcing interpretation
induced by ◻ satisfies the following properties (free variables are universally quantified):

transitivity: w ⊨ T1≡T2 → w ⊨ T2≡T3 → w ⊨ T1≡T3 w ⊨ t1≡t2∈T → w ⊨ t2≡t3∈T → w ⊨ t1≡t3∈T
symmetry: w ⊨ T1≡T2 → w ⊨ T2≡T1 w ⊨ t1≡t2∈T → w ⊨ t2≡t1∈T
computation: w ⊨ T≡T → T Z⇒!w T ′ → w ⊨ T≡T ′ w ⊨ t≡t∈T → t Z⇒!w t′ → w ⊨ t≡t′∈T
monotonicity: w ⊨ T1≡T2 → w ⊑ w′ → w′ ⊨ T1≡T2 w ⊨ t1≡t2∈T → w ⊑ w′ → w′ ⊨ t1≡t2∈T
locality: ◻w(w′.w′ ⊨ T1≡T2) → w ⊨ T1≡T2 ◻w(w′.w′ ⊨ t1≡t2∈T ) → w ⊨ t1≡t2∈T
consistency: ¬w ⊨ t≡t∈Void

Note that due to effects, types are not closed under all computations. For example,136

when T ∶≡ Nat, t′ Z⇒w n does not necessarily follow from t Z⇒w t′ and t Z⇒w n. An example137

is t ∶≡ (δ ⋅⋅= 1;if !δ < 1 then 0 else 1), which reduces to t′ ∶≡ (if !δ < 1 then 0 else 1)138

and also to 1 in all worlds, but t′ does not reduce to 1 in all worlds, because δ could be139

initialized differently in different worlds. However, the following holds by transitivity of Z⇒w:140

MFCS 2023
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Figure 3 Examples of dialogue (left) and Brouwer (right) trees for λα.α(2)
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t′ Z⇒w t → w ⊨ t≡t∈Nat → w ⊨ t≡t′∈Nat. Similarly, the following also holds by transitivity141

of Z⇒w: w ⊨ T ≡T → T ′ Z⇒w T → w ⊨ T ≡T ′. Finally, note that, as indicated in Thm. 1, this142

semantics is closed under β-reduction, as β-reduction does not modify the current world.143

2.4 TT◻
C ’s Inference Rules144

TT◻C ’s inference rules are standard and they reflect the semantics of the types, which is given
meaning through a forcing interpretation presented in Sec. 2.3. Concetely, sequents in TT◻C
are of the form h1, . . . , hn ⊢ t ∶ T . Such a sequent denotes that, assuming h1, . . . , hn, T is a
type inhabited by t. An hypothesis h is of the form x∶A, where the variable x stands for the
name of the hypothesis and A its type. We write a∈A for a=a∈A. To illustrate the naturality
of the typing rules and their correspondence to the forcing interpretation, we provide examples
of TT◻C ’s inference rules for Π types. The following rules are the standard Π-elimination,
Π-introduction, type equality for Π types, and λ-introduction rules, respectively.

H , f ∶Πx∶A.B, J ⊢ a∈A H , f ∶Πx∶A.B, J, z∶f(a)∈B[x/a] ⊢ e ∶ C

H , f ∶Πx∶A.B, J ⊢ e[z/⋆] ∶ C

H , z∶A ⊢ b ∶ B[x/z] H ⊢ A∈Ui

H ⊢ λz.b ∶Πx∶A.B

H ⊢ A1=A2∈Ui H , y∶A1 ⊢ B1[x1/y]=B2[x2/y]∈Ui

H ⊢Πx1∶A1.B1=Πx2∶A2.B2∈Ui

H , z∶A ⊢ t1[x1/z]=t2[x2/z]∈B[x/z] H ⊢ A∈Ui

H ⊢ λx1.t1=λx2.t2∈Πx∶A.B

The following rules are the standard function extensionality and β-reduction rules, resp.:

H , z∶A ⊢ f1(z)=f2(z)∈B[x/z] H ⊢ A∈Ui

H ⊢ f1=f2∈Πx∶A.B

H ⊢ t[x/s]=u∈T

H ⊢ (λx.t) s=u∈T

3 Inductive Continuity via Brouwer Trees145

This section states a dialogue tree-based continuity principle, referred to as the inductive146

continuity principle, since it relies on trees to capture functions. As we show in Sec. 4, it147

implies both Brouwer’s continuity principle for numbers and his uniform continuity principle148

on the Cantor space. Furthermore, it is still unknown whether the inductive continuity149

principle is strictly stronger than Brouwer’s continuity principle for numbers. Sec. 5 internally150

validates this inductive principle. In particular, Thm. 4 shows that, given a pure function151

F ∈ B → Nat, TT◻C provides a computation, introduced in Sec. 5.1, that builds a dialogue152

tree capturing F ’s continuity.153

As mentioned above, we rely here on Brouwer trees, which are a simple form of dialogue154

trees. Let us provide an example of how dialogue and Brouwer trees work. Consider the155

function F ∶≡ λα.α(2) ∈ B → Nat. Fig. 3 (left) shows its dialogue tree, where the internal156

(root) node is labeled with the value α is applied to, and the leaves contain the values of157

F for all possible inputs. For example if F is applied to α ∶≡ λx.x, then starting from the158

root, we apply α to the node’s value, i.e., 2, which gives us 2, and we therefore follow the159



Cohen, da Rocha Paiva, Rahli, Tosun 35:7

2nd path, which leads to the leaf labeled 2, the value of F (α). If α ∶≡ λx.0, then α(2) is160

now 0, and following the 0th path leads to the leaf labeled 0, which is the value of F (α).161

Fig. 3 (right) shows F ’s Brouwer tree, where as opposed to dialogue trees, internal nodes are162

not labeled, and as for dialogue trees, the leaves contain the values of F for all inputs. For163

example if F is applied to α ∶≡ λx.x, because α(0) is 0, we first follow the 0the branch; then164

because α(1) is 1, we follow the 1st branch, and finally because α(2) is 2, we follow the 2nd165

branch, leading to a leaf labeled 2 (following the green path in Fig. 3). If α ∶≡ λx.0, then we166

instead always follow the 0th branch, leading to a leaf labeled with 0.167

In the dialogue tree, the modulus of continuity of F at some point α is given by the168

maximum value of the internal nodes followed using α, while in the Brouwer tree, the modulus169

is the length of the branch followed using α. Note that, in general, the values of the internal170

nodes of a dialogue tree of a function F ∈B→ Nat are used to “ask questions” to an argument171

α ∈B to decide what branch to take in the tree (by applying α to those values), while in a172

Brouwer tree, “dialogues” happen by asking all the values of an initial segment of α.173

3.1 Extending TT◻
C with (Co-)W Types and Infinite Sequences174

In order to state the inductive continuity principle, we make use of the notion of a Brouwer tree,175

which we define in TT◻C using W types [1, Sec.5.2], which is a standard way of representing176

inductive types. Additionally, we use co-W types (also called M types) [1, Sec.5.2], the dual177

notion to that of a W type, to prove the validity of the principle. Thus, we add W and M178

types to TT◻C , using sup as a W type and M type constructor and wrec as a W type recursor.179

vt ∈ Type ∶∶= ⋯ ∣W (t1, t2) ∣M(t1, t2)
t ∈ Term ∶∶= ⋯ ∣ sup(t1, t2) ∣ wrec(t1, t2)
v ∈ Value ∶∶= ⋯ ∣ ⌈s⌋, where s is a metatheoretical function in N→ N

where wrec(t1, t2) and ⌈s⌋ compute as follows:

wrec(sup(a, f), g) w↦w g a f (λb.wrec(f(b), g)) ⌈s⌋ n w↦w s(n)

In addition, the application operator is modified so that it evaluates its argument whenever180

the function is of the form ⌈s⌋, i.e., ⌈s⌋ a reduces to ⌈s⌋ b when a reduces to b. Hence, for any181

metatheoretical function s in N→ N, ⌈s⌋ inhabits B. These sequences are used in Sec. 5.5182

to prove that the computation of Brouwer trees provided in Sec. 5.1 terminates. They are183

similar to the sequences of the form λλx.Mx in [5], where the infinite sequence of terms184

M1, M2, . . . does not have a computational purpose, but is used to prove termination in185

their proof that some bar recursion operator realizes the negative translation of the axiom of186

choice. Similar sequences have been used in [31] to validate versions of the axiom of choice,187

and in [34] to validate variants of Brouwer’s Bar Induction principle [24].188

W and M types are interpreted in a standard way:189

W types: w ⊨ W (A1, B1)≡W (A2, B2) ⇐⇒ Famw(A1, A2, B1, B2)190

w ⊨ s1≡s2∈W (A, B) ⇐⇒ ◻w(w′.µ(R.∃(a1, a2, f1, f2 ∶ Term).w′ ⊨ a1≡a2∈A ∧ (∀(b1, b2 ∶191

Term).w′ ⊨ b1≡b2∈B(a1) → R f1(b1) f2(b2))∧s1 Z⇒w′ sup(a1, f1)∧s2 Z⇒w′ sup(a2, f2)) s1 s2)192

M types: w ⊨ M(A1, B1)≡M(A2, B2) ⇐⇒ Famw(A1, A2, B1, B2)193

w ⊨ s1≡s2∈M(A, B) ⇐⇒ ◻w(w′.ν(R.∃(a1, a2, f1, f2 ∶ Term).w′ ⊨ a1≡a2∈A ∧ (∀(b1, b2 ∶194

Term).w′ ⊨ b1≡b2∈B(a1) → R f1(b1) f2(b2))∧s1 Z⇒w′ sup(a1, f1)∧s2 Z⇒w′ sup(a2, f2)) s1 s2)195
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Therefore, W (A, B) and M(A, B) are types in Ui whenever A ∈ Ui and B ∈ A → Ui.196

Given a ∈ A and f ∈ B[a] →W (A, B), sup(a, f) ∈W (A, B) is a W type constructor, and if197

f ∈ B[a] →M(A, B) then sup(a, f) ∈M(A, B) is an M type constructor. Given t ∈W (A, B)198

and g ∈Πa∶A.(B(a) →W (A, B)) → (B(a) → C) → C, wrec(t, g) ∈ C is a W type recursor.199

▶ Example 2. Given A ∈ Ui and B ∈ A → Ui, W (A, B) denotes the type of inductive
definitions with inhabitants of A representing the constructors (as well as their non-inductive
parameters), and B(a) representing the indices of inductive parameters at a given construc-
tor a. For example, the natural numbers have two constructors: zero and succ, the latter
having one inductive parameter. Therefore, natural numbers are encoded as:

W (Bool, λx.case x of inl(_) ⇒ Void | inr(_) ⇒ Unit),

where Void captures the lack of inductive parameters for zero and Unit captures succ’s single
inductive parameter. The constructors zero and succ are then be encoded as:

zero ∶≡ sup(inl(⋆), λx.⋆) and succ ∶≡ λn.sup(inr(⋆), λx.n)

3.2 Brouwer Tree-Based Inductive Continuity Principle200

We can now state the inductive continuity principle that captures the moduli of continuity201

of functions in BSNat → Nat using Brouwer trees, where BSNat ∶≡ Nat → SNat for SNat a202

subtype of Nat (this principle is therefore a family of principles for all such SNats). This203

continuity result, as well as the ones recalled in Sec. 4, are stated for pure functions only204

using the following quantification: Πpa∶A.B ∶≡Πa∶(A ∩ pure).B, which quantifies over pure205

members of A. We also write Ap for A ∩ pure and A +p B for (A+B) ∩ pure. It remains to206

be determined whether some effectful computations can be proved to be continuous.207

We first define Brouwer trees (a class of dialogue trees where internal nodes are not208

labeled) using W types as follows.209

▶ Definition 3 (Brouwer Trees). A Brouwer tree is a member of Bt ∶≡W (BtA, BtB), where210

BtA ∶≡ Nat +p Unit and BtB ∶≡ λa.if a then Void else SNatp. Such trees have two211

constructors: η(i) ∶≡ sup(inl(i), λx.⋆), which builds a leaf node with value i ∈ Nat; and212

𭟋(f) ∶≡ sup(inr(⋆), f), which builds an internal node from a function f ∈ SNatp → Bt.213

Using this definition, the Brouwer tree depicted in Fig. 3 is 𭟋(λi.𭟋(λj.𭟋(λk.η(k)))).214

▶ Theorem 4 (Inductive Continuity Principle). The following continuity principle, referred to215

as ICPp, is valid in TT◻C5(see contDiagVal in barContP10.lagda for details):216

ΠpF ∶BSNat → Nat.∥Σd∶Bt.Πpα∶BSNat.follow(d, α)=F (α)∈Nat∥ (ICPp)217

where follow(d, α) extracts the value of the leaf encountered when following α in d as follows:

follow(d, α) ∶≡ wrec(d, λa.λf.λr.λk.case a of inl(i) ⇒ i | inr(_) ⇒ r (α k) (k + 1)) 0

At a high-level, the proof goes as follows (the full proof is carried out in Sec. 5).218

Step 1: Given a function in BSNat → Nat, we first build by coinduction a possibly infinite219

co-Brouwer tree as an M type. This co-Brouwer tree contains the result of F applied to220

the finite sequence s at the leaf ending the path following s whenever s contains enough221

information to compute the result of F .222

5 “Valid in TT◻
C

” here means that the principle is realizable in TT◻
C

, thus it is consistent with the theory.

https://github.com/vrahli/opentt/blob/master/barContP10.lagda
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Step 2: Classically, this co-Brouwer tree is either finite or contains an infinite branch.223

Step 3: If the co-Brouwer tree is finite, it is a Brouwere tree.224

Step 4: If the co-Brouwer tree contains an infinite branch, then the branch gives rise to an225

infinite sequence α, and since F is continuous, the path must be finite. As discussed in226

Sec. 5.5, this step relies on a continuity argument similar to the one used to validate the227

weak continuity principle WCPp recalled in Sec. 4.1.228

Step 5: Finally, the obtained Brouwer tree is shown to contain the values of F at its leaves.229

4 Relation with Other Continuity Principles230

This section demonstrates that inductive continuity implies both Brouwer’s continuity231

principle for numbers (referred to as weak continuity here) and uniform continuity.232

4.1 Weak Continuity233

TT◻C was shown to satisfy the following version of Brouwer’s continuity principle for numbers,234

also called the weak continuity principle, which therefore can be added as an axiom [11].235

ΠpF ∶B→ Nat.Πpα∶B.∥Σn∶Nat.Πpβ∶B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥ (WCPp)236

WCPp is realized in every world by the term λF.λα.⟨mod(F, α), λβ.λe.⋆⟩, where mod(F, α)
computes the modulus of continuity of the function F ∈B→ Nat at α ∈B. Roughly speaking,
mod(F, α) generates a reference cell δ initialized with 0, applies F to a modified version of α

(namely upd(δ, α)) that keeps track using δ of the highest number α gets applied to, and
then returns the value held by δ (plus one). Formally:

mod(F, α) ∶≡ νx.(x ⋅⋅= 0;F (upd(x, α));!x + 1)
upd(δ, α) ∶≡ λx.(let y = x in ((if !δ < y then δ ⋅⋅= y else ⋆);α(y)))

Note that the truncation in WCPp is necessary. It has been shown that a non-truncated237

version of WCP is inconsistent with MLTT [18; 40], and the same applies to WCPp and TT◻C .238

The main reason for this is the semantics of dependent functions given by TT◻C ’s realizability239

model (see Fig. 2). Under this semantics, f ∈Πx∶A.B if f maps equal terms a1=a2∈A to equal240

terms f(a1)=f(a2)∈B[x/a1]. As continuity is a non-extensional property [25], extensionally241

equal functions in B might have different moduli of continuity, so WCPp’s realizer cannot242

inhabit a non-truncated version of WCPp. However, when B is of the form ∥C∥, it suffices243

that f(a1) and f(a2) are both members of C[x/a1], allowing WCPp’s validation.244

▶ Theorem 5. WCPp is derivable from ICPp in TT◻C when SNat ∶≡ Nat.245

Proof outline. Let F ∈ B → Nat a pure function and let α ∈ B. It follows from ICPp that:
∥Σd∶Bt.Πpα∶B.follow(d, α)=F (α)∈Nat∥. Because both principles are truncated, we can
assume the existence of a tree d ∈ Bt such that: Πpα∶B.follow(d, α)=F (α)∈Nat. Because d

encodes the modulus of continuity of each sequence α ∈B, as the length of the branch in d

that “follows” α, we instantiate the conclusion with: n ∶≡ lenBranch(d, α) ∈ Nat, where:

lenBranch(d, α) ∶≡ wrec(d, λa.λf.λr.λk.case a of inl(i) ⇒ k | inr(_) ⇒ r (α k) (k+1)) 0

It now remains to prove that F (α)=F (β)∈Nat, for any pure function β ∈B such that α=β∈Bn.246

From ICPp, we know that follow(d, α)=F (α)∈Nat and follow(d, β)=F (β)∈Nat. Therefore,247

it is enough to prove follow(d, α)=follow(d, β)∈Nat, which follows from the following fact:248

Πα, β∶B.α=β∈BlenBranch(d,α) → follow(d, α)=follow(d, β)∈Nat. ◀249
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4.2 Uniform Continuity250

The uniform continuity principle states that all functions on the Cantor space (C ∶≡ Nat→ Bool)251

are uniformly continuous, meaning that all points α ∈ C have the same modulus of continuity.252

We consider here the following version:253

ΠpF ∶C→ Nat.∥Σn∶Nat.Πpα, β∶C.(α=β∈Cn) → (F (α)=F (β)∈Nat)∥ (UCPp)254

Brouwer proved that all real-valued functions on the unit interval are uniformly continuous [8,255

Thm.3] using WCP and the Fan Theorem [38, Ch.7, Sec.7; 15, Sec.3.2], which he derived from256

Bar Induction. While it was shown that in the case of uniform continuity the truncation can257

be removed [18; 40], we leave formalizing this in TT◻C for future work.258

▶ Theorem 6. UCPp is derivable from ICPp in TT◻C when SNat ∶≡ {x ∶ Nat ∣ x < 2} or259

equivalently SNat ∶≡ Bool (and therefore BSNat is C).260

Proof outline. Let F ∈ C→ Nat be a pure function. Because both principles are truncated,
we can assume the existence of a tree d ∈ Bt such that: Πpα∶C.follow(d, α)=F (α)∈Nat. As
d is finitely branching and encodes the modulus of continuity of each α ∈ C as the length of
the branch in d that “follows” α, we compute the uniform modulus of continuity of F as d’s
depth as follows, where max(i, j) returns the maximum among the numbers i and j:

depth(d) ∶≡ wrec(d, λa.λf.λr.case a of inl(i) ⇒ 1 | inr(_) ⇒ max(r(0), r(1)) + 1)

We then instantiate our conclusion with n ∶≡ depth(d) ∈ Nat, and have to prove that261

F (α)=F (β)∈Nat, for all pure functions α, β ∈ C such that α=β∈Cn. From ICPp, we know262

that follow(d, α)=F (α)∈Nat and follow(d, β)=F (β)∈Nat. Therefore, it is enough to prove263

follow(d, α)=follow(d, β)∈Nat, which follows from the following fact, which can be proved264

by induction on d: Πα, β∶C.α=β∈Cdepth(d) → follow(d, α)=follow(d, β)∈Nat. ◀265

5 Validity of the Inductive Continuity Principle266

This section sketches the proof of Thm. 4, which has been formalized in Agda. For simplicity267

we focus here on functions in B→ Nat, but as mentioned in Sec. 3, the principle holds for all268

functions in BSNat → Nat where SNat is a subtype of Nat.269

To validate ICPp we assume that TT◻C ’s ◻ modality is a Kripke-like modality, i.e., ∀(w ∶270

W). ◻w f → ∀⊑w(f). This is used to derive a co-Brouwer tree from an F ∈ B → Nat. In271

short, when building a co-Brouwer tree in Step 1 by extending a node with branches for all272

n ∈ Nat, if n does not compute to a number in the current world w (which a Kripke modality273

enforces), it is unclear how this can result in a co-tree in w. It was proved in [10] that TT◻C274

is inconsistent with classical logic when ◻ is a Kripke modality and C is instantiated using275

references, which is expected because continuity contradicts classical logic [38; 39].276

5.1 Computing Brouwer Trees277

To show that ICPp is valid, we must exhibit a TT◻C computation that can compute a Brouwer
tree from a pure function in B → Nat. This computation is similar to the one provided
in [35, Sec.1.3], and proceeds as follows: given F ∈B → Nat, loop(F ) 0 α0 builds a tree in
Bt satisfying the condition in Thm. 4, where α0 ∶≡ λ_.0, and loop is defined as follows:

loop(F ) ∶≡ fix(λR.λk.λα.νx.(x ⋅⋅= 0);let i = F (upd(x, α)) in cases(x, R, k, α, i))
cases(δ, R, k, α, i) ∶≡ if !δ < k then η(i) else 𭟋(λx.R (k + 1) append(k, α, x))
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The goal of this computation is to recursively build a Brouwer tree from the root, by278

applying F to a finite sequence (essentially, the pair ⟨k, α⟩), which corresponds to a path in279

the tree, and which is extended as long as it does not contain enough information for F to280

compute a value, i.e., as long as F makes use of more than k values from α.281

Note that a finite sequence, or a list, of elements of type A is encoded here as a pair of its282

length k and a function in Nat→ A where only its initial segment of length k is relevant. Given283

a list l given by the pair k and f , the operator append(k, f, a) ∶≡ λx.if x = k then a else f(x)284

returns a list of length k + 1 that appends a to l. Lists are defined like this instead of using285

a W type because loop(F ) applies F to a function with initial segment the list given as286

argument. Therefore, instead of using an additional operator to turn an element of such a287

W type into a function, with this encoding lists directly provide such functions.288

The computation in [35] uses exceptions to test whether F requires more values than289

the ones provided in the current finite sequence, while we use here references as in [11].290

Exceptions are well-suited to test whether the modulus of continuity is reached, but not291

to directly compute moduli of continuity. For example, the computation in [32] relies on292

exceptions and a loop, while the computation in [11] makes use of references and does293

not require an additional loop because a reference cell can be used to store the moduli of294

continuity. Instead of using a reference to a Boolean, which would be similar to using an295

exception, we use here a reference δ that points to a number, and apply F to upd(δ, α), as296

in WCPp’s realizer, as it allows us to reuse some of the results used in [11] to validate WCPp.297

5.2 Step 1: Building a co-W298

First, we prove that from a function F ∈ B → Nat, we get loop(F ) 0 α0 ∈ CoDiag, where299

CoDiag ∶≡M(Nat +p Unit, λa.if a then Void else Natp). We prove this by coinduction, and300

by inspecting the computation of loop(F ) (see coSem in barContP2.lagda). Given k ∈ Natp and301

α ∈B, (loop(F ) k α) first evaluates F (upd(δ, α)) to i for some “fresh” δ, and then returns302

η(i) if !δ < k, and otherwise returns 𭟋(λx.loop(F ) (k + 1) append(k, α, x)). We now prove303

loop(F ) k α ∈ CoDiag by cases. If !δ < k then it remains to prove that η(i) ∈ CoDiag, which304

is straightforward because F (upd(δ, α)) ∈ Nat, and therefore i too. If !δ /< k then it remains305

to prove 𭟋(λx.loop(F ) (k + 1) append(k, α, x)) ∈ CoDiag, which follows from the fact that306

λx.loop(F ) (k + 1) append(k, α, x) ∈ Natp → CoDiag, which follows by coinduction.307

5.3 Step 2: Case analysis308

Using classical logic we analyze two cases: given t ∈M(A, B), either t’s branches are all finite
or there exists an infinite branch, where the type of branches w.r.t. the world w, type A, and
family B is defined as follows, a right injection capturing the termination of a branch:

Branch ∶≡ ∀(n ∶ N).(∃(a, b ∶ Term).w ⊨ a≡a∈A ∧w ⊨ b≡b∈B(a)) ∨ ⊺

Note that a branch can either be finite if it returns an element of the right disjunct (i.e., ⊺)
for some n ∈ N, or infinite if it always returns an element of the left disjunct for all n ∈ N.
Branches are defined w.r.t. a term t in W (A, B) or in M(A, B), and we say that a branch
p ∈ Branch is a branch of a term t if: ∀(n ∶ N).p ∈n t, where p ∈n t is defined recursively as
follows (for shift(p) ∶≡ λk.p(k + 1)):

p ∈0 t ∶≡ ⊺ p ∈n+1 t ∶≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∃(f ∶ Term).t Z⇒w sup(a, f) ∧ shift(p) ∈n f b,

when p(0) is a left injection of (a, b, _, _)
⊺, otherwise
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The tree t ∈M(A, B) is loop(F ) 0 α0. In case t’s branches are all finite, we show that309

t ∈W (A, B) (Sec. 5.4). In case t has an infinite branch, we derive a contradiction using an310

argument similar to one used to validate weak continuity in [11] (Sec. 5.5).311

5.4 Step 3: Building a W type312

In case t’s branches are all finite, we prove that if t ∈ M(A, B) then t ∈ W (A, B). Again,
we use classical logic: assuming t /∈ W (A, B) and deriving a contradiction. Given that
t ∈ M(A, B) and t /∈ W (A, B), we extract, by coinduction, an infinite co-branch u from t,
where the type of co-branches u w.r.t. the world w, type A, and family B, is coinductively
defined as follows (see m2mb in barContP.lagda):

ν(R.∃(a, f, b ∶ Term).u Z⇒w sup(a, f) ∧w ⊨ b≡b∈B(a) ∧R f(b))

In particular, such a co-branch provides a sequence of Bs. From this co-branch u, we build313

an infinite branch p ∈ Branch (see mb2path in barContP.lagda), which is a function from n ∈ N314

to (left injections of) Bs along with their corresponding As, derived by induction on n. From315

the assumption that t’s branches are all finite we obtain that p must also be finite, from316

which we derive a contradiction (see m2w in barContP.lagda).317

5.5 Step 4: Termination318

In case t, which is here loop(F ) 0 α0, contains an infinite branch p, we derive a contradiction
from F ’s continuity. Because p is infinite, i.e., only returns left injections, we obtain a
metatheoretical function of the following type, which follows the branch p of loop(F ) 0 α0:

N→ ∃(a, b ∶ Term).w ⊨ a≡a∈BtA ∧w ⊨ b≡b∈BtB(a)

Therefore, for each n ∈ N, there are two cases: either (w ⊨ a≡a∈Nat and w ⊨ b≡b∈Void) or
(w ⊨ a≡a∈Unit and w ⊨ b≡b∈Natp). Since Void is not inhabited, it must be that w ⊨ a≡a∈Unit
and w ⊨ b≡b∈Natp. Hence, from this function, we obtain a metatheoretical function of the
following type, which follows the branch p of loop(F ) 0 α0:

N→ ∃(b ∶ Term).w ⊨ b≡b∈Natp

From this function, since ◻ is a Kripke-like modality, we obtain a metatheoretical function319

s ∈ N → N, which given n ∈ N returns the path taken in the nth 𭟋 along the branch p320

following the computation loop(F ) 0 α0. As explained in Sec. 3.1, TT◻C ’s calculus includes all321

metatheoretical functions from N to N, which inhabit B. These sequences do not have any322

computational purpose here, and are only used to prove termination. We have ⌈s⌋ ∈B, so by323

continuity of F we know that there is a k ∈ N such that the kth iteration of loop(F ) 0 α0 runs324

F (upd(δ, ⌈s⌋)) for some “fresh” δ such that δ’s value stays under k during the computation of325

F (upd(δ, ⌈s⌋)). This result makes use of steps-sat-isHighestN in continuity3.lagda, which was326

used to prove WCPp in [11], and in particular to prove that F (upd(δ, ⌈s⌋)) keeps track in δ327

of the highest number that s is applied to in the computation it performs. The modulus of328

continuity k of F at upd(δ, ⌈s⌋) is then the value stored by δ at the end of this computation.329

Therefore, because the kth iteration of loop(F ) 0 α0 runs F (upd(δ, ⌈s⌋)) such that δ’s330

value stays under k, it returns η(i) for some i, which contradicts the assumption that the331

branch is infinite, i.e., contains only 𭟋s (see noInfPath in barContP6.lagda for details).332

Note that the kth iteration of loop(F ) 0 α0 does not quite run F (upd(δ, ⌈s⌋)), but instead333

F (upd(δ, α)), where as indicated in Sec. 5.1, α is built starting from α0 using the append334

https://github.com/vrahli/opentt/blob/master/barContP.lagda
https://github.com/vrahli/opentt/blob/master/barContP.lagda
https://github.com/vrahli/opentt/blob/master/barContP.lagda
https://github.com/vrahli/opentt/blob/master/continuity3.lagda
https://github.com/vrahli/opentt/blob/master/barContP6.lagda


Cohen, da Rocha Paiva, Rahli, Tosun 35:13

function, and therefore is equal to ⌈s⌋ up to k. We can interchangeably use F (upd(δ, ⌈s⌋))335

or F (upd(δ, α)) thanks to Lem. 8 below (see updSeq-steps-NUM in barContP6.lagda).336

▶ Definition 7. The simulation relation t1 ≈δ,s,n t2 holds iff

(t1 = upd(δ, s) ∧ t2 = upd(δ, s2l(s, n))) ∨ (t1 = upd(δ, s2l(s, n)) ∧ t2 = upd(δ, s))
∨ (t1 = x ∧ t2 = x) ∨ (t1 = n ∧ t2 = n) ∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ≈δ,s,n b)
∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ≈δ,s,n b1 ∧ a2 ≈δ,s,n b2) ∨ . . .

where s2l(s, 0) ∶≡ α0 and s2l(s, n + 1) ∶≡ append(n, s2l(s, n), s(n + 1)).337

Most cases are omitted in this definition as they are similar to the ones presented above.338

Crucially terms of the form δ or νx.t are not related, and those are the only expressions not339

related, thereby ruling out names except when occurring inside upd through the first clause.340

▶ Lemma 8. If a ≈δ,s,n b and a w1↦∗w2
k such that n is higher than any value held by δ341

throughout this computation, then b w1↦∗w2
k.342

5.6 Step 5: The Continuity Property343

It now remains to prove that given F ∈B → Nat, the tree d ∶≡ (loop(F ) 0 α0) ∈ Bt satisfies344

the property Πpα∶B.follow(d, α)=F (α)∈Nat (see semCond in barContP9.lagda). For this we345

need to prove that follow(d, α) computes to the same number that F (α) computes to, and346

this for any pure sequence α ∈B and tree d ∶≡ loop(F ) k αk, where αk agrees with α up to k347

(see follow-NUM in barContP9.lagda). We prove this by induction on d. Either d is an η(i),348

which we discuss below, or a 𭟋(f), in which case we conclude by induction. In case d349

is η(i), we must prove that F (α) computes to i. In that case, d runs F (upd(δ, αk)) for some350

“fresh” δ, which computes to i for some αk that agrees with α up to k. Here αk is s2l(s, k),351

for some s equal to α in B. We use again here a metatheoretical sequence s, which does not352

have any computational purpose. We can then prove that F (α) and F (s) compute to the353

same number, and appealing to Lem. 8, we prove that F (s) and F (upd(δ, αk)) compute to354

the same number, and therefore that F (α) computes to i, which concludes our proof.355

6 Conclusion and Related Works356

The paper presents the first internalization of the inductive dialogue-based continuity principle357

in a dependent type theory, namely TT◻C , which has been formalized in Agda. For this, we358

construct Brouwer trees via effectful computations that use references. Proving the inductive359

continuity principle internally entails new challenges, such as the termination proof which360

requires maintaining a strict connection between a meta-theoretical generic element and361

an internal computation. More generally, the class of effectful intuitionistic theories TT◻C ,362

which now internalizes several continuity principles, provides a computational framework for363

further studying the relationship between these principles. WCP and ICP have been shown364

to coincide in the presence of Bar Induction (under certain restrictions), or assuming classical365

reasoning [6; 22; 9]. Bar Induction was shown to be consistent with a subsystem of TT◻C [34].366

Thus, it seems that TT◻C provides an ideal framework in which one can formally verify this367

implication internally, as well as produce a corresponding computation. An immediate related368

question we leave for further study is then to establish the relation between the two principles369

in a general setting, without assuming Bar Induction or resorting to classical reasoning.370

The technique of using dialogue trees to compute moduli of continuity originated in [20;371

22; 21; 19], while the idea of recording the interaction of a function with an oracle to compute372
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continuity goes back to Longley [28], where exceptions and references were used as a probing373

mechanism to compute moduli of continuity. In [19], Escardó defined a model of System T374

where N is interpreted as the type of dialogue trees and function types as functions between375

the interprations of the source and target types. This model contains a generic element of376

type N → N, a function from dialogue trees to dialogue trees, that records queries to it in377

the structure of the resulting dialogue tree. Then, a dialogue tree is built using this generic378

element, from which the modulus of continuity can be calculated. Sterling [35] extended the379

effectful forcing technique to prove that System T validates the realizable bar thesis, which380

is equivalent to the inductive continuity principle considered here. System T was given a381

call-by-name interpretation, where types are interpreted as algebras over a dialogue tree382

monad. Although the carrier sets of this interpretation agree with those of Escardó, the383

actions of the algebras allow for a compositional interpretation of the recursor on numbers.384

In [3], the authors prove that all BTT [29] functions are continuous by generalizing the385

method of [19]. However, their method does not allow internalizing the continuity principle,386

which is the goal of the present work. As they work in the metatheory, they can induct on the387

syntax of the F ∈B→ Nat when constructing the dialogue trees, allowing for a constructive388

proof of continuity. In this work, we construct a program computing such trees in the theory389

itself, where recursion on syntax of terms is not available. As a result we resort to classical390

logic to prove finiteness of the computed trees and termination of this program. It remains391

to be seen if this can also be done internally, without resorting to classical logic.392
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