Interfacing with Proof Assistants for
Domain Specific Programming Using

EventML

Vincent Rahli

PRL team - Cornell University

July 13, 2012

Vincent Rahli EventML July 13, 2012 1/15

Credits

» Mark Bickford

» Robert Constable

» David Guaspari

» Richard Eaton

» Vincent Rahli

» Robbert Van Renesse
» Nicolas Schiper

» Jason Wu

Vincent Rahli EventML July 13, 2012 2/15

Problem

Problem: unverified protocols are wrong.

Goal: automatic synthesis of verified diversifiable
distributed systems.

Our solution: building tools that cooperate with a
Logical Programming Environment (e.g., a constructive
theorem prover).

Vincent Rahli EventML July 13, 2012 3/15

EventML: specification and programming language

v

A ML-like functional programming language.

v

Features logical constructs (Logic of Events combinators).

v

To specify/code distributed protocols.

v

EventML translates specifications into event classes.

Logical aspect

v

EventML synthesizes distributed programs (in the model
underlying the Logic of Events) from specifications.

Computational aspect

Vincent Rahli EventML July 13, 2012 4/15

Cooperation with a Logical Programming

Environment

—

Emacs Ul

EventML

typable
specification

~

specification

+
invariants

code synthesizer

Event Logic
predicates

Message
system

Simulator
- evaluator 1
- evaluator 2
- evaluator 3

Logical
translator

Vincent Rahli

EventML

/Nuprl\

~

Librar:
y i Simulator
extraction
extracted - evaluator 1
code > - evaluator 2
- evaluator 3
‘programmability e
lemma
s correct-by-construction
synthesizer
Refiners
Event Logic
predicates -
Distributed
system
properties

July 13, 2012

5/15

Accomplishments

We have specified many distributed protocols.
We have proved the correctness of the following protocols:

» Leader election in a ring.
» Two-thirds consensus protocol.
» Paxos (in progress).

The methodology works!

ShadowDB: A replicated database on top of a synthesized consensus core

Nicolas Schiper

(Cornell postdoc) has implemented
a replicated database (ShadowDB)
on top of our synthesized
two-thirds consensus protocol.

There are up to f = 1 failures

It is used!

Vincent Rahli EventML July 13, 2012 6/15

An example: Maximum using Memory

We have defined state machines in the Logic of Events.

E.g., Memoryl.

We have automated some reasoning on state machines.

Vincent Rahli EventML July 13, 2012 7/15

Maximum

input int : Int

class Maximum =
Memoryl (\loc.{0})
(\loc.\x.\s. imax x s)
int'base

Intuition: at any event, computes the maximum of the
integers received in the past.

Vincent Rahli EventML July 13, 2012 8/15

Maximum

class Maximum =

Memoryl (\loc.{0})
(\Mloc.\x.\n.imax x n)
int'base

imax

-]

Vincent Rahli EventML

July 13, 2012

9/15

Maximum

Nk}
e

~

Lof

e4
Vincent Rahli

{}

{}

{(3,5)}

class Obsl =

letFlocxn=ifn>3&n<?20
then {imax x n}
else {}

in F o (int'base,Maximum)

class Obs2 =

letFlocxn=ifn>=3&x>=3
then {(n,x)}
else {}

in F o (int'base,Maximum)

{12} {(5,12)}

EventML July 13, 2012

10/15

Maximum

input
internal inc

start : Unit
+ Unit

class Input = start'base
|| inc'base

class IncState =
Memory1 (\loc.{0})

(Mloc.\().\n.n+1)

Input

Class Increment =
letFloc () n=
{int'send An

; inc'send loc ()

in F o (Input,IncState),

Vincent Rahli

EventML

e3

2

e4

class Obsl =

letFlocxn=ifn>3&n<20
then {imax x n}
else {}

in F o (int'base,Maximum)

class Obs2 =

letFlocxn=ifn>=3&x>=3
then {(n,x)}
else {}

in F o (int'base,Maximum)

{r {1

]

i+ {3

]

{+ {@3.5)}

-

{12} {(5,12)}

ey
~

July 13, 2012

11/15

Maximum

3

2
5
12

~]
™~
™~

el
al
e2
.
[
e4
c

™~

Vincent Rahli

[

e5
2\
p

e6
b
. e7

e8

<,

[e]

d

EventML

request

max (3,A)

s2

s3

July 13, 2012

12/15

Maximum

request'base events
Maximum events
ReplyToRequest events

Vincent Rahli EventML July 13, 2012 13/15

Maximum

One can specify state machine invariants in EventML:
invariant pos_max on n in Maximum

— n >= 0;;

progress inc_max on nl then n2 in Maximum
with n in int'base and s =>n > s
— n2 > nl;;

memory mem_max on nl then n2 in Maximum
with n in int'base

= n2>=n /\ n2 >= nl;;

Nuprl automatically proves these invariants.

Vincent Rahli EventML July 13, 2012 14/15

What's next?

» Automation.
» Correct-by-construction optimizations.

» More expressive types: refinement types, dependent
types...

Vincent Rahli EventML July 13, 2012 15/15

