A complete realisability semantics for intersection types and arbitrary expansion variables

Fairouz Kamareddine ${ }^{1}$, Karim Nour ${ }^{2}$, Vincent Rahli ${ }^{1}$, and J. B. Wells ${ }^{1}$
${ }^{1}$ ULTRA Group (Useful Logics, Types, Rewriting, and their Automation), http://www.macs.hw.ac.uk/ultra/
${ }^{2}$ Université de Savoie, Campus Scientifique, 73378 Le Bourget du Lac, France, nour@univ-savoie.fr

Abstract

Expansion was introduced at the end of the 1970s for calculating principal typings for λ-terms in intersection type systems. Expansion variables (E-variables) were introduced at the end of the 1990s to simplify and help mechanise expansion. Recently, E-variables have been further simplified and generalised to also allow calculating other type operators than just intersection. There has been much work on semantics for intersection type systems, but only one such work on intersection type systems with E-variables. That work established that building a semantics for E-variables is very challenging. Because it is unclear how to devise a space of meanings for E-variables, that work developed instead a space of meanings for types that is hierarchical in the sense of having many degrees (denoted by indexes). However, although the indexed calculus helped identify the serious problems of giving a semantics for expansion variables, the sound realisability semantics was only complete when one single E-variable is used and furthermore, the universal type ω was not allowed. In this paper, we are able to overcome these challenges. We develop a realisability semantics where we allow an arbitrary (possibly infinite) number of expansion variables and where ω is present. We show the soundness and completeness of our proposed semantics.

1 Introduction

Expansion is a crucial part of a procedure for calculating principal typings and thus helps support compositional type inference. For example, the λ-term $M=$ $(\lambda x . x(\lambda y . y z))$ can be assigned the typing $\Phi_{1}=\langle(z: a) \vdash(((a \rightarrow b) \rightarrow b) \rightarrow c) \rightarrow c\rangle$, which happens to be its principal typing. The term M can also be assigned the typing $\Phi_{2}=\left\langle\left(z: a_{1} \sqcap a_{2}\right) \vdash\left(\left(\left(a_{1} \rightarrow b_{1}\right) \rightarrow b_{1}\right) \sqcap\left(\left(a_{2} \rightarrow b_{2}\right) \rightarrow b_{2}\right) \rightarrow c\right) \rightarrow c\right\rangle$, and an expansion operation can obtain Φ_{2} from Φ_{1}. Because the early definitions of expansion were complicated [4], E-variables were introduced in order to make the calculations easier to mechanise and reason about. For example, in System E [2], the above typing Φ_{1} is replaced by $\Phi_{3}=\langle(z: e a) \vdash e((((a \rightarrow b) \rightarrow b) \rightarrow c) \rightarrow c)\rangle$, which differs from Φ_{1} by the insertion of the E-variable e at two places, and Φ_{2}
can be obtained from Φ_{3} by substituting for e the expansion term:
$E=\left(a:=a_{1}, b:=b_{1}\right) \sqcap\left(a:=a_{2}, b:=b_{2}\right)$.
Carlier and Wells [3] have surveyed the history of expansion and also Evariables. Kamareddine, Nour, Rahli and Wells [13] showed that E-variables pose serious challenges for semantics. In the list of open problems published in 1975 in [6], it is suggested that an arrow type expresses functionality. Following this idea, a type's semantics is given as a set of closed λ-terms with behaviour related to the specification given by the type. In many kinds of semantics, the meaning of a type T is calculated by an expression $[T]_{\nu}$ that takes two parameters, the type T and a valuation ν that assigns to type variables the same kind of meanings that are assigned to types. In that way, models based on term-models have been built for intersection type systems [7,14,11] where intersection types (introduced to type more terms than in the Simply Typed Lambda Calculus) are interpreted by set-theoretical intersection of meanings. To extend this idea to types with E-variables, we need to devise some space of possible meanings for E-variables. Given that a type $e T$ can be turned by expansion into a new type $S_{1}(T) \sqcap$ $S_{2}(T)$, where S_{1} and S_{2} are arbitrary substitutions (or even arbitrary further expansions), and that this can introduce an unbounded number of new variables (both E-variables and regular type variables), the situation is complicated.

This was the main motivation for [13] to develop a space of meanings for types that is hierarchical in the sense of having many degrees. When assigning meanings to types, [13] captured accurately the intuition behind E-variables by ensuring that each use of E-variables simply changes degrees and that each Evariable acts as a kind of capsule that isolates parts of the λ-term being analysed by the typing.

The semantic approach used in [13] is realisability semantics along the lines in Coquand [5] and Kamareddine and Nour [11]. Realisability allows showing soundness in the sense that the meaning of a type T contains all closed λ terms that can be assigned T as their result type. This has been shown useful in previous work for characterising the behaviour of typed λ-terms [14]. One also wants to show the converse of soundness which is called completeness (see Hindley [8-10]), i.e., that every closed λ-term in the meaning of T can be assigned T as its result type. Moreover, [13] showed that if more than one E-variable is used, the semantics is not complete. Furthermore, the degrees used in [13] made it difficult to allow the universal type ω and this limited the study to the λI calculus. In this paper, we are able to overcome these challenges. We develop a realisability semantics where we allow the full λ-calculus, an arbitrary (possibly infinite) number of expansion variables and where ω is present, and we show its soundness and completeness. We do so by introducing an indexed calculus as in [13]. However here, our indices are finite sequences of natural numbers rather than single natural numbers.

In Section 2 we give the full λ-calculus indexed with finite sequences of natural numbers and show the confluence of $\beta, \beta \eta$ and weak head reduction on the indexed λ-calculus. In Section 3 we introduce the type system for the indexed λ calculus (with the universal type ω). In this system, intersections and expansions
cannot occur directly to the right of an arrow. In Section 4 we establish that subject reduction holds for \vdash. In Section 5 we show that subject β-expansion holds for \vdash but that subject η-expansion fails. In Section 6 we introduce the realisability semantics and show its soundness for \vdash. In Section 7 we establish the completeness of \vdash by introducing a special interpretation. We conclude in Section 8. Omitted proofs can be found in the appendix.

2 The pure $\lambda^{\mathcal{L}_{\mathbb{N}}}$-calculus

In this section we give the λ-calculus indexed with finite sequences of natural numbers and show the confluence of $\beta, \beta \eta$ and weak head reduction.

Let n, m, i, j, k, l be metavariables which range over the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. We assume that if a metavariable v ranges over a set s then v_{i} and $v^{\prime}, v^{\prime \prime}$, etc. also range over s. A binary relation is a set of pairs. Let rel range over binary relations. We sometimes write x rel y instead of $\langle x, y\rangle \in$ rel. Let $\operatorname{dom}($ rel $)=\{x /\langle x, y\rangle \in$ rel $\}$ and $\operatorname{ran}(r e l)=\{y /\langle x, y\rangle \in$ rel $\}$. A function is a binary relation fun such that if $\{\langle x, y\rangle,\langle x, z\rangle\} \subseteq$ fun then $y=z$. Let fun range over functions. Let $s \rightarrow s^{\prime}=\left\{\right.$ fun $\left./ \operatorname{dom}(f u n) \subseteq s \wedge \operatorname{ran}(f u n) \subseteq s^{\prime}\right\}$. We sometimes write $x: s$ instead of $x \in s$.

First, we introduce the set $\mathcal{L}_{\mathbb{N}}$ of indexes with an order relation on indexes.
Definition 1. 1. An index is a finite sequence of natural numbers $L=\left(n_{i}\right)_{1 \leq i \leq l}$.
We denote $\mathcal{L}_{\mathbb{N}}$ the set of indexes and \oslash the empty sequence of natural numbers. We let L, K, R range over $\mathcal{L}_{\mathbb{N}}$.
2. If $L=\left(n_{i}\right)_{1 \leq i \leq l}$ and $m \in \mathbb{N}$, we use $m:: L$ to denote the sequence $\left(r_{i}\right)_{1 \leq i \leq l+1}$ where $r_{1}=m$ and for all $i \in\{2, \ldots, l+1\}, r_{i}=n_{i-1}$.
In particular, $k:: \oslash=(k)$.
3. If $L=\left(n_{i}\right)_{1 \leq i \leq n}$ and $K=\left(m_{i}\right)_{1 \leq i \leq m}$, we use $L:: K$ to denote the sequence $\left(r_{i}\right)_{1 \leq i \leq n+m}$ where for all $i \in\{1, \ldots, n\}, r_{i}=n_{i}$ and for all $i \in\{n+$ $1, \ldots, n+m\}, r_{i}=m_{i-n}$. In particular, $L:: \oslash=\oslash:: L=L$.
4. We define on $\mathcal{L}_{\mathbb{N}}$ a binary relation \preceq by:
$L_{1} \preceq L_{2} \quad\left(\right.$ or $\left.L_{2} \succeq L_{1}\right)$ if there exists $L_{3} \in \mathcal{L}_{\mathbb{N}}$ such that $L_{2}=L_{1}:: L_{3}$.
Lemma 1. \preceq is an order relation on $\mathcal{L}_{\mathbb{N}}$.
The next definition gives the syntax of the indexed calculus and the notions of reduction.

Definition 2. 1. Let \mathcal{V} be a countably infinite set of variables. The set of terms \mathcal{M}, the set of free variables $\operatorname{fv}(M)$ of a term $M \in \mathcal{M}$, the degree function $d: \mathcal{M} \rightarrow \mathcal{L}_{\mathbb{N}}$ and the joinability $M \diamond N$ of terms M and N are defined by simultaneous induction as follows:

- If $x \in \mathcal{V}$ and $L \in \mathcal{L}_{\mathbb{N}}$, then $x^{L} \in \mathcal{M}, \operatorname{fv}\left(x^{L}\right)=\left\{x^{L}\right\}$ and $d\left(x^{L}\right)=L$.
- If $M, N \in \mathcal{M}, d(M) \preceq d(N)$ and $M \diamond N$ (see below), then $M N \in \mathcal{M}$, $\mathrm{fv}(M N)=\mathrm{fv}(M) \cup \mathrm{fv}(N)$ and $d(M N)=d(M)$.
- If $x \in \mathcal{V}, M \in \mathcal{M}$ and $L \succeq d(M)$, then $\lambda x^{L} . M \in \mathcal{M}, \operatorname{fv}\left(\lambda x^{L} . M\right)=$ $\mathrm{fv}(M) \backslash\left\{x^{L}\right\}$ and $d\left(\lambda x^{L} \cdot M\right)=d(M)$.

2. - Let $M, N \in \mathcal{M}$. We say that M and N are joinable and write $M \diamond N$ iff for all $x \in \mathcal{V}$, if $x^{L} \in \operatorname{fv}(M)$ and $x^{K} \in \operatorname{fv}(N)$, then $L=K$.

- If $\mathcal{X} \subseteq \mathcal{M}$ such that for all $M, N \in \mathcal{X}, M \diamond N$, we write, $\diamond \mathcal{X}$.
- If $\mathcal{X} \subseteq \mathcal{M}$ and $M \in \mathcal{M}$ such that for all $N \in \mathcal{X}, M \diamond N$, we write, $M \diamond \mathcal{X}$. The \diamond property ensures that in any term M, variables have unique degrees. We assume the usual definition of subterms and the usual convention for parentheses and their omission (see Barendregt [1] and Krivine [14]). Note that every subterm of $M \in \mathcal{M}$ is also in \mathcal{M}. We let x, y, z, etc. range over \mathcal{V} and M, N, P range over \mathcal{M} and use $=$ for syntactic equality.

3. The usual simultaneous substitution $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$ of $N_{i} \in \mathcal{M}$ for all free occurrences of $x_{i}^{L_{i}}$ in $M \in \mathcal{M}$ is only defined when $\diamond\{M\} \cup\left\{N_{i} /\right.$ $i \in\{1, \ldots, n\}\}$ and for all $i \in\{1, \ldots, n\}, d\left(N_{i}\right)=L_{i}$. In a substitution, we sometimes write $x_{1}^{L_{1}}:=N_{1}, \ldots, x_{n}^{L_{n}}:=N_{n}$ instead of $\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}$. We sometimes write $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{1}\right.$ as $M\left[x_{1}^{L_{1}}:=N_{1}\right]$.
4. We take terms modulo α-conversion given by:
$\lambda x^{L} . M=\lambda y^{L} .\left(M\left[x^{L}:=y^{L}\right]\right)$ where for all $L, y^{L} \notin \mathrm{fv}(M)$.
Moreover, we use the Barendregt convention ($B C$) where the names of bound variables differ from the free ones and where we rewrite terms so that not both λx^{L} and λx^{K} co-occur when $L \neq K$.
5. A relation rel on \mathcal{M} is compatible iff for all $M, N, P \in \mathcal{M}$:

- If $M \operatorname{rel} N$ and $\lambda x^{L} . M, \lambda x^{L} . M \in \mathcal{M}$ then $\left(\lambda x^{L} . M\right)$ rel $\left(\lambda x^{L} . N\right)$.
- If $M \operatorname{rel} N$ and $M P, N P \in \mathcal{M}(r e s p . P M, P N \in \mathcal{M})$, then $(M P)$ rel ($N P$) (resp. (PM) rel (PN)).

6. The reduction relation \triangleright_{β} on \mathcal{M} is defined as the least compatible relation closed under the rule: $\left(\lambda x^{L} . M\right) N \triangleright_{\beta} M\left[x^{L}:=N\right]$ if $d(N)=L$
7. The reduction relation \triangleright_{η} on \mathcal{M} is defined as the least compatible relation closed under the rule: $\lambda x^{L} .\left(M x^{L}\right) \triangleright_{\eta} M$ if $x^{L} \notin \mathrm{fv}(M)$
8. The weak head reduction \triangleright_{h} on \mathcal{M} is defined by: $\left(\lambda x^{L} . M\right) N N_{1} \ldots N_{n} \triangleright_{h} M\left[x^{L}:=N\right] N_{1} \ldots N_{n}$ where $n \geq 0$
9. We let $\triangleright_{\beta \eta}=\triangleright_{\beta} \cup \triangleright_{\eta}$. For $r \in\{\beta, \eta, h, \beta \eta\}$, we denote by \triangleright_{r}^{*} the reflexive and transitive closure of \triangleright_{r} and by \simeq_{r} the equivalence relation induced by \triangleright_{r}^{*}.
The next theorem whose proof can be found in [12] states that free variables and degrees are preserved by our notions of reduction.
Theorem 1. Let $M \in \mathcal{M}$ and $r \in\{\beta, \beta \eta, h\}$.
10. If $M \triangleright_{\eta}^{*} N$ then $\mathrm{fv}(N)=\mathrm{fv}(M)$ and $d(M)=d(N)$.
11. If $M \triangleright_{r}^{*} N$ then $\mathrm{fv}(N) \subseteq \operatorname{fv}(M)$ and $d(M)=d(N)$.

As expansions change the degree of a term, indexes in a term need to increase/decrease.

Definition 3. Let $i \in \mathbb{N}$ and $M \in \mathcal{M}$.

1. We define M^{+i} by:
$\bullet\left(x^{L}\right)^{+i}=x^{i:: L} \quad \bullet\left(M_{1} M_{2}\right)^{+i}=M_{1}^{+i} M_{2}^{+i} \quad \bullet\left(\lambda x^{L} . M\right)^{+i}=\lambda x^{i:: L} \cdot M^{+i}$
Let $M^{+\varnothing}=M$ and $M^{+(i:: L)}=\left(M^{+i}\right)^{+L}$.
2. If $d(M)=i:: L$, we define M^{-i} by:
$\bullet\left(x^{i: K}\right)^{-i}=x^{K} \quad \bullet\left(M_{1} M_{2}\right)^{-i}=M_{1}^{-i} M_{2}^{-i} \quad \bullet\left(\lambda x^{i: K} . M\right)^{-i}=$
$\lambda x^{K} \cdot M^{-i}$
Let $M^{-\varnothing}=M$ and if $d(M) \succeq i:: L$ then $M^{-(i:: L)}=\left(M^{-i}\right)^{-L}$.
3. Let $\mathcal{X} \subseteq \mathcal{M}$. We write \mathcal{X}^{+i} for $\left\{M^{+i} / M \in \mathcal{X}\right\}$.

Normal forms are defined as usual.
Definition 4. 1. $M \in \mathcal{M}$ is in β-normal form ($\beta \eta$-normal form, h-normal form resp.) if there is no $N \in \mathcal{M}$ such that $M \triangleright_{\beta} N\left(M \triangleright_{\beta \eta} N, M \triangleright_{h} N\right.$ resp.).
2. $M \in \mathcal{M}$ is β-normalising ($\beta \eta$-normalising, h-normalising resp.) if there is an $N \in \mathcal{M}$ such that $M \triangleright_{\beta}^{*} N\left(M \triangleright_{\beta \eta} N, M \triangleright_{h} N\right.$ resp.) and N is in β-normal form ($\beta \eta$-normal form, h-normal form resp.).
The next theorem states that all of our notions of reduction are confluent on our indexed calculus. For a proof see [12].
Theorem 2 (Confluence). Let $M, M_{1}, M_{2} \in \mathcal{M}$ and $r \in\{\beta, \beta \eta, h\}$.

1. If $M \triangleright_{r}^{*} M_{1}$ and $M \triangleright_{r}^{*} M_{2}$, then there is M^{\prime} such that $M_{1} \triangleright_{r}^{*} M^{\prime}$ and $M_{2} \triangleright_{r}^{*} M^{\prime}$. 2. $M_{1} \simeq_{r} M_{2}$ iff there is a term M such that $M_{1} \triangleright_{r}^{*} M$ and $M_{2} \triangleright_{r}^{*} M$.

3 Typing system

This paper studies a type system for the indexed λ-calculus with the universal type ω. In this type system, in order to get subject reduction and hence completeness, intersections and expansions cannot occur directly to the right of an arrow (see \mathbb{U} below).

The next two definitions introduce the type system.
Definition 5. 1. Let a range over a countably infinite set \mathcal{A} of atomic types and let e range over a countably infinite set $\mathcal{E}=\left\{\bar{e}_{0}, \bar{e}_{1}, \ldots\right\}$ of expansion variables. We define sets of types \mathbb{T} and \mathbb{U}, such that $\mathbb{T} \subseteq \mathbb{U}$, and a function $d: \mathbb{U} \rightarrow \mathcal{L}_{\mathbb{N}}$ by:

- If $a \in \mathcal{A}$, then $a \in \mathbb{T}$ and $d(a)=\oslash$.
- If $U \in \mathbb{U}$ and $T \in \mathbb{T}$, then $U \rightarrow T \in \mathbb{T}$ and $d(U \rightarrow T)=\oslash$.
- If $L \in \mathcal{L}_{\mathbb{N}}$, then $\omega^{L} \in \mathbb{U}$ and $d\left(\omega^{L}\right)=L$.
- If $U_{1}, U_{2} \in \mathbb{U}$ and $d\left(U_{1}\right)=d\left(U_{2}\right)$, then $U_{1} \sqcap U_{2} \in \mathbb{U}$ and $d\left(U_{1} \sqcap U_{2}\right)=$ $d\left(U_{1}\right)=d\left(U_{2}\right)$.
$-U \in \mathbb{U}$ and $\bar{e}_{i} \in \mathcal{E}$, then $\bar{e}_{i} U \in \mathbb{U}$ and $d\left(\bar{e}_{i} U\right)=i:: d(U)$.
Note that d remembers the number of the expansion variables \bar{e}_{i} in order to keep a trace of these variables.
We let T range over \mathbb{T}, and U, V, W range over \mathbb{U}. We quotient types by taking \sqcap to be commutative (i.e. $U_{1} \sqcap U_{2}=U_{2} \sqcap U_{1}$), associative (i.e. $U_{1} \sqcap$ $\left.\left(U_{2} \sqcap U_{3}\right)=\left(U_{1} \sqcap U_{2}\right) \sqcap U_{3}\right)$ and idempotent (i.e. $U \sqcap U=U$), by assuming the distributivity of expansion variables over \sqcap (i.e. $e\left(U_{1} \sqcap U_{2}\right)=e U_{1} \sqcap e U_{2}$) and by having ω^{L} as a neutral (i.e. $\omega^{L} \sqcap U=U$). We denote $U_{n} \sqcap U_{n+1} \ldots \sqcap U_{m}$ by $\Pi_{i=n}^{m} U_{i}$ (when $n \leq m$). We also assume that for all $i \geq 0$ and $K \in \mathcal{L}_{\mathbb{N}}$, $\bar{e}_{i} \omega^{K}=\omega^{i:: K}$.

2. We denote $\bar{e}_{i_{1}} \ldots \bar{e}_{i_{n}}$ by \boldsymbol{e}_{K}, where $K=\left(i_{1}, \ldots, i_{n}\right)$ and $U_{n} \sqcap U_{n+1} \ldots \sqcap U_{m}$ by $\sqcap_{i=n}^{m} U_{i}$ (when $n \leq m$).

Definition 6. 1. A type environment is a set $\left\{x_{1}^{L_{1}}: U_{1}, \ldots, x_{n}^{L_{n}}: U_{n}\right\}$ such that for all $i, j \in\{1, \ldots, n\}$, if $x_{i}^{L_{i}}=x_{j}^{L_{j}}$ then $\left.U_{i}=U_{j}\right\}$. We let Env be the set of environments, use Γ, Δ to range over Env and write () for the empty environment. We define $\operatorname{dom}(\Gamma)=\left\{x^{L} / x^{L}: U \in \Gamma\right\}$. If $\operatorname{dom}\left(\Gamma_{1}\right) \cap$ $\operatorname{dom}\left(\Gamma_{2}\right)=\emptyset$, we write Γ_{1}, Γ_{2} for $\Gamma_{1} \cup \Gamma_{2}$. We write $\Gamma, x^{L}: U$ for $\Gamma,\left\{x^{L}: U\right\}$ and $x^{L}: U$ for $\left\{x^{L}: U\right\}$. We denote $x_{1}^{L_{1}}: U_{1}, \ldots, x_{n}^{L_{n}}: U_{n}$ by $\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$.
2. If $M \in \mathcal{M}$ and $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$, we denote env ${ }_{M}^{\omega}$ the type environment $\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n}$.
3. We say that a type environment Γ is $O K$ (and write $\mathrm{OK}(\Gamma)$) iff for all $x^{L}: U \in \Gamma, d(U)=L$.
4. Let $\Gamma_{1}=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}, \Gamma_{1}^{\prime}$ and $\Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}, \Gamma_{2}^{\prime}$ such that $\operatorname{dom}\left(\Gamma_{1}^{\prime}\right) \cap$ $\operatorname{dom}\left(\Gamma_{2}^{\prime}\right)=\emptyset$ and for all $i \in\{1, \ldots, n\}, d\left(U_{i}\right)=d\left(U_{i}^{\prime}\right)$. We denote $\Gamma_{1} \sqcap \Gamma_{2}$ the type environment $\left(x_{i}^{L_{i}}: U_{i} \sqcap U_{i}^{\prime}\right)_{n}, \Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}$. Note that $\Gamma_{1} \sqcap \Gamma_{2}$ is a type environment, $\operatorname{dom}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)=\operatorname{dom}\left(\Gamma_{1}\right) \cup \operatorname{dom}\left(\Gamma_{2}\right)$ and that, on environments, \square is commutative, associative and idempotent.
5. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{1 \leq i \leq n}$ We denote $\bar{e}_{j} \Gamma=\left(x_{i}^{j:: L_{i}}: \bar{e}_{j} U_{i}\right)_{1 \leq i \leq n}$.

Note that $e \Gamma$ is a type environment and $e\left(G_{1} \sqcap \Gamma_{2}\right)=e \Gamma_{1} \sqcap e \Gamma_{2}$.
6. We write $\Gamma_{1} \diamond \Gamma_{2}$ iff $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ and $x^{K} \in \operatorname{dom}\left(\Gamma_{2}\right)$ implies $K=L$.
7. We follow [3] and write type judgements as $M:\langle\Gamma \vdash U\rangle$ instead of the traditional format of $\Gamma \vdash M: U$, where \vdash is our typing relation. The typing rules of \vdash are given on the left hand side of Figure 7. In the last clause, the binary relation \sqsubseteq is defined on \mathbb{U} by the rules on the right hand side of Figure 7. We let Φ denote types in \mathbb{U}, or environments Γ or typings $\langle\Gamma \vdash U\rangle$. When $\Phi \sqsubseteq \Phi^{\prime}$, then Φ and Φ^{\prime} belong to the same set ($\mathbb{U} /$ environments/typings).
8. If $L \in \mathcal{L}_{\mathbb{N}}, U \in \mathbb{U}$ and $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$ is a type environment, we say that:
$-d(\Gamma) \succeq L$ if and only if for all $i \in\{1, \ldots, n\}, d\left(U_{i}\right) \succeq L$ and $L_{i} \succeq L$.
$-d(\langle\Gamma \vdash U\rangle) \succeq L$ if and only if $d(\Gamma) \succeq L$ and $d(U) \succeq L$.
To illustrate how our indexed type system works, we give an example:
Example 1. Let $U=\bar{e}_{3}\left(\bar{e}_{2}\left(\bar{e}_{1}\left(\left(\bar{e}_{0} b \rightarrow c\right) \rightarrow\left(\bar{e}_{0}(a \sqcap(a \rightarrow b)) \rightarrow c\right)\right) \rightarrow d\right) \rightarrow\right.$ $\left.\left(\left(\left(\bar{e}_{2} d \rightarrow a\right) \sqcap b\right) \rightarrow a\right)\right)$ where $a, b, c, d \in \mathcal{A}$,
$L_{1}=3:: \oslash \preceq L_{2}=3:: 2:: \oslash \preceq L_{3}=3:: 2:: 1:: 0:: \oslash$
and
$M=\lambda x^{L_{2}} \cdot \lambda y^{L_{1}} \cdot\left(y^{L_{1}}\left(x^{L_{2}} \lambda u^{L_{3}} \cdot \lambda v^{L_{3}} \cdot\left(u^{L_{3}}\left(v^{L_{3}} v^{L_{3}}\right)\right)\right)\right)$.
We invite the reader to check that $M:\langle() \vdash U\rangle$.
Just as we did for terms, we decrease the indexes of types, environments and typings.
Definition 7. 1. If $d(U) \succeq L$, then if $L=\oslash$ then $U^{-L}=U$ else $L=i:: K$ and we inductively define the type U^{-L} as follows:
$\left(U_{1} \sqcap U_{2}\right)^{-i:: K}=U_{1}^{-i:: K} \sqcap U_{2}^{-i:: K} \quad\left(\bar{e}_{i} U\right)^{-i:: K}=U^{-K}$
We write U^{-i} instead of $U^{-(i)}$.

$\begin{gather*} \overline{x^{\ominus}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}(a x) \\ \frac{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)}\right\rangle}{}(\omega) \\ \frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}\left(\rightarrow_{I}\right) \\ \frac{M:\langle\Gamma \vdash T\rangle \quad x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}\left(\rightarrow_{I}^{\prime}\right) \\ \frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}\left(\rightarrow_{E}\right) \\ \frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle} \\ \frac{M:\langle\Gamma \vdash U\rangle}{M^{+j}:\left\langle\bar{e}_{j} \Gamma \vdash \bar{e}_{j} U\right\rangle}(e) \\ \frac{M:\langle\Gamma \vdash U\rangle}{\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle U^{\prime} \vdash U^{\prime}\right\rangle}\left(\sqcap_{I}\right) \\ M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle \\ \hline \end{gather*}$	$\begin{gathered} \overline{\Phi \sqsubseteq \Phi}(r e f) \\ \frac{\Phi_{1} \sqsubseteq \Phi_{2} \quad \Phi_{2} \sqsubseteq \Phi_{3}}{\Phi_{1} \sqsubseteq \Phi_{3}}(t r) \\ \frac{d\left(U_{1}\right)=d\left(U_{2}\right)}{U_{1} \sqcap U_{2} \sqsubseteq U_{1}}\left(\sqcap_{E}\right) \\ \frac{U_{1} \sqsubseteq V_{1} \quad U_{2} \sqsubseteq V_{2}}{U_{1} \sqcap U_{2} \sqsubseteq V_{1} \sqcap V_{2}}(\sqcap) \\ \frac{U_{2} \sqsubseteq U_{1} \quad T_{1} \sqsubseteq T_{2}}{U_{1} \rightarrow T_{1} \sqsubseteq U_{2} \rightarrow T_{2}}(\rightarrow) \\ \frac{U_{1} \sqsubseteq U_{2}}{e U_{1} \sqsubseteq e U_{2}}\left(\sqsubseteq_{e}\right) \\ \frac{U_{1} \sqsubseteq U_{2}}{\Gamma, y^{L}: U_{1} \sqsubseteq \Gamma, y^{L}: U_{2}}(\sqsubseteq c) \\ \frac{U_{1} \sqsubseteq U_{2} \quad \Gamma_{2} \sqsubseteq \Gamma_{1}}{\left\langle\Gamma_{1} \vdash U_{1}\right\rangle \sqsubseteq\left\langle\Gamma_{2} \vdash U_{2}\right\rangle}(\sqsubseteq\rangle) \end{gathered}$

Fig. 1. Typing rules / Subtyping rules
2. If $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{k}$ and $d(\Gamma) \succeq L$, then for all $i \in\{1, \ldots, k\}, L_{i}=L:: L_{i}^{\prime}$ and $d\left(U_{i}\right) \succeq L$ and we denote $\Gamma^{-L}=\left(x^{L_{i}^{\prime}}: U_{i}^{-L}\right)_{k}$.
We write Γ^{-i} instead of $\Gamma^{-(i)}$.
3. If U is a type and Γ is a type environment such that $d(\Gamma) \succeq K$ and $d(U) \succeq$ K, then we denote $(\langle\Gamma \vdash U\rangle)^{-K}=\left\langle\Gamma^{-K} \vdash U^{-K}\right\rangle$.

The next lemma is informative about types and their degrees.
Lemma 2. 1. If $T \in \mathbb{T}$, then $d(T)=\oslash$.
2. Let $U \in \mathbb{U}$. If $d(U)=L=\left(n_{i}\right)_{m}$, then $U=\omega^{L}$ or $U=\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and for all $i \in\{1, \ldots, p\}, T_{i} \in \mathbb{T}$.
3. Let $U_{1} \sqsubseteq U_{2}$.
(a) $d\left(U_{1}\right)=d\left(U_{2}\right)$.
(b) If $U_{1}=\omega^{K}$ then $U_{2}=\omega^{K}$.
(c) If $U_{1}=\boldsymbol{e}_{K} U$ then $U_{2}=\boldsymbol{e}_{K} U^{\prime}$ and $U \sqsubseteq U^{\prime}$.
(d) If $U_{2}=\boldsymbol{e}_{K} U$ then $U_{1}=\boldsymbol{e}_{K} U^{\prime}$ and $U \sqsubseteq U^{\prime}$.
(e) If $U_{1}=\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ then $U_{2}=\omega^{K}$ or $U_{2}=$ $\Pi_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $q \geq 1$ and for all $j \in\{1, \ldots, q\}$, there exists $i \in\{1, \ldots, p\}$ such that $U_{j}^{\prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{j}^{\prime}$.
4. If $U \in \mathbb{U}$ such that $d(U)=L$ then $U \sqsubseteq \omega^{L}$.
5. If $U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}$ then $U=U_{1} \sqcap U_{2}$ where $U_{1} \sqsubseteq U_{1}^{\prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime}$.
6. If $\Gamma \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$ then $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$ where $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$.

The next lemma says how ordering or the decreasing of indexes propagate to environments.

Lemma 3. 1. $\mathrm{OK}\left(e n v_{M}^{\omega}\right)$.
2. If $\Gamma \sqsubseteq \Gamma^{\prime}, U \sqsubseteq U^{\prime}$ and $x^{L} \notin \operatorname{dom}(\Gamma)$ then $\Gamma,\left(x^{L}: U\right) \sqsubseteq \Gamma^{\prime},\left(x^{L}: U^{\prime}\right)$.
3. $\Gamma \sqsubseteq \overline{\Gamma^{\prime}}$ iff $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}, \Gamma^{\prime}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and for every $1 \leq i \leq n$, $U_{i} \sqsubseteq U_{i}^{\prime}$.
4. $\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$ iff $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$.
5. If $\operatorname{dom}(\Gamma)=\mathrm{fv}(M)$ and $\mathrm{OK}(\Gamma)$ then $\Gamma \sqsubseteq e n v_{M}^{\omega}$
6. If $\Gamma \diamond \Delta$ and $d(\Gamma), d(\Delta) \succeq K$, then $\Gamma^{-K} \diamond \Delta^{-K}$.
7. If $U \sqsubseteq U^{\prime}$ and $d(U) \succeq K$ then $U^{-K} \sqsubseteq U^{\prime-K}$.
8. If $\Gamma \sqsubseteq \Gamma^{\prime}$ and $d(\Gamma) \succeq K$ then $\Gamma^{-K} \sqsubseteq \Gamma^{\prime-K}$.
9. If $\operatorname{OK}\left(\Gamma_{1}\right), \operatorname{OK}\left(\Gamma_{2}\right)$ then $\operatorname{OK}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)$.
10. If $\mathrm{OK}(\Gamma)$ then $\mathrm{OK}(e \Gamma)$.
11. If $\Gamma_{1} \sqsubseteq \Gamma_{2}$ then ($d\left(\Gamma_{1}\right) \succeq L$ iff $d\left(\Gamma_{2}\right) \succeq L$) and ($\operatorname{OK}\left(\Gamma_{1}\right)$ iff $\operatorname{OK}\left(\Gamma_{2}\right)$).

The next lemma shows that we do not allow weakening in \vdash.
Lemma 4. 1. For every Γ and M such that $\operatorname{OK}(\Gamma) \operatorname{dom}(\Gamma)=\operatorname{fv}(M)$ and $d(M)=K$, we have $M:\left\langle\Gamma \vdash \omega^{K}\right\rangle$.
2. If $M:\langle\Gamma \vdash U\rangle$, then $\operatorname{dom}(\Gamma)=\operatorname{fv}(M)$.
3. If $M_{1}:\left\langle\Gamma_{1} \vdash U\right\rangle$ and $M_{2}:\left\langle\Gamma_{2} \vdash V\right\rangle$ then $\Gamma_{1} \diamond \Gamma_{2}$ iff $M_{1} \diamond M_{2}$.

Proof. 1. By $\omega, M:\left\langle e n v_{M}^{\omega} \vdash \omega^{K}\right\rangle$. By Lemma 3.5, $\Gamma \sqsubseteq e n v_{M}^{\omega}$. Hence, by \sqsubseteq and $\sqsubseteq_{\langle \rangle}, M:\left\langle\Gamma \vdash \omega^{K}\right\rangle$.
2. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.
3. If) Let $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ and $x^{K} \in \operatorname{dom}\left(\Gamma_{2}\right)$ then by Lemma 4.2, $x^{L} \in \operatorname{fv}\left(M_{1}\right)$ and $x^{K} \in \mathrm{fv}\left(M_{2}\right)$ so $\Gamma_{1} \diamond \Gamma_{2}$. Only if) Let $x^{L} \in \mathrm{fv}\left(M_{1}\right)$ and $x^{K} \in \mathrm{fv}\left(M_{2}\right)$ then by Lemma $4.2, x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ and $x^{K} \in \operatorname{dom}\left(\Gamma_{2}\right)$ so $M_{1} \diamond M_{2}$.

The next theorem states that typings are well defined and that within a typing, degrees are well behaved.
Theorem 3. 1. The typing relation \vdash is well defined on $\mathcal{M} \times E n v \times \mathbb{U}$.
2. If $M:\langle\Gamma \vdash U\rangle$ then $\operatorname{OK}(\Gamma)$, and $d(\Gamma) \succeq d(U)=d(M)$.
3. If $M:\langle\Gamma \vdash U\rangle$ and $d(U) \succeq K$ then $M^{-K}:\left\langle\Gamma^{-K} \vdash U^{-K}\right\rangle$.

Proof. We prove 1. and 2. simultaneously by induction on the derivation M : $\langle\Gamma \vdash U\rangle$. We prove 3. by induction on the derivation $M:\langle\Gamma \vdash U\rangle$. Full details can be found in [12].

Finally, here are two derivable typing rules that we will freely use in the rest of the article.
Remark 1. 1. The rule $\frac{M:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle \quad M:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle}{M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{1} \sqcap U_{2}\right\rangle} \sqcap_{I}^{\prime}$ is derivable.
2. The rule $\frac{}{x^{\mathrm{d}(U)}:\left\langle\left(x^{\mathrm{d}(U)}: U\right) \vdash U\right\rangle} a x^{\prime}$ is derivable.

4 Subject reduction properties

In this section we show that subject reduction holds for \vdash. The proof of subject reduction uses generation and substitution. Hence the next two lemmas.

Lemma 5 (Generation for \vdash).

1. If $x^{L}:\langle\Gamma \vdash U\rangle$, then $\Gamma=\left(x^{L}: V\right)$ and $V \sqsubseteq U$.
2. If $\lambda x^{L} . M:\langle\Gamma \vdash U\rangle$, $x^{L} \in \mathrm{fv}(M)$ and $d(U)=K$, then $U=\omega^{K}$ or $U=$ $\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and for all $i \in\{1, \ldots, p\}, M:\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash\right.$ $\left.\boldsymbol{e}_{K} T_{i}\right\rangle$.
3. If $\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle, x^{L} \notin \mathrm{fv}(M)$ and $d(U)=K$, then $U=\omega^{K}$ or $U=$ $\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and for all $i \in\{1, \ldots, p\}, M:\left\langle\Gamma \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$.
4. If $M x^{L}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle$ and $x^{L} \notin \mathrm{fv}(M)$, then $M:\langle\Gamma \vdash U \rightarrow T\rangle$.

Lemma 6 (Substitution for \vdash). If $M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle, N:\langle\Delta \vdash U\rangle$ and $M \diamond N$ then $M\left[x^{L}:=N\right]:\langle\Gamma \sqcap \Delta \vdash V\rangle$.

Since \vdash does not allow weakening, we need the next definition since when a term is reduced, it may lose some of its free variables and hence will need to be typed in a smaller environment.

Definition 8. If Γ is a type environment and $\mathcal{U} \subseteq \operatorname{dom}(\Gamma)$, then we write $\Gamma \upharpoonright \mathcal{U}$ for the restriction of Γ on the variables of \mathcal{U}. If $\mathcal{U}=\operatorname{fv}(M)$ for a term M, we write $\Gamma \upharpoonright_{M}$ instead of $\Gamma \upharpoonright_{\mathrm{fv}(M)}$.

Now we are ready to prove the main result of this section:
Theorem 4 (Subject reduction for \vdash). If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright{ }_{\beta \eta}^{*} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.

Proof. By induction on the length of the derivation $M \triangleright_{\beta \eta}^{*} N$. Case $M \triangleright_{\beta \eta} N$ is by induction on the derivation $M:\left\langle\Gamma \vdash_{3} U\right\rangle$.

Corollary 1. 1. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta}^{*} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$. 2. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{h}^{*} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.

5 Subject expansion properties

In this section we show that subject β-expansion holds for \vdash but that subject η-expansion fails.

The next lemma is needed for expansion.
Lemma 7. If $M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle$ and $x^{L} \in \mathrm{fv}(M)$ then there exist a type V and two type environments Γ_{1}, Γ_{2} such that: $M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle \quad N:\left\langle\Gamma_{2} \vdash V\right\rangle \quad \Gamma=\Gamma_{1} \sqcap \Gamma_{2}$

Since more free variables might appear in the β-expansion of a term, the next definition gives a possible enlargement of an environment.

Definition 9. Let $m \geq n, \Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$ and $\mathcal{U}=\left\{x_{1}^{L_{1}}, \ldots, x_{m}^{L_{m}}\right\}$. We write $\Gamma \uparrow \mathcal{U}$ for $x_{1}^{L_{1}}: U_{1}, \ldots, x_{n}^{L_{n}}: U_{n}, x_{n+1}^{L_{n+1}}: \omega^{L_{n+1}}, \ldots, x_{m}^{L_{m}}: \omega^{L_{m}}$. Note that $\Gamma \uparrow \mathcal{U}$ is a type environment. If $\operatorname{dom}(\Gamma) \subseteq \operatorname{fv}(M)$, we write $\Gamma \uparrow^{M}$ instead of $\Gamma \uparrow \mathrm{fv}(M)$.

We are now ready to establish that subject expansion holds for β (next theorem) and that it fails for η (Lemma 8).

Theorem 5 (Subject expansion for β). If $N:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta}^{*} N$, then $M:\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle$.

Proof. By induction on the length of the derivation $M \triangleright_{\beta}^{*} N$ using the fact that if $\mathrm{fv}(P) \subseteq \mathrm{fv}(Q)$, then $\left(\Gamma \uparrow^{P}\right) \uparrow^{Q}=\Gamma \uparrow^{Q}$.
Corollary 2. If $N:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{h}^{*} N$, then $M:\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle$.
Lemma 8 (Subject expansion fails for η). Let a be an element of \mathcal{A}. We have:

$$
\begin{aligned}
& \text { 1. } \lambda y^{\ominus} \cdot \lambda x^{\ominus} \cdot y^{\ominus} x^{\ominus} \triangleright_{\eta} \lambda y^{\ominus} \cdot y^{\ominus} \\
& \text { 2. } \lambda y^{\ominus} \cdot y^{\ominus}:\langle() \vdash a \rightarrow a\rangle \text {. } \\
& \text { 3. It is not possible that } \\
& \lambda y^{\ominus} \cdot \lambda x^{\ominus} \cdot y^{\ominus} x^{\ominus}:\langle() \vdash a \rightarrow a\rangle \text {. } \\
& \text { Hence, the subject } \eta \text {-expansion lemmas fail for } \vdash \text {. }
\end{aligned}
$$

Proof. 1. and 2. are easy. For 3., assume $\lambda y^{\varnothing} \cdot \lambda x^{\varnothing} \cdot y^{\varnothing} x^{\varnothing}:\langle() \vdash a \rightarrow a\rangle$.
By Lemma 5.2, $\lambda x^{\varnothing} . y^{\varnothing} x^{\varnothing}:\langle(y: a) \vdash \rightarrow a\rangle$. Again, by Lemma 5.2, $a=\omega^{\varnothing}$ or there exists $n \geq 1$ such that $a=\sqcap_{i=1}^{n}\left(U_{i} \rightarrow T_{i}\right)$, absurd.

6 The realisability semantics

In this section we introduce the realisability semantics and show its soundness for \vdash.

Crucial to a realisability semantics is the notion of a saturated set:
Definition 10. Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{M}$.

1. We use $\mathcal{P}(\mathcal{X})$ to denote the powerset of \mathcal{X}, i.e. $\{\mathcal{Y} / \mathcal{Y} \subseteq \mathcal{X}\}$.
2. We define $\mathcal{X}^{+i}=\left\{M^{+i} / M \in \mathcal{X}\right\}$.
3. We define $\mathcal{X} \rightsquigarrow \mathcal{Y}=\{M \in \mathcal{M} / M N \in \mathcal{Y}$ for all $N \in \mathcal{X}$ such that $M \diamond N\}$.
4. We say that $\mathcal{X} \imath \mathcal{Y}$ iff for all $M \in \mathcal{X} \rightsquigarrow \mathcal{Y}$, there exists $N \in \mathcal{X}$ such that $M \diamond N$.
5. For $r \in\{\beta, \beta \eta, h\}$, we say that \mathcal{X} is r-saturated if whenever $M \triangleright_{r}^{*} N$ and $N \in \mathcal{X}$, then $M \in \mathcal{X}$.

Saturation is closed under intersection, lifting and arrows:
Lemma 9. 1. $(\mathcal{X} \cap \mathcal{Y})^{+i}=\mathcal{X}^{+i} \cap \mathcal{Y}^{+i}$.
2. If \mathcal{X}, \mathcal{Y} are r-saturated sets, then $\mathcal{X} \cap \mathcal{Y}$ is r-saturated.
3. If \mathcal{X} is r-saturated, then \mathcal{X}^{+i} is r-saturated.
4. If \mathcal{Y} is r-saturated, then, for every set $\mathcal{X}, \mathcal{X} \rightsquigarrow \mathcal{Y}$ is r-saturated.
5. $(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+i} \subseteq \mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i}$.
6. If $\mathcal{X}^{+i} \imath \mathcal{Y}^{+i}$, then $\mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i} \subseteq(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+i}$.

We now give the basic step in our realisability semantics: the interpretations and meanings of types.

Definition 11. Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be countably infinite, $\mathcal{V}_{1} \cap \mathcal{V}_{2}=\emptyset$ and $\mathcal{V}=\mathcal{V}_{1} \cup \mathcal{V}_{2}$.

1. Let $L \in \mathcal{L}_{\mathbb{N}}$. We define $\mathcal{M}^{L}=\{M \in \mathcal{M} / d(M)=L\}$.
2. Let $x \in \mathcal{V}_{1}$. We define $\mathcal{N}_{x}^{L}=\left\{x^{L} N_{1} \ldots N_{k} \in \mathcal{M} / k \geq 0\right\}$.
3. Let $r \in\{\beta, \beta \eta, h\}$. An r-interpretation $\mathcal{I}: \mathcal{A} \mapsto \mathcal{P}\left(\mathcal{M}^{\varnothing}\right)$ is a function such that for all $a \in \mathcal{A}$:

- $\mathcal{I}(a)$ is r-saturated and $\quad \forall x \in \mathcal{V}_{1} . \mathcal{N}_{x}^{\oslash} \subseteq \mathcal{I}(a)$.

We extend an r-interpretation \mathcal{I} to \mathbb{U} as follows:

- $\mathcal{I}\left(\omega^{L}\right)=\mathcal{M}^{L}$
- $\mathcal{I}\left(\bar{e}_{i} U\right)=\mathcal{I}(U)^{+i}$
- $\mathcal{I}\left(U_{1} \sqcap U_{2}\right)=\mathcal{I}\left(U_{1}\right) \cap \mathcal{I}\left(U_{2}\right)$
- $\mathcal{I}(U \rightarrow T)=\mathcal{I}(U) \rightsquigarrow \mathcal{I}(T)$

Let r-int $=\{\mathcal{I} / \mathcal{I}$ is an r-interpretation $\}$.
4. Let $U \in \mathbb{U}$ and $r \in\{\beta, \beta \eta, h\}$. Define $[U]_{r}$, the r-interpretation of U by: $[U]_{r}=\left\{M \in \mathcal{M} / M\right.$ is closed and $\left.M \in \bigcap_{\mathcal{I} \in r-i n t} \mathcal{I}(U)\right\}$

Lemma 10. Let $r \in\{\beta, \beta \eta, h\}$.

1. (a) For any $U \in \mathbb{U}$ and $\mathcal{I} \in r$-int, we have $\mathcal{I}(U)$ is r-saturated.
(b) If $d(U)=L$ and $\mathcal{I} \in r$-int, then for all $x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{I}(U) \subseteq \mathcal{M}^{L}$.
2. Let $r \in\{\beta, \beta \eta, h\}$. If $\mathcal{I} \in r$-int and $U \sqsubseteq V$, then $\mathcal{I}(U) \subseteq \mathcal{I}(V)$.

Here is the soundness lemma.
Lemma 11 (Soundness). Let $r \in\{\beta, \beta \eta, h\}, M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle, \mathcal{I} \in r$-int and for all $j \in\{1, \ldots, n\}, N_{j} \in \mathcal{I}\left(U_{j}\right)$. If $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{M}$ then $M\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{n}\right] \in \mathcal{I}(U)$.

Proof. By induction on the derivation $M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle$.
Corollary 3. Let $r \in\{\beta, \beta \eta, h\}$. If $M:\langle() \vdash U\rangle$, then $M \in[U]_{r}$.
Proof. By Lemma 11, $M \in \mathcal{I}(U)$ for any r-interpretation \mathcal{I}. By Lemma 4.2, $\operatorname{fv}(M)=\operatorname{dom}(())=\emptyset$ and hence M is closed. Therefore, $M \in[U]_{r}$.

Lemma 12 (The meaning of types is closed under type operations).

 Let $r \in\{\beta, \beta \eta, h\}$. On \mathbb{U}, the following hold:1. $\left[\bar{e}_{i} U\right]_{r}=[U]_{r}^{+i}$
2. $[U \sqcap V]_{r}=[U]_{r} \cap[V]_{r}$
3. If $\mathcal{I} \in r$-int and $U, V \in \mathbb{U}$, then $\mathcal{I}(U) \imath \mathcal{I}(V)$.

Proof. 1. and 2. are easy. 3. Let $\mathrm{d}(U)=K, M \in \mathcal{I}(U) \rightsquigarrow \mathcal{I}(V)$ and $x \in \mathcal{V}_{1}$ such that for all $L, x^{L} \notin \mathrm{fv}(M)$, then $M \diamond x^{K}$ and by lemma $10.1 \mathrm{~b}, x^{K} \in \mathcal{I}(U)$.

The next definition and lemma put the realisability semantics in use.
Definition 12 (Examples). Let $a, b \in \mathcal{A}$ where $a \neq b$. We define:
$-I d_{0}=a \rightarrow a, I d_{1}=\bar{e}_{1}(a \rightarrow a)$ and $I d_{1}^{\prime}=\bar{e}_{1} a \rightarrow \bar{e}_{1} a$.

- $D=(a \sqcap(a \rightarrow b)) \rightarrow b$.
$-N a t_{0}=(a \rightarrow a) \rightarrow(a \rightarrow a), N a t_{1}=\bar{e}_{1}((a \rightarrow a) \rightarrow(a \rightarrow a))$, and $N a t_{0}^{\prime}=\left(\bar{e}_{1} a \rightarrow a\right) \rightarrow\left(\bar{e}_{1} a \rightarrow a\right)$.

Moreover, if M, N are terms and $n \in \mathbb{N}$, we define $(M)^{n} N$ by induction on n : $(M)^{0} N=N$ and $(M)^{m+1} N=M\left((M)^{m} N\right)$.

Lemma 13. 1. $\left[I d_{0}\right]_{\beta}=\left\{M \in \mathcal{M}^{\varnothing} / M\right.$ is closed and $\left.M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing}\right\}$.
2. $\left[I d_{1}\right]_{\beta}=\left[I d_{1}^{\prime}\right]_{\beta}=\left\{M \in \mathcal{M}^{(1)} / M\right.$ is closed and $\left.M \triangleright_{\beta}^{*} \lambda y^{(1)} \cdot y^{(1)}\right\}$. (Note that $I d_{1}^{\prime} \notin \mathbb{U}$.)
3. $[D]_{\beta}=\left\{M \in \mathcal{M}^{\ominus} / M\right.$ is closed and $\left.M \triangleright_{\beta}^{*} \lambda y^{\ominus} \cdot y^{\ominus} y^{\ominus}\right\}$.
4. $\left[N a t_{0}\right]_{\beta}=\left\{M \in \mathcal{M}^{\varnothing} / M\right.$ is closed and $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot f^{\varnothing}$ or $M \triangleright{ }_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{\varnothing} \cdot\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1\}$.
5. $\left[N a t_{1}\right]_{\beta}=\left\{M \in \mathcal{M}^{(1)} / M\right.$ is closed and $M \triangleright_{\beta}^{*} \lambda f^{(1)} \cdot f^{(1)}$ or $M \triangleright_{\beta}^{*}$ $\lambda f^{(1)} \cdot \lambda x^{(1)} \cdot\left(f^{(1)}\right)^{n} y^{(1)}$ where $\left.n \geq 1\right\}$. (Note that Nat ${ }_{1}^{\prime} \notin \mathbb{U}$.)
6. $\left[N a t_{0}^{\prime}\right]_{\beta}=\left\{M \in \mathcal{M}^{\oslash} / M\right.$ is closed and $M \triangleright_{\beta}^{*} \lambda f^{\oslash} \cdot f^{\oslash}$ or $\left.M \triangleright_{\beta}^{*} \lambda f^{\oslash} \cdot \lambda y^{(1)} \cdot f^{\oslash} y^{(1)}\right\}$.

7 The completeness theorem

In this section we set out the machinery and prove that completeness holds for \vdash.

We need the following partition of the set of variables $\left\{y^{L} / y \in \mathcal{V}_{2}\right\}$.
Definition 13. 1. Let $L \in \mathcal{L}_{\mathbb{N}}$. We define $\mathbb{U}^{L}=\{U \in \mathbb{U} / d(U)=L\}$ and $\mathcal{V}^{L}=\left\{x^{L} / x \in \mathcal{V}_{2}\right\}$.
2. Let $U \in \mathbb{U}$. We inductively define a set of variables \mathbb{V}_{U} as follows:

- If $d(U)=\oslash$ then:
- \mathbb{V}_{U} is an infinite set of variables of degree \oslash.
- If $U \neq V$ and $d(U)=d(V)=\oslash$, then $\mathbb{V}_{U} \cap \mathbb{V}_{V}=\emptyset$.
- $\bigcup_{U \in \mathbb{U} \varnothing} \mathbb{V}_{U}=\mathcal{V}^{\ominus}$.
- If $d(U)=L$, then we put $\mathbb{V}_{U}=\left\{y^{L} / y^{\varnothing} \in \mathbb{V}_{U^{-L}}\right\}$.

Lemma 14. 1. If $d(U), d(V) \succeq L$ and $U^{-L}=V^{-L}$, then $U=V$.
2. If $d(U)=L$, then \mathbb{V}_{U} is an infinite subset of \mathcal{V}^{L}.
3. If $U \neq V$ and $d(U)=d(V)=L$, then $\mathbb{V}_{U} \cap \mathbb{V}_{V}=\emptyset$.
4. $\bigcup_{U \in \mathbb{U}^{L}} \mathbb{V}_{U}=\mathcal{V}^{L}$.
5. If $y^{L} \in \mathbb{V}_{U}$, then $y^{i:: L} \in \mathbb{V}_{\bar{e}_{i} U}$.
6. If $y^{i:: L} \in \mathbb{V}_{U}$, then $y^{L} \in \mathbb{V}_{U^{-i}}$.

Proof. 1. If $L=\left(n_{i}\right)_{m}$, we have $U=\bar{e}_{n_{1}} \ldots \bar{e}_{n_{m}} U^{\prime}$ and $V=\bar{e}_{n_{1}} \ldots \bar{e}_{n_{m}} V^{\prime}$. Then $U^{-L}=U^{\prime}, V^{-L}=V^{\prime}$ and $U^{\prime}=V^{\prime}$. Thus $U=V .2$.3. and 4. By induction on L and using 1.5. Because $\left(\bar{e}_{i} U\right)^{-i}=U$. 6. By definition.

Our partition of the set \mathcal{V}_{2} as above will enable us to give in the next definition useful infinite sets which will contain type environments that will play a crucial role in one particular type interpretation.
Definition 14. 1. Let $L \in \mathcal{L}_{\mathbb{N}}$. We denote $\mathbb{G}^{L}=\left\{\left(y^{L}: U\right) / U \in \mathbb{U}^{L}\right.$ and $y^{L} \in$ $\left.\mathbb{V}_{U}\right\}$ and $\mathbb{H}^{L}=\bigcup_{K \succeq L} \mathbb{G}^{K}$. Note that \mathbb{G}^{L} and \mathbb{H}^{L} are not type environments because they are infinite sets.
2. Let $L \in \mathcal{L}_{\mathbb{N}}, M \in \mathcal{M}$ and $U \in \mathbb{U}$, we write:
$-M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$ if there is a type environment $\Gamma \subset \mathbb{H}^{L}$ where $M:\langle\Gamma \vdash U\rangle$
$-M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle$ if $M \triangleright_{\beta \eta}^{*} N$ and $N:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$
Lemma 15. 1. If $\Gamma \subset \mathbb{H}^{L}$ then $\operatorname{OK}(\Gamma)$.
2. If $\Gamma \subset \mathbb{H}^{L}$ then $\bar{e}_{i} \Gamma \subset \mathbb{H}^{i:: L}$.
3. If $\Gamma \subset \mathbb{H}^{i:: L}$ then $\Gamma^{-i} \subset \mathbb{H}^{L}$.
4. If $\Gamma_{1} \subset \mathbb{H}^{L}, \Gamma_{2} \subset \mathbb{H}^{K}$ and $L \preceq K$ then $\Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{L}$.

Proof. 1. Let $x^{K}: U \in \Gamma$ then $U \in \mathbb{U}^{K}$ and so $\mathrm{d}(U)=K$. 2. and 3. are by lemma 14. 4. First note that by 1., $\Gamma_{1} \sqcap \Gamma_{2}$ is well defined. $\mathbb{H}^{K} \subseteq \mathbb{H}^{L}$. Let $\left(x^{R}\right.$: $\left.U_{1} \sqcap U_{2}\right) \in \Gamma_{1} \sqcap \Gamma_{2}$ where $\left(x^{R}: U_{1}\right) \in \Gamma_{1} \subset \mathbb{H}^{L}$ and $\left(x^{R}: U_{2}\right) \in \Gamma_{2} \subset \mathbb{H}^{K} \subseteq \mathbb{H}^{L}$, then $\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)=R$ and $x^{R} \in \mathbb{V}_{U_{1}} \cap \mathbb{V}_{U_{2}}$. Hence, by lemma 14, $U_{1}=U_{2}$ and $\Gamma_{1} \sqcap \Gamma_{2}=\Gamma_{1} \cup \Gamma_{2} \subset \mathbb{H}^{L}$.

For every $L \in \mathcal{L}_{\mathbb{N}}$, we define the set of terms of degree L which contain some free variable x^{K} where $x \in \mathcal{V}_{1}$ and $K \succeq L$.

Definition 15. For every $L \in \mathcal{L}_{\mathbb{N}}$, let $\mathcal{O}^{L}=\left\{M \in \mathcal{M}^{L} / x^{K} \in \operatorname{fv}(M), x \in \mathcal{V}_{1}\right.$ and $K \succeq L\}$. It is easy to see that, for every $L \in \mathcal{L}_{\mathbb{N}}$ and $x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{O}^{L}$.

Lemma 16. 1. $\left(\mathcal{O}^{L}\right)^{+i}=\mathcal{O}^{i:: L}$.
2. If $y \in \mathcal{V}_{2}$ and $\left(M y^{K}\right) \in \mathcal{O}^{L}$, then $M \in \mathcal{O}^{L}$
3. If $M \in \mathcal{O}^{L}, M \diamond N$ and $L \preceq K=d(N)$, then $M N \in \mathcal{O}^{L}$.
4. If $d(M)=L, L \preceq K, M \diamond N$ and $N \in \mathcal{O}^{K}$, then $M N \in \mathcal{O}^{L}$.

The crucial interpretation \mathbb{I} for the proof of completeness is given as follows:
Definition 16. 1. Let $\mathbb{I}_{\beta \eta}$ be the $\beta \eta$-interpretation defined by: for all type variables $a, \mathbb{I}_{\beta \eta}(a)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} a\right\rangle\right\}$.
2. Let \mathbb{I}_{β} be the β-interpretation defined by: for all type variables $a, \mathbb{I}_{\beta}(a)=$ $\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$.
3. Let \mathbb{I}_{h} be the h-interpretation defined by: for all type variables $a, \mathbb{I}_{h}(a)=$ $\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$.

The next crucial lemma shows that \mathbb{I} is an interpretation and that the interpretation of a type of order L contains terms of order L which are typable in these special environments which are parts of the infinite sets of Definition 14.

Lemma 17. Let $r \in\{\beta \eta, \beta, h\}$ and $r^{\prime} \in\{\beta, h\}$

1. If $\mathbb{I}_{r} \in r$-int and $a \in \mathcal{A}$ then $\mathbb{I}_{r}(a)$ is r-saturated and for all $x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq$ $\mathbb{I}_{r}(a)$.
2. If $U \in \mathbb{U}$ and $d(U)=L$, then $\mathbb{I}_{\beta \eta}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$.
3. If $U \in \mathbb{U}$ and $d(U)=L$, then $\mathbb{I}_{r^{\prime}}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$.

Proof. 1. We do two cases:
Case $r=\beta \eta$. It is easy to see that $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{O}^{\varnothing} \subseteq \mathbb{I}_{\beta \eta}(a)$. Now we show that $\mathbb{I}_{\beta \eta}(a)$ is $\beta \eta$-saturated. Let $M \triangleright_{\beta \eta}^{*} N$ and $N \in \mathbb{I}_{\beta \eta}(a)$.

- If $N \in \mathcal{O}^{\ominus}$ then $N \in \mathcal{M}^{\ominus}$ and $\exists L$ and $x \in \mathcal{V}_{1}$ such that $x^{L} \in \operatorname{fv}(N)$. By theorem $1.2, \mathrm{fv}(N) \subseteq \mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}(N)$, hence, $M \in \mathcal{O}^{\varnothing}$
- If $N \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} a\right\rangle\right\}$ then $N \triangleright_{\beta \eta}^{*} N^{\prime}$ and $\exists \Gamma \subset \mathbb{H}^{\ominus}$, such that $N^{\prime}:\langle\Gamma \vdash a\rangle$. Hence $M \triangleright_{\beta \eta}^{*} N^{\prime}$ and since by theorem $1.2, \mathrm{~d}(M)=\mathrm{d}\left(N^{\prime}\right)$, $M \in\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} a\right\rangle\right\}$.

Case $r=\beta$. It is easy to see that $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\varnothing} \subseteq \mathcal{O}^{\varnothing} \subseteq \mathbb{I}_{\beta}(a)$. Now we show that $\mathbb{I}_{\beta}(a)$ is β-saturated. Let $M \triangleright_{\beta}^{*} N$ and $N \in \mathbb{I}_{\beta}(a)$.

- If $N \in \mathcal{O}^{\ominus}$ then $N \in \mathcal{M}^{\ominus}$ and $\exists L$ and $x \in \mathcal{V}_{1}$ such that $x^{L} \in \mathrm{fv}(N)$. By theorem 1.2, $\mathrm{fv}(N) \subseteq \mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}(N)$, hence, $M \in \mathcal{O}^{\varnothing}$
- If $N \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$ then $\exists \Gamma \subset \mathbb{H}^{\ominus}$, such that $N:\langle\Gamma \vdash a\rangle$. By theorem 5, $M:\left\langle\Gamma \uparrow^{M} \vdash a\right\rangle$. Since by theorem $1.2, \mathrm{fv}(N) \subseteq \mathrm{fv}(M)$, let $\operatorname{fv}(N)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ and $\operatorname{fv}(M)=\operatorname{fv}(N) \cup\left\{x_{n+1}^{L_{n+1}}, \ldots, x_{n+m}^{\overline{L_{n}+m}}\right\}$. So $\Gamma \uparrow^{M}=\Gamma,\left(x_{n+1}^{L_{n+1}}: \omega^{L_{n+1}}, \ldots, x_{n+m}^{L_{n+m}}: \omega^{L_{n+m}}\right) . \forall n+1 \leq i \leq n+m$, let U_{i} such that $x_{i}^{L_{i}} \in \mathbb{V}_{U_{i}}$. Then $\Gamma,\left(x_{n+1}^{L_{n+1}}: U_{n+1}, \ldots, x_{n+m}^{L_{n+m}}: U_{n+m}\right) \subset \mathbb{H}^{\ominus}$ and by $\sqsubseteq, M:\left\langle\Gamma,\left(x_{n+1}^{L_{n+1}}: U_{n+1}, \ldots, x_{n+m}^{L_{n+m}}: U_{n+m}\right) \vdash a\right\rangle$. Thus $M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle$ and since by theorem $1.2, \mathrm{~d}(M)=\mathrm{d}(N), M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$.

2. By induction on U.

- $U=a$: By definition of $\mathbb{I}_{\beta \eta}$.
$-U=\omega^{L}$: By definition, $\mathbb{I}_{\beta \eta}\left(\omega^{L}\right)=\mathcal{M}^{L}$. Hence, $\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M\right.$: $\left.\left\langle\mathbb{H}^{L} \vdash^{*} \omega^{L}\right\rangle\right\} \subseteq \mathbb{I}_{\beta \eta}\left(\omega^{L}\right)$.
Let $M \in \mathbb{I}_{\beta \eta}\left(\overline{\omega^{L}}\right)$ where $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ then $M \in \mathcal{M}^{L} . \forall 1 \leq i \leq n$, let U_{i} the type such that $x_{i}^{L_{i}} \in \mathbb{V}_{U_{i}}$. Then $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n} \subset \mathbb{H}^{L}$. By lemma 4.1 and lemma $15, M:\left\langle\Gamma \vdash \omega^{L}\right\rangle$. Hence $M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle$. Therefore, $\mathbb{I}\left(\omega^{L}\right) \subseteq\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} \omega^{L}\right\rangle\right\}$.
We deduce $\mathbb{I}_{\beta \eta}\left(\omega^{L}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} \omega^{L}\right\rangle\right\}$.
$-U=\bar{e}_{i} V: L=i:: K$ and $\mathrm{d}(V)=K$. By IH and lemma $16, \mathbb{I}_{\beta \eta}\left(\bar{e}_{i} V\right)=$ $\left(\mathbb{I}_{\beta \eta}(V)\right)^{+i}=\left(\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}\right)^{+i}=$ $\mathcal{O}^{L} \cup\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}\right)^{+i}$.
- If $M \in \mathcal{M}^{K}$ and $M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash V\rangle$ where $\Gamma \subset \mathbb{H}^{K}$. By e, lemmas 19 and 15, $N^{+i}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} V\right\rangle, M^{+i} \triangleright_{\beta \eta}^{*} N^{+i}$ and $\bar{e}_{i} \Gamma \subset \mathbb{H}^{L}$. Thus $M^{+i} \in \mathcal{M}^{L}$ and $M^{+i}:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By lemmas 19, 3, and 15, $M^{-i} \triangleright_{\beta \eta}^{*} N^{-i}, N^{-i}:\left\langle\Gamma^{-i} \vdash V\right\rangle$ and $\Gamma^{-i} \subset \mathbb{H}^{K}$. Thus by lemma $19, M=\left(M^{-i}\right)^{+i}$ and $M^{-i} \in\left\{M \in \mathcal{M}^{K} /\right.$ $\left.M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$.

Hence $\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}\right)^{+i}=\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$ and $\mathbb{I}_{\beta \eta}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$.
$-U=U_{1} \sqcap U_{2}$: By $\mathrm{IH}, \mathbb{I}_{\beta \eta}\left(U_{1} \sqcap U_{2}\right)=\mathbb{I}_{\beta \eta}\left(U_{1}\right) \cap \mathbb{I}_{\beta \eta}\left(U_{2}\right)=\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} /\right.\right.$ $\left.\left.M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle\right\}\right) \cap\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle\right\}\right)=\mathcal{O}^{L} \cup\left(\left\{M \in \mathcal{M}^{L}\right.\right.$ $\left.\left./ M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle\right\} \cap\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle\right\}\right)$.

- If $M \in \mathcal{M}^{L}, M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N_{1}$, $M \triangleright_{\beta \eta}^{*} N_{2}, N_{1}:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle$ and $N_{2}:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle$ where $\Gamma_{1}, \Gamma_{2} \subset \mathbb{H}^{L}$. By confluence theorem 2 and subject reduction theorem $4, \exists M^{\prime}$ such that $M \triangleright_{\beta \eta}^{*} M^{\prime}, M^{\prime}:\left\langle\Gamma_{1} \upharpoonright_{M^{\prime}} \vdash U_{1}\right\rangle$ and $M^{\prime}:\left\langle\Gamma_{2} \upharpoonright_{M^{\prime}} \vdash U_{2}\right\rangle$. Hence by Remark 1 and lemma 1 and lemma 4.2 and lemma 25.2, $M^{\prime}:\left\langle\left(\Gamma_{1} \sqcap\right.\right.$ $\left.\left.\Gamma_{2}\right) \upharpoonright_{M^{\prime}} \vdash U_{1} \sqcap U_{2}\right\rangle$ and, by lemma $15,\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M^{\prime}} \subseteq \Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{L}$. Thus M : $\left\langle\mathbb{H}^{L} \vdash^{*} U_{1} \sqcap U_{2}\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1} \sqcap U_{2}\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N, N:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle$ and $\Gamma \subset \mathbb{H}^{L}$. By $\sqsubseteq, N:\left\langle\Gamma \vdash U_{1}\right\rangle$ and $N:\left\langle\Gamma \vdash U_{2}\right\rangle$.
Hence, $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle$.
We deduce that $\mathbb{I}_{\beta \eta}\left(U_{1} \sqcap T_{2}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1} \sqcap U_{2}\right\rangle\right\}$.
$-U=V \rightarrow T$: Let $\mathrm{d}(T)=\oslash \preceq K=\mathrm{d}(V)$. By $\mathrm{IH}, \mathbb{I}_{\beta \eta}(V)=\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K}\right.$ $\left./ M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$ and $\mathbb{I}_{\beta \eta}(T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} T\right\rangle\right\}$. Note that $\mathbb{I}_{\beta \eta}(V \rightarrow T)=\mathbb{I}_{\beta \eta}(V) \rightsquigarrow \mathbb{I}_{\beta \eta}(T)$.
- Let $M \in \mathbb{I}_{\beta \eta}(V) \rightsquigarrow \mathbb{I}_{\beta \eta}(T)$ and, by lemma 14 , let $y^{K} \in \mathbb{V}_{V}$ such that $\forall K, y^{K} \notin \mathrm{fv}(M)$. Then $M \diamond y^{K}$. By remark $1, y^{K}:\left\langle\left(y^{K}: V\right) \vdash^{*} V\right\rangle$. Hence $y^{K}:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle$. Thus, $y^{K} \in \mathbb{I}_{\beta \eta}(V)$ and $M y^{K} \in \mathbb{I}_{\beta \eta}(T)$.
* If $M y^{K} \in \mathcal{O}^{\ominus}$, then since $y \in \mathcal{V}_{2}$, by lemma $16, M \in \mathcal{O}^{\varnothing}$.
* If $M y^{K} \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\varnothing} \vdash^{*} T\right\rangle\right\}$ then $M y^{K} \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash T\rangle$ such that $\Gamma \subset \mathbb{H}^{\ominus}$, hence, $\lambda y^{K} . M y^{K} \triangleright_{\beta \eta}^{*} \lambda y^{K} . N$. We have two cases:
- If $y^{K} \in \operatorname{dom}(\Gamma)$, then $\Gamma=\Delta,\left(y^{K}: V\right)$ and by $\rightarrow_{I}, \lambda y^{K} . N:$ $\langle\Delta \vdash V \rightarrow T\rangle$.
- If $y^{K} \notin \operatorname{dom}(\Gamma)$, let $\Delta=\Gamma$. By $\rightarrow_{I}^{\prime}, \lambda y^{K} . N:\left\langle\Delta \vdash \omega^{K} \rightarrow T\right\rangle$. By $\sqsubseteq, ~ s i n c e ~\left\langle\Delta \vdash \omega^{K} \rightarrow T\right\rangle \sqsubseteq\langle\Delta \vdash V \rightarrow T\rangle$, we have $\lambda y^{K} . N$: $\langle\Delta \vdash V \rightarrow T\rangle$.
Note that $\Delta \subset \mathbb{H}^{\ominus}$. Since $\lambda y^{K} . M y^{K} \triangleright_{\beta \eta}^{*} M$ and $\lambda y^{K} . M y^{K} \triangleright_{\beta \eta}^{*}$ $\lambda y^{K} . N$, by theorem 2 and theorem 4 , there is M^{\prime} such that $M \triangleright_{\beta \eta}^{*} M^{\prime}$, $\lambda y^{K} . N \triangleright_{\beta \eta}^{*} M^{\prime}, M^{\prime}:\left\langle\Delta \upharpoonright_{M^{\prime}} \vdash V \rightarrow T\right\rangle$. Since $\Delta \upharpoonright_{M^{\prime}} \subseteq \Delta \subset \mathbb{H}^{\ominus}$, $M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow T\right\rangle$.
- Let $M \in \mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow T\right\rangle\right\}$ and $N \in \mathbb{I}_{\beta \eta}(V)=$ $\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$ such that $M \diamond N$. Then, $\mathrm{d}(N)=$ $K \succeq \oslash=\mathrm{d}(M)$.
* If $M \in \mathcal{O}^{\varnothing}$, then, by lemma $16, M N \in \mathcal{O}^{\varnothing}$.
* If $M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow T\right\rangle\right\}$, then
- If $N \in \mathcal{O}^{K}$, then, by lemma $16, M N \in \mathcal{O}^{\ominus}$.
- If $N \in\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$ then $M \triangleright_{\beta \eta}^{*} M_{1}, N \triangleright_{\beta \eta}^{*} N_{1}$, $M_{1}:\left\langle\Gamma_{1} \vdash V \rightarrow T\right\rangle$ and $N_{1}:\left\langle\Gamma_{2} \vdash V\right\rangle$ where $\Gamma_{1} \subset \mathbb{H}^{\ominus}$ and $\Gamma_{2} \subset \mathbb{H}^{K}$. By lemma 19 and theorem $1, M N \triangleright_{\beta \eta}^{*} M_{1} N_{1}$ and, by \rightarrow_{E} and lemma 4.3, $M_{1} N_{1}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$. By lemma 15, $\Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{\ominus}$. Therefore $M N:\left\langle\mathbb{H}^{\ominus} \vdash^{*} T\right\rangle$.

We deduce that $\mathbb{I}_{\beta \eta}(V \rightarrow T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow T\right\rangle\right\}$.
3. We only do the case $r=\beta$. By induction on U.
$-U=a$: By definition of \mathbb{I}_{β}.
$-U=\omega^{L}$: By definition, $\mathbb{I}_{\beta}\left(\omega^{L}\right)=\mathcal{M}^{L}$. Hence, $\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash\right.\right.$ $\left.\left.\omega^{L}\right\rangle\right\} \subseteq \mathbb{I}_{\beta}\left(\omega^{L}\right)$.
Let $M \in \mathbb{I}_{\beta}\left(\omega^{L}\right)$ where $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ then $M \in \mathcal{M}^{L} . \forall 1 \leq i \leq n$, let U_{i} the type such that $x_{i}^{L_{i}} \in \mathbb{V}_{U_{i}}$. Then $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n} \subset \mathbb{H}^{L}$. By lemma 4.1 and lemma $15, M:\left\langle\Gamma \vdash \omega^{L}\right\rangle$. Hence $M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle$. Therefore, $\mathbb{I}\left(\omega^{L}\right) \subseteq\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle\right\}$.
We deduce $\mathbb{I}_{\beta}\left(\omega^{L}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle\right\}$.
$-U=\bar{e}_{i} V: L=i:: K$ and $\mathrm{d}(V)=K$. By IH and lemma $16, \mathbb{I}_{\beta}\left(\bar{e}_{i} V\right)=$ $\left(\mathbb{I}_{\beta}(V)\right)^{+i}=\left(\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}\right)^{+i}=$ $\mathcal{O}^{L} \cup\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}\right)^{+i}$.

- If $M \in \mathcal{M}^{K}$ and $M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle$, then $M:\langle\Gamma \vdash V\rangle$ where $\Gamma \subset \mathbb{H}^{K}$. By e and $15, M^{+i}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} V\right\rangle$ and $\bar{e}_{i} \Gamma \subset \mathbb{H}^{L}$. Thus $M^{+i} \in \mathcal{M}^{L}$ and $M^{+i}:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$, then $M:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By lemmas 3, and $15, M^{-i}:\left\langle\Gamma^{-i} \vdash V\right\rangle$ and $\Gamma^{-i} \subset \mathbb{H}^{K}$. Thus by lemma 19, $M=\left(M^{-i}\right)^{+i}$ and $M^{-i} \in\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$.
Hence $\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}\right)^{+i}=\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$ and $\mathbb{I}_{\beta}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$.
$-U=U_{1} \sqcap U_{2}$: By $\mathrm{IH}, \mathbb{I}_{\beta}\left(U_{1} \sqcap U_{2}\right)=\mathbb{I}_{\beta}\left(U_{1}\right) \cap \mathbb{I}_{\beta}\left(U_{2}\right)=\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} /\right.\right.$ $\left.\left.M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle\right\}\right) \cap\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle\right\}\right)=\mathcal{O}^{L} \cup\left(\left\{M \in \mathcal{M}^{L}\right.\right.$ $\left.\left./ M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle\right\} \cap\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle\right\}\right)$.
- If $M \in \mathcal{M}^{L}, M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle$, then $M:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle$ where $\Gamma_{1}, \Gamma_{2} \subset \mathbb{H}^{L}$. Hence by Remark $1, M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash\right.$ $\left.U_{1} \sqcap U_{2}\right\rangle$ and, by lemma $15, \Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{L}$. Thus $M:\left\langle\mathbb{H}^{L} \vdash U_{1} \sqcap U_{2}\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash U_{1} \sqcap U_{2}\right\rangle$, then $M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle$ and $\Gamma \subset \mathbb{H}^{L}$. By $\sqsubseteq, M:\left\langle\Gamma \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma \vdash U_{2}\right\rangle$. Hence, $M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle$.
We deduce that $\mathbb{I}_{\beta}\left(U_{1} \sqcap T_{2}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U_{1} \sqcap U_{2}\right\rangle\right\}$.
$-U=V \rightarrow T$: Let $\mathrm{d}(T)=\oslash \preceq K=\mathrm{d}(V)$. By IH, $\mathbb{I}_{\beta}(V)=\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K}\right.$ $\left./ M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$ and $\mathbb{I}_{\beta}(T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash T\right\rangle\right\}$. Note that $\mathbb{I}_{\beta}(V \rightarrow T)=\mathbb{I}_{\beta}(V) \rightsquigarrow \mathbb{I}_{\beta}(T)$.
- Let $M \in \mathbb{I}_{\beta}(V) \rightsquigarrow \mathbb{I}_{\beta}(T)$ and, by lemma 14 , let $y^{K} \in \mathbb{V}_{V}$ such that $\forall K, y^{K} \notin \mathrm{fv}(M)$. Then $M \diamond y^{K}$. By remark 1, $y^{K}:\left\langle\left(y^{K}: V\right) \vdash^{*} V\right\rangle$. Hence $y^{K}:\left\langle\mathbb{H}^{K} \vdash V\right\rangle$. Thus, $y^{K} \in \mathbb{I}_{\beta}(V)$ and $M y^{K} \in \mathbb{I}_{\beta}(T)$.
* If $M y^{K} \in \mathcal{O}^{\varnothing}$, then since $y \in \mathcal{V}_{2}$, by lemma $16, M \in \mathcal{O}^{\varnothing}$.
* If $M y^{K} \in\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\ominus} \vdash T\right\rangle\right\}$ then $M y^{K}:\langle\Gamma \vdash T\rangle$ such that $\Gamma \subset \mathbb{H}^{\ominus}$. Since by lemma $4.2, \operatorname{dom}(\Gamma)=\operatorname{fv}\left(M y^{K}\right)$ and $y^{K} \in$ $\mathrm{fv}\left(M y^{K}\right), \Gamma=\Delta,\left(y^{K}: V^{\prime}\right)$. Since $\left(y^{K}: V^{\prime}\right) \in \mathbb{H} \varnothing$, by lemma 14 , $V=V^{\prime}$. So $M y^{K}:\left\langle\Delta,\left(y^{K}: V\right) \vdash T\right\rangle$ and by lemma $5 M:\langle\Delta \vdash$ $V \rightarrow T\rangle$. Note that $\Delta \subset \mathbb{H}^{\ominus}$, hence $M:\left\langle\mathbb{H}^{\ominus} \vdash V \rightarrow T\right\rangle$.
- Let $M \in \mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\ominus} \vdash V \rightarrow T\right\rangle\right\}$ and $N \in \mathbb{I}_{\beta \eta}(V)=$ $\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$ such that $M \diamond N$. Then, $\mathrm{d}(N)=$ $K \succeq \oslash=\mathrm{d}(M)$.
* If $M \in \mathcal{O}^{\ominus}$, then, by lemma $16, M N \in \mathcal{O}^{\ominus}$.
* If $M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash V \rightarrow T\right\rangle\right\}$, then
- If $N \in \mathcal{O}^{K}$, then, by lemma $16, M N \in \mathcal{O}^{\ominus}$.
- If $N \in\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$ then $M:\left\langle\Gamma_{1} \vdash V \rightarrow T\right\rangle$ and $N:\left\langle\Gamma_{2} \vdash V\right\rangle$ where $\Gamma_{1} \subset \mathbb{H}^{\ominus}$ and $\Gamma_{2} \subset \mathbb{H}^{K}$. By \rightarrow_{E} and lemma 4.3, $M N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$. By lemma 15, $\Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{\ominus}$. Therefore $M N:\left\langle\mathbb{H}^{\ominus} \vdash T\right\rangle$.
We deduce that $\mathbb{I}_{\beta}(V \rightarrow T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash V \rightarrow T\right\rangle\right\}$.
Now, we use this crucial II to establish completeness of our semantics.
Theorem 6 (Completeness of \vdash). Let $U \in \mathbb{U}$ such that $d(U)=L$.

1. $[U]_{\beta \eta}=\left\{M \in \mathcal{M}^{L} / M\right.$ closed, $M \triangleright_{\beta \eta}^{*} N$ and $\left.N:\langle() \vdash U\rangle\right\}$.
2. $[U]_{\beta}=[U]_{h}=\left\{M \in \mathcal{M}^{L} / M:\langle() \vdash U\rangle\right\}$.
3. $[U]_{\beta \eta}$ is stable by reduction. I.e., If $M \in[U]_{\beta \eta}$ and $M \triangleright_{\beta \eta}^{*} N$ then $N \in[U]_{\beta \eta}$.

Proof. Let $r \in\{\beta, h, \beta \eta\}$.

1. Let $M \in[U]_{\beta \eta}$. Then M is a closed term and $M \in \mathbb{I}_{\beta \eta}(U)$. Hence, by Lemma $17, M \in \mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$. Since M is closed, $M \notin \mathcal{O}^{L}$. Hence, $M \in\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$ and so, $M \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By Theorem 1, N is closed and, by Lemma 4.2, $N:\langle() \vdash U\rangle$. Conversely, take M closed such that $M \triangleright_{\beta}^{*} N$ and $N:\langle() \vdash U\rangle$. Let $\mathcal{I} \in$ $\beta \eta$-int. By Lemma 11, $N \in \mathcal{I}(U)$. By Lemma 10.1, $\mathcal{I}(U)$ is $\beta \eta$-saturated. Hence, $M \in \mathcal{I}(U)$. Thus $M \in[U]$.
2. Let $M \in[U]_{\beta}$. Then M is a closed term and $M \in \mathbb{I}_{\beta}(U)$. Hence, by Lemma 17, $M \in \mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$. Since M is closed, $M \notin \mathcal{O}^{L}$. Hence, $M \in\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$ and so, $M:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By Lemma 4.2, $M:\langle() \vdash U\rangle$.
Conversely, take M such that $M:\langle() \vdash U\rangle$. By Lemma 4.2, M is closed. Let $\mathcal{I} \in \beta$-int. By Lemma 11, $M \in \mathcal{I}(U)$. Thus $M \in[U]_{\beta}$. It is easy to see that $[U]_{\beta}=[U]_{h}$.
3. Let $M \in[U]_{\beta \eta}$ and $M \triangleright_{\beta \eta}^{*} N$. By $1, M$ is closed, $M \triangleright_{\beta \eta}^{*} P$ and $P:\langle() \vdash U\rangle$. By confluence Theorem 2, there is Q such that $P \triangleright_{\beta \eta}^{*} Q$ and $N \triangleright_{\beta \eta}^{*} Q$. By subject reduction Theorem 4, $Q:\langle() \vdash U\rangle$. By Theorem 1, N is closed and, by $1, N \in[U]_{\beta \eta}$.

8 Conclusion

Expansion may be viewed to work like a multi-layered simultaneous substitution. Moreover, expansion is a crucial part of a procedure for calculating principal typings and helps support compositional type inference. Because the early definitions of expansion were complicated, expansion variables (E-variables) were
introduced to simplify and mechanise expansion. The aim of this paper is to give a complete semantics for intersection type systems with expansion variables.

The only earlier attempt (see Kamareddine, Nour, Rahli and Wells [13]) at giving a semantics for expansion variables could only handle the λI-calculus, did not allow a universal type, and was incomplete in the presence of more than one expansion variable. This paper overcomes these difficulties and gives a complete semantics for an intersection type system with an arbitrary (possibly infinite) number of expansion variables using a calculus indexed with finite sequences of natural numbers.

References

1. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition, 1984.
2. S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury. System E: Expansion variables for flexible typing with linear and non-linear types and intersection types. In Programming Languages \& Systems, 13th European Symp. Programming, vol. 2986 of LNCS. Springer-Verlag, 2004.
3. S. Carlier, J. B. Wells. Expansion: the crucial mechanism for type inference with intersection types: A survey and explanation. In Proc. 3rd Int'l Workshop Intersection Types ξ^{8} Related Systems (ITRS 2004), 2005. The ITRS '04 proceedings appears as vol. 136 (2005-07-19) of Elec. Notes in Theoret. Comp. Sci.
4. M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Principal type schemes and λ calculus semantics. In J. R. Hindley, J. P. Seldin, eds., To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.
5. T. Coquand. Completeness theorems and lambda-calculus. In P. Urzyczyn, ed., TLCA, vol. 3461 of Lecture Notes in Computer Science. Springer, 2005.
6. G. Goos, J. Hartmanis, eds. λ-Calculus and Computer Science Theory, Proceedings of the Symposium Held in Rome, March 15-27, 1975, vol. 37 of Lecture Notes in Computer Science. Springer-Verlag, 1975.
7. J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In M. DezaniCiancaglini, U. Montanari, eds., International Symposium on Programming, 5th Colloquium, vol. 137 of LNCS, Turin, 1982. Springer-Verlag.
8. J. R. Hindley. The completeness theorem for typing λ-terms. Theoretical Computer Science, 22, 1983.
9. J. R. Hindley. Curry's types are complete with respect to F-semantics too. Theoretical Computer Science, 22, 1983.
10. J. R. Hindley. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1997.
11. F. Kamareddine, K. Nour. A completeness result for a realisability semantics for an intersection type system. Ann. Pure Appl. Logic, 146(2-3), 2007.
12. F. Kamareddine, K. Nour, V. Rahli, J. B. Wells. A complete realisability semantics for intersection types and infinite expansion variables. Located at http://www. macs.hw.ac.uk/~fairouz/papers/drafts/compsem-big.pdf, 2008.
13. F. Kamareddine, K. Nour, V. Rahli, J. B. Wells. Realisability semantics for intersection type systems and expansion variables. In ITRS'08. The file is Located at http://www.macs.hw.ac.uk/ ${ }^{\text {f }}$ fairouz/papers/ conference-publications/semone.pdf, 2008.
14. J. Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches en Informatique. Masson, 1990.

A Proofs of Section 2

The next lemma is needed in the proofs.
Lemma 18. Let $M, M^{\prime}, N, N_{1}, \ldots, N_{n} \in \mathcal{M}$.

1. $M \diamond M$ and if $M \diamond N$ then $N \diamond M$.
2. If $\mathrm{fv}(M) \subseteq \operatorname{fv}\left(M^{\prime}\right)$ and $M^{\prime} \diamond N$ then $M \diamond N$.
3. If $M \diamond N$ and M^{\prime} is a subterm of M then $M^{\prime} \diamond N$.
4. If $d(M)=L$ and x^{K} occurs in M, then $K \succeq L$.
5. If $\mathcal{X}=\{M\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}$, for all $i \in\{1, \ldots, n\}, d\left(N_{i}\right)=L_{i}$ and $\triangleright \mathcal{X}$ then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $d\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=d(M)$.
6. If $\mathcal{X}=\{M, N\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}$, for all $i \in\{1, \ldots, n\}$, $d\left(N_{i}\right)=L_{i}$ and $\diamond \mathcal{X}$ then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \diamond N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$

Proof. 1. First, we prove $M \diamond M$ by induction on M.

- Let $M=x^{L}$ then it is trivial.
- Let $M=\lambda x^{L} . N$ such that $N \in \mathcal{M}$ and $L \succeq \mathrm{~d}(N)$. Let $y^{K}, y^{K^{\prime}} \in \operatorname{fv}(M)$ then $y^{K}, y^{K^{\prime}} \in \mathrm{fv}(N)$ and we conclude using IH on N.
- Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}, \mathrm{~d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$ and $M_{1} \diamond M_{2}$. Let $x^{L}, x^{K} \in \operatorname{fv}(M)$ then either $x^{L}, x^{K} \in \mathrm{fv}\left(M_{1}\right)$ and we conclude using IH on M_{1}. Or $x^{L}, x^{K} \in \operatorname{fv}\left(M_{2}\right)$ and we conclude using IH on M_{2}. Or $x^{L} \in \operatorname{fv}\left(M_{1}\right)$ and $x^{K} \in \operatorname{fv}\left(M_{2}\right)$ and we conclude using $M_{1} \diamond M_{2}$.
Let $M \diamond N$, we prove $N \diamond M$. It is trivial by definition.

2. Let $x^{L} \in \operatorname{fv}(M) \subseteq \operatorname{fv}\left(M^{\prime}\right)$ and $x^{K} \in \operatorname{fv}(N)$ then by hypothesis $K=L$.
3. By induction on M.

- Case $M=x^{L}$ is trivial.
- Case $M=\lambda x^{L} . P$ where $\forall K \in \mathcal{L}_{\mathbb{N}}, x^{K} \notin \mathrm{fv}(N)$. If $M^{\prime}=M$ then nothing to prove. Else M^{\prime} is a subterm of P. If we prove that $P \diamond N$ then we can use IH to get $M^{\prime} \diamond N$. Hence, now we prove $P \diamond N$. Let $y \in \mathcal{V}$ such that $y^{K} \in \mathrm{fv}(P)$ and $y^{K^{\prime}} \in \mathrm{fv}(N)$. Since $x^{K^{\prime}} \notin \mathrm{fv}(N)$, then $x \neq y$ and $y^{K} \neq x^{L}$. Hence $y^{K} \in \operatorname{fv}(M)$ and since $M \diamond N$ then $K=K^{\prime}$. Hence, $P \diamond N$.
- Case $M=M_{1} M_{2}$. Let $i \in\{1,2\}$. First we prove that $M_{i} \diamond N$: let $x \in \mathcal{V}$, such that $x^{L} \in \operatorname{fv}\left(M_{i}\right)$ and $x^{K} \in \operatorname{fv}(N)$, then $x^{L} \in \operatorname{fv}(M)$ and so $L=K$. Now, if $M^{\prime}=M$ then nothing to prove. Else
- Either M^{\prime} is a subterm of M_{1} and so by IH, since $M_{1} \diamond N, M^{\prime} \diamond N$.
- Or M^{\prime} is a subterm of M_{2} and so by IH , since $M_{2} \diamond N, M^{\prime} \diamond N$.

4. By induction on M.

- If $M=x^{K}$ then $\mathrm{d}(M)=K$ and since \succeq is an order relation, $K \succeq K$.
- If $M=M_{1} M_{2}$ then $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$. Let $L^{\prime}=\mathrm{d}\left(M_{2}\right)$ so $L^{\prime} \succeq L$. By IH, if x^{K} occurs in M_{1} then $K \succeq L$ and if x^{K} occurs in M_{2} then $K \succeq L^{\prime}$. Since x^{K} occurs in $M, K \succeq L$.
- If $M=\lambda x^{L_{1}} \cdot M_{1}$ then $L_{1} \succeq \mathrm{~d}\left(M_{1}\right)=\mathrm{d}\left(\lambda x^{L_{1}} \cdot M_{1}\right)=L$. If x^{K} occurs in M, then $x^{K}=x^{L_{1}}$ or x^{K} occurs in M_{1}. By IH, if x^{K} occurs in M_{1} then $K \succeq L$.

5. By induction on M.

- If $M=y^{K}$ then if $y^{K}=x_{i}^{L_{i}}$, for $1 \leq i \leq n$, then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=$ $N_{i} \in \mathcal{M}$ and $\mathrm{d}\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(N_{i}\right)=L_{i}=K$. Else, $M\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right]=y^{K} \in \mathcal{M}$ and $\mathrm{d}\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(y^{K}\right)$.
- If $M=M_{1} M_{2}$ then $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$ and $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=M_{1}\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right] M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$. Since $\forall N \in \mathcal{X}, M \diamond N$, by $3 ., \forall N \in \mathcal{X}, M_{1} \diamond N$ and $M_{2} \diamond N$. Since $M_{1}, M_{2} \in \mathcal{M}$, by IH, $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right], M_{2}\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right] \in \mathcal{M}, \mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=$ $\mathrm{d}\left(M_{2}\right)$. Let $x^{K} \in \operatorname{fv}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$ and $x^{K^{\prime}} \in \operatorname{fv}\left(M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$. If $x^{K} \in \mathrm{fv}\left(M_{1}\right)$ then by $3 ., \diamond\left(\left\{M_{1}, M_{2}\right\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}\right)$ hence $K=K^{\prime}$. Let $1 \leq i \leq n$. If $x^{K} \in \operatorname{fv}\left(N_{i}\right)$ then by 3 ., $\diamond\left(\left\{M_{2}\right\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}\right)$ hence $K=K^{\prime}$. So $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \diamond M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$. Furthermore, $\mathrm{d}\left(M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{2}\right) \succeq \mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$ hence $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=\right.\right.\right.$ $\left.\left.\left.N_{i}\right)_{n}\right] M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)$.
- If $M=\lambda y^{K} . M_{1}$ where $K \succeq \mathrm{~d}\left(M_{1}\right)$ and $\forall 1 \leq i \leq n, y \neq x_{i}$ and $\forall K^{\prime} \in$ $\mathcal{L}_{\mathbb{N}}, y^{K^{\prime}} \notin \operatorname{fv}\left(N_{i}\right) \cup\left\{x_{i}^{L_{i}}\right\}$ then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=\lambda y^{K} . M_{1}\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right]$. Since $M_{1} \in \mathcal{M}$, then by 3. and IH $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)$. So $\lambda y^{K} \cdot M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $\mathrm{d}\left(\lambda y^{K} \cdot M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)$.

6. By 5., $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right], N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$. Let $x^{L} \in \operatorname{fv}\left(M\left[\left(x_{i}^{L_{i}}:=\right.\right.\right.$ $\left.\left.\left.N_{i}\right)_{n}\right]\right)$ and $x^{K} \in \operatorname{fv}\left(N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right) . \operatorname{So} x^{L} \in \mathrm{fv}(M) \cup \mathrm{fv}\left(N_{1}\right) \cup \ldots \cup \mathrm{fv}\left(N_{n}\right)$ and $x^{K} \in \operatorname{fv}(N) \cup \mathrm{fv}\left(N_{1}\right) \cup \ldots \cup \mathrm{fv}\left(N_{n}\right)$. Since $\diamond \mathcal{X}$, then $K=L$. Hence, $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \diamond N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$

Proof (Of Theorem 1).

1. By induction on $M \triangleright_{\eta}^{*} N$, we only do the base step:
$-M=\lambda x^{L} . N x^{L} \triangleright_{\eta} N$ and $x^{L} \notin \mathrm{fv}(N)$. By definition $\mathrm{fv}(M)=\mathrm{fv}\left(N x^{L}\right) \backslash$ $\left\{x^{L}\right\}=\mathrm{fv}(N)$ and $\mathrm{d}(M)=\mathrm{d}\left(N x^{L}\right)=\mathrm{d}(N)$.
$-M=\lambda x^{L} \cdot M_{1} \triangleright_{\eta} \lambda x^{L} \cdot N_{1}=N$ and $M_{1} \triangleright_{\eta} N_{1}$. By IH, $\mathrm{fv}\left(N_{1}\right)=\mathrm{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. Hence, $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$ and $\mathrm{fv}(N)=\mathrm{fv}\left(N_{1}\right) \backslash\left\{x^{L}\right\}=\mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\}=\mathrm{fv}(M)$.
$-M=M_{1} M_{2} \triangleright_{\eta} N_{1} M_{2}=N$ such that $M_{1} \triangleright_{\eta} N_{1}$. By IH, fv $\left(N_{1}\right)=\mathrm{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. By definition, $\mathrm{fv}(N)=\mathrm{fv}\left(N_{1}\right) \cup \mathrm{fv}\left(M_{2}\right)=\mathrm{fv}\left(M_{1}\right) \cup$ $\mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$.
$-M=M_{1} M_{2} \triangleright_{\eta} M_{1} N_{2}=N$ such that $M_{2} \triangleright_{\eta} N_{2}$. By IH, fv $\left(N_{2}\right)=\mathrm{fv}\left(M_{2}\right)$ and $\mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(N_{2}\right)$. By definition, $\mathrm{fv}(N)=\mathrm{fv}\left(M_{1}\right) \cup \mathrm{fv}\left(N_{2}\right)=\mathrm{fv}\left(M_{1}\right) \cup$ $\mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(N)$.
2. Case $r=\beta$. By induction on $M \triangleright_{\beta}^{*} N$, we only do the base step:
$-M=\left(\lambda x^{L} . M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{L}:=M_{2}\right]=N$ such that $\mathrm{d}\left(M_{2}\right)=L$. If $x^{L} \in \mathrm{fv}\left(M_{1}\right)$ then $\mathrm{fv}(N)=\left(\mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\}\right) \cup \mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$. If $x^{L} \notin$ $\mathrm{fv}\left(M_{1}\right)$ then $\mathrm{fv}(N)=\mathrm{fv}\left(M_{1}\right)=\mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\} \subseteq \mathrm{fv}(M)$. By definition, $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$. Because $N \in \mathcal{M}$ then $M_{1} \diamond M_{2}$ and $\mathrm{d}\left(M_{2}\right)=L$. So, by lemma 18.5, $\mathrm{d}(N)=\mathrm{d}\left(M_{1}\right)$.
$-M=\lambda x^{L} \cdot M_{1} \triangleright_{\beta} \lambda x^{L} \cdot N_{1}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. By IH, $\operatorname{fv}\left(N_{1}\right) \subseteq$ $\mathrm{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. By definition $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=$ $\mathrm{d}(N)$ and $\mathrm{fv}(N)=\mathrm{fv}\left(N_{1}\right) \backslash\left\{x^{L}\right\} \subseteq \mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\}=\mathrm{fv}(M)$.
$-M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. By IH, fv $\left(N_{1}\right) \subseteq \operatorname{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. By definition, $\mathrm{fv}(N)=\mathrm{fv}\left(N_{1}\right) \cup \mathrm{fv}\left(M_{2}\right) \subseteq \mathrm{fv}\left(M_{1}\right) \cup$ $\mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$.
$-M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N$ such that $M_{2} \triangleright_{\beta} N_{2}$. By IH, fv $\left(N_{2}\right) \subseteq \operatorname{fv}\left(M_{2}\right)$ and $\mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(N_{2}\right)$. By definition, $\mathrm{fv}(N)=\mathrm{fv}\left(M_{1}\right) \cup \mathrm{fv}\left(N_{2}\right) \subseteq \mathrm{fv}\left(M_{1}\right) \cup$ $\mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(N)$.
Case $r=\beta \eta$, by the β and η cases. Case $r=h$, by the β case.
The next lemma is again needed in the proofs.
Lemma 19. Let $i, p \geq 0, M, N, N_{1}, N_{2}, \ldots, N_{p} \in \mathcal{M}, \triangleright^{\prime} \in\left\{\triangleright_{\beta}^{*}, \triangleright_{\eta}^{*}, \triangleright_{\beta \eta}^{*}\right\}$ and $-\in\left\{\triangleright_{\beta}, \triangleright_{\eta}, \triangleright_{\beta \eta}, \triangleright_{h}, \triangleright_{\beta}^{*}, \triangleright_{\eta}^{*}, \triangleright_{\beta \eta}^{*}, \triangleright_{h}^{*}\right\}$. We have:
3. $M^{+i} \in \mathcal{M}$ and $d\left(M^{+i}\right)=i:: d(M)$ and x^{K} occurs in M^{+i} iff $K=i:: L$ and x^{L} occurs in M.
4. $M \diamond N$ iff $M^{+i} \diamond N^{+i}$.
5. Let $\mathcal{X} \subseteq \mathcal{M}$ then $\diamond \mathcal{X}$ iff $\diamond \mathcal{X}^{+i}$.
6. $\left(M^{+i}\right)^{-i}=M$.
7. If $\diamond\{M\} \cup\left\{N_{j} / j \in\{1, \ldots, p\}\right\}$ then $\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M^{+i}\left[\left(x_{j}^{i:: L_{j}}:=\right.\right.$ $\left.\left.N_{j}^{+i}\right)_{p}\right]$.
8. If $M \triangleright N$, then $M^{+i} \triangleright N^{+i}$.
9. If $d(M)=i:: L$, then:
(a) $M=P^{+i}$ for some $P \in \mathcal{M}, d\left(M^{-i}\right)=L$ and $\left(M^{-i}\right)^{+i}=M$.
(b) If $\forall 1 \leq j \leq p, d\left(N_{j}\right)=i:: K_{j}$ and $\diamond\{M\} \cup\left\{N_{j} / j \in\{1, \ldots, p\}\right\}$ then $\left(M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=M^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
(c) If $M \triangleright N$ then $M^{-i} \triangleright N^{-i}$.
10. If $M \triangleright N, P \triangleright Q$ and $M \diamond P$ then $N \diamond Q$
11. If $M \triangleright N^{+i}$, then there is $P \in \mathcal{M}$ such that $M=P^{+i}$ and $P \triangleright N$.
12. If $M^{+i} \triangleright N$, then there is $P \in \mathcal{M}$ such that $N=P^{+i}$ and $M \triangleright P$.
13. If $y^{K} \notin \mathrm{fv}(N) \cup\left\{x^{L}\right\}, d(P)=K, d(N)=L, \diamond\{M, N, P\}$ then
$M\left[y^{K}:=P\right]\left[x^{L}:=N\right]=M\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right]$.
14. If $M \triangleright N$ and $d(P)=L$ and $\diamond\{M, N, P\}$, then $M\left[x^{L}:=P\right] \triangleright N\left[x^{L}:=P\right]$.
15. If $N \triangleright^{\prime} P$ and $d(N)=L=d(P)$ and $\diamond\{M, N, P\}$, then $M\left[x^{L}:=N\right] \triangleright^{\prime}$ $M\left[x^{L}:=P\right]$.
16. If $M \bullet^{\prime}, P \nabla^{\prime}$ and $d(P)=L$ and $\diamond\left\{M, M^{\prime}, P, P^{\prime}\right\}$, then $M\left[x^{L}:=\right.$ $P] \nabla^{\prime} M^{\prime}\left[x^{L}:=P^{\prime}\right]$.

Proof. 1 We only prove the lemma by induction on M :

- If $M=x^{L}$ then $M^{+i}=x^{i:: L} \in \mathcal{M}$ and $\mathrm{d}\left(x^{i:: L}\right)=i:: L=i:: \mathrm{d}\left(x^{L}\right)$.
- If $M=\lambda x^{L} . M_{1}$ then $M_{1} \in \mathcal{M}, L \succeq \mathrm{~d}\left(M_{1}\right)$ and $M^{+i}=\lambda x^{i:: L} \cdot M_{1}^{+i}$. By IH, $M_{1}^{+i} \in \mathcal{M}$ and $\mathrm{d}\left(M_{1}^{+i}\right)=i:: \mathrm{d}\left(M_{1}\right)$ and x^{K} occurs in M_{1}^{+i} iff $K=i:: K^{\prime}$ and $y^{K^{\prime}}$ occurs in M_{1}. So $i:: L \succeq i:: \mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(M_{1}^{+i}\right)$. Hence, $\lambda x^{i:: L} . M_{1}^{+i} \in \mathcal{M}$. Moreover, $\mathrm{d}\left(M^{+i}\right)=\mathrm{d}\left(M_{1}^{+i}\right)=i:: \mathrm{d}\left(M_{1}\right)=$
$i:: \mathrm{d}(M)$. If y^{K} occurs in M^{+i} then either $y^{K}=x^{i:: L}$, so it is done because x^{L} occurs in M. Or y^{K} occurs in M_{1}^{+i}. By IH, $K=i:: K^{\prime}$ and $y^{K^{\prime}}$ occurs in M_{1}. So $y^{K^{\prime}}$ occurs in M. If y^{K} occurs in M then either $y^{K}=x^{L}$ and then $y^{i:: K}$ occurs in M^{+i}. Or y^{K} occurs in M_{1}. Then by IH, $y^{i:: K}$ occurs in M_{1}^{+i}. So, $y^{i:: K}$ occurs in M^{+i}.
- If $M=M_{1} M_{2}$ then $M_{1}, M_{2} \in \mathcal{M}, \mathrm{~d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right), M_{1} \diamond M_{2}$ and $M^{+i}=$ $M_{1}^{+i} M_{2}^{+i}$. By IH, $M_{1}^{+i}, M_{2}^{+i} \in \mathcal{M}, \mathrm{~d}\left(M_{1}^{+i}\right)=i:: \mathrm{d}\left(M_{1}\right), \mathrm{d}\left(M_{2}^{+i}\right)=$ $i:: \mathrm{d}\left(M_{2}\right), y^{K}$ occurs in M_{1}^{+i} iff $K=i:: K^{\prime}$ and $y^{K^{\prime}}$ occurs in M_{1}, and y^{K} occurs in M_{2}^{+i} iff $K=i:: K^{\prime}$ and $y^{K^{\prime}}$ occurs in M_{2}. Let $x^{L} \in \mathrm{fv}\left(M_{1}^{+i}\right)$ and $x^{K^{2}} \in \mathrm{fv}\left(M_{2}^{+i}\right)$ then, using IH, $L=i:: L^{\prime}, K=i:: K^{\prime}$, $x^{L^{\prime}}$ occurs in M_{1} and $x^{K^{\prime}}$ occurs in M_{2}. Using $M_{1} \diamond M_{2}$, we obtain $L^{\prime}=K^{\prime}$, so $L=K$. Hence, $M_{1}^{+i} \diamond M_{2}^{+i}$. Because $\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$, then $\mathrm{d}\left(M_{1}^{+i}\right)=i:: \mathrm{d}\left(M_{1}\right) \preceq i:: \mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(M_{2}^{+i}\right)$. So, $M^{+i} \in \mathcal{M}$. Moreover, $\mathrm{d}\left(M^{+1}\right)=\mathrm{d}\left(M_{1}^{+i}\right)=i:: \mathrm{d}\left(M_{1}\right)=i:: \mathrm{d}(M)$. If x^{L} occurs in M^{+i} then either x^{L} occurs in M_{1}^{+i} and using IH, $L=i:: L^{\prime}$ and $x^{L^{\prime}}$ occurs in M_{1}, so $x^{L^{\prime}}$ occurs in M. Or x^{L} occurs in M_{2}^{+i} and using IH, $L=i:: L^{\prime}$ and $x^{L^{\prime}}$ occurs in M_{2}, so $x^{L^{\prime}}$ occurs in M. If x^{L} occurs in M then either x^{L} occurs in M_{1} so by IH $x^{i:: L}$ occurs in M_{1}^{+i}, hence $x^{i:: L}$ occurs in M^{+i}. Or x^{L} occurs in M_{2} so by IH $x^{i:: L}$ occurs in M_{2}^{+i}, hence $x^{i:: L}$ occurs in M^{+i}.
2 Assume $M \diamond N$. Let $x^{L} \in \operatorname{fv}\left(M^{+i}\right)$ and $x^{K} \in \operatorname{fv}\left(N^{+i}\right)$ then by lemma 19.1, $L=i:: L^{\prime}, K=i:: K^{\prime}, x^{L^{\prime}} \in \mathrm{fv}(M)$ and $x^{K^{\prime}} \in \mathrm{fv}(N)$. Using $M \diamond N$ we obtain $K^{\prime}=L^{\prime}$ and so $K=L$.
Assume $M^{+i} \diamond N^{+i}$. Let $x^{L} \in \mathrm{fv}(M)$ and $x^{K} \in \mathrm{fv}(N)$, then by lemma 19.1, $x^{i:: L} \in \mathrm{fv}\left(M^{+i}\right)$ and $x^{i:: K} \in \mathrm{fv}\left(N^{+i}\right)$. Using $M^{+i} \diamond N^{+i}$ we obtain $i:: K=$ $i:: L$ and so $K=L$.
3 Let $\mathcal{X} \subseteq \mathcal{M}$.
Assume $\diamond \mathcal{X}$. Let $M, N \in \mathcal{X}^{+i}$. Then by definition, $M=P^{+i}$ and $N=Q^{+i}$ such that $P, Q \in \mathcal{X}$. Because by hypothesis $P \diamond Q$ then by lemma 19.2, $M \diamond N$. Assume $\diamond \mathcal{X}^{+i}$. Let $M, N \in \mathcal{X}$ then $M^{+i}, N^{+i} \in \mathcal{X}^{+i}$. Because by hypothesis $M^{+i} \diamond N^{+i}$ then by lemma 19.2, $M \diamond N$.
4 By lemma 19.1, $M^{+i} \in \mathcal{M}$ and $\mathrm{d}\left(M^{+i}\right)=i:: \mathrm{d}(M)$. We prove the lemma by induction on M.
- Let $M=x^{L}$ then $M^{+i}=x^{i: L}$ and $\left(M^{+i}\right)^{-i}=x^{L}$.
- Let $M=\lambda x^{L} . M_{1}$ such that $M_{1} \in \mathcal{M}$ and $L \succeq \mathrm{~d}\left(M_{1}\right)$. Then, $\left(M^{+i}\right)^{-i}=$ $\left(\lambda x^{i:: L} \cdot M_{1}^{+i}\right)^{-i}=\lambda x^{L} .\left(M_{1}^{+i}\right)^{-i}={ }^{I H} \lambda x^{L} . M_{1}$.
- Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}, M_{1} \diamond M_{2}$ and $\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$. Then, $\left(M^{+i}\right)^{-i}=\left(M_{1}^{+i} M_{2}^{+i}\right)^{-i}=\left(M_{1}^{+i}\right)^{-i}\left(M_{2}^{+i}\right)^{-i}={ }^{I H} M_{1} M_{2}$.
5 By $3, \diamond\left\{M^{+i}\right\} \cup\left\{N_{j}^{+i} / j \in\{1, \ldots, p\}\right\}$. By lemma 18.5, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]$ and $M^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right] \in \mathcal{M}$. By induction on M :
- Let $M=y^{K}$. If $\forall 1 \leq j \leq p, y^{K} \neq x_{j}^{L_{j}}$ then $y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=y^{K}$. Hence $\left(y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=y^{i:: K}=y^{i:: K}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$. If $\exists 1 \leq$ $j \leq p, y^{K}=x_{j}^{L_{j}}$ then $y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=N_{j}$. Hence $\left(y^{K}\left[\left(x_{j}^{L_{j}}:=\right.\right.\right.$ $\left.\left.\left.N_{j}\right)_{p}\right]\right)^{+i}=N_{j}^{+i}=y^{i:: K}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
- Let $M=\lambda y^{K} \cdot M_{1}$. Then $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=\lambda y^{K} \cdot M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]$ where $\forall 1 \leq j \leq p, y^{K} \notin \operatorname{fv}\left(N_{j}\right) \cup\left\{x_{j}^{L_{j}}\right\}$. By lemma 18.3, $\diamond\left\{M_{1}\right\} \cup\left\{N_{j} /\right.$ $j \in\{1, \ldots, p\}\}$. By IH, $\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M_{1}^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
Hence, $\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=\lambda y^{i:: K} .\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=$
$\lambda y^{i: K} \cdot M_{1}^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]=\left(\lambda y^{K} \cdot M_{1}\right)^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
- Let $M=M_{1} M_{2} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right] M_{2}\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{p}\right]$. By lemma 18.3, $\diamond\left\{M_{1}\right\} \cup\left\{N_{j} / j \in\{1, \ldots, p\}\right\}$ and $\diamond\left\{M_{2}\right\} \cup\left\{N_{j}\right.$ $/ j \in\{1, \ldots, p\}\}$. By IH, $\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M_{1}^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$ and $\left(M_{2}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M_{2}^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
Hence $\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}\left(M_{2}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=$ $M_{1}^{+i}\left[\left(x_{j}^{i: L L_{j}}:=N_{j}^{+i}\right)_{p}\right] M_{2}^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]=M^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
6 By lemma 19.1, if $M, N \in \mathcal{M}$ then $M^{+i}, N^{+i} \in \mathcal{M}$.
- Let be \triangleright_{β}. By induction on $M \triangleright_{\beta} N$.
- Let $M=\left(\lambda x^{L} . M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{L}:=M_{2}\right]=N$ where $\mathrm{d}\left(M_{2}\right)=L$, then by lemma 19.1, $\mathrm{d}\left(M_{2}^{+i}\right)=i:: L$ and $M^{+i}=\left(\lambda x^{i: L} \cdot M_{1}^{+i}\right) M_{2}^{+i} \triangleright_{\beta}$ $M_{1}^{+i}\left[x^{i: L}:=M_{2}^{+i}\right]=\left(M_{1}\left[x^{L}:=M_{2}\right]\right)^{+i}$.
- Let $M=\lambda x^{L} . M_{1} \triangleright_{\beta} \lambda x^{L} . N_{1}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. By IH, $M_{1}^{+i} \triangleright_{\beta} N_{1}^{+i}$, hence $M^{+i}=\lambda x^{i:: L} . M_{1}^{+i} \triangleright_{\beta} \lambda x^{i:: L} N_{1}^{+i}=N^{+i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. By IH, $M_{1}^{+i} \triangleright_{\beta}$ N_{1}^{+i}, hence $M^{+i}=M_{1}^{+i} M_{2}^{+i} \triangleright_{\beta} N_{1}^{+i} M_{2}^{+i}=N^{+i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N$ such that $M_{2} \triangleright_{\beta} N_{2}$. By IH, $M_{2}^{+i} \triangleright_{\beta}$ N_{2}^{+i}, hence $M^{+i}=M_{1}^{+i} M_{2}^{+i} \triangleright_{\beta} N_{1}^{+i} M_{2}^{+i}=N^{+i}$.
- Let be $\triangleright_{\beta}^{*}$. By induction on $\triangleright_{\beta}^{*}$ using \triangleright_{β}.
- Let be \triangleright_{η}. We only do the base case. The inductive cases are as for \triangleright_{β}. Let $M=\lambda x^{L} . N x^{L} \triangleright_{\eta} N$ where $x^{L} \notin \mathrm{fv}(N)$. By lemma 19.1, $x^{i: L} \notin \operatorname{fv}\left(N^{+i}\right)$ Then $M^{+i}=\lambda x^{i: L} . N^{+i} x^{i:: L} \triangleright_{\eta} N^{+i}$.
- Let be $\triangleright_{\eta}^{*}$. By induction on $\triangleright_{\eta}^{*}$ using \triangleright_{η}.
- Let be $\triangleright_{\beta \eta}, \triangleright_{\beta \eta}^{*}, \triangleright_{h}$ or \triangleright_{h}^{*}. By the previous items.

7 (a) By induction on M :

- Let $M=y^{i:: L}$ then $y^{L} \in \mathcal{M}$ and $\mathrm{d}\left(\left(y^{i: L}\right)^{-i}\right)=\mathrm{d}\left(y^{L}\right)=L$ and $\left(\left(y^{i: L}\right)^{-i}\right)^{+i}=y^{i: L L}$.
- Let $M=\lambda y^{K} . M_{1}$ such that $M_{1} \in \mathcal{M}$ and $K \succeq \mathrm{~d}\left(M_{1}\right)$. Because $\mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)=i:: L$, by IH, $M_{1}=P^{+i}$ for some $P \in \mathcal{M}$, $\mathrm{d}\left(M_{1}^{-i}\right)=L$ and $\left(M_{1}^{-i}\right)^{+i}=M_{1}$. Because, $K \succeq i:: L$ then $K=$ $i:: L:: K^{\prime}$ for some K^{\prime}. Let $Q=\lambda y^{L:: K^{\prime}} . P$. Because $P={ }^{19.4}$ $\left(P^{+i}\right)^{-i}=M_{1}^{-i}$, then $\mathrm{d}(P)=L$. Because $L \preceq L:: K^{\prime}$, then $Q \in \mathcal{M}$ and $Q^{+i}=M$. Moreover, $\mathrm{d}\left(M^{-i}\right)={ }^{19.4} \mathrm{~d}(Q)=\mathrm{d}(P)=L$ and $\left(M^{-i}\right)^{+i}=P^{+i}=M$.
- Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}, M_{1} \diamond M_{2}$ and $\mathrm{d}\left(M_{1}\right) \preceq$ $\mathrm{d}\left(M_{2}\right)$. Then $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$, so $\mathrm{d}\left(M_{2}\right)=i:: L:: L^{\prime}$ for some L^{\prime}. By IH $M_{1}=P_{1}^{+i}$ for some $P_{1} \in \mathcal{M}, \mathrm{~d}\left(M_{1}^{-i}\right)=L$ and $\left(M_{1}^{-i}\right)^{+i}=M_{1}$. Again by IH, $M_{2}=P_{2}^{+i}$ for some $P_{2} \in \mathcal{M}$, $\mathrm{d}\left(M_{2}^{-i}\right)=L:: L^{\prime}$ and $\left(M_{2}^{-i}\right)^{+i}=M_{2}$. If $y^{K_{1}} \in \mathrm{fv}\left(P_{1}\right)$ and $y^{K_{2}} \in$
$\mathrm{fv}\left(P_{2}\right)$, then by lemma $19.1, K_{1}^{\prime}=i:: K_{1}, K_{2}^{\prime}=i:: K_{2}, x^{K_{1}^{\prime}} \in$ $\mathrm{fv}\left(M_{1}\right)$ and $x^{K_{2}^{\prime}} \in \mathrm{fv}\left(M_{2}\right)$. Thus $K_{1}^{\prime}=K_{2}^{\prime}$, so $K_{1}=K_{2}$ and $P_{1} \diamond P_{2}$. Because $\mathrm{d}\left(P_{1}\right)=\mathrm{d}\left(M_{1}^{-i}\right)=L \preceq L:: L^{\prime}=\mathrm{d}\left(M_{2}^{-i}\right)=\mathrm{d}\left(P_{2}\right)$ then $Q=P_{1} P_{2} \in \mathcal{M}$ and $Q^{+i}=\left(P_{1} P_{2}\right)^{+i}=P_{1}^{+i} P_{2}^{+i}=M$. Moreover, $\mathrm{d}\left(M^{-i}\right)={ }^{19.4} \mathrm{~d}(Q)=\mathrm{d}\left(P_{1}\right)=L$ and $\left(M^{-i}\right)^{+i}=Q^{+i}=M$.
(b) By the previous item, there exist $M^{\prime}, N_{1}^{\prime}, \ldots, N_{n}^{\prime} \in \mathcal{M}$ such that $M=$ $M^{\prime+i}$ and for all $j \in\{1, \ldots, p\}, N_{j}=N_{j}^{\prime+i}$. So by lemma 19.3, $\diamond\left\{M^{\prime}\right\} \cup$ $\left\{N_{j}^{\prime} / j \in\{1, \ldots, p\}\right\}$. By lemma 19.4, $M^{-i}=M^{\prime}$ and for all $j \in$ $\{1, \ldots, p\}, N_{j}^{-i}=N_{j}^{\prime}$. So, $\diamond\left\{M^{-i}\right\} \cup\left\{N_{j}^{-i} / j \in\{1, \ldots, p\}\right\}$. By lemma 18.5, $M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right], M^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right] \in \mathcal{M}$ and $\mathrm{d}\left(M\left[\left(x_{j}^{i:: K_{j}}:=\right.\right.\right.$ $\left.\left.\left.N_{j}\right)_{p}\right]\right)=\mathrm{d}(M)=i:: L$. We prove the result by induction on M :
- Let $M=y^{i:: L}$. If $\forall 1 \leq j \leq p, y^{i:: L} \neq x_{j}^{i:: K_{j}}$ then $y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{p}\right]=y^{i:: L}$. Hence $\left(y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=y^{L}=y^{L}\left[\left(x_{j}^{K_{j}}:=\right.\right.$ $\left.\left.N_{j}^{-i}\right)_{p}\right]$. If $\exists 1 \leq j \leq p, y^{i:: L}=x_{j}^{i:: K_{j}}$ then $y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]=N_{j}$. Hence $\left(y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=N_{j}^{-i}=y^{L}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
- Let $M=\lambda y^{K} . M_{1}$ such that $M_{1} \in \mathcal{M}$ and $K \succeq \mathrm{~d}\left(M_{1}\right)$. Then, $M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]=\lambda y^{K} \cdot M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]$ where $\forall 1 \leq j \leq$ $p, y^{K} \notin \mathrm{fv}\left(N_{j}\right) \cup\left\{x_{j}^{i:: K_{j}}\right\}$. By lemma 18.3, $\diamond\left\{M_{1}\right\} \cup\left\{N_{j} / j \in\right.$ $\{1, \ldots, p\}\}$. By definition $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$. By IH, $\left(M_{1}\left[\left(x_{j}^{i:: K_{j}}:=\right.\right.\right.$ $\left.\left.\left.N_{j}\right)_{p}\right]\right)^{-i}=M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$. Because $\mathrm{d}\left(M_{1}\right)=i:: L \preceq K$, $K=i:: L:: K^{\prime}$ for some K^{\prime}.
Hence, $\left(M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=\lambda y^{L:: K^{\prime}} .\left(M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=$ $\lambda y^{L:: K^{\prime}} \cdot M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]=\left(\lambda y^{K} \cdot M_{1}\right)^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
- Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}, M_{1} \diamond M_{2}$ and $\mathrm{d}\left(M_{1}\right) \preceq$ $\mathrm{d}\left(M_{2}\right)$. Then, $M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]=M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right] M_{2}\left[\left(x_{j}^{i:: K_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{p}\right]$. By lemma 18.3, $\diamond\left\{M_{1}\right\} \cup\left\{N_{j} / j \in\{1, \ldots, p\}\right\}$ and $\diamond\left\{M_{2}\right\} \cup$ $\left\{N_{j} / j \in\{1, \ldots, p\}\right\}$. By definition $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$. So $\mathrm{d}\left(M_{2}\right)=i:: L:: L^{\prime}$ for some L^{\prime}. By IH, $\left(M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=$ $M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$ and $\left(M_{2}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=M_{2}^{-i}\left[\left(x_{j}^{K_{j}}:=\right.\right.$ $\left.\left.N_{j}^{-i}\right)_{p}\right]$. Hence
$\left(M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=\left(M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}\left(M_{2}\left[\left(x_{j}^{i:: K_{j}}:=\right.\right.\right.$ $\left.\left.\left.N_{j}\right)_{p}\right]\right)^{-i}$
$=M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right] M_{2}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]=M^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
(c) Using lemma 19.4, lemma 1 and the first item, we prove that $M^{-i}, N^{-i} \in$ \mathcal{M}.
- Let \triangleright be \triangleright_{β}. By induction on $M \triangleright_{\beta} N$.
- Let $M=\left(\lambda x^{K} . M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{K}:=M_{2}\right]=N$ where $\mathrm{d}\left(M_{2}\right)=$ K. Because $M \in \mathcal{M}$ then $M_{1} \in \mathcal{M}$. Because $i:: L=\mathrm{d}(M)=$ $\mathrm{d}\left(M_{1}\right) \preceq K$, then $K=i:: L:: K^{\prime}$. By lemma 19.7, $\mathrm{d}\left(M_{2}^{-i}\right)=$ $L:: K^{\prime}$. So $M^{-i}=\left(\lambda x^{L:: K^{\prime}} . M_{1}^{-i}\right) M_{2}^{-i} \triangleright_{\beta} M_{1}^{-i}\left[x^{L:: K^{\prime}}:=M_{2}^{-i}\right]=$ $\left(M_{1}\left[x^{K}:=M_{2}\right]\right)^{-i}$.
- Let $M=\lambda x^{K} . M_{1} \triangleright_{\beta} \lambda x^{K} . N_{1}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. Because $M \in \mathcal{M}, M_{1} \in \mathcal{M}$ and $K \succeq \mathrm{~d}\left(M_{1}\right)$. By definition $\mathrm{d}(M)=$ $\mathrm{d}\left(M_{1}\right)$. Because $i:: L=\mathrm{d}\left(M_{1}\right) \preceq K, K=i:: L:: K^{\prime}$ for some K^{\prime}. By IH, $M_{1}^{-i} \triangleright_{\beta} N_{1}^{-i}$, hence $M^{-i}=\lambda x^{L:: K^{\prime}} . M_{1}^{-i} \triangleright_{\beta}$ $\lambda x^{L:: K^{\prime}} N_{1}^{-i}=N^{-i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. Because $M \in \mathcal{M}$ then $M_{1} \in \mathcal{M}$. By definition $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=i:: L$. By IH, $M_{1}^{-i} \triangleright_{\beta} N_{1}^{-i}$, hence $M^{-i}=M_{1}^{-i} M_{2}^{-i} \triangleright_{\beta} N_{1}^{-i} M_{2}^{-i}=N^{-i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N$ such that $M_{2} \triangleright_{\beta} N_{2}$. Because $M \in \mathcal{M}$ then $M_{2} \in \mathcal{M}$. By definition $\mathrm{d}\left(M_{2}\right) \succeq \mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)=$ $i:: L$. So $\mathrm{d}\left(M_{2}\right)=i:: L:: L^{\prime}$ for some L^{\prime}. By IH, $M_{2}^{-i} \triangleright_{\beta} N_{2}^{-i}$, hence $M^{-i}=M_{1}^{-i} M_{2}^{-i} \triangleright_{\beta} N_{1}^{-i} M_{2}^{-i}=N^{-i}$.
- Let be $\triangleright_{\beta}^{*}$. By induction on $\triangleright_{\beta}^{*}$. using \triangleright_{β}.
- Let be \triangleright_{η}. We only do the base case. The inductive cases are as for \triangleright_{β}. Let $M=\lambda x^{K} . N x^{K} \triangleright_{\eta} N$ where $x^{K} \notin \mathrm{fv}(N)$. Because $i:: L=\mathrm{d}(M)=\mathrm{d}(N) \preceq K$, then $K=i:: L:: K^{\prime}$ for some K^{\prime}. By lemma 19.7, $N=N^{\prime+i}$ for some $N^{\prime} \in \mathcal{M}$. By lemma 19.7, $N^{\prime}=N^{-i}$. By lemma 19.1, $x^{L:: K^{\prime}} \notin \mathrm{fv}\left(N^{-i}\right)$. Then $M^{-i}=\lambda x^{L:: K^{\prime}} . N^{-i} x^{L:: K^{\prime}} \triangleright_{\eta}$ N^{-i}.
- Let be $\triangleright_{\eta}^{*}$. By induction on $\triangleright_{\eta}^{*}$ using \triangleright_{η}.
- Let be $\triangleright_{\beta \eta}, \triangleright_{\beta}^{*}, \triangleright_{h}$ or \triangleright_{h}^{*}. By the previous items.

8 Let $x^{L} \in \operatorname{fv}(N) \subseteq^{1} \operatorname{fv}(M)$ and $X^{K} \in \operatorname{fv}(Q) \subseteq^{1} \mathrm{fv}(P)$, since $M \diamond P, L=K$. Hence $N \diamond Q$.
9 By lemma 19.1, $\mathrm{d}\left(N^{+i}\right)=i:: \mathrm{d}(N)$. By lemma $1, \mathrm{~d}(M)=\mathrm{d}\left(N^{+i}\right)$. By lemma 19.7, $M=M^{\prime+i}$ such that $M^{\prime} \in \mathcal{M}$. By lemma 19.7, $M^{\prime}={ }^{19.4}$ $\left(M^{\prime+i}\right)^{-i}=M^{-i}\left(N^{+i}\right)^{-i}={ }^{19.4} N$.
10 By lemma 19.1, $\mathrm{d}\left(M^{+i}\right)=i:: \mathrm{d}(M)$. By lemma $1, \mathrm{~d}\left(M^{+i}\right)=\mathrm{d}(N)$. By lemma 19.7, $N=N^{\prime+i}$ such that $N^{\prime} \in \mathcal{M}$. By lemma 19.7, $M={ }^{19.4}$ $\left(M^{+i}\right)^{-i} \bullet N^{-i}=\left(N^{\prime+i}\right)^{-i}=^{19.4} N^{\prime}$.
11 By lemma 18.5, $M\left[y^{K}:=P\right] \in \mathcal{M}$. Let us now prove $\diamond\left\{M\left[y^{K}:=P\right], N\right\}$. Let $z^{R} \in \mathrm{fv}\left(M\left[y^{K}:=P\right]\right)$ and $z^{R^{\prime}} \in \mathrm{fv}(N)$ then $z^{R} \in \mathrm{fv}(M)$ or $z^{R} \in \mathrm{fv}(P)$. In both cases, because $M \diamond N$ and $P \diamond N$, we obtain $R=R^{\prime}$. So by lemma 18.5, $M\left[y^{K}:=P\right]\left[x^{L}:=N\right] \in \mathcal{M}$.
By lemma 18.5, $M\left[x^{L}:=N\right], P\left[x^{L}:=N\right] \in \mathcal{M}$ and $\mathrm{d}\left(P\left[x^{L}:=N\right]\right)=$ $\mathrm{d}(P)=K$. Let us now prove that $\diamond\left\{M\left[x^{L}:=N\right], P\left[x^{L}:=N\right]\right\}$. Let $z^{R} \in$ $\operatorname{fv}\left(M\left[x^{L}:=N\right)\right.$ and $z^{R^{\prime}} \in \operatorname{fv}\left(P\left[x^{L}:=N\right]\right)$ then either $z^{R} \in \operatorname{fv}(M)$ or $z^{R} \in \operatorname{fv}(N)$ and either $z^{R^{\prime}} \in \operatorname{fv}(P)$ or $z^{R^{\prime}} \in \mathrm{fv}(N)$. In all of the four cases, because by hypotheses and lemma 18.1, $M \diamond P, M \diamond N, N \diamond P$ and $N \diamond N$, we obtain $R=R^{\prime}$. So by lemma $18.5, M\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right] \in \mathcal{M}$. We prove this lemma by induction on the structure of M.

- Let $M=z^{R}$.
- If $z^{R}=y^{K}$ then $M\left[y^{K}:=P\right]\left[x^{L}:=N\right]=P\left[x^{L}:=N\right]=M\left[y^{K}:=\right.$ $\left.P\left[x^{L}:=N\right]\right]=M\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right]$.
- Else
* If $M=x^{L}$ then $M\left[y^{K}:=P\right]\left[x^{L}:=N\right]=M\left[x^{L}:=N\right]=N=$ $N\left[y^{K}:=P\left[x^{L}:=N\right]\right]=M\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right]$.
* Else $M\left[y^{K}:=P\right]\left[x^{L}:=N\right]=M\left[x^{L}:=N\right]=M=M\left[y^{K}:=\right.$ $\left.P\left[x^{L}:=N\right]\right]=M\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right]$.
- Let $M=\lambda z^{R} M_{1}$ such that $R \succeq \mathrm{~d}\left(M_{1}\right)$ and $M_{1} \in \mathcal{M}$. By lemma 18.3, $\diamond\left\{M_{1}, N, P\right\}$. Then, $M\left[y^{K}:=P\right]\left[x^{L}:=N\right]=\lambda z^{R} \cdot M_{1}\left[y^{K}:=P\right]\left[x^{L}:=\right.$ $N]={ }^{I H} \lambda z^{R} \cdot M_{1}\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right]=M\left[x^{L}:=N\right]\left[y^{K}:=\right.$ $\left.P\left[x^{L}:=N\right]\right]$ such that $z^{R} \notin \mathrm{fv}(N) \cup \mathrm{fv}(P) \cup\left\{y^{K}, x^{L}\right\}$.
- Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}, \mathrm{~d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$ and $M_{1} \diamond M_{2}$. By lemma 18.3, $\diamond\left\{M_{1}, N, P\right\}$ and $\diamond\left\{M_{2}, N, P\right\}$. Then, $M\left[y^{K}:=P\right]\left[x^{L}:=\right.$ $N]=M_{1}\left[y^{K}:=P\right]\left[x^{L}:=N\right] M_{2}\left[y^{K}:=P\right]\left[x^{L}:=N\right]={ }^{I H} M_{1}\left[x^{L}:=\right.$ $N]\left[y^{K}:=P\left[x^{L}:=N\right]\right] M_{2}\left[x^{L}:=N\right]\left[y^{K}:=P\left[x^{L}:=N\right]\right]=M\left[x^{L}:=\right.$ $N]\left[y^{K}:=P\left[x^{L}:=N\right]\right]$.
12 By lemma 18.5 and using the hypothesis, we obtain $M\left[x^{L}:=P\right], N\left[x^{L}:=\right.$ $P] \in \mathcal{M}$.
- Let $\triangleright \triangleright_{\beta}$. We prove the result by induction on $M \triangleright_{\beta} N$.
- Let $M=\left(\lambda y^{K} . M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[y^{K}:=M_{2}\right]=N$ such that $\mathrm{d}\left(M_{2}\right)=K$. Then $M\left[x^{L}:=P\right]=\left(\lambda y^{K} \cdot M_{1}\left[x^{L}:=P\right]\right) M_{2}\left[x^{L}:=P\right]$ and $N\left[x^{L}:=\right.$ $P]={ }^{19.11} M_{1}\left[x^{L}:=P\right]\left[y^{K}:=M_{2}\left[x^{L}:=P\right]\right]$ such that $y^{K} \notin \operatorname{fv}(P) \cup$ $\left\{x^{L}\right\}$. By lemma 18.5, $\mathrm{d}\left(M_{2}\left[x^{L}:=P\right]\right)=\mathrm{d}\left(M_{2}\right)=K$. So, $M\left[x^{L}:=\right.$ $P] \triangleright_{\beta} N\left[x^{L}:=P\right]$.
- Let $M=\lambda y^{K} \cdot M_{1} \triangleright_{\beta} \lambda y^{K} \cdot N_{1}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. Then $M\left[x^{L}:=P\right]=\lambda y^{K} \cdot M_{1}\left[x^{L}:=P\right]$ and $N\left[x^{L}:=P\right]=\lambda y^{K} \cdot N_{1}\left[x^{L}:=\right.$ $P]$ such that $y^{K} \notin \operatorname{fv}(P) \cup\left\{x^{L}\right\}$. By lemma 18.3, $\diamond\left\{M_{1}, N_{1}, P\right\}$. By IH, $M_{1}\left[x^{L}:=P\right] \triangleright_{\beta} N_{1}\left[x^{L}:=P\right]$. So, $M\left[x^{L}:=P\right] \triangleright_{\beta} N\left[x^{L}:=P\right]$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N$ such that $M_{1} \triangleright_{\beta} N_{1}$. By lemma 18.3, $\diamond\left\{M_{1}, N_{1}, P\right\}$. By IH, $M_{1}\left[x^{L}:=P\right] \triangleright_{\beta} N_{1}\left[x^{L}:=P\right]$. So, $M\left[x^{L}:=\right.$ $P] \triangleright_{\beta} N\left[x^{L}:=P\right]$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N$ such that $M_{2} \triangleright_{\beta} N_{2}$. By lemma 18.3, $\diamond\left\{M_{2}, N_{2}, P\right\}$. By IH, $M_{2}\left[x^{L}:=P\right] \triangleright_{\beta} N_{2}\left[x^{L}:=P\right]$. So, $M\left[x^{L}:=\right.$ $P] \triangleright_{\beta} N\left[x^{L}:=P\right]$.
- Let $\triangleright \triangleright_{\eta}$. We only prove the base case. The other cases are similar as the ones for \triangleright_{β}. Let $M=\lambda y^{K} . N y^{K} \triangleright_{\eta} N$ such that $y^{K} \notin \mathrm{fv}(N)$. Then $M\left[x^{L}:=P\right]=\lambda y^{K} . N\left[x^{L}:=P\right] y^{K}$ such that $y^{K} \notin \mathrm{fv}(P) \cup\left\{x^{L}\right\}$. So $y^{K} \notin \operatorname{fv}\left(N\left[x^{L}:=P\right]\right)$. Hence, $M\left[x^{L}:=P\right] \triangleright_{\eta} N\left[x^{L}:=P\right]$.
- The other cases are based on the two previous ones.

13 By lemma 18.5 and using the hypothesis, we obtain $M\left[x^{L}:=P\right], M\left[x^{L}:=\right.$
$N] \in \mathcal{M}$. We prove the result by induction on the structure of M.

- Let $M=y^{K}$.
- If $y^{K}=x^{L}$ then $M\left[x^{L}:=P\right]=P \triangleright^{\prime} N=M\left[x^{L}:=N\right]$.
- Else, $M\left[x^{L}:=P\right]=M \nabla^{\prime} M=M\left[x^{L}:=N\right]$.
- Let $M=\lambda y^{K} . M_{1}$ such that $K \succeq \mathrm{~d}\left(M_{1}\right)$ and $M_{1} \in \mathcal{M}$. Then $M\left[x^{L}:=\right.$ $P]=\lambda y^{K} \cdot M_{1}\left[x^{L}:=P\right]$ and $M\left[x^{L}:=N\right]=\lambda y^{K} \cdot M_{1}\left[x^{L}:=N\right]$ such that $y^{K} \notin \mathrm{fv}(P) \cup \mathrm{fv}(N) \cup\left\{x^{L}\right\}$. By lemma 18.3, $\diamond\left\{M_{1}, N, P\right\}$. By IH, $M_{1}\left[x^{L}:=N\right] \nabla^{\prime}\left[x^{L}:=P\right]$. So, $M\left[x^{L}:=N\right] \nabla^{\prime} M\left[x^{L}:=P\right]$.
- Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}, M_{1} \diamond M_{2}$ and $\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$. By lemma 18.3, $\diamond\left\{M_{1}, N, P\right\}$ and $\diamond\left\{M_{2}, N, P\right\}$. By IH, $M_{1}\left[x^{L}:=N\right] \triangleright^{\prime}$ $M_{1}\left[x^{L}:=P\right]$ and $M_{2}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=P\right]$. By lemma 18.5,

$$
\begin{aligned}
& M_{1}\left[x^{L}:=N\right], M_{2}\left[x^{L}:=N\right], M_{1}\left[x^{L}:=P\right], M_{2}\left[x^{L}:=P\right] \in \mathcal{M} \text { and } \\
& \mathrm{d}\left(M_{1}\left[x^{L}:=N\right]\right)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(M_{2}\left[x^{L}:=N\right]\right) \text { and } \mathrm{d}\left(M _ { 1 } \left[x^{L}:=\right.\right. \\
& P])=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(M_{2}\left[x^{L}:=N\right]\right) \text { and } \mathrm{d}\left(M_{1}\left[x^{L}:=P\right]\right)= \\
& \mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(M_{2}\left[x^{L}:=P\right]\right) \text {. By lemma } 18.6, M_{1}\left[x^{L}:=N\right] \diamond \\
& M_{2}\left[x^{L}:=N\right] \text { and } M_{1}\left[x^{L}:=P\right] \diamond M_{2}\left[x^{L}:=N\right] \text { and } M_{1}\left[x^{L}:=P\right] \diamond \\
& M_{2}\left[x^{L}:=P\right] \text { So } M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right], M_{1}\left[x^{L}:=P\right] M_{2}\left[x^{L}:=\right. \\
& N], M_{1}\left[x^{L}:=P\right] M_{2}\left[x^{L}:=P\right] \in \mathcal{M} \text {.So } M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right]>^{\prime} \\
& M_{1}\left[x^{L}:=P\right] M_{2}\left[x^{L}:=N\right] \text { and } M_{1}\left[x^{L}:=P\right] M_{2}\left[x^{L}:=N\right] M_{1}\left[x^{L}:=\right. \\
& P] M_{2}\left[x^{L}:=P\right] \text {. Hence, } M\left[x^{L}:=N\right]>^{\prime} M\left[x^{L}:=P\right] .
\end{aligned}
$$

14 By lemma 19.12, $M\left[x^{L}:=P\right]{ }^{\prime} M^{\prime}\left[x^{L}:=P\right]$. By lemma 19.13, $M^{\prime}\left[x^{L}:=\right.$ $P]>^{\prime} M^{\prime}\left[x^{L}:=P^{\prime}\right]$. So, $M\left[x^{L}:=P\right]{ }^{\prime} M^{\prime}\left[x^{L}:=P^{\prime}\right]$.

Next we give a lemma that will be used in the rest of the article.
Lemma 20. 1. If $M\left[y^{L}:=x^{L}\right] \triangleright_{\beta} N$ then $M \triangleright_{\beta} N^{\prime}$ where $N=N^{\prime}\left[y^{L}:=x^{L}\right]$.
2. If $M\left[y^{L}:=x^{L}\right]$ is β-normalising then M is β-normalising.
3. Let $k \geq 1$. If $M x_{1}^{L_{1}} \ldots x_{k}^{L_{k}}$ is β-normalising, then M is β-normalising.
4. Let $k \geq 1,1 \leq i \leq k, l \geq 0, x_{i}^{L_{i}} N_{1} \ldots N_{l}$ be in normal form and M be closed. If $M x_{1}^{L_{1}} \ldots x_{k}^{L_{k}} \triangleright_{\beta}^{*} x_{i}^{L_{i}} N_{1} \ldots N_{l}$, then for some $m \geq i$ and $n \leq l, M \triangleright_{\beta}^{*}$ $\lambda x_{1}^{L_{1}} \ldots . \lambda x_{m}^{L_{m}} \cdot x_{i}^{L_{i}} M_{1} \ldots M_{n}$ where $n+k=m+l, M_{j} \simeq_{\beta} N_{j}$ for every $1 \leq j \leq n$ and $N_{n+j} \simeq_{\beta} x_{m+j}^{L_{m+j}}$ for every $1 \leq j \leq k-m$.

Proof. 1. By induction on $M\left[y^{L}:=x^{L}\right] \triangleright_{\beta} N$.
2. Immediate by 1 .
3. By induction on $k \geq 1$. We only prove the basic case. The proof is by cases.

- If $M x_{1}^{L_{1}} \triangleright_{\beta}^{*} M^{\prime} x_{1}^{L_{1}}$ where $M^{\prime} x_{1}^{L_{1}}$ is in β-normal form and $M \triangleright_{\beta}^{*} M^{\prime}$ then M^{\prime} is in β-normal form and M is β-normalising.
- If $M x_{1}^{L_{1}} \triangleright_{\beta}^{*}\left(\lambda y^{L_{1}} . N\right) x_{1}^{L_{1}} \triangleright_{\beta} N\left[y^{L_{1}}:=x_{1}^{L_{1}}\right] \triangleright_{\beta}^{*} P$ where P is in β-normal form and $M \triangleright_{\beta}^{*} \lambda y^{L_{1}} . N$ then by $2, N$ has a β-normal form and so, $\lambda y^{L_{1}} . N$ has a β-normal form. Hence, M has a β-normal form.

4. By $3, M$ is β-normalising and, since M is closed, its β-normal form is $\lambda x_{1}^{L_{1}} \ldots \lambda x_{m}^{L_{m}} \cdot x_{p}^{L_{p}} M_{1} \ldots M_{n}$ for $n, m \geq 0$ and $1 \leq p \leq m$.
Since by theorem $2, x_{i}^{L_{i}} N_{1} \ldots N_{l} \simeq_{\beta}\left(\lambda x_{1}^{L_{1}} \ldots \lambda x_{m}^{L_{m}} . x_{p}^{L_{p}} M_{1} \ldots M_{n}\right) x_{1}^{L_{1}} \ldots x_{k}^{L_{k}}$ then $m \leq k, x_{i}^{L_{i}} N_{1} \ldots N_{l} \simeq_{\beta} x_{p}^{L_{p}} M_{1} \ldots M_{n} x_{m+1}^{L_{m+1}} \ldots x_{k}^{L_{k}}$. Hence, $n \leq l, i=$ $p \leq m, l=n+k-m$, for every $1 \leq j \leq n, M_{j} \simeq_{\beta} N_{j}$ and for every $1 \leq j \leq k-m, N_{n+j} \simeq_{\beta} x_{m+j}^{n_{m+j}}$.

A. 1 Confluence of $\triangleright_{\beta}^{*}, \triangleright_{h}^{*}$ and $\triangleright_{\beta}^{*} \eta$

In this section we establish the confluence of $\triangleright_{\beta}^{*}, \triangleright_{h}^{*}$ and $\triangleright_{\beta \eta}^{*}$ using the standard parallel reduction method for $\triangleright_{\beta}^{*}$ and $\triangleright_{\beta \eta}^{*}$.

Definition 17. Let $r \in\{\beta, \beta \eta\}$. We define on \mathcal{M} the binary relation $\xrightarrow{\rho_{r}}$ by:
$-M \xrightarrow{\rho_{r}} M$

- If $M \xrightarrow{\rho_{r}} M^{\prime}$ then $\lambda x^{L} \cdot M \xrightarrow{\rho_{r}} \lambda x^{L} \cdot M^{\prime}$.
- If $M \xrightarrow{\rho_{r}} M^{\prime}, N \xrightarrow{\rho_{r}} N^{\prime}$ and $M \diamond N$ and $d(M) \succeq d(N)$ then $M N \xrightarrow{\rho_{r}} M^{\prime} N^{\prime}$
- If $M \xrightarrow{\rho_{r}} M^{\prime}, N \xrightarrow{\rho_{r}} N^{\prime}, d(N)=L \succeq d(M)$ and $M \diamond N$, then $\left(\lambda x^{L} . M\right) N \xrightarrow{\rho_{r}}$ $M^{\prime}\left[x^{n}:=N^{\prime}\right]$
$-I f M \xrightarrow{\rho_{\beta \eta}} M^{\prime}, x^{L} \diamond M$ and $L \succeq d(M)$ then $\lambda x^{L} \cdot M x^{L} \xrightarrow{\rho_{\beta \eta}} M^{\prime}$
We denote the transitive closure of $\xrightarrow{\rho_{r}}$ by $\xrightarrow{\rho_{r}}$. When $M \xrightarrow{\rho_{r}} N\left(\right.$ resp. $\left.M \xrightarrow{\rho_{r}} N\right)$, we can also write $N \stackrel{\rho_{r}}{\leftarrow} M$ (resp. $N \stackrel{\rho_{r}}{\sim} M$). If $R, R^{\prime} \in\left\{\xrightarrow{\rho_{r}}, \xrightarrow{\rho_{r}}, \stackrel{\rho_{r}}{\leftarrow}, \frac{\rho_{r}}{\Vdash}\right\}$, we write $M_{1} R M_{2} R^{\prime} M_{3}$ instead of $M_{1} R M_{2}$ and $M_{2} R^{\prime} M_{3}$.

Lemma 21. Let $M \in \mathcal{M}$.

1. If $M \triangleright_{r} M^{\prime}$, then $M \xrightarrow{\rho_{r}} M^{\prime}$.
2. If $M \xrightarrow{\rho_{r}} M^{\prime}$, then $M^{\prime} \in \mathcal{M}, M \triangleright_{r}^{*} M^{\prime}, \operatorname{fv}\left(M^{\prime}\right) \subseteq \operatorname{fv}(M)$ and $d(M)=d\left(M^{\prime}\right)$.
3. If $M \xrightarrow{\rho_{r}} M^{\prime}, N \xrightarrow{\rho_{r}} N^{\prime}$ and $M \diamond N$ then $M^{\prime} \diamond N^{\prime}$

Proof. 1. By induction on the derivation $M \triangleright_{r} M^{\prime}$. 2. By induction on the derivation of $M \xrightarrow{\rho_{r}} M^{\prime}$ using theorem 1 and lemma 19. 3. Let $x^{L} \in \operatorname{fv}\left(M^{\prime}\right)$ and $x^{K} \in \operatorname{fv}\left(N^{\prime}\right)$. By 2., $\operatorname{fv}\left(M^{\prime}\right) \subseteq \operatorname{fv}(M)$ and $\operatorname{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$. Hence, since $M \diamond N$, $L=K$, so $M^{\prime} \diamond N^{\prime}$.

Lemma 22. Let $M, N \in \mathcal{M}, M \diamond N$ and $N \xrightarrow{\rho_{r}} N^{\prime}$. We have:

1. $M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M\left[x^{L}:=N^{\prime}\right]$.
2. If $M \xrightarrow{\rho_{r}} M^{\prime}$ and $d(N)=L$, then $M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M^{\prime}\left[x^{L}:=N^{\prime}\right]$.

Proof. 1. By induction on M :

- Let $M=y^{K}$. If $y^{K}=x^{L}$, then $M\left[x^{L}:=N\right]=N, M\left[x^{L}:=N^{\prime}\right]=N^{\prime}$ and by hypothesis, $N \xrightarrow{\rho_{r}} N^{\prime}$. If $y^{K} \neq x^{L}$, then $M\left[x^{L}:=N\right]=M, M\left[x^{L}:=N^{\prime}\right]=M$ and by definition, $M \xrightarrow{\rho_{r}} M$.
- Let $M=\lambda y^{K} \cdot M_{1} . M\left[x^{L}:=N\right]=\lambda y^{K} \cdot M_{1}\left[x^{L}:=N\right]$ and since $M_{1} \diamond N$, by $\mathrm{IH}, M_{1}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M_{1}\left[x^{L}:=N^{\prime}\right]$ and so $\lambda y^{K} \cdot M_{1}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}}$ $\lambda y^{K} \cdot M_{1}\left[x^{L}:=N^{\prime}\right]$
- Let $M=M_{1} M_{2} . M\left[x^{L}:=N\right]=M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right]$ and since $M_{1} \diamond N$ and $M_{2} \diamond N$, by IH, $M_{1}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M_{1}\left[x^{L}:=N^{\prime}\right]$ and $M_{2}\left[x^{L}:=\right.$ $N] \xrightarrow{\rho_{r}} M_{2}\left[x^{L}:=N^{\prime}\right]$. By lemma 18.6, $M_{1}\left[x^{L}:=N\right] \diamond M_{2}\left[x^{L}:=N\right]$, so $M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M_{1}\left[x^{L}:=N^{\prime}\right] M_{2}\left[x^{L}:=N^{\prime}\right]$.

2. By induction on $M \xrightarrow{\rho_{r}} M^{\prime}$.

- If $M=M^{\prime}$, then 1 ..
- If $\lambda y^{K} . M \xrightarrow{\rho_{r}} \lambda y^{K} . M^{\prime}$ where $M \xrightarrow{\rho_{r}} M^{\prime}$, then by IH, $M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M^{\prime}\left[x^{L}:=\right.$ $\left.N^{\prime}\right]$. Hence $\left(\lambda y^{K} \cdot M\right)\left[x^{L}:=N\right]=\lambda y^{K} \cdot M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} \lambda y^{K} \cdot M^{\prime}\left[x^{L}:=N^{\prime}\right]=$ $\left(\lambda y^{K} \cdot M^{\prime}\right)\left[x^{L}:=N^{\prime}\right]$ where $y^{K} \notin \mathrm{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$.
- If $P Q \xrightarrow{\rho_{r}} P^{\prime} Q^{\prime}$ where $P \xrightarrow{\rho_{r}} P^{\prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}$ and $P \diamond Q$, then by IH, $P\left[x^{L}:=N\right] \xrightarrow{\rho_{r}}$ $P^{\prime}\left[x^{L}:=N^{\prime}\right]$ and $Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} Q^{\prime}\left[x^{L}:=N^{\prime}\right]$. By lemma 18.6, $P\left[x^{L}:=\right.$ $N] \diamond Q\left[x^{L}:=N\right]$, so $P\left[x^{L}:=N\right] Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right] Q^{\prime}\left[x^{L}:=N^{\prime}\right]$.
$-\left(\lambda y^{K} . P\right) Q \xrightarrow{\rho_{r}} P^{\prime}\left[y^{K}:=Q^{\prime}\right]$ where $P \xrightarrow{\rho_{r}} P^{\prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}, P \diamond Q$ and $\mathrm{d}(Q)=$ K, then by IH, $P\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right], Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} Q^{\prime}\left[x^{L}:=\right.$ $\left.N^{\prime}\right]$. Moreover, $\left(\left(\lambda y^{K} . P\right) Q\right)\left[x^{L}:=N\right]=\left(\lambda y^{K} . P\right)\left[x^{L}:=N\right] Q\left[x^{L}:=N\right]=$ $\lambda y^{K} . P\left[x^{L}:=N\right] Q\left[x^{L}:=N\right]$ where $y^{K} \notin \mathrm{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$. By lemma 18.6, $P\left[x^{L}:=N\right] \diamond Q\left[x^{L}:=N\right]$ and by lemma $18.5 \mathrm{~d}(Q)=\mathrm{d}\left(Q\left[x^{L}:=N\right]\right)$ so $\lambda y^{K} . P\left[x^{L}:=N\right] Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right]\left[y^{K}:=Q^{\prime}\left[x^{L}:=N^{\prime}\right]\right]=$ $P^{\prime}\left[y^{K}:=Q^{\prime}\right]\left[x^{L}:=N^{\prime}\right]$.
- If $\lambda y^{K} \cdot M y^{K} \xrightarrow{\rho_{\beta \eta}} M^{\prime}$ where $M \xrightarrow{\rho_{\beta \eta}} M^{\prime}, K \succeq \mathrm{~d}(M)$ and $\forall K \in \mathcal{L}_{\mathbb{N}}, y^{K} \notin \mathrm{fv}(M)$, then by IH $M\left[x^{L}:=N\right] \xrightarrow{\rho_{\beta \eta}} M^{\prime}\left[x^{L}:=N^{\prime}\right]$. Moreover, $\left(\lambda y^{K} . M y^{K}\right)\left[x^{L}:=\right.$ $N]=\lambda y^{K} \cdot M\left[x^{L}:=N\right] y^{K}\left[x^{L}:=N\right]=\lambda y^{K} \cdot M\left[x^{L}:=N\right] y^{K}$ where $\forall K \in$ $\mathcal{L}_{\mathbb{N}}, y^{K} \notin \operatorname{fv}\left(N^{\prime}\right) \subseteq \operatorname{fv}(N)$. Since by lemma $18.5 \mathrm{~d}(M)=\mathrm{d}\left(M\left[x^{L}:=N\right]\right)$, $\lambda y^{K} \cdot M\left[x^{L}:=N\right] y^{K} \xrightarrow{\rho_{\beta \eta}} M^{\prime}\left[x^{L}:=N^{\prime}\right]$.
Lemma 23. 1. If $x^{L} \xrightarrow{\rho_{r}} N$, then $N=x^{L}$.

2. If $\lambda x^{L} . P \xrightarrow{\rho_{\beta \eta}} N$ then one of the following holds:
$-N=\lambda x^{L} . P^{\prime}$ where $P \xrightarrow{\rho_{\beta} \eta} P^{\prime}$.

- $P=P^{\prime} x^{L}$ where $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}\left(P^{\prime}\right), L \succeq d\left(P^{\prime}\right)$ and $P^{\prime} \xrightarrow{\rho_{\beta \eta}} N$.

3. If $\lambda x^{L} . P \xrightarrow{\rho_{\beta}} N$ then $N=\lambda x^{L} . P^{\prime}$ where $P \xrightarrow{\rho_{\beta}} P^{\prime}$.
4. If $P Q \xrightarrow{\rho_{r}} N$, then one of the following holds:
$-N=P^{\prime} Q^{\prime}, P \xrightarrow{\rho_{r}} P^{\prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}$ and $P \diamond Q$.
$-P=\lambda x^{L} . P^{\prime}, N=P^{\prime \prime}\left[x^{L}:=Q^{\prime}\right], P^{\prime} \xrightarrow{\rho_{r}} P^{\prime \prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}, P^{\prime} \diamond Q$ and $d(Q)=L$.

Proof. 1. By induction on the derivation $x^{L} \xrightarrow{\rho_{r}} N$.
2. By induction on the derivation $\lambda x^{L} . P \xrightarrow{\rho_{\beta} \eta} N$.
3. By induction on the derivation $\lambda x^{L} . P \xrightarrow{\rho_{\beta}} N$.
4. By induction on the derivation $P Q \xrightarrow{\rho_{r}} N$.

Lemma 24. Let $M, M_{1}, M_{2} \in \mathcal{M}$.

1. If $M_{2} \stackrel{\rho_{r}}{\stackrel{\rho_{r}}{L}} M \xrightarrow{\rho_{r}} M_{1}$, then there is $M^{\prime} \in \mathcal{M}$ such that $M_{2} \xrightarrow{\rho_{r}} M^{\prime} \stackrel{\rho_{r}}{\stackrel{ }{\rho_{r}}} M_{1}$.
2. If $M_{2} \xrightarrow{\stackrel{\rho_{r}}{r}} M \xrightarrow{\rho_{r}} M_{1}$, then there is $M^{\prime} \in \mathcal{M}$ such that $M_{2} \xrightarrow{\rho_{r}} M^{\prime} \xrightarrow{p_{r}} M_{1}$.

Proof. 1. By induction on M :

- Let $r=\beta \eta$:
- If $M=x^{L}$, by lemma $23, M_{1}=M_{2}=x^{L}$. Take $M^{\prime}=x^{L}$.
- If $N_{2} P_{2} \stackrel{\rho_{\beta \eta}}{\leftarrow} N P \xrightarrow{\rho_{\beta \eta}} N_{1} P_{1}$ where $N_{2} \stackrel{\rho_{\beta \eta}}{\curvearrowleft} N \xrightarrow{\rho_{\beta \eta}} N_{1}, P_{2} \stackrel{\rho_{\beta} \eta}{\leftarrow} P \xrightarrow{\rho_{\beta \eta}} P_{1}$ and $N \diamond P$ then, by IH, $\exists N^{\prime}, P^{\prime}$ such that $N_{2} \xrightarrow{\rho_{\beta \eta}} N^{\prime} \stackrel{\rho_{\beta \eta}}{\curvearrowleft} N_{1}$ and $P_{2} \xrightarrow{\rho_{\beta \eta}} P^{\prime} \stackrel{\rho_{\beta \eta}}{\curvearrowleft}$ P_{1}. By lemma 21.3, $N_{1} \diamond P_{1}$ and $N_{2} \diamond P_{2}$, hence $N_{2} P_{2} \xrightarrow{\rho_{\beta \eta}} N^{\prime} P^{\prime} \stackrel{\rho_{B n}}{\stackrel{\rho_{n}}{l}} N_{1} P_{1}$.
- If $\left(\lambda x^{L} . P_{1}\right) Q_{1} \stackrel{\rho_{\beta \beta}}{\gtrless}\left(\lambda x^{L} . P\right) Q^{\rho_{\beta \eta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $\lambda x^{L} . P \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . P_{1}$, $P \xrightarrow{\rho_{\beta \eta}} P_{2}, Q_{1} \stackrel{\rho_{\beta \eta}}{\sim} Q \xrightarrow{\rho_{\beta \eta}} Q_{2}, \mathrm{~d}(Q)=L,\left(\lambda x^{L} . P\right) \diamond Q$ and $P \diamond Q$ then, by lemma 23, $P \xrightarrow{\rho_{\beta \eta}} P_{1}$. By IH, $\exists P^{\prime}, Q^{\prime}$ such that $P_{1} \xrightarrow{\rho_{\beta \eta}} P^{\prime} \stackrel{\rho_{\beta} \eta}{\gtrless} P_{2}$ and $Q_{1} \xrightarrow{\rho_{\beta \eta}} Q^{\prime} \stackrel{\rho_{\beta \eta}}{\gtrless} Q_{2}$. By lemma 21.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=\mathrm{d}(Q)=L$. By lemma 21.3, $P_{1} \diamond Q_{1}$. Hence, $\left(\lambda x^{L} . P_{1}\right) Q_{1} \xrightarrow{\rho_{\beta \eta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.

Moreover, since $P_{2} \xrightarrow{\rho_{\beta \eta}} P^{\prime}, Q_{2} \xrightarrow{\rho_{\beta \eta}} Q^{\prime}, \mathrm{d}\left(Q_{2}\right)=L$ and by lemma 21.3, $P_{2} \diamond Q_{2}$, then, by lemma 22.2, $P_{2}\left[x^{L}:=Q_{2}\right] \xrightarrow{\rho_{\beta \eta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.

- If $P_{1}\left[x^{L}:=Q_{1}\right] \stackrel{\rho_{\beta \eta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta \eta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $P_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} P \xrightarrow{\rho_{\beta \eta}} P_{2}$, $Q_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} Q \stackrel{\rho_{\beta \eta}}{\rightarrow} Q_{2}, \mathrm{~d}(Q)=L$ and $P \diamond Q$, then, by IH, $\exists P^{\prime}, Q^{\prime}$ where $P_{1} \xrightarrow{\rho_{\beta \eta}} P^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} P_{2}$ and $Q_{1} \xrightarrow{\rho_{\beta \eta}} Q^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} Q_{2}$. By lemma 21.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=$ $\mathrm{d}(Q)=L$. By lemma 21.3, $P_{1} \diamond Q_{1}$ and $P_{2} \diamond Q_{2}$. Hence, by lemma 22.2, $P_{1}\left[x^{L}:=Q_{1}\right] \xrightarrow{\rho_{\beta \eta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right] \stackrel{\rho_{\beta \eta}}{\leftarrow} P_{2}\left[x^{L}:=Q_{2}\right]$.
- If $\lambda x^{L} . N_{2} \stackrel{\rho_{\beta \eta}}{\leftrightarrows} \lambda x^{L} . N \xrightarrow{\rho_{\beta}} \lambda x^{L} . N_{1}$ where $N_{2} \stackrel{\rho_{\beta \eta}}{\leftarrow} N \xrightarrow{\rho_{\beta \eta}} N_{1}$, by IH, there is N^{\prime} such that $N_{2} \xrightarrow{\rho_{\beta \eta}} N^{\prime} \xrightarrow{\rho_{\beta \eta}} N_{1}$. Hence, $\lambda x^{L} . N_{2} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . N^{\prime} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . N_{1}$.
- If $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda x^{L} . P x^{L} \xrightarrow{\rho_{\beta \eta}} M_{2}$ where $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}(P), L \succeq \mathrm{~d}(P)$ and $M_{1} \stackrel{\rho_{\beta \eta}}{\leftrightarrows} P \xrightarrow{\rho_{\beta \eta}} M_{2}$, then, by IH, there is M^{\prime} such that $M_{2} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \stackrel{\rho_{\beta \eta}}{\longleftarrow} M_{1}$.
- If $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda x^{L} . P x^{L} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . P^{\prime}$, where $P \xrightarrow{\rho_{\beta \eta}} M_{1}, P x^{L} \xrightarrow{\rho_{\beta \eta}} P^{\prime}$ and $\forall L \in$ $\mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}(P)$ and $L \succeq \mathrm{~d}(P)$. By lemma 23 there are two cases:
$* P^{\prime}=P^{\prime \prime} x^{L}$ and $P \xrightarrow{\rho_{\beta \eta}} P^{\prime \prime}$. By IH, there is M^{\prime} such that $P^{\prime \prime} \xrightarrow{\rho_{\beta \eta}}$ $M^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} M_{1}$. By lemma 21.2, $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}\left(P^{\prime \prime}\right)$ and $L \succeq \mathrm{~d}\left(P^{\prime \prime}\right)$, hence, $\lambda x^{L} . P^{\prime}=\lambda x^{L} . P^{\prime \prime} x^{L} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} M_{1}$.
* $P=\lambda y^{L} \cdot Q, Q \xrightarrow{\rho_{\beta \eta}} Q^{\prime}, Q \diamond x^{L}$ and $P^{\prime}=Q^{\prime}\left[y^{L}:=x^{L}\right]$. So we have $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda x^{L} .\left(\lambda y^{L} . Q\right) x^{L} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} \cdot Q^{\prime}\left[y^{L}:=x^{L}\right]$ where $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda y^{L} . Q=$ $\lambda x^{L} . Q\left[y^{L}:=x^{L}\right]$ since $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}(P)$.
By lemma 22.2, $\lambda x^{L} \cdot Q\left[y^{L}:=x^{L}\right] \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} \cdot Q^{\prime}\left[y^{L}:=x^{L}\right]$. Hence by IH , there is M^{\prime} such that $M_{1} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \stackrel{\rho_{\beta \eta}}{\leftrightarrows} \lambda x^{L} . Q^{\prime}\left[y^{L}:=x^{L}\right]$.
- Let $r=\beta$:
- If $M=x^{L}$, by lemma $23, M_{1}=M_{2}=x^{L}$. Take $M^{\prime}=x^{L}$.
- If $N_{2} P_{2} \stackrel{\rho_{\beta}}{\leftarrow} N P \xrightarrow{\rho_{\beta}} N_{1} P_{1}$ where $N_{2} \stackrel{\rho_{\beta}}{\leftarrow} N \xrightarrow{\rho_{\beta}} N_{1}, P_{2} \stackrel{\rho_{\beta}}{\leftarrow} P \xrightarrow{\rho_{\beta}} P_{1}$ and $N \diamond P$, then, by IH, $\exists N^{\prime}, P^{\prime}$ such that $N_{2} \xrightarrow{\rho_{\beta}} N^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} N_{1}$ and $P_{2} \xrightarrow{\rho_{\beta}} P^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} P_{1}$. By lemma 21.3, $N_{1} \diamond P_{1}$ and $N_{2} \diamond P_{2}$. Hence, $N_{2} P_{2} \xrightarrow{\rho_{\beta}} N^{\prime} P^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} N_{1} P_{1}$.
- If $\left(\lambda x^{L} . P_{1}\right) Q_{1} \stackrel{\rho_{\beta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $\lambda x^{L} . P \xrightarrow{\rho_{\beta}} \lambda x^{L} . P_{1}$, $P \xrightarrow{\rho_{\beta}} P_{2}, Q_{1} \stackrel{\rho_{\beta}}{\longleftrightarrow} Q \xrightarrow{\rho_{\beta}} Q_{2}, \mathrm{~d}(Q)=L, P \diamond Q$ and $\left(\lambda x^{L} . P\right) \diamond Q$, then, by lemma $23, P \xrightarrow{\rho_{\beta}} P_{1}$. By IH, $\exists P^{\prime}, Q^{\prime}$ such that $P_{1} \xrightarrow{\rho_{\beta}} P^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} P_{2}$ and $Q_{1} \xrightarrow{\rho_{\beta}} Q^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} Q_{2}$. By lemma 21.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=\mathrm{d}(Q)=L$. By lemma 21.3, $P_{1} \diamond Q_{1}$. Hence, $\left(\lambda x^{L} . P_{1}\right) Q_{1} \xrightarrow{\rho_{\beta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$. Moreover, since $P_{2} \xrightarrow{\rho_{\beta}} P^{\prime}, Q_{2} \xrightarrow{\rho_{\beta}} Q^{\prime}, \mathrm{d}\left(Q_{2}\right)=L$ and by lemma 21.3, $P_{2} \diamond Q_{2}$., then, by lemma $22.2, P_{2}\left[x^{L}:=Q_{2}\right] \xrightarrow{\rho_{\beta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.
- If $P_{1}\left[x^{L}:=Q_{1}\right] \stackrel{\rho_{\beta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $P_{1} \stackrel{\rho_{\beta}}{\leftarrow} P \xrightarrow{\rho_{\beta}} P_{2}$, $Q_{1} \stackrel{\rho_{\beta}}{\leftarrow} Q \xrightarrow{\rho_{\beta}} Q_{2}, \mathrm{~d}(Q)=L$ and $P \diamond Q$ then by IH, $\exists P^{\prime}, Q^{\prime}$ where $P_{1} \xrightarrow{\rho_{\beta}}$ $P^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} P_{2}$ and $Q_{1} \xrightarrow{\rho_{\beta}} Q^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} Q_{2}$. By lemma 21.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=$ $\mathrm{d}(Q)=L$. By lemma 21.3, $P_{1} \diamond Q_{1}$ and $P_{2} \diamond Q_{2}$. Hence, by lemma 22.2, $P_{1}\left[x^{L}:=Q_{1}\right] \xrightarrow{\rho_{\beta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right] \stackrel{\rho_{\beta}}{\leftarrow} P_{2}\left[x^{L}:=Q_{2}\right]$.
- If $\lambda x^{L} . N_{2} \stackrel{\rho_{\beta}}{\leftarrow} \lambda x^{L} . N \xrightarrow{\rho_{\beta}} \lambda x^{L} . N_{1}$ where $N_{2} \stackrel{\rho_{\beta}}{\leftarrow} N \xrightarrow{\rho_{\beta}} N_{1}$, by IH, there is N^{\prime} such that $N_{2} \xrightarrow{\rho_{\beta}} N^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} N_{1}$. Hence, $\lambda x^{L} . N_{2} \xrightarrow{\rho_{\beta}} \lambda x^{L} . N^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} \lambda x^{L} . N_{1}$.

2. First show by induction on $M \xrightarrow{\rho_{r}} M_{1}$ (and using 1) that if $M_{2} \stackrel{\rho_{r}}{\leftarrow} M \xrightarrow{\rho_{r}} M_{1}$, then there is M^{\prime} such that $M_{2} \xrightarrow{\rho_{r}} M^{\prime} \stackrel{\rho_{r}}{\leftarrow} M_{1}$. Then use this to show 2 by induction on $M \xrightarrow{\rho_{r}} M_{2}$.

Proof (Of Theorem 2).

1. For $r \in\{\beta, \beta \eta\}$, by lemma $24.2, \xrightarrow{\rho_{r}}$ is confluent. by lemma 21.1 and 21.2 , $M \xrightarrow{\rho_{r}} N$ iff $M \triangleright_{r}^{*} N$. Then \triangleright_{r}^{*} is confluent.
For $r=h$, since if $M \triangleright_{r}^{*} M_{1}$ and $M \triangleright_{r}^{*} M_{2}, M_{1}=M_{2}$, we take $M^{\prime}=M_{1}$.
2. If) is by definition of \simeq_{r}. Only if) is by induction on $M_{1} \simeq_{r} M_{2}$ using 1 .

B Proofs of section 3

Proof (Of lemma 2).

1. By definition.
2. By induction on U.

- If $U=a(\mathrm{~d}(U)=\oslash)$, nothing to prove.
- If $U=V \rightarrow T(\mathrm{~d}(U)=\oslash)$, nothing to prove.
- If $U=\omega^{L}$, nothing to prove.
- If $U=U_{1} \sqcap U_{2}\left(\mathrm{~d}(U)=\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)=L\right)$, by IH we have four cases:
- If $U_{1}=U_{2}=\omega^{L}$ then $U=\omega^{L}$.
- If $U_{1}=\omega^{L}$ and $U_{2}=\boldsymbol{e}_{L} \sqcap_{i=1}^{k} T_{i}$ where $k \geq 1$ and $\forall 1 \leq i \leq k, T_{i} \in \mathbb{T}$ then $U=U_{2}$ (since ω^{L} is a neutral).
- If $U_{2}=\omega^{L}$ and $U_{1}=\boldsymbol{e}_{L} \sqcap_{i=1}^{k} T_{i}$ where $k \geq 1$ and $\forall 1 \leq i \leq k, T_{i} \in \mathbb{T}$ then $U=U_{1}$ (since ω^{L} is a neutral).
- If $U_{1}=\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ and $U_{2}=\boldsymbol{e}_{L} \sqcap_{i=p+1}^{p+q} T_{i}$ where $p, q \geq 1, \forall 1 \leq i \leq$ $p+q, T_{i} \in \mathbb{T}$ then $U=\boldsymbol{e}_{L} \sqcap_{i=1}^{p+q} T_{i}$.
- If $U=\bar{e}_{n_{1}} V\left(L=\mathrm{d}(U)=n_{1}:: \mathrm{d}(V)=n_{1}:: K\right)$, by IH we have two cases:
- If $V=\omega^{K}, U=\bar{e}_{n_{1}} \omega^{K}=\omega^{L}$.
- If $V=\boldsymbol{e}_{K} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$ then $U=\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$.

3. (a) By induction on $U_{1} \sqsubseteq U_{2}$.
(b) By induction on $U_{1} \sqsubseteq U_{2}$.
(c) By induction on K. We do the induction step. Let $U_{1}=\bar{e}_{i} U$. By induction on $\bar{e}_{i} U \sqsubseteq U_{2}$ we obtain $U_{2}=\bar{e}_{i} U^{\prime}$ and $U \sqsubseteq U^{\prime}$.
(d) same proof as in the previous item.
(e) By induction on $U_{1} \sqsubseteq U_{2}$:

- By ref, $U_{1}=U_{2}$.
- If $\frac{\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq U \quad U \sqsubseteq U_{2}}{\square_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq U_{2}}$. If $U=\omega^{K}$ then by (b), $U_{2}=$ ω^{K}. If $U=\sqcap_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $q \geq 1$ and $\forall 1 \leq j \leq q, \exists 1 \leq$ $i \leq p$ such that $U_{j}^{\prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{j}^{\prime}$ then by $\mathrm{IH}, U_{2}=\omega^{K}$ or $U_{2}=$ $\sqcap_{k=1}^{r} \boldsymbol{e}_{K}\left(U_{k}^{\prime \prime} \rightarrow T_{k}^{\prime \prime}\right)$ where $r \geq 1$ and $\forall 1 \leq k \leq r, \exists 1 \leq j \leq q$ such that $U_{k}^{\prime \prime} \sqsubseteq U_{j}^{\prime}$ and $T_{j}^{\prime} \sqsubseteq T_{k}^{\prime \prime}$. Hence, by $t r, \forall 1 \leq k \leq r, \exists 1 \leq i \leq p$ such that $U_{k}^{\prime \prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{k}^{\prime \prime}$.
- By $\sqcap_{E}, U_{2}=\omega^{K}$ or $U_{2}=\sqcap_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $1 \leq q \leq p$ and $\forall 1 \leq j \leq q, \exists 1 \leq i \leq p$ such that $U_{i}=U_{j}^{\prime}$ and $T_{i}=T_{j}^{\prime}$.
- Case Π is by IH.
- Case \rightarrow is trivial.
- If $\frac{\Pi_{i=1}^{p} \boldsymbol{e}_{L}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq U_{2}}{\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq \bar{e}_{i} U_{2}}$ where $K=i:: L$ then by IH, $U_{2}=$ ω^{L} and so $\bar{e}_{i} U_{2}=\omega^{K}$ or $U_{2}=\Pi_{j=1}^{q} \boldsymbol{e}_{L}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ so $\bar{e}_{i} U_{2}=$ $\sqcap_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $q \geq 1$ and $\forall 1 \leq j \leq q, \exists 1 \leq i \leq p$ such that $U_{j}^{\prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{j}^{\prime}$.

4. By \sqcap_{E} and since ω^{L} is a neutral.
5. By induction on $U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}$.

- Let $\overline{U_{1}^{\prime} \sqcap U_{2}^{\prime}} \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}$. By ref, $U_{1}^{\prime} \sqsubseteq U_{1}^{\prime}$ and $U_{2}^{\prime} \sqsubseteq U_{2}^{\prime}$.
- Let $\frac{U \sqsubseteq U^{\prime \prime} U^{\prime \prime} \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}{U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$. By $\mathrm{IH}, U^{\prime \prime}=U_{1}^{\prime \prime} \sqcap U_{2}^{\prime \prime}$ such that $U_{1}^{\prime \prime} \sqsubseteq U_{1}^{\prime}$ and $U_{2}^{\prime \prime} \sqsubseteq U_{2}^{\prime}$. Again by $\mathrm{IH}, U=U_{1} \sqcap U_{2}$ such that $U_{1} \sqsubseteq U_{1}^{\prime \prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime \prime}$. So by $t r, U_{1} \sqsubseteq U_{1}^{\prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime}$.
- Let $\frac{}{\left(U_{1}^{\prime} \sqcap U_{2}^{\prime}\right) \sqcap U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$. By ref, $U_{1}^{\prime} \sqsubseteq U_{1}^{\prime}$ and $U_{2}^{\prime} \sqsubseteq U_{2}^{\prime}$. Moreover $\mathrm{d}(U)=\mathrm{d}\left(U_{1}^{\prime} \sqcap U_{2}^{\prime}\right)=\mathrm{d}\left(U_{1}^{\prime}\right)$ then by $\sqcap_{E}, U_{1}^{\prime} \sqcap U \sqsubseteq U_{1}^{\prime}$.
- If $\frac{U_{1} \sqsubseteq U_{1}^{\prime} \& U_{2} \sqsubseteq U_{2}^{\prime}}{U_{1} \sqcap U_{2} \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$ there is nothing to prove.
$-\frac{V_{2} \sqsubseteq V_{1} \quad \& T_{1} \sqsubseteq T_{2}}{V_{1} \rightarrow T_{1} \sqsubseteq V_{2} \rightarrow T_{2}}$ then $U_{1}^{\prime}=U_{2}^{\prime}=V_{2} \rightarrow T_{2}$ and $U=U_{1} \sqcap U_{2}$ such that $U_{1}=\bar{U}_{2}=V_{1} \rightarrow T_{1}$ and we are done.
- If $\frac{U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}{e U \sqsubseteq e U_{1}^{\prime} \sqcap e U_{2}^{\prime}}$ then by IH $U=U_{1} \sqcap U_{2}$ such that $U_{1} \sqsubseteq U_{1}^{\prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime}$. So, $e U=e U_{1} \sqcap e U_{2}$ and by $\sqsubseteq_{e}, e U_{1} \sqsubseteq e U_{1}^{\prime}$ and $e U_{2} \sqsubseteq e U_{2}^{\prime}$.

6. By induction on $\Gamma \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$.

- Let $\overline{\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime} \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}}$. By ref, $\Gamma_{1}^{\prime} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2}^{\prime} \sqsubseteq \Gamma_{2}^{\prime}$.
- Let $\frac{\Gamma \sqsubseteq \Gamma^{\prime \prime} \quad \Gamma^{\prime \prime} \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}}{\Gamma \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}}$. By IH, $\Gamma^{\prime \prime}=\Gamma_{1}^{\prime \prime} \sqcap \Gamma_{2}^{\prime \prime}$ such that $\Gamma_{1}^{\prime \prime} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2}^{\prime \prime} \sqsubseteq \Gamma_{2}^{\prime}$. Again by IH, $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$ such that $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime \prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime \prime}$. So by $t r, \Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$.
- Let $\frac{\bar{U}_{1} \sqsubseteq U_{2}}{\Gamma,\left(y^{n}: U_{1}\right) \sqsubseteq \Gamma,\left(y^{n}: U_{2}\right)}$ where $\Gamma,\left(y^{n}: U_{2}\right)=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$.
- If $\Gamma_{1}^{\prime}=\Gamma_{1}^{\prime \prime},\left(y^{n}: U_{2}^{\prime}\right)$ and $\Gamma_{2}^{\prime}=\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{2}^{\prime \prime}\right)$ such that $U_{2}=U_{2}^{\prime} \sqcap U_{2}^{\prime \prime}$, then by $5, U_{1}=U_{1}^{\prime} \sqcap U_{1}^{\prime \prime}$ such that $U_{1}^{\prime} \sqsubseteq U_{2}^{\prime}$ and $U_{1}^{\prime \prime} \sqsubseteq U_{2}^{\prime \prime}$. Hence $\Gamma=\Gamma_{1}^{\prime \prime} \sqcap \Gamma_{2}^{\prime \prime}$ and $\Gamma,\left(y^{n}: U_{1}\right)=\Gamma_{1} \sqcap \Gamma_{2}$ where $\Gamma_{1}=\Gamma_{1}^{\prime \prime},\left(y^{n}: U_{1}^{\prime}\right)$ and $\Gamma_{2}=\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{1}^{\prime \prime}\right)$ such that $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$ by \sqsubseteq_{c}.
- If $y^{n} \notin \operatorname{dom}\left(\Gamma_{1}^{\prime}\right)$ then $\Gamma=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime \prime}$ where $\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{2}\right)=\Gamma_{2}^{\prime}$. Hence, $\Gamma,\left(y^{n}: U_{1}\right)=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}$ where $\Gamma_{2}=\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{1}\right)$. By ref and \sqsubseteq_{c}, $\Gamma_{1}^{\prime} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$.
- If $y^{n} \notin \operatorname{dom}\left(\Gamma_{2}^{\prime}\right)$ then similar to the above case.

Proof (Of lemma 3). 1. By definition, if $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ then $e n v_{M}^{\omega}=$ $\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n}$ and by definition, for all $i \in\{1, \ldots, n\}, \mathrm{d}\left(\omega^{L_{i}}\right)=L_{i}$. Moreover, if
$x^{L}: U, x^{L}: V \in e n v_{M}^{\omega}$, then $U=\omega^{L}=V$.
2. First show by induction on the derivation $\Gamma \sqsubseteq \Gamma^{\prime}$ that if $\Gamma \sqsubseteq \Gamma^{\prime}$ and $\Gamma,\left(x^{L}\right.$:
$U)$ is an environment, then $\Gamma,\left(x^{L}: U\right) \sqsubseteq \Gamma^{\prime},\left(x^{\bar{L}}: U\right)$. Then use $(t r)$ and $\left(\sqsubseteq_{c}\right)$.
3. Only if) By induction on the derivation $\Gamma \sqsubseteq \Gamma^{\prime}$. If) By induction on n using 2.
4. Only if) By induction on the derivation $\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$. If) By $\sqsubseteq\rangle$.
5. Let $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ and $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$. By definition, env ${ }_{M}^{\omega}=$ $\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n}$. Because $\operatorname{OK}(\Gamma)$, then for all $i \in\{1, \ldots, n\}, \mathrm{d}\left(U_{i}\right)=L_{i}$. Hence, by lemma 2.4 and $3, \Gamma \sqsubseteq e n v_{M}^{\omega}$.
6. Let $x^{L_{1}} \in \operatorname{dom}\left(\Gamma^{-K}\right)$ and $x^{L_{2}} \in \operatorname{dom}\left(\Delta^{-K}\right)$, then $x^{K:: L_{1}} \in \operatorname{dom}(\Gamma)$ and $x^{K:: L_{2}} \in \operatorname{dom}(\Delta)$, hence $K:: L_{1}=K:: L_{2}$ and so $L_{1}=L_{2}$.
7. Let $\mathrm{d}(U)=L=K:: K^{\prime}$. By lemma 2 :

- If $U=\omega^{L}$ then by lemma $2.3 \mathrm{~b}, U^{\prime}=\omega^{L}$ and by ref, $U^{-K}=\omega^{K^{\prime}} \sqsubseteq \omega^{K^{\prime}}=$ $U^{\prime-K}$.
- If $U=\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$ then by lemma 2.3c, $U^{\prime}=\boldsymbol{e}_{L} V$ and $\sqcap_{i=1}^{p} T_{i} \sqsubseteq V$. Hence, by $\sqsubseteq_{e}, U^{-K}=\boldsymbol{e}_{K^{\prime}} \sqcap_{i=1}^{p} T_{i} \sqsubseteq \boldsymbol{e}_{K^{\prime}} V=$ $U^{\prime-K}$.

8. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, so by lemma 3.3, $\Gamma^{\prime}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and $\forall 1 \leq i \leq n$, $U_{i} \sqsubseteq U_{i}^{\prime}$. Because $\mathrm{d}(\Gamma) \succeq K$, then by definition $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}\right) \succeq K$. By lemma 3.7, $\forall i \in\{1, \ldots, n\}, U_{i}^{-K} \sqsubseteq U_{i}^{\prime-K}$ and by lemma 3.3, $\Gamma^{-K} \sqsubseteq \Gamma^{\prime-K}$.
9. Let $\Gamma_{1}=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}, \Gamma_{1}^{\prime}$ and $\Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}, \Gamma_{2}^{\prime}$ such that $\operatorname{dom}\left(\Gamma_{1}^{\prime}\right) \cap$ $\operatorname{dom}\left(\Gamma_{2}^{\prime}\right)$. Then, by hypotheses, for all $i \in\{1, \ldots, n\}, \mathrm{d}\left(U_{i}\right)=L_{i}=\mathrm{d}\left(U_{i}^{\prime}\right)$. Then $\Gamma_{1} \sqcap \Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i} \sqcap U_{i}^{\prime}\right)_{n}, \Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}$ is well defined. Moreover, for all $x^{L}: U \in \Gamma_{1}^{\prime}$, $\mathrm{d}(U)=L$ and for all $x^{L}: U \in \Gamma_{2}^{\prime}, \mathrm{d}(U)=L$ and for all $i \in\{1, \ldots, n\}$, $\mathrm{d}\left(U_{i} \sqcap U_{i}^{\prime}\right)=\mathrm{d}\left(U_{i}\right)=L_{i}=\mathrm{d}\left(U_{i}^{\prime}\right)$.
10. Let $\Gamma=\left(x_{j}^{L_{j}}: U_{j}\right)_{n}$ then by hypothesis, for all $j \in\{1, \ldots, n\}, \mathrm{d}\left(U_{j}\right)=L_{j}$ and $\bar{e}_{i} \Gamma=\left(x_{j}^{i:: L_{j}}: \bar{e}_{i} U_{j}\right)$. So, for all $j \in\{1, \ldots, n\}, \mathrm{d}\left(\bar{e}_{i} U_{j}\right)=i:: \mathrm{d}\left(U_{j}\right)=i:: L_{j}$. 11. By lemma 3.3, $\Gamma_{1}=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$ and $\Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and for all $i \in$ $\{1, \ldots, n\}, U_{i} \sqsubseteq U_{i}^{\prime}$. By lemma 2.3a, for all $i \in\{1, \ldots, n\}, \mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right)$. Assume $\mathrm{d}\left(\Gamma_{1}\right) \succeq K$ then for all $i \in\{1, \ldots, n\}, \mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right) \succeq K$ and $L_{i} \succeq K$, so $\mathrm{d}\left(\Gamma_{2}\right) \succeq K$. Assume $\mathrm{d}\left(\Gamma_{2}\right) \succeq K$ then for all $i \in\{1, \ldots, n\}, \mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right) \succeq$ K and $L_{i} \succeq K$, so $\mathrm{d}\left(\Gamma_{1}\right) \succeq K$. Assume $\operatorname{OK}\left(\Gamma_{1}\right)$ then for all $i \in\{1, \ldots, n\}$, $L_{i}=\mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right)$, so $\operatorname{OK}\left(\Gamma_{2}\right)$. Assume $\operatorname{OK}\left(\Gamma_{2}\right)$ then for all $i \in\{1, \ldots, n\}$, $L_{i}=\mathrm{d}\left(U_{i}^{\prime}\right)=\mathrm{d}\left(U_{i}\right)$, so $\operatorname{OK}\left(\Gamma_{1}\right)$.

Proof (Of theorem 3).

1. and 2. By lemma 4.2 and lemma $3.3, \Gamma \diamond \Gamma$.

- If $\frac{}{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ then, by hypothesis, $T \in \mathbb{T} \subseteq \mathbb{U}$ and $\mathrm{d}(T)=\varnothing=$ $\mathrm{d}\left(x^{\varnothing}\right)$. So, $\operatorname{OK}\left(\left(x^{\varnothing}: T\right)\right)$ and $x^{\varnothing} \in \mathcal{M}$.
- If $\overline{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}$. By definition, M is defined to range over \mathcal{M} and $\operatorname{OK}\left(e n v_{M}^{\omega}\right)$ by lemma 3.1. By definition, $\omega^{\mathrm{d}(M)} \in \mathbb{U}$. Let $\operatorname{fv}(M)=$ $\left\{x^{L_{1}}, \ldots, x^{L_{n}}\right\}$, so $e n v_{M}^{\omega}=\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n}$ and by lemma $18.4, \forall 1 \leq i \leq$ $n, L_{i} \succeq \mathrm{~d}(M)=\mathrm{d}\left(\omega^{\mathrm{d}(M)}\right)$.
- If $\frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}$ then by IH, $M \in \mathcal{M}, T \in \mathbb{U} \Gamma,\left(x^{L}: U\right) \in E n v$, $\mathrm{OK}\left(\Gamma,\left(x^{L}: U\right)\right)$ and $\mathrm{d}\left(\Gamma,\left(x^{L}: U\right)\right) \succeq \mathrm{d}(T)=\mathrm{d}(M)$. By hypothesis, $T \in \mathbb{T}$. Because $\Gamma,\left(x^{L}: U\right) \in E n v$, then $U \in \mathbb{U}$. So $U \rightarrow T \in \mathbb{T} \subset \mathbb{U}$. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, then for all $i \in\{1, \ldots, n\}, L_{i}=\mathrm{d}\left(U_{i}\right) \succeq \mathrm{d}(T)=$ $\mathrm{d}(U \rightarrow T)$ and $\mathrm{d}(U)=L \succeq \mathrm{~d}(M)$. Hence, $\lambda x^{L} . M \in \mathcal{M}$ and $\operatorname{OK}(\Gamma)$. So, $\mathrm{d}\left(\lambda x^{L} \cdot M\right)=\mathrm{d}(M)=\mathrm{d}(T)=\mathrm{d}(U \rightarrow T)$.
- If $\frac{M:\langle\Gamma \vdash T\rangle x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ then by $\mathrm{IH}, M \in \mathcal{M}, T \in \mathbb{U}, \Gamma \in E n v$, $\mathrm{OK}(\Gamma)$ and $\mathrm{d}(\Gamma) \succeq \mathrm{d}(T)=\mathrm{d}(M)$. By hypothesis, $T \in \mathbb{T}$. So $\mathrm{d}(T)=$ $\oslash=\mathrm{d}(M) \preceq L$. By definition, $\omega^{L} \in \mathbb{U}$. So, $\omega^{L} \rightarrow T \in \mathbb{T} \subset \mathbb{U}$. So, $\lambda x^{L} . M \in \mathcal{M}$ and $\mathrm{d}\left(\lambda x^{L} . M\right)=\mathrm{d}(M)=\mathrm{d}(T)=\mathrm{d}\left(\omega^{L} \rightarrow T\right)$.
- If $\frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ then by IH, $M_{1}, M_{2} \in$ $\mathcal{M}, \Gamma_{1}, \Gamma_{1} \in E n v, U \rightarrow T, U \in \mathbb{U}, \operatorname{OK}\left(\Gamma_{1}\right), \operatorname{OK}\left(\Gamma_{2}\right)$ and $\mathrm{d}\left(\Gamma_{1}\right) \succeq \mathrm{d}(U \rightarrow$ $T)=\mathrm{d}\left(M_{1}\right)$ and $\mathrm{d}\left(\Gamma_{2}\right) \succeq \mathrm{d}(U)=\mathrm{d}\left(M_{2}\right)$. By definition, $\Gamma_{1} \sqcap \Gamma_{2}$ is a type environment. By hypothesis, $T \in \mathbb{T} \subset \mathbb{U}$. By lemma 3.9 and lemma 4.3, $\operatorname{OK}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)$ and $M_{1} \diamond M_{2}$. Because $\mathrm{d}\left(M_{2}\right)=\mathrm{d}(U) \succeq \oslash=\mathrm{d}(U \rightarrow T)=$ $\mathrm{d}\left(M_{1}\right)$, then $M_{1} M_{2} \in \mathcal{M}$. We have trivially, $\mathrm{d}\left(\Gamma_{1} \sqcap \Gamma_{1}\right) \succeq \varnothing$. Moreover $\mathrm{d}\left(M_{1} M_{2}\right)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(U \rightarrow T)=\mathrm{d}(T)$.
- If $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle} \quad$ 位 $U_{1}, U_{2} \in \mathbb{U}, \operatorname{OK}(\Gamma)$ and $\mathrm{d}(\Gamma) \succeq \mathrm{d}\left(U_{1}\right)=\mathrm{d}(M)$ and $\mathrm{d}(\Gamma) \succeq \mathrm{d}\left(U_{2}\right)=$ $\mathrm{d}(M)$. So $\mathrm{d}\left(U_{1}\right)=\mathrm{d}(M)=\mathrm{d}\left(U_{2}\right)$. Hence, $U_{1} \sqcap U_{2} \in \mathbb{U}$. Moreover, $\mathrm{d}(\Gamma) \succeq \mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{1} \sqcap U_{2}\right)=\mathrm{d}(M)$.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+k}:\left\langle\bar{e}_{k} \Gamma \vdash \bar{e}_{k} U\right\rangle}$ then by IH, $M \in \mathcal{M}, \Gamma \in E n v, U \in \mathbb{U}$, OK (Γ) and $\mathrm{d}(\Gamma) \succeq \mathrm{d}(U)=\mathrm{d}(M)$. Then, by definition, $\bar{e}_{k} U \in \mathbb{U}$. By definition, $\bar{e}_{k} \Gamma \in E n v$. Then, by lemma 19.1 and lemma 3.10, $M^{+i} \in \mathcal{M}$ and $\mathrm{OK}\left(\bar{e}_{k} \Gamma\right)$. Let $\Gamma=\left(x_{j}^{L_{j}}: U_{j}\right)_{n}$ so $\bar{e}_{k} \Gamma=\left(x_{j}^{k: L_{j}}: \bar{e}_{k} U_{j}\right)_{n}$ and for all $j \in\{1, \ldots, n\}$, because $\mathrm{d}\left(U_{j}\right)=L_{j} \succeq \mathrm{~d}(U)$ then $\mathrm{d}\left(\bar{e}_{k} U_{j}\right)=k:: \mathrm{d}\left(U_{j}\right)=$ $k:: L_{j} \succeq k:: \mathrm{d}(U)=\mathrm{d}\left(\bar{e}_{k} U\right)=k:: \mathrm{d}(M)={ }^{19.1} \mathrm{~d}\left(M^{+k}\right)$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by IH, $M \in \mathcal{M}, U \in \mathbb{U}$, $\Gamma \in E n v, \operatorname{OK}(\Gamma)$ and $\mathrm{d}(\Gamma) \succeq \mathrm{d}(U)=\mathrm{d}(M)$. By lemma 3.4, $\Gamma^{\prime} \sqsubseteq \Gamma$, hence, $\Gamma^{\prime} \in E n v$. By lemma 3.11, $\operatorname{OK}\left(\Gamma^{\prime}\right)$. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, so $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}\right)=L_{i} \succeq \mathrm{~d}(U)$. By lemma 3.3, $\Gamma^{\prime}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and $\forall 1 \leq i \leq n, U_{i} \sqsubseteq U_{i}^{\prime}$ so by lemma 2.3a, $\mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right)$. By lemma 3.4, $U \sqsubseteq U^{\prime}$ so by lemma 2.3a, $\mathrm{d}(U)=\mathrm{d}\left(U^{\prime}\right)$. Hence $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}^{\prime}\right)=$ $L_{i} \succeq \mathrm{~d}\left(U^{\prime}\right)=\mathrm{d}(M)$.

3. By induction on $M:\langle\Gamma \vdash U\rangle$. Case $K=\oslash$ is trivial, consider $K=i:: K^{\prime}$. Let $\mathrm{d}(U)=K:: L$. Since $\mathrm{d}(U) \succeq K, U^{-K}$ is well defined. Since by 1 . $\mathrm{d}(\Gamma) \succeq \mathrm{d}(U)=\mathrm{d}(M), M^{-K}$ and Γ^{-K} are well defined too.

- If $\overline{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}$. By $\omega, M^{-K}:\left\langle e n v_{M^{-K}}^{\omega} \vdash \omega^{L}\right\rangle$.
$-\Pi_{I}$ is by IH.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+i}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} U\right\rangle}$. Since $\mathrm{d}\left(\bar{e}_{i} U\right)=i:: K^{\prime}:: L, \mathrm{~d}(U)=K^{\prime}:: L$, so $\mathrm{d}(U) \succeq K^{\prime}$ and by IH, $M^{-K^{\prime}}:\left\langle\Gamma^{-K^{\prime}} \vdash U^{-K^{\prime}}\right\rangle$, so by e and lemma 19.4, $\left(M^{+i}\right)^{-K}:\left\langle\left(\bar{e}_{i} \Gamma\right)^{-K} \vdash\left(\bar{e}_{i} U\right)^{-K}\right\rangle$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by lemma $3.4, \Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. By lemma 2.3a, $\mathrm{d}(U)=\mathrm{d}\left(U^{\prime}\right) \succeq K$. By IH, $M^{-K}:\left\langle\Gamma^{-K} \vdash\right.$ $\left.U^{-K}\right\rangle$. Hence by lemma 3.11, lemma 3.7, lemma 3.8 and \sqsubseteq, M^{-K} : $\left\langle\Gamma^{\prime-K} \vdash U^{\prime-K}\right\rangle$.

Proof (Of remark 1).

1. Let $M:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle$. By lemma 4.2, $\operatorname{dom}\left(\Gamma_{1}\right)=\mathrm{fv}(M)=$ $\operatorname{dom}\left(\Gamma_{2}\right)$. Let $\Gamma_{1}=\left(x_{i}^{L_{i}}: V_{i}\right)_{n}$ and $\Gamma_{2}=\left(x_{i}^{L_{i}}: V_{i}^{\prime}\right)_{n}$. Then, by lemma 3.2, $\forall 1 \leq i \leq n, \mathrm{~d}\left(V_{i}\right)=\mathrm{d}\left(V_{i}^{\prime}\right)=L_{i} . \mathrm{By} \sqcap_{E}, V_{i} \sqcap V_{i}^{\prime} \sqsubseteq V_{i}$ and $V_{i} \sqcap V_{i}^{\prime} \sqsubseteq V_{i}^{\prime}$. Hence, by lemma 3.3, $\Gamma_{1} \sqcap \Gamma_{2} \sqsubseteq \Gamma_{1}$ and $\Gamma_{1} \sqcap \Gamma_{2} \sqsubseteq \Gamma_{2}$ and by \sqsubseteq and $\sqsubseteq\rangle$, $M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{2}\right\rangle$. Finally, by $\sqcap_{I}, M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash\right.$ $\left.U_{1} \sqcap U_{2}\right\rangle$.
2. By lemma 2 , either $U=\omega^{L}$ so by $\omega, x^{L}:\left\langle\left(x^{L}: \omega^{L}\right) \vdash \omega^{L}\right\rangle$.Or $U=\sqcap_{i=1}^{p} \boldsymbol{e}_{L} T_{i}$ where $p \geq 1$, and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$. Let $1 \leq i \leq p$.By $a x, x^{\oslash}:\left\langle\left(x^{\varnothing}: T_{i}\right) \vdash\right.$ $\left.T_{i}\right\rangle$, hence by $e, x^{L}:\left\langle\left(x^{L}: \boldsymbol{e}_{L} T_{i}\right) \vdash \boldsymbol{e}_{L} T_{i}\right\rangle$. Now, by $\sqcap_{I}^{\prime}, x^{L}:\left\langle\left(x^{L}: U\right) \vdash U\right\rangle$.

C Proofs of section 4

Proof (Of lemma 5). 1. By induction on the derivation $x^{L}:\langle\Gamma \vdash U\rangle$. We have fives cases:

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ then it is done using (ref).

- If $\frac{x^{L}:\left\langle\Gamma \vdash U_{1}\right\rangle \quad x^{L}:\left\langle\Gamma \vdash U_{2}\right\rangle}{x^{L}:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $\Gamma=\left(x^{L}: V\right), V \sqsubseteq U_{1}$ and $V \sqsubseteq U_{2}$, then by rule $\sqcap, V \sqsubseteq U_{1} \sqcap U_{2}$.
- If $\frac{x^{L}:\langle\Gamma \vdash U\rangle}{x^{i: L}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} U\right\rangle}$. Then by IH, $\Gamma=\left(x^{L}: V\right)$ and $V \sqsubseteq U$, so $\bar{e}_{i} \Gamma=$ $\left(x^{i:: L}: \bar{e}_{i} V\right)$ and by $\sqsubseteq_{e}, \bar{e}_{i} V \sqsubseteq \bar{e}_{i} U$,
- If $\frac{x^{L}:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle \sqsubseteq\langle\Gamma \vdash U\rangle}{x^{L}:\langle\Gamma \vdash U\rangle}$. By lemma $3.4, \Gamma \sqsubseteq \Gamma^{\prime}$ and $U^{\prime} \sqsubseteq U$ and, by IH, $\Gamma^{\prime}=\left(x^{L}: V^{\prime}\right)$ and $V^{\prime} \sqsubseteq U^{\prime}$. Then, by lemma $3.3, \Gamma=\left(x^{L}: V\right)$, $V \sqsubseteq V^{\prime}$ and, by rule $t r, V \sqsubseteq U$.

2. By induction on the derivation $\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle$. We have five cases:

- If $\overline{\lambda x^{L} \cdot M:\left\langle e n v_{\lambda x^{L} \cdot M}^{\omega} \vdash \omega^{\mathrm{d}\left(\lambda x^{L} \cdot M\right)}\right\rangle}$ then it is done.
- If $\frac{M:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}(\mathrm{d}(U \rightarrow T)=\oslash)$ then it is done.
- If $\frac{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash U_{1}\right\rangle \lambda x^{L} \cdot M:\left\langle\Gamma \vdash U_{2}\right\rangle}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$ then $\mathrm{d}\left(U_{1} \sqcap U_{2}\right)=\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)=$ K. By IH , we have four cases:
- If $U_{1}=U_{2}=\omega^{K}$, then $U_{1} \sqcap U_{2}=\omega^{K}$.
- If $U_{1}=\omega^{K}, U_{2}=\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p$, $M:\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$, then $U_{1} \sqcap U_{2}=U_{2}\left(\omega^{K}\right.$ is a neutral element).
- If $U_{2}=\omega^{K}, U_{1}=\nabla_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p$, $M:\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$, then $U_{1} \sqcap U_{2}=U_{1}\left(\omega^{K}\right.$ is a neutral element).
- If $U_{1}=\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right), U_{2}=\Pi_{i=p+1}^{p+q} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ (hence $U_{1} \sqcap U_{2}=$ $\left.\sqcap_{i=1}^{p+q} e_{K}\left(V_{i} \rightarrow T_{i}\right)\right)$ where $p, q \geq 1, \forall 1 \leq i \leq p+q, M:\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash\right.$ $\left.\boldsymbol{e}_{K} T_{i}\right\rangle$, we are done.
- If $\frac{\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle}{\lambda x^{i:: L} \cdot M^{+i}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} U\right\rangle} \cdot \mathrm{d}\left(\bar{e}_{i} U\right)=i:: \mathrm{d}(U)=i:: K^{\prime}=K$. By IH, we have two cases:
- If $U=\omega^{K^{\prime}}$ then $\bar{e}_{i} U=\omega^{K}$.
- If $U=\sqcap_{j=1}^{p} \boldsymbol{e}_{K^{\prime}}\left(V_{j} \rightarrow T_{j}\right)$, where $p \geq 1$ and for all $1 \leq j \leq p, M$: $\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K^{\prime}} V_{j} \vdash \boldsymbol{e}_{K^{\prime}} T_{j}\right\rangle$. So $\bar{e}_{i} U=\sqcap_{j=1}^{p} \boldsymbol{e}_{K}\left(V_{j} \rightarrow T_{j}\right)$ and by e, for all $1 \leq j \leq p, M^{+i}:\left\langle\bar{e}_{i} \Gamma, x^{i: L}: \boldsymbol{e}_{K} V_{j} \vdash \boldsymbol{e}_{K} T_{j}\right\rangle$.
- Let $\frac{\lambda \bar{x}^{L} \cdot \bar{M}:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{\lambda x^{L} \cdot M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By lemma 3.4, $\Gamma^{\prime} \sqsubseteq \Gamma$ and
$U \sqsubseteq U^{\prime}$ and by lemma $2.3 \mathrm{a} \mathrm{d}(U)=\mathrm{d}\left(U^{\prime}\right)=K$. By IH, we have two cases:
- If $U=\omega^{K}$, then, by lemma 2.3b, $U^{\prime}=\omega^{K}$.
- If $U=\sqcap_{i=1}^{p} e_{K}\left(V_{i} \rightarrow T_{i}\right)$, where $p \geq 1$ and for all $1 \leq i \leq p M:\left\langle\Gamma, x^{L}:\right.$ $\left.\boldsymbol{e}_{K} V_{i} \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$. By lemma 2.3e:
* Either $U^{\prime}=\omega^{K}$.
* Or $U^{\prime}=\sqcap_{i=1}^{q} \boldsymbol{e}_{K}\left(V_{i}^{\prime} \rightarrow T_{i}^{\prime}\right)$, where $q \geq 1$ and $\forall 1 \leq i \leq q, \exists 1 \leq$ $j_{i} \leq p$ such that $V_{i}^{\prime} \sqsubseteq V_{j_{i}}$ and $T_{j_{i}} \sqsubseteq T_{i}^{\prime}$. Let $1 \leq i \leq q$. Since, by lemma 3.4, $\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{j_{i}} \vdash \boldsymbol{e}_{K} T_{j_{i}}\right\rangle \sqsubseteq\left\langle\Gamma^{\prime}, x^{L}: \boldsymbol{e}_{K} V_{i}^{\prime} \vdash \boldsymbol{e}_{K} T_{i}^{\prime}\right\rangle$, then $M:\left\langle\Gamma^{\prime}, x^{L}: \boldsymbol{e}_{K} V_{i}^{\prime} \vdash \boldsymbol{e}_{K} T_{i}^{\prime}\right\rangle$.

3. Similar as the proof of 2 .
4. By induction on the derivation $M x^{L}:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle$. We have two cases:

- Let $\frac{M:\langle\Gamma \vdash V \rightarrow T\rangle x^{L}:\left\langle\left(x^{L}: U\right) \vdash V\right\rangle \quad \Gamma \diamond\left(x^{L}: U\right)}{M x^{L}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}$ (where, by 1. $U \sqsubseteq$ $V)$. Since $V \rightarrow T \sqsubseteq U \rightarrow T$, we have $M:\langle\Gamma \vdash U \rightarrow T\rangle$.
- Let $\frac{M x^{L}:\left\langle\Gamma^{\prime},\left(x^{L}: U^{\prime}\right) \vdash V^{\prime}\right\rangle\left\langle\Gamma^{\prime},\left(x^{L}: U^{\prime}\right) \vdash V^{\prime}\right\rangle \sqsubseteq\left\langle\Gamma,\left(x^{L}: U\right) \vdash V\right\rangle}{M x^{L}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash V\right\rangle}$ (by lemma 3). By lemma $3, \Gamma \sqsubseteq \Gamma^{\prime}, U \sqsubseteq U^{\prime}$ and $V^{\prime} \sqsubseteq V$. By IH, $M:\left\langle\Gamma^{\prime} \vdash\right.$ $\left.U^{\prime} \rightarrow V^{\prime}\right\rangle$ and by $\sqsubseteq, M:\langle\Gamma \vdash U \rightarrow V\rangle$.

Proof (Of lemma 6). By lemma 3.2, $M, N \in \mathcal{M}, \mathrm{~d}(N)=\mathrm{d}(U), \mathrm{OK}(\Delta)$ and $\operatorname{OK}\left(\Gamma, x^{L}: U\right)$, so $\mathrm{d}(N)=\mathrm{d}(U)=L$. By lemma 3.9, OK $(\Gamma \sqcap \Delta)$. By lemma 18.5, $M\left[x^{L}:=N\right] \in \mathcal{M}$. By lemma $4.2, x^{L} \in \operatorname{fv}(M)$.

We prove the lemma by induction on the derivation $M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle$.

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ and $N:\langle\Delta \vdash T\rangle$, then $x^{\ominus}\left[x^{\varnothing}:=N\right]=N:\langle\Delta \vdash T\rangle$.
- If $\frac{M:\left\langle e n v_{\mathrm{fv}(M) \backslash\left\{x^{L}\right\}}^{\omega},\left(x^{L}: \omega^{L}\right) \vdash \omega^{\mathrm{d}(M)\rangle}\right.}{}$ and $N:\left\langle\Delta \vdash \omega^{L}\right\rangle$ then by ω, $M\left[x^{L}:=N\right]:\left\langle e n v_{M\left[x^{L}:=N\right]}^{\omega} \vdash \omega^{\mathrm{d}\left(M\left[x^{L}:=N\right]\right)}\right\rangle$. By lemma $18.5 \mathrm{~d}\left(M\left[x^{L}:=\right.\right.$ $N])=\mathrm{d}(M)$. Since $x^{L} \in \operatorname{fv}(M)\left(\right.$ and so $\mathrm{fv}\left(M\left[x^{L}:=N\right]\right)=\left(\mathrm{fv}(M) \backslash\left\{x^{L}\right\}\right) \cup$ $\mathrm{fv}(N))$, by $\sqsubseteq, ~ M\left[x^{L}:=N\right]:\left\langle e n v_{\mathrm{fv}(M) \backslash\left\{x^{L}\right\}}^{\omega} \sqcap \Delta \vdash \omega^{\mathrm{d}(M)}\right\rangle$.
- Let $\frac{M:\left\langle\Gamma, x^{L}: U, y^{K}: U^{\prime} \vdash T\right\rangle}{\lambda y^{K} \cdot M:\left\langle\Gamma, x^{L}: U \vdash U^{\prime} \rightarrow T\right\rangle}$ where $y^{K} \notin \mathrm{fv}(N) \cup\left\{x^{L}\right\}$. So $\left(\lambda y^{K} . M\right)\left[x^{L}:=\right.$ $N]=\lambda y^{K} \cdot M\left[x^{L}:=N\right]$. By lemma 18.3, $M \diamond N$. By IH, $M\left[x^{L}:=N\right]:$ $\left\langle\Gamma \sqcap \Delta, y^{K}: U^{\prime} \vdash T\right\rangle$. By $\rightarrow_{I},\left(\lambda y^{K} \cdot M\right)\left[x^{L}:=N\right]:\left\langle\Gamma \sqcap \Delta \vdash U^{\prime} \rightarrow T\right\rangle$.
- Let $\frac{M:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle y^{K} \notin \operatorname{dom}\left(\Gamma, x^{L}: U\right)}{\lambda y^{K} \cdot M:\left\langle\Gamma, x^{L}: U \vdash \omega^{K} \rightarrow T\right\rangle}$ where $y^{K} \notin \mathrm{fv}(N) \cup\left\{x^{L}\right\}$. So $\left(\lambda y^{K} \cdot M\right)\left[x^{L}:=N\right]=\lambda y^{K} \cdot M\left[x^{L}:=N\right]$. By lemma 18.3, $M \diamond N$. By lemma 4.2, $\operatorname{fv}(N)=\operatorname{dom}(\Delta)$, so $y^{K} \notin \operatorname{dom}(\Delta)$. By IH, $M\left[x^{L}:=N\right]$: $\langle\Gamma \sqcap \Delta \vdash T\rangle$. By $\rightarrow_{I}^{\prime},\left(\lambda y^{K} . M\right)\left[x^{L}:=N\right]:\left\langle\Gamma \sqcap \Delta \vdash \omega^{K} \rightarrow T\right\rangle$.
- Let $\frac{M_{1}:\left\langle\Gamma_{1}, x^{L}: U_{1} \vdash V \rightarrow T\right\rangle M_{2}:\left\langle\Gamma_{2}, x^{L}: U_{2} \vdash V\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2}, x^{L}: U_{1} \sqcap U_{2} \vdash T\right\rangle}$ (by lemma 4.2) where $x^{L} \in \operatorname{fv}\left(M_{1}\right) \cap \mathrm{fv}\left(M_{2}\right), N:\left\langle\Delta \vdash U_{1} \sqcap U_{2}\right\rangle$. By lemma 18.3, $M_{1} \diamond N$ and $M_{2} \diamond N$. By \sqcap_{E} and $\sqsubseteq, N:\left\langle\Delta \vdash U_{1}\right\rangle$ and $N:\left\langle\Delta \vdash U_{2}\right\rangle$. Now use IH and \rightarrow_{E} (using the fact that $\Gamma_{1} \sqcap \Delta \diamond \Gamma_{2} \sqcap \Delta$, by lemma 4.2 and lemma 18.6). The cases $x^{L} \in \mathrm{fv}\left(M_{1}\right) \backslash \mathrm{fv}\left(M_{2}\right)$ or $x^{L} \in \mathrm{fv}\left(M_{2}\right) \backslash \mathrm{fv}\left(M_{1}\right)$ are similar.
- If $\frac{M:\left\langle\Gamma, x^{L}: U \vdash U_{1}\right\rangle M:\left\langle\Gamma, x^{L}: U \vdash U_{2}\right\rangle}{M:\left\langle\Gamma, x^{L}: U \vdash U_{1} \sqcap U_{2}\right\rangle}$ use IH and \sqcap_{I}.
- Let $\frac{M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle}{M^{+i}:\left\langle\bar{e}_{i} \Gamma, x^{i:: L}: \bar{e}_{i} U \vdash \bar{e}_{i} V\right\rangle}$ and $N:\left\langle\Delta \vdash \bar{e}_{i} U\right\rangle$. By lemma $3.2, \mathrm{~d}(M)=$ $\mathrm{d}\left(\bar{e}_{i} U\right)=i:: \mathrm{d}(U)$. By lemma 3.3, $N^{-i}:\left\langle\Delta^{-i} \vdash U\right\rangle$. By lemma 19.7 and lemma 19.2, $\left(N^{-i}\right)^{+i}=N$ and $M \diamond N^{-i}$. By IH, $M\left[x^{L}:=N^{-i}\right]:\left\langle\Gamma \sqcap \Delta^{-i} \vdash\right.$ $V\rangle$. By e and lemma 19.5, $M^{+i}\left[x^{i: L}:=N\right]:\left\langle\bar{e}_{i} \Gamma \sqcap \Delta \vdash \bar{e}_{i} V\right\rangle$.
- Let $\frac{M:\left\langle\Gamma^{\prime}, x^{L}: U^{\prime} \vdash V^{\prime}\right\rangle\left\langle\Gamma^{\prime}, x^{L}: U^{\prime} \vdash V^{\prime}\right\rangle \sqsubseteq\left\langle\Gamma, x^{L}: U \vdash V\right\rangle}{M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle}$ (lemma 3). By lemma 3, $\operatorname{dom}(\Gamma)=\operatorname{dom}\left(\Gamma^{\prime}\right), \Gamma \sqsubseteq \Gamma^{\prime}, U \sqsubseteq U^{\prime}$ and $V^{\prime} \sqsubseteq V$. Hence $N:\left\langle\Delta \vdash U^{\prime}\right\rangle$ and, by $\mathrm{IH}, M\left[x^{L}:=N\right]:\left\langle\Gamma^{\prime} \sqcap \Delta \vdash V^{\prime}\right\rangle$. It is easy to show that $\Gamma \sqcap \Delta \sqsubseteq \Gamma^{\prime} \sqcap \Delta$. Hence, $\left\langle\Gamma^{\prime} \sqcap \Delta \vdash V^{\prime}\right\rangle \sqsubseteq\langle\Gamma \sqcap \Delta \vdash V\rangle$ and $M\left[x^{L}:=N\right]:\langle\Gamma \sqcap \Delta \vdash V\rangle$.
The next lemma is needed in the proofs.
Lemma 25. 1. If $\mathrm{fv}(N) \subseteq \mathrm{fv}(M)$, then $e n v_{\omega}^{M} \upharpoonright_{N}=e n v_{\omega}^{N}$.

2. If $\operatorname{OK}\left(\Gamma_{1}\right), \operatorname{OK}\left(\Gamma_{2}\right), \operatorname{fv}(M) \subseteq \operatorname{dom}\left(\Gamma_{1}\right)$ and $\operatorname{fv}(N) \subseteq \operatorname{dom}\left(\Gamma_{2}\right)$, then $\left(\Gamma_{1} \sqcap\right.$ $\left.\Gamma_{2}\right) \upharpoonright_{M N} \sqsubseteq\left(\Gamma_{1} \upharpoonright_{M}\right) \sqcap\left(\Gamma_{2} \upharpoonright_{N}\right)$.
3. $\bar{e}_{i}\left(\Gamma \upharpoonright_{M}\right)=\left(\bar{e}_{i} \Gamma\right) \upharpoonright_{M^{+i}}$

Proof. 1. Easy. 2. First, note that $\operatorname{OK}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)$ by lemma 3.9, $\operatorname{OK}\left(\Gamma_{1} \upharpoonright_{M}\right)$, $\operatorname{OK}\left(\Gamma_{2} \upharpoonright_{N}\right)$ and $\operatorname{dom}\left(\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M N}\right)=\operatorname{fv}(M N)=\operatorname{fv}(M) \cup \operatorname{fv}(N)=\operatorname{dom}\left(\Gamma_{1} \upharpoonright_{M}\right.$ $) \cup \operatorname{dom}\left(\Gamma_{2} \upharpoonright_{N}\right)=\operatorname{dom}\left(\left(\Gamma_{1} \upharpoonright_{M}\right) \sqcap\left(\Gamma_{2} \upharpoonright_{N}\right)\right)$. Now, we show by cases that if $\left(x^{L}: U_{1}\right) \in\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M N}$ and $\left(x^{L}: U_{2}\right) \in\left(\Gamma_{1} \upharpoonright_{M}\right) \sqcap\left(\Gamma_{2} \upharpoonright_{N}\right)$ then $U_{1} \sqsubseteq U_{2}$:

- If $x^{L} \in \operatorname{fv}(M) \cap \operatorname{fv}(N)$ then $\left(x^{L}: U_{1}^{\prime}\right) \in \Gamma_{1},\left(x^{L}: U_{1}^{\prime \prime}\right) \in \Gamma_{2}$ and $U_{1}=$ $U_{1}^{\prime} \sqcap U_{1}^{\prime \prime}=U_{2}$.
- If $x^{L} \in \mathrm{fv}(M) \backslash \mathrm{fv}(N)$ then
- If $x^{L} \in \operatorname{dom}\left(\Gamma_{2}\right)$ then $\left(x^{L}: U_{2}\right) \in \Gamma_{1},\left(x^{L}: U_{1}^{\prime}\right) \in \Gamma_{2}$ and $U_{1}=U_{1}^{\prime} \sqcap U_{2} \sqsubseteq$ U_{2}.
- If $x^{L} \notin \operatorname{dom}\left(\Gamma_{2}\right)$ then $\left(x^{L}: U_{2}\right) \in \Gamma_{1}$ and $U_{1}=U_{2}$.
- If $x^{L} \in \mathrm{fv}(N) \backslash \mathrm{fv}(M)$ then
- If $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ then $\left(x^{L}: U_{1}^{\prime}\right) \in \Gamma_{1},\left(x^{L}: U_{2}\right) \in \Gamma_{2}$ and $U_{1}=U_{1}^{\prime} \sqcap U_{2} \sqsubseteq$ U_{2}.
- If $x^{L} \notin \operatorname{dom}\left(\Gamma_{1}\right)$ then $x^{L}: U_{2} \in \Gamma_{2}$ and $U_{1}=U_{2}$.

3. Let $\Gamma=\left(x_{j}^{L_{j}}: U_{j}\right)_{n}$ and let $\mathrm{fv}(M)=\left\{y_{1}^{K_{1}}, \ldots, y_{m}^{K_{m}}\right\}$ where $m \leq n$ and $\forall 1 \leq k \leq m \exists 1 \leq j \leq n$ such that $y_{k}^{K_{k}}=x_{j}^{L_{j}}$. So $\Gamma \upharpoonright_{M}=\left(y_{k}^{K_{k}}: U_{k}\right)_{m}$ and $\bar{e}_{i}\left(\Gamma \upharpoonright_{M}\right)=\left(y_{k}^{i:: K_{k}}: \bar{e}_{i} U_{k}\right)_{m}$. Since $\bar{e}_{i} \Gamma=\left(x_{j}^{i:: L_{j}}: \bar{e}_{i} U_{j}\right)_{n}, \operatorname{fv}\left(M^{+i}\right)=$ $\left\{y_{1}^{i:: K_{1}}, \ldots, y_{m}^{i:: K_{m}}\right\}$ and $\forall 1 \leq k \leq m \exists 1 \leq j \leq n$ such that $y_{k}^{i:: K_{k}}=x_{j}^{i:: L_{j}}$ then $\left(\bar{e}_{i} \Gamma\right) \upharpoonright_{M^{+i}}=\left(y_{k}^{i:: K_{k}}: U_{k}\right)_{m}$.

The next two theorems are needed in the proof of subject reduction.
Theorem 7. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.
Proof. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.

- Rule ω follows by theorem 1.2 and lemma 25.1.
- If $\frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}$ then $N=\lambda x^{L} . N^{\prime}$ and $M \triangleright_{\beta} N^{\prime}$. By IH, $N^{\prime}:$ $\left\langle\left(\Gamma,\left(x^{L}: U\right)\right) \upharpoonright_{N^{\prime}} \vdash T\right\rangle$. If $x^{L} \in \mathrm{fv}\left(N^{\prime}\right)$ then $N^{\prime}:\left\langle\Gamma \upharpoonright_{\mathrm{fv}\left(N^{\prime}\right) \backslash\left\{x^{L}\right\}},\left(x^{L}: U\right) \vdash\right.$ $T\rangle$ and by $\rightarrow_{I}, \lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash U \rightarrow T\right\rangle$. Else $N^{\prime}:\left\langle\Gamma \upharpoonright_{\mathrm{fv}\left(N^{\prime}\right) \backslash\left\{x^{L}\right\}} \vdash T\right\rangle$ so by $\rightarrow_{I}^{\prime}, \lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash \omega^{L} \rightarrow T\right\rangle$ and since by lemma $2.4, U \sqsubseteq \omega^{L}$, by $\sqsubseteq, \lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash U \rightarrow T\right\rangle$.
- If $\frac{\bar{M}:\langle\Gamma \vdash T\rangle x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ then $N=\lambda x^{L} N^{\prime}$ and $M \triangleright_{\beta} N^{\prime}$. Since $x^{L} \notin$ $\mathrm{fv}(M)$, by theorem $1.2, x^{L} \notin \mathrm{fv}\left(N^{\prime}\right)$. By IH, $N^{\prime}:\left\langle\Gamma \upharpoonright_{\mathrm{fv}\left(N^{\prime}\right) \backslash\left\{x^{L}\right\}} \vdash T\right\rangle$ so by $\rightarrow{ }_{I}^{\prime}, \lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash \omega^{L} \rightarrow T\right\rangle$.
- If $\frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$. Using lemma 25.2, case $M_{1} \triangleright_{\beta}$ N_{1} and $N=N_{1} M_{2}$ and case $M_{2} \triangleright_{\beta} N_{2}$ and $N=M_{1} N_{2}$ are easy. Let $M_{1}=\lambda x^{L} \cdot M_{1}^{\prime}$ and $N=M_{1}^{\prime}\left[x^{L}:=M_{2}\right]$. By lemma 4.3 and lemma 18.3, $M_{1}^{\prime} \diamond M_{2}$. If $x^{L} \in F V\left(M_{1}^{\prime}\right)$ then by lemma $5.2, M_{1}^{\prime}:\left\langle\Gamma_{1}, x^{L}: U \vdash T\right\rangle$. By lemma $6, M_{1}^{\prime}\left[x^{L}:=M_{2}\right]:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$. If $x^{L} \notin F V\left(M_{1}^{\prime}\right)$ then by lemma 5.3, $M_{1}^{\prime}\left[x^{L}:=M_{2}\right]=M_{1}^{\prime}:\left\langle\Gamma_{1} \vdash T\right\rangle$ and by $\sqsubseteq, ~ N:\left\langle\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{N} \vdash T\right\rangle$.
- Case Π_{I} is by IH.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+i}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} U\right\rangle}$ and $M^{+i} \triangleright_{\beta} N$, then by lemma 19.10 , there is $P \in \mathcal{M}$ such that $P^{+i}=N$ and $M \triangleright_{\beta} P$. By IH, $P:\left\langle\Gamma \upharpoonright_{P} \vdash U\right\rangle$ and by e and lemma 25.3, $N:\left\langle\left(\bar{e}_{i} \Gamma\right) \upharpoonright_{N} \vdash \bar{e}_{i} U\right\rangle$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by IH, lemma 3.4 and \sqsubseteq, N : $\left\langle\Gamma^{\prime} \upharpoonright_{N} \vdash U^{\prime}\right\rangle$.

Theorem 8. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\eta} N$, then $N:\langle\Gamma \vdash U\rangle$.
Proof. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.

- If $\overline{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}$ then by lemma 1.1, $\mathrm{d}(M)=\mathrm{d}(N)$ and $\mathrm{fv}(M)=$ $\operatorname{fv}(N)$ and by $\omega, N:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)}\right\rangle$.
- If $\frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}$ then we have two cases:
- $M=N x^{L}$ and so by lemma 5.4, $N:\langle\Gamma \vdash U \rightarrow T\rangle$.
- $N=\lambda x^{L} . N^{\prime}$ and $M \triangleright_{\eta} N^{\prime}$. By IH, $N^{\prime}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle$ and by \rightarrow_{I}, $N:\langle\Gamma \vdash U \rightarrow T\rangle$.
- if $\frac{M:\langle\Gamma \vdash T\rangle x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ then $N=\lambda x^{L} . N^{\prime}$ and $M \triangleright_{\eta} N^{\prime}$. By IH, $N^{\prime}:$ $\langle\Gamma \vdash T\rangle$ and by $\rightarrow_{I}^{\prime}, N:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle$.
- If $\frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$, then we have two cases:
- $M_{1} \triangleright_{\eta} N_{1}$ and $N=N_{1} M_{2}$. By IH $N_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle$ and by \rightarrow_{E}, $N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$.
- $M_{2} \triangleright_{\eta} N_{2}$ and $N=M_{1} N_{2}$. By IH $N_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle$ and by $\rightarrow_{E}, N:$ $\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$.
- Case Π_{I} is by IH and Π_{I}.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+i}:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} U\right\rangle}$ then by lemma 19.10 , there is $P \in \mathcal{M}$ such that $P^{+i}=$ N and $M \triangleright_{\eta} P$. By IH, $P:\langle\Gamma \vdash U\rangle$ and by $e, N:\left\langle\bar{e}_{i} \Gamma \vdash \bar{e}_{i} U\right\rangle$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by IH, lemma 3.4 and $\sqsubseteq, N:$ $\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$.

The next auxiliary lemma is needed in proofs.
Lemma 26. Let $i \in\{1,2\}$ and $M:\langle\Gamma \vdash U\rangle$. We have:

1. If $\left(x^{L}: U_{1}\right) \in \Gamma$ and $\left(y^{K}: U_{2}\right) \in \Gamma$, then:
(a) If $\left(x^{L}: U_{1}\right) \neq\left(y^{K}: U_{2}\right)$, then $x^{L} \neq y^{K}$.
(b) If $x=y$, then $L=K$ and $U_{1}=U_{2}$.
2. If $\left(x^{L}: U_{1}\right) \in \Gamma$ and $\left(y^{K}: U_{2}\right) \in \Gamma$ and $\left(x^{L}: U_{1}\right) \neq\left(y^{K}: U_{2}\right)$, then $x \neq y$ and $x^{L} \neq y^{K}$.

Proof. 1. If $x^{L}=Y^{K}$ then by definition $U_{1}=U_{2}$, so $\left(x^{L}: U_{1}\right)=\left(y^{K}: U_{2}\right)$. By lemma 4.2, $x^{L}, y^{K} \in \mathrm{fv}(M)$. By lemma $18.1, M \diamond M$. So, if $x=y$ then $L=K$ and by definition $U_{1}=U_{2}$. 2. Corollary of 1 .

Proof (Of theorem 4). Proofs are by induction on derivations using theorem 7 and theorem 8.

D Proofs for section 5

Proof (Of lemma 7). By lemma $3.2, M\left[x^{L}:=N\right] \in \mathcal{M}$, so by definition, $M, N \in$ \mathcal{M} and $M \diamond N$ and $\mathrm{d}(N)=L$. By induction on the derivation $M\left[x^{L}:=N\right]$: $\langle\Gamma \vdash U\rangle$.

- If $\frac{y^{\varnothing}:\left\langle\left(y^{\varnothing}: T\right) \vdash T\right\rangle}{}$ then $M=x^{\varnothing}$ and $N=y^{\varnothing}$. By ax, $x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash\right.$ $T\rangle$.
- If $\overline{M\left[x^{L}:=N\right]:\left\langle e n v_{M\left[x^{L}:=N\right]}^{\omega} \vdash \omega^{\mathrm{d}\left(M\left[x^{L}:=N\right]\right)}\right\rangle}$ then by lemma 18.5, $\mathrm{d}(M)=$ $\mathrm{d}\left(M\left[x^{L}:=N\right]\right)$. By $\omega, M:\left\langle e n v_{\mathrm{fv}(M) \backslash\left\{x^{L}\right\}}^{\omega},\left(x^{L}: \omega^{L}\right) \vdash \omega^{\mathrm{d}(M)}\right\rangle$ and $N:$ $\left\langle e n v_{N}^{\omega} \vdash \omega^{L}\right\rangle$ and because $\operatorname{fv}\left(M\left[x^{L}:=N\right]\right)=\left(\operatorname{fv}(M) \backslash\left\{x^{L}\right\}\right) \cup \operatorname{fv}(N)$, $e n v_{\mathrm{fV}(M) \backslash\left\{x^{L}\right\}}^{\omega} \sqcap e n v_{N}^{\omega}=e n v_{M\left[x^{L}:=N\right]}^{\omega}$.
- If $\frac{M\left[x^{L}:=N\right]:\left\langle\Gamma,\left(y^{K}: W\right) \vdash T\right\rangle}{\lambda y^{K} . M\left[x^{L}:=N\right]:\langle\Gamma \vdash W \rightarrow T\rangle}$ where $y^{K} \notin \mathrm{fv}(N) \cup\left\{x^{L}\right\}$. By IH, $\exists V$ and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash T\right\rangle, N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma, y^{K}: W=\Gamma_{1} \sqcap \Gamma_{2}$. By lemma $4.2, \operatorname{fv}(N)=\operatorname{dom}\left(\Gamma_{2}\right)$ and $\mathrm{fv}(M)=$ $\operatorname{dom}\left(\Gamma_{1}\right) \cup\left\{y^{K}\right\}$. Since $y^{K} \in \mathrm{fv}(M)$ and $y^{K} \notin \mathrm{fv}(N), \Gamma_{1}=\Delta_{1}, y^{K}: W$. Hence $M:\left\langle\Delta_{1}, y^{K}: W, x^{L}: V \vdash T\right\rangle$. By rule $\rightarrow_{I}, \lambda y^{K} . M:\left\langle\Delta_{1}, x^{L}: V \vdash W \rightarrow T\right\rangle$. Finally $\Gamma=\Delta_{1} \sqcap \Gamma_{2}$.
- If $\frac{M\left[x^{L}:=N\right]:\langle\Gamma \vdash T\rangle \quad y^{K} \notin \operatorname{dom}(\Gamma)}{\lambda y^{K} \cdot M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash \omega^{K} \rightarrow T\right\rangle}$ where $y^{K} \notin \mathrm{fv}(N) \cup\left\{x^{L}\right\}$. By IH, $\exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash T\right\rangle$, $N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$. Since $y^{K} \neq x^{L}, \lambda y^{K} . M:\left\langle\Gamma_{1}, x^{L}: V \vdash \omega^{K} \rightarrow\right.$ $T\rangle$.
- If $\frac{M_{1}\left[x^{L}:=N\right]:\left\langle\Gamma_{1} \vdash W \rightarrow T\right\rangle \quad M_{2}\left[x^{L}:=N\right]:\left\langle\Gamma_{2} \vdash W\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right]:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ where $M=$ $M_{1} M_{2}$, then we have three cases:
- If $x^{L} \in \mathrm{fv}\left(M_{1}\right) \cap \mathrm{fv}\left(M_{2}\right)$ then by IH, $\exists V_{1}, V_{2}$ types and $\exists \Delta_{1}, \Delta_{2}, \nabla_{1}, \nabla_{2}$ type environments such that $M_{1}:\left\langle\Delta_{1},\left(x^{L}: V_{1}\right) \vdash W \rightarrow T\right\rangle, M_{2}$: $\left\langle\nabla_{1},\left(x^{L}: V_{2}\right) \vdash W\right\rangle, N:\left\langle\Delta_{2} \vdash V_{1}\right\rangle, N:\left\langle\nabla_{2} \vdash V_{2}\right\rangle, \Gamma_{1}=\Delta_{1} \sqcap \Delta_{2}$ and $\Gamma_{2}=\nabla_{1} \sqcap \nabla_{2}$. Because $\Gamma_{1} \diamond \Gamma_{2}$, then $\Delta_{1} \diamond \nabla_{1}$ and $\Delta_{2} \diamond \nabla_{2}$ and because $\Delta_{1},\left(x^{L}: V_{1}\right)$ and $\nabla_{1},\left(x^{L}: V_{2}\right)$ are type environments, by lemma 26, $\left(\Delta_{1},\left(x^{L}: V_{1}\right)\right) \diamond\left(\nabla_{1},\left(x^{L}: V_{2}\right)\right)$. Then, by rules Π_{I} and $\rightarrow_{E}, M_{1} M_{2}$: $\left\langle\Delta_{1} \sqcap \nabla_{1},\left(x^{L}: V_{1} \sqcap V_{2}\right) \vdash T\right\rangle$ and by $\sqcap_{I}^{\prime}, N:\left\langle\Delta_{2} \sqcap \nabla_{2} \vdash V_{1} \sqcap V_{2}\right\rangle$. Finally, $\Gamma_{1} \sqcap \Gamma_{2}=\left(\Delta_{1} \sqcap \Delta_{2}\right) \sqcap\left(\nabla_{1} \sqcap \nabla_{2}\right)$.
- If $x^{L} \in \operatorname{fv}\left(M_{1}\right) \backslash \operatorname{fv}\left(M_{2}\right)$ then by IH, $\exists V$ types and $\exists \Delta_{1}, \Delta_{1}$ type environments such that $M_{1}:\left\langle\Delta_{1},\left(x^{L}: V\right) \vdash W \rightarrow T\right\rangle, N:\left\langle\Delta_{2} \vdash V\right\rangle$ and $\Gamma_{1}=\Delta_{1} \sqcap \Delta_{2}$. Since $\Gamma_{1} \diamond \Gamma_{2}, \Delta_{1} \diamond \Gamma_{2}$ and since $\Gamma_{1} \sqcap \Gamma_{2}$ is a type environment, by lemma $26,\left(\Delta_{1},\left(x^{L}: V\right)\right) \diamond \Gamma_{2}$. By $\rightarrow_{E}, M_{1} M_{2}:\left\langle\Delta_{1} \sqcap\right.$ $\left.\Gamma_{2},\left(x^{L}: V\right) \vdash T\right\rangle$ and $\Gamma_{1} \sqcap \Gamma_{2}=\left(\Delta_{1} \sqcap \Delta_{2}\right) \sqcap \Gamma_{2}$.
- If $x^{L} \in \operatorname{fv}\left(M_{2}\right) \backslash \operatorname{fv}\left(M_{1}\right)$ then by IH, $\exists V$ types and $\exists \Delta_{1}, \Delta_{2}$ type environments such that $M_{2}:\left\langle\Delta_{1},\left(x^{L}: V\right) \vdash W\right\rangle, N:\left\langle\Delta_{2} \vdash V\right\rangle$ and $\Gamma_{2}=$ $\Delta_{1} \sqcap \Delta_{2}$. Since $\Gamma_{1} \diamond \Gamma_{2}, \Gamma_{1} \diamond \Delta_{1}$ and since $\Gamma_{1} \sqcap \Gamma_{2}$ is a type environment, by
lemma 26, $\left(\Delta_{1},\left(x^{L}: V\right)\right) \diamond \Gamma_{1}$. By $\rightarrow_{E}, M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Delta_{1},\left(x^{L}: V\right) \vdash T\right\rangle$ and $\Gamma_{1} \sqcap \Gamma_{2}=\Gamma_{1} \sqcap\left(\Delta_{1} \sqcap \Delta_{2}\right)$.
- Let $\frac{M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash U_{1}\right\rangle M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash U_{2}\right\rangle}{M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $\exists V_{1}, V_{2}$ types and $\exists \Delta_{1}, \Delta_{2}, \nabla_{1}, \nabla_{2}$ type environments such that $M:\left\langle\Delta_{1}, x^{L}: V_{1} \vdash U_{1}\right\rangle$, $M:\left\langle\nabla_{1}, x^{L}: V_{2} \vdash U_{2}\right\rangle, N:\left\langle\Delta_{2} \vdash V_{1}\right\rangle, N:\left\langle\nabla_{2} \vdash V_{2}\right\rangle, \Gamma=\Delta_{1} \sqcap \Delta_{2}$ and $\Gamma=\nabla_{1} \sqcap \nabla_{2}$. Then, by rule $\sqcap_{I}^{\prime}, M:\left\langle\Delta_{1} \sqcap \nabla_{1}, x^{L}: V_{1} \sqcap V_{2} \vdash U_{1} \sqcap U_{2}\right\rangle$ and $N:\left\langle\Delta_{2} \sqcap \nabla_{2} \vdash V_{1} \sqcap V_{2}\right\rangle$. Finally, $\Gamma=\left(\Delta_{1} \sqcap \Delta_{2}\right) \sqcap\left(\nabla_{1} \sqcap \nabla_{2}\right)$.
- If $\frac{M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle}{M^{+j}\left[x^{j: L}:=N^{+j}\right]:\left\langle\bar{e}_{j} \Gamma \vdash \bar{e}_{j} U\right\rangle}$ then by IH, $\exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle, N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma=$ $\Gamma_{1} \sqcap \Gamma_{2}$. So by $e, M^{+j}:\left\langle\bar{e}_{j} \Gamma_{1}, x^{j:: L}: \bar{e}_{j} V \vdash \bar{e}_{j} U\right\rangle, N:\left\langle\bar{e}_{j} \Gamma_{2} \vdash \bar{e}_{j} V\right\rangle$ and $\bar{e}_{j} \Gamma=\bar{e}_{j} \Gamma_{1} \sqcap \bar{e}_{j} \Gamma_{2}$.
- If $\frac{M\left[x^{L}:=N\right]:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle \sqsubseteq\langle\Gamma \vdash U\rangle}{M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle}$ then by lemma 3.3, $\Gamma \sqsubseteq \Gamma^{\prime}$ and $U^{\prime} \sqsubseteq U$. By IH, $\exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}^{\prime}, x^{L}: V \vdash U^{\prime}\right\rangle, N:\left\langle\Gamma_{2}^{\prime} \vdash V\right\rangle$ and $\Gamma^{\prime}=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$. Then by lemma 2.6, $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$ and $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$. So by $\sqsubseteq, M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle$ and $N:\left\langle\Gamma_{2} \vdash V\right\rangle$.

The next lemma is basic for the proof of subject expansion for β.
Lemma 27. If $M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle, d(U)=K$ and $L \succeq d(M), \mathcal{U}=$ $\operatorname{fv}\left(\left(\lambda x^{L} \cdot M\right) N\right)$, then $\left(\lambda x^{L} \cdot M\right) N:\left\langle\Gamma \uparrow^{\mathcal{U}} \vdash U\right\rangle$.

Proof. By lemma 3.2, $M\left[x^{L}:=N\right] \in \mathcal{M}$, so $M, N \in \mathcal{M}$ and $M \diamond N$ and $\mathrm{d}(N)=$ L. By definition $\left(\lambda x^{L} . M\right) N \in \mathcal{M}$. By lemma 18.5 and theorem 3.2, $\mathrm{d}(\Gamma) \succeq$ $\mathrm{d}(U)=K=\mathrm{d}\left(M\left[x^{L}:=N\right]\right)=\mathrm{d}(M)=\mathrm{d}\left(\left(\lambda x^{L} . M\right) N\right)$. So $L \succeq K$ and there exists K^{\prime} such that $L=K:: K^{\prime}$. We have two cases:

- If $x^{L} \in \operatorname{fv}(M)$, then, by lemma $7, \exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle, N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$. By lemma 3.2, $\mathrm{OK}\left(\Gamma_{1}\right)$ and $\mathrm{OK}\left(\Gamma_{2}\right)$. By lemma 3.9, $\mathrm{OK}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)$. So, it is easy to prove, using lemma 3.1, that $\operatorname{OK}(\Gamma \uparrow \mathcal{U})$. By lemma 4.3, $\Gamma_{1}, x^{L}: V \diamond \Gamma_{2}$, so $\Gamma_{1} \diamond \Gamma_{2}$. By lemma 3.2, $\mathrm{d}\left(\Gamma_{1}\right) \succeq \mathrm{d}(M)=\mathrm{d}(U)=K$ and $L=\mathrm{d}(N)=\mathrm{d}(V) \preceq \mathrm{d}\left(\Gamma_{2}\right)$. By lemma 2, we have two cases :
- If $U=\omega^{K}$, then by lemma 4.1, $\left(\lambda x^{L} \cdot M\right) N:\langle\Gamma \uparrow \mathcal{U} \vdash U\rangle$.
- If $U=\boldsymbol{e}_{K} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$, then by theorem 3.3, $M^{-K}:\left\langle\Gamma_{1}^{-K}, x^{K^{\prime}}: V^{-K} \vdash \sqcap_{i=1}^{p} T_{i}\right\rangle$. By $\sqsubseteq, \forall 1 \leq i \leq p$, $M^{-K}:\left\langle\Gamma_{1}^{-K}, x^{K^{\prime}}: V^{-K} \vdash T_{i}\right\rangle$, so by $\rightarrow_{I}, \lambda x^{K^{\prime}} . M^{-K}:\left\langle\Gamma_{1}^{-K} \vdash V^{-K} \rightarrow\right.$ $\left.T_{i}\right\rangle$. Again by theorem $3.3, N^{-K}:\left\langle\Gamma_{2}^{-K} \vdash V^{-K}\right\rangle$ and since $\Gamma_{1} \diamond \Gamma_{2}$, by lemma 3.6, $\Gamma_{1}^{-K} \diamond \Gamma_{2}^{-K}$, so by $\rightarrow_{E}, \forall 1 \leq i \leq p,\left(\lambda x^{K^{\prime}} . M^{-K}\right) N^{-K}$: $\left\langle\Gamma_{1}^{-K} \sqcap \Gamma_{2}^{-K} \vdash T_{i}\right\rangle$. Finally by \sqcap_{I} and $e,\left(\lambda x^{L} . M\right) N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U\right\rangle$, so $\left(\lambda x^{L} \cdot M\right) N:\left\langle\Gamma \uparrow^{\mathcal{U}} \vdash U\right\rangle$.
- If $x^{L} \notin \mathrm{fv}(M)$, then $M:\langle\Gamma \vdash U\rangle$. By lemma 3.2, OK (Γ). So, it is easy to prove, using lemma 3.1, that $\operatorname{OK}\left(\Gamma \uparrow^{\mathcal{U}}\right)$. By lemma 2, we have two cases :
- If $U=\omega^{K}$, then by lemma 4.1, $\left(\lambda x^{L} . M\right) N:\langle\Gamma \uparrow \mathcal{U} \vdash U\rangle$.
- If $U=\boldsymbol{e}_{K} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$, then by theorem 3.3, $M^{-K}:\left\langle\Gamma^{-K} \vdash \sqcap_{i=1}^{p} T_{i}\right\rangle$. By $\sqsubseteq, \forall 1 \leq i \leq p, M^{-K}$: $\left\langle\Gamma^{-K} \vdash T_{i}\right\rangle$. Using lemma 19 and by induction on K, we can prove that $x^{K^{\prime}} \notin \mathrm{fv}\left(M^{-K}\right)$. So by lemma $4.2, x^{K^{\prime}} \notin \operatorname{dom}\left(\Gamma^{-K}\right)$. So by \rightarrow_{I}^{\prime}, $\lambda x^{K^{\prime}} . M^{-K}:\left\langle\Gamma^{-K} \vdash \omega^{K^{\prime}} \rightarrow T_{i}\right\rangle$. By $(\omega), N^{-K}:\left\langle e n v_{N-K}^{\omega} \vdash \omega^{K^{\prime}}\right\rangle$ and $N:\left\langle e n v_{N}^{\omega} \vdash \omega^{L}\right\rangle$. By theorem 3.2, $\mathrm{d}\left(e n v_{N}^{\omega}\right) \succeq \mathrm{d}(N)=L$. By lemma 4.3, $\Gamma \diamond e n v_{N}^{\omega}$. By lemma 3.6, $\Gamma^{-K} \diamond e n v_{N^{-K}}^{\omega}$. By $\rightarrow_{E}, \forall 1 \leq$ $i \leq p,\left(\lambda x^{K^{\prime}} . M^{-K}\right) N^{-K}:\left\langle\Gamma^{-K} \sqcap e n v_{N^{-K}}^{\omega} \vdash T_{i}\right\rangle$. Finally by \sqcap_{I} and e, $\left(\lambda x^{L} \cdot M\right) N:\left\langle\Gamma \sqcap e n v_{N}^{\omega} \vdash U\right\rangle$, so $\left(\lambda x^{L} \cdot M\right) N:\langle\Gamma \uparrow \mathcal{U} \vdash U\rangle$.

Next, we give the main block for the proof of subject expansion for β.
Theorem 9. If $N:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta} N$, then $M:\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle$.
Proof. By induction on the derivation $N:\langle\Gamma \vdash U\rangle$.

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ and $M \triangleright_{\beta} x^{\varnothing}$, then $M=\left(\lambda y^{K} \cdot M_{1}\right) M_{2}$ and $x^{\varnothing}=$ $M_{1}\left[y^{K}:=M_{2}\right]$. Because $M \in \mathcal{M}$ then $K \succeq \mathrm{~d}\left(M_{1}\right)$. By lemma 27, $M:\left\langle\left(x^{\ominus}:\right.\right.$ $\left.T) \uparrow^{M} \vdash T\right\rangle$.
- If $\overline{N:\left\langle e n v_{N}^{\omega} \vdash \omega^{\mathrm{d}(N)\rangle}\right.}$ and $M \triangleright_{\beta} N$, then since by theorem $1.2, \mathrm{fv}(N) \subseteq$ $\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}(N),\left(e n v_{N}^{\omega}\right) \uparrow^{M}=e n v_{M}^{\omega}$. By $\omega, M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)}\right\rangle$. Hence, $M:\left\langle\left(e n v_{\omega}^{N}\right) \uparrow^{M} \vdash \omega^{\mathrm{d}(N)}\right\rangle$.
- If $\frac{N:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle}{\lambda x^{L} \cdot N:\langle\Gamma \vdash U \rightarrow T\rangle}$ and $M \triangleright_{\beta} \lambda x^{L} . N$, then we have two cases:
- If $M=\lambda x . M^{\prime}$ where $M^{\prime} \triangleright_{\beta} N$, then by IH, $M^{\prime}:\left\langle\left(\Gamma,\left(x^{L}: U\right)\right) \uparrow^{M^{\prime}} \vdash T\right\rangle$. Since by theorem 1.2 and lemma $4.2, x^{L} \in \operatorname{fv}(N) \subseteq \mathrm{fv}\left(M^{\prime}\right)$, then we have $\left(\Gamma,\left(x^{L}: U\right)\right) \uparrow^{\mathrm{fv}\left(M^{\prime}\right)}=\Gamma \uparrow^{\mathrm{fv}\left(M^{\prime}\right) \backslash\left\{x^{L}\right\}},\left(x^{L}: U\right)$ and $\Gamma \uparrow^{\mathrm{fv}\left(M^{\prime}\right) \backslash\left\{x^{L}\right\}}=$ $\Gamma \uparrow \lambda x^{L} \cdot M^{\prime}$. Hence, $M^{\prime}:\left\langle\Gamma \uparrow^{\lambda x^{L}} \cdot M^{\prime},\left(x^{L}: U\right) \vdash T\right\rangle$ and finally, by \rightarrow_{I}, $\lambda x^{L} \cdot M^{\prime}:\left\langle\Gamma \uparrow \lambda x^{L} \cdot M^{\prime} \vdash U \rightarrow T\right\rangle$.
- If $M=\left(\lambda y^{K} . M_{1}\right) M_{2}$ where $y^{K} \notin \mathrm{fv}\left(M_{2}\right)$ and $\lambda x^{L} . N=M_{1}\left[y^{K}:=M_{2}\right]$, then, because $M \in \mathcal{M}$ then $K \succeq \mathrm{~d}\left(M_{1}\right)$ and by lemma 27, Because $M_{1}\left[y^{K}:=M_{2}\right]:\langle\Gamma \vdash U \rightarrow T\rangle$, we have $\left(\lambda y^{K} . M_{1}\right) M_{2}:\left\langle\Gamma \uparrow\left(\lambda y^{K} . M_{1}\right) M_{2} \vdash\right.$ $U \rightarrow T\rangle$.
- If $\frac{N:\langle\Gamma \vdash T\rangle x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} . N:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ and $M \triangleright_{\beta} N$ then similar to the above case.
- If $\frac{N_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad N_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{N_{1} N_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ and $M \triangleright_{\beta} N_{1} N_{2}$, we have three cases:
- $M=M_{1} N_{2}$ where $M_{1} \triangleright_{\beta} N_{1}$ and $M_{1} \diamond N_{2}$. By IH, $M_{1}:\left\langle\Gamma_{1} \uparrow^{M_{1}} \vdash U \rightarrow T\right\rangle$. It is easy to show that $\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \uparrow^{M_{1} N_{2}}=\Gamma_{1} \uparrow^{M_{1}} \sqcap \Gamma_{2}$. Since $M_{1} \diamond N_{2}$, by lemma 4.3, $\Gamma_{1} \uparrow^{M_{1}} \diamond \Gamma_{2}$, hence use \rightarrow_{E}.
- $M=N_{1} M_{2}$ where $M_{2} \triangleright_{\beta} N_{2}$. Similar to the above case.
- If $M=\left(\lambda x^{L} . M_{1}\right) M_{2}$ and $N_{1} N_{2}=M_{1}\left[x^{L}:=M_{2}\right]$ then, because $M \in \mathcal{M}$ then $L \succeq \mathrm{~d}\left(M_{1}\right)$ and by lemma $27,\left(\lambda x^{L} \cdot M_{1}\right) M_{2}:\left\langle\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \uparrow\left(\lambda x^{L} \cdot M_{1}\right) M_{2} \vdash\right.$ $T\rangle$.
- If $\frac{N:\left\langle\Gamma \vdash U_{1}\right\rangle \quad N:\left\langle\Gamma \vdash U_{2}\right\rangle}{N:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$ and $M \triangleright_{\beta} N$ then use IH.
- If $\frac{N:\langle\Gamma \vdash U\rangle}{N^{+j}:\left\langle\bar{e}_{j} \Gamma \vdash \bar{e}_{j} U\right\rangle}$ then by lemma 19.9 then there is $P \in \mathcal{M}$ such that $M=P^{+j}$ and $P \triangleright_{\beta} N$. By IH, $P:\left\langle\Gamma \uparrow^{P} \vdash U\right\rangle$ and by $e, M:\left\langle\left(\bar{e}_{j} \Gamma\right) \uparrow^{M} \vdash\right.$ $\left.\bar{e}_{j} U\right\rangle$.
- If $\frac{N:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{N:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ and $M \triangleright{ }_{\beta} N$. By lemma 3.4, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. It is easy to show that $\Gamma^{\prime} \uparrow^{M} \sqsubseteq \Gamma \uparrow^{M}$ and hence by lemma 3.4, $\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle \sqsubseteq\left\langle\Gamma^{\prime} \uparrow^{M} \vdash U^{\prime}\right\rangle$. By IH, $M \uparrow^{M}:\langle\Gamma \vdash U\rangle$. Hence, by $\sqsubseteq\rangle$, we have $M:\left\langle\Gamma^{\prime} \uparrow^{M} \vdash U^{\prime}\right\rangle$.

Proof (Of theorem 5). By induction on the length of the derivation $M \triangleright_{\beta}^{*} N$ using theorem 9 and the fact that if $\mathrm{fv}(P) \subseteq \mathrm{fv}(Q)$, then $\left(\Gamma \uparrow^{P}\right) \uparrow^{Q}=\Gamma \uparrow^{Q}$.

E Proofs of section 6

Proof (Of lemma 9). 1. and 2. are easy.
3. If $M \triangleright_{r}^{*} N^{+i}$ where $N \in \mathcal{X}$, then, by lemma $19.9, M=P^{+i}$ such that $P \in \mathcal{M}$ and $P \triangleright_{r} N$. As \mathcal{X} is r-saturated, $P \in \mathcal{X}$ and so $P^{+i}=M \in \mathcal{X}^{+i}$.
4. Let $M \in \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $N \triangleright_{r}^{*} M$. If $P \in \mathcal{X}$ such that $P \diamond N$, then by lemma 19.8, $P \diamond M$. So, by definition, $M P \in \mathcal{Y}$. Because $\mathcal{Y} \subseteq \mathcal{M}$, then $M P \in \mathcal{M}$. Hence, $\mathrm{d}(M) \preceq \mathrm{d}(P)$. By lemma $1, \mathrm{~d}(M)=\mathrm{d}(N)$. So $N P \in \mathcal{M}$ and $N P \triangleright_{r}^{*} M P$. Because $M P \in \mathcal{Y}$ and \mathcal{Y} is r-saturated, then $N P \in \mathcal{Y}$. Hence, $N \in \mathcal{X} \rightsquigarrow \mathcal{Y}$.
5. Let $M \in(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+i}$, then $M=N^{+i}$ and $N \in \mathcal{X} \rightsquigarrow \mathcal{Y}$. Let $P \in \mathcal{X}^{+i}$ such that $M \diamond P$. Then $P=Q^{+i}$ such that $Q \in \mathcal{X}$. Because $M \diamond P$ then by lemma 19.2, $N \diamond Q$. So $N Q \in \mathcal{Y}$. Because $\mathcal{Y} \subseteq \mathcal{M}$ then $N Q \in \mathcal{M}$. Because $(N Q)^{+i}=N^{+i} Q^{+i}=M P$ then $M P \in \mathcal{Y}^{+i}$. Hence, $M \in \mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i}$.
6. Let $M \in \mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i}$ such that $\mathcal{X}^{+i} \imath \mathcal{Y}^{+i}$. By hypothesis, there exists $P \in \mathcal{X}^{+i}$ such that $M \diamond P$. Then $M P \in \mathcal{Y}^{+i}$. Hence $M P=Q^{+i}$ such that $Q \in \mathcal{Y}$. Because $\mathcal{Y} \subseteq \mathcal{M}$ then $Q \in \mathcal{M}$ and by lemma 19.1, $M P \in \mathcal{M}$. Hence by definition $M \in \mathcal{M}$ and by lemma 19.1, $\mathrm{d}(M)=\mathrm{d}\left(Q^{+i}\right)=i:: \mathrm{d}(Q)$. So by lemma 19.7, there exists $M_{1} \in \mathcal{M}$ such that $M=M_{1}^{+i}$. Let $N_{1} \in \mathcal{X}$ such that $M_{1} \diamond N_{1}$. By definition $N_{1}^{+i} \in \mathcal{X}^{+i}$ and by lemma 19.2, $M \diamond N_{1}^{+}$. So, $M N_{1}^{+i} \in \mathcal{Y}^{+i}$. So $M N_{1}^{+i}=M^{\prime+i}$ such that $M^{\prime} \in \mathcal{Y}$. Because $\mathcal{Y} \subseteq \mathcal{M}$ then $M^{\prime} \in \mathcal{M}$. By lemma 19.1, $M N_{1}^{+i} \in \mathcal{M}$. So $M_{1}^{+i} \diamond N_{1}^{+i}$ and $\mathrm{d}\left(M_{1}^{+i}\right) \preceq \mathrm{d}\left(N_{1}^{+i}\right)$. By lemma 19.1 and lemma 19.2, $M_{1} \diamond N_{1}$ and $\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(N_{1}\right)$. So $M_{1} N_{1} \in \mathcal{M}$ and $\left(M_{1} N_{1}\right)^{+i}=M_{1}^{+i} N_{1}^{+i} \in \mathcal{Y}^{+i}$. Hence $M_{1} N_{1} \in \mathcal{Y}$. Thus, $M_{1} \in \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $M=M_{1}^{+i} \in(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+i}$.

Proof (Of lemma 10). 1.1a. By induction on U using lemma 9 and lemma 1. 1.1b. We prove $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{I}(U) \subseteq \mathcal{M}^{L}$ by induction on U. Case $U=a$: by definition. Case $U=\omega^{L}$: We have $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{M}^{L} \subseteq \mathcal{M}^{L}$. Case $U=$
$U_{1} \sqcap U_{2}$ (resp. $\left.U=\bar{e}_{i} V\right):$ use IH since $\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)$ (resp. $\mathrm{d}(U)=i:: \mathrm{d}(V)$, $\forall x \in \mathcal{V}_{1},\left(\mathcal{N}_{x}^{K}\right)^{+i}=\mathcal{N}_{x}^{i:: K}$ and $\left.\left(\mathcal{M}^{K}\right)^{+i}=\mathcal{M}^{i:: K}\right)$. Case $U=V \rightarrow T:$ by definition, $K=\mathrm{d}(V) \succeq \mathrm{d}(T)=\oslash$.

- Let $x \in \mathcal{V}_{1}, N_{1}, \ldots, N_{k}$ such that $\forall 1 \leq i \leq k, \mathrm{~d}\left(N_{i}\right) \succeq \oslash$ and $\diamond\left\{x^{\oslash}, N_{1}, \ldots, N_{k}\right\}$ and let $N \in \mathcal{I}(V)$ such that $\left(x^{\oslash} N_{1} \ldots N_{k}\right) \diamond N$. By IH, $\mathrm{d}(N)=K \succeq \oslash$. Again, by IH, $x^{\oslash} N_{1} \ldots N_{k} N \in \mathcal{I}(T)$. Thus $x^{\oslash} N_{1} \ldots N_{k} \in \mathcal{I}(V \rightarrow T)$.
- Let $M \in \mathcal{I}(V \rightarrow T)$. Let $x \in \mathcal{V}_{1}$ such that $\forall L, x^{L} \notin \mathrm{fv}(M)$. By IH, $x^{K} \in$ $\mathcal{I}(V)$, then $M x^{K} \in \mathcal{I}(T)$ and, by $\mathrm{IH}, \mathrm{d}\left(M x^{K}\right)=\oslash$. Thus $\mathrm{d}(M)=\oslash$.

2. By induction of the derivation $U \sqsubseteq V$.

Proof (Of lemma 11). By induction on the derivation $M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle$.

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ and $N \in \mathcal{I}(T)$, then $x^{\oslash}\left[x^{\oslash}:=N\right]=N \in \mathcal{I}(T)$.
- If $\overline{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}$. Let $e n v_{M}^{\omega}=\left(x_{j}^{L_{j}}: U_{j}\right)_{n}$ so $\mathrm{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$. Because, by lemma 3.2, for all $j \in\{1, \ldots, n\}, \mathrm{d}\left(U_{j}\right)=L_{j}$ by lemma 10.1, $\mathcal{I}\left(U_{j}\right) \subseteq \mathcal{M}^{L_{j}}$, hence, $\mathrm{d}\left(N_{j}\right)=L_{j}$. Because $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{M}$, then $\diamond\{M\} \cup\left\{N_{i} / i \in\{1, \ldots, n\}\right\}$. Then, by lemma 18.5, $\mathrm{d}\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right)=$ $\mathrm{d}(M)$ and $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{M}^{\mathrm{d}(M)}=\mathcal{I}\left(\omega^{\mathrm{d}(M)}\right)$.
- If $\frac{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n},\left(x^{K}: V\right) \vdash T\right\rangle}{\lambda x^{K} \cdot M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V \rightarrow T\right\rangle}, \forall 1 \leq j \leq n, N_{j} \in \mathcal{I}\left(U_{j}\right)$ and $N \in$ $\mathcal{I}(V)$ such that $\left(\lambda x^{K} . M\right)\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \diamond N$. By lemma 3.2, $\mathrm{d}(V)=K$. We have, $\left(\lambda x^{K} . M\right)\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]=\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]$, where $\forall 1 \leq j \leq$ $n, y^{K} \notin \operatorname{fv}\left(N_{j}\right) \cup\left\{x_{j}^{L_{j}}\right\}$. Since $N \in \mathcal{I}(V)$ and by lemma 10.1, $\mathcal{I}(V) \subseteq \mathcal{M}^{K}$, $\mathrm{d}(N)=K$. By lemma 18.3 and lemma 18.5, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \diamond N$ and $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\left[x^{K}:=N\right]=M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}, x^{K}:=N\right] \in \mathcal{M}$. Hence, $\left(\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \in \mathcal{M}$ and $\left(\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \triangleright_{r} M\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{n},\left(x^{K}:=N\right)\right]$. By IH, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n},\left(x^{K}:=N\right)\right] \in \mathcal{I}(T)$. Since, by lemma 10.1 $\mathcal{I}(T)$ is r-saturated, then $\left(\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \in \mathcal{I}(T)$ and so $\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}(V) \rightsquigarrow \mathcal{I}(T)=\mathcal{I}(V \rightarrow T)$.
- If $\frac{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash T\right\rangle x^{K} \notin \operatorname{dom}\left(\left(x_{j}^{L_{j}}: U_{j}\right)_{n}\right)}{\lambda x^{K} . M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash \omega^{K} \rightarrow T\right\rangle}, \forall 1 \leq j \leq n, N_{j} \in \mathcal{I}\left(U_{j}\right)$ and $N \in \mathcal{I}\left(\omega^{K}\right)$ such that $\left(\lambda x^{K} . M\right)\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \diamond N$. By lemma 4.2, $x^{K} \notin$ $\mathrm{fv}(M)$. We have, $\left(\lambda x^{K} \cdot M\right)\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]=\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]$, where $\forall 1 \leq j \leq n, x^{K} \notin \operatorname{fv}\left(N_{j}\right) \cup\left\{x_{j}^{L_{j}}\right\}$. Since $N \in \mathcal{I}\left(\omega^{K}\right)$ and by lemma 10.1, $\mathcal{I}\left(\omega^{K}\right)=\mathcal{M}^{K}$ then $\mathrm{d}(N)=K$. By lemma 18.3 and lemma 18.5, $M\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{n}\right] \diamond N$ and $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\left[x^{K}:=N\right]=M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}, x^{K}:=\right.$ $N]=M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{M}$. Hence, $\left(\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \in \mathcal{M}$
and $\left(\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \triangleright_{r} M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n},\left(x^{K}:=N\right)\right]$. By IH, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}(T)$. Since, by lemma $10.1 \mathcal{I}(T)$ is r-saturated, then $\left(\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \in \mathcal{I}(T)$ and so $\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(\omega^{K}\right) \rightsquigarrow$ $\mathcal{I}(T)=\mathcal{I}\left(\omega^{K} \rightarrow T\right)$.
- Let $\frac{M_{1}:\left\langle\Gamma_{1} \vdash V \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash V\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ where $\Gamma_{1}=\left(x_{j}^{L_{j}}: U_{j}\right)_{n},\left(y_{j}^{K_{j}}:\right.$ $\left.V_{j}\right)_{m}, \Gamma_{2}=\left(x_{j}^{L_{j}}: U_{j}^{\prime}\right)_{n},\left(z_{j}^{S_{j}}: W_{j}\right)_{p}$ such that $\left\{y_{1}^{K_{1}}, \ldots, y_{m}^{K_{m}}\right\} \cap\left\{z_{1}^{S_{1}}, \ldots, z_{p}^{S_{p}}\right\}=$ \emptyset and $\Gamma_{1} \sqcap \Gamma_{2}=\left(x_{j}^{L_{j}}: U_{j} \sqcap U_{j}^{\prime}\right)_{n},\left(y_{j}^{K_{j}}: V_{j}\right)_{m},\left(z_{j}^{S_{j}}: W_{j}\right)_{p}$.
Let $\forall 1 \leq j \leq n, P_{j} \in \mathcal{I}\left(U_{j} \sqcap U_{j}^{\prime}\right), \forall 1 \leq j \leq m, Q_{j} \in \mathcal{I}\left(V_{j}\right)$ and $\forall 1 \leq j \leq$ $p, R_{j} \in \mathcal{I}\left(W_{j}\right)$. So, for all $j \in\{1, \ldots, n\}, P_{j} \in \mathcal{I}\left(U_{j}\right)$ and $P_{j} \in \mathcal{I}\left(U_{j}^{\prime}\right)$. By hypothesis, $\left(M_{1} M_{2}\right)\left[\left(x_{j}^{L_{j}}:=P_{j}\right)_{n},\left(y_{j}^{K_{j}}:=Q_{j}\right)_{m},\left(z_{j}^{S_{j}}:=R_{j}\right)_{p}\right]=A B \in \mathcal{M}$ where using lemma 4.2, $A=M_{1}\left[\left(x_{j}^{L_{j}}:=P_{j}\right)_{n},\left(y_{j}^{K_{j}}:=Q_{j}\right)_{m}\right] \in \mathcal{M}$ and $B=M_{2}\left[\left(x_{j}^{L_{j}}:=P_{j}\right)_{n},\left(z_{j}^{S_{j}}:=R_{j}\right)_{p}\right] \in \mathcal{M}$ and $A \diamond B$.
By IH, $A \in \mathcal{I}(V) \rightsquigarrow \mathcal{I}(T)$ and $B \in \mathcal{I}(V)$. Hence, $A B \in \mathcal{I}(T)$.
- Let $\frac{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V_{1}\right\rangle M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V_{2}\right\rangle}{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V_{1} \sqcap V_{2}\right\rangle}$. By IH, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in$ $\mathcal{I}\left(V_{1}\right)$ and $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(V_{2}\right)$. Hence, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(V_{1} \sqcap V_{2}\right)$.
- Let $\frac{M:\left\langle\left(x_{k}^{L_{k}}: U_{k}\right)_{n} \vdash U\right\rangle}{M^{+j}:\left\langle\left(x_{k}^{j:: L_{k}}: \bar{e}_{j} U_{k}\right)_{n} \vdash \bar{e}_{j} U\right\rangle}$ and $\forall 1 \leq k \leq n, N_{k} \in \mathcal{I}\left(\bar{e}_{j} U_{k}\right)=$ $\mathcal{I}\left(U_{k}\right)^{+j}$. Then $\forall 1 \leq k \leq n, N_{k}=P_{k}^{+j}$ where $P_{k} \in \mathcal{I}\left(U_{k}\right)$. By lemma 10.1b, for all $k \in\{1, \ldots, n\}, P_{k} \in \mathcal{M}^{L_{k}}$. By the definition of the substitution, $\diamond\left\{M^{+j}\right\} \cup\left\{N_{k} / k \in\{1, \ldots, n\}\right\}$. By lemma 19.3, $\diamond\{M\} \cup\left\{P_{k} / k \in\right.$ $\{1, \ldots, n\}\}$. By lemma 18.5, $M\left[\left(x_{k}^{L_{k}}:=P_{k}\right)_{n}\right] \in \mathcal{M}$. By IH, $M\left[\left(x_{k}^{L_{k}}:=\right.\right.$ $\left.\left.P_{k}\right)_{n}\right] \in \mathcal{I}(T)$. Hence, by lemma $19, M^{+j}\left[\left(x_{k}^{j:: L_{k}}:=N_{k}\right)_{n}\right]=\left(M\left[\left(x_{k}^{L_{k}}:=\right.\right.\right.$ $\left.\left.\left.P_{k}\right)_{n}\right]\right)^{+j} \in \mathcal{I}(U)^{+j}=\mathcal{I}\left(\bar{e}_{j} U\right)$.
- Let $\frac{M: \Phi \Phi \sqsubseteq \Phi^{\prime}}{M: \Phi^{\prime}}$ where $\Phi^{\prime}=\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle$. By lemma 3, we have $\Phi=\left\langle\left(x_{j}^{L_{j}}: U_{j}^{\prime}\right)_{n} \vdash U^{\prime}\right\rangle$, where for every $1 \leq j \leq n, U_{j} \sqsubseteq U_{j}^{\prime}$ and $U^{\prime} \sqsubseteq U$. By lemma $10.2, N_{j} \in \mathcal{I}\left(U_{j}^{\prime}\right)$, then, by $\mathrm{IH}, M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(U^{\prime}\right)$ and, by lemma 10.2, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}(U)$.

Proof (Of lemma 13).

1. Let $y \in \mathcal{V}_{2}$ and $\mathcal{X}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} x^{\oslash} N_{1} \ldots N_{k}\right.$ where $k \geq 0$ and $x \in \mathcal{V}_{1}$ or $\left.M \triangleright_{\beta}^{*} y^{\varnothing}\right\}$. \mathcal{X} is β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\varnothing} \subseteq \mathcal{X} \subseteq \mathcal{M}^{\varnothing}$. Take a β-interpretation \mathcal{I} such that $\mathcal{I}(a)=\mathcal{X}$. If $M \in\left[I d_{0}\right]_{\beta}$, then M is closed and $M \in \mathcal{X} \rightsquigarrow \mathcal{X}$. Since $y^{\varnothing} \in \mathcal{X}$ and $M \diamond y^{\varnothing}$ then $M y^{\varnothing} \in \mathcal{X}$ and $M y^{\varnothing} \triangleright_{\beta}^{*} x^{\oslash} N_{1} \ldots N_{k}$ where $k \geq 0$ and $x \in \mathcal{V}_{1}$ or $M y^{\varnothing} \triangleright_{\beta}^{*} y^{\varnothing}$. Since M is closed and $x^{\oslash} \neq y^{\ominus}$, by lemma 1.2, $M y^{\ominus} \triangleright_{\beta}^{*} y^{\oslash}$. Hence, by lemma 20.4, $M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing}$ and, by lemma $1, M \in \mathcal{M}^{\varnothing}$.
Conversely, let $M \in \mathcal{M}^{\varnothing}$ such that M is closed and $M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing}$. Let \mathcal{I} be an β-interpretation and $N \in \mathcal{I}(a)$ such that $M \diamond N$. By lemma 10.1b, $N \in \mathcal{M}^{\ominus}$,
so $M N \in \mathcal{M}^{\ominus}$. Since $\mathcal{I}(a)$ is β-saturated and $M N \triangleright_{\beta}^{*} N, M N \in \mathcal{I}(a)$ and hence $M \in \mathcal{I}(a) \rightsquigarrow \mathcal{I}(a)$. Hence, $M \in\left[I d_{0}\right]_{\beta}$.
2. By lemma 12 and lemma $9,\left[I d_{1}^{\prime}\right]_{\beta}=\left[\bar{e}_{1} a \rightarrow \bar{e}_{1} a\right]_{\beta}=\left[\bar{e}_{1}(a \rightarrow a)\right]_{\beta}=\left[I d_{1}\right]=$ $[a \rightarrow a]_{\beta}^{+1}=\left[I d_{0}\right]_{\beta}^{+1}$. By 1., $\left[I d_{0}\right]_{\beta}^{+1}=\left\{M \in \mathcal{M}^{(1)} / M \triangleright_{\beta}^{*} \lambda y^{(1)} . y^{(1)}\right\}$.
3. Let $y \in \mathcal{V}_{2}, \mathcal{X}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} y^{\varnothing}\right.$ or $M \triangleright_{\beta}^{*} x^{\oslash} N_{1} \ldots N_{k}$ where $k \geq 0$ and $\left.x \in \mathcal{V}_{1}\right\}$ and $\mathcal{Y}=\left\{M \in \mathcal{M}^{\ominus} / M \triangleright_{\beta}^{*} y^{\ominus} y^{\varnothing}\right.$ or $M \triangleright_{\beta}^{*} x^{\varnothing} N_{1} \ldots N_{k}$ or $M \triangleright_{\beta}^{*} y^{\oslash}\left(x^{\oslash} N_{1} \ldots N_{k}\right)$ where $k \geq 0$ and $\left.x \in \mathcal{V}_{1}\right\} . \mathcal{X}, \mathcal{Y}$ are β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \mathcal{M}^{\varnothing}$. Let \mathcal{I} be a β-interpretation such that $\mathcal{I}(a)=\mathcal{X}$ and $\mathcal{I}(b)=\mathcal{Y}$. If $M \in[D]_{\beta}$, then M is closed (hence $M \diamond y^{\varnothing}$) and $M \in(\mathcal{X} \cap(\mathcal{X} \rightsquigarrow \mathcal{Y})) \rightsquigarrow \mathcal{Y}$. Since $y^{\varnothing} \in \mathcal{X}$ and $y^{\varnothing} \in \mathcal{X} \rightsquigarrow \mathcal{Y}, y^{\varnothing} \in \mathcal{X} \cap(\mathcal{X} \rightsquigarrow$ $\mathcal{Y})$ and $M y^{\varnothing} \in \mathcal{Y}$. Since $x^{\varnothing} \neq y^{\varnothing}$, by lemma 1.2, $M y^{\varnothing} \triangleright_{\beta}^{*} y^{\varnothing} y^{\varnothing}$. Hence, by lemma 20.4, $M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing} y^{\varnothing}$ and, by lemma $1, \mathrm{~d}(M)=\oslash$ and $M \in \mathcal{M}^{\varnothing}$. Conversely, let $M \in \mathcal{M}^{\varnothing}$ such that M is closed and $M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing} y^{\varnothing}$. Let \mathcal{I} be an β-interpretation and $N \in \mathcal{I}(a \sqcap(a \rightarrow b))=\mathcal{I}(a) \cap(\mathcal{I}(a) \rightsquigarrow \mathcal{I}(b))$ such that $M \diamond N$. By lemma 10.1b and lemma 18.1, $N \in \mathcal{M}^{\varnothing}$ and $N \diamond N$. So $N N, M N \in \mathcal{M}^{\ominus}$. Since $\mathcal{I}(b)$ is β-saturated, $N N \in \mathcal{I}(b)$ and $M N \triangleright_{\beta}^{*} N N$, we have $M N \in \mathcal{I}(b)$ and hence $M \in \mathcal{I}(a \sqcap(a \rightarrow b)) \rightsquigarrow \mathcal{I}(b)$. Therefore, $M \in[D]_{\beta}$.
4. Let $f, y \in \mathcal{V}_{2}$ and take $\mathcal{X}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n}\left(x^{\oslash} N_{1} \ldots N_{k}\right)\right.$ or $M \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $k, n \geq 0$ and $\left.x \in \mathcal{V}_{1}\right\} . \mathcal{X}$ is β-saturated and $\forall x \in$ $\mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{X} \subseteq \mathcal{M}^{\ominus}$. Let \mathcal{I} be a β-interpretation such that $\mathcal{I}(a)=\mathcal{X}$. If $M \in\left[N a t_{0}\right]_{\beta}$, then M is closed and $M \in(\mathcal{X} \rightsquigarrow \mathcal{X}) \rightsquigarrow(\mathcal{X} \rightsquigarrow \mathcal{X})$. We have $f^{\ominus} \in \mathcal{X} \rightsquigarrow \mathcal{X}, y^{\varnothing} \in \mathcal{X}$ and $\diamond\left\{M, f^{\ominus}, y^{\varnothing}\right\}$ then $M f^{\ominus} y^{\ominus} \in \mathcal{X}$ and $M f^{\varnothing} y^{\varnothing} \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n}\left(x^{\varnothing} N_{1} \ldots N_{k}\right)$ or $M f^{\ominus} y^{\varnothing} \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 0$ and $x \in \mathcal{V}_{1}$. Since M is closed and $\left\{x^{\ominus}\right\} \cap\left\{y^{\varnothing}, f^{\varnothing}\right\}=\emptyset$, by lemma 1.2, $M f^{\varnothing} y^{\varnothing} \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1$. Hence, by lemma 20.4, $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{\varnothing} \cdot\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1$. Moreover, by lemma $1, \mathrm{~d}(M)=\varnothing$ and $M \in \mathcal{M}^{\varnothing}$.
Conversely, let $M \in \mathcal{M}^{\varnothing}$ such that M is closed and $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{\varnothing} \cdot\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1$. Let \mathcal{I} be an β-interpretation, $N \in$ $\mathcal{I}(a \rightarrow a)=\mathcal{I}(a) \rightsquigarrow \mathcal{I}(a)$ and $N^{\prime} \in \mathcal{I}(a)$ such that $\diamond\left\{M, N, N^{\prime}\right\}$. By lemma 10.1b, $N, N^{\prime} \in \mathcal{M}^{\ominus}$, so $M N N^{\prime},(N)^{m} N^{\prime} \in \mathcal{M}^{\ominus}$, where $m \geq 0$. We show, by induction on $m \geq 0$, that $(N)^{m} N^{\prime} \in \mathcal{I}(a)$. Since $M N N^{\prime} \triangleright_{\beta}^{*}(N)^{m} N^{\prime}$ where $m \geq 0$ and $(N)^{m} N^{\prime} \in \mathcal{I}(a)$ which is β-saturated, then $M N N^{\prime} \in \mathcal{I}(a)$. Hence, $M \in(\mathcal{I}(a) \rightsquigarrow \mathcal{I}(a)) \rightarrow(\mathcal{I}(a) \rightsquigarrow \mathcal{I}(a))$ and $M \in\left[N a t_{0}\right]_{\beta}$.
5. By lemma 12, $\left[N a t_{1}\right]=\left[\bar{e}_{1} N a t_{0}\right]=\left[N a t_{0}\right]^{+1}$. By 4., $\left[N a t_{1}\right]=\left[N a t_{0}\right]^{+1}=$ $\left\{M \in \mathcal{M}^{(1)} / M \triangleright_{\beta}^{*} \lambda f^{(1)} . f^{(1)}\right.$ or $M \triangleright_{\beta}^{*} \lambda f^{(1)} \cdot \lambda y^{(1)} .\left(f^{(1)}\right)^{n} y^{(1)}$ where $\left.n \geq 1\right\}$.
6. Let $f, y \in \mathcal{V}_{2}$ and take $\mathcal{X}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} x^{\varnothing} P_{1} \ldots P_{l}\right.$ or $M \triangleright_{\beta}^{*}$ $f^{\oslash}\left(x^{\oslash} Q_{1} \ldots Q_{n}\right)$ or $M \triangleright_{\beta}^{*} y^{\varnothing}$ or $M \triangleright_{\beta}^{*} f^{\ominus} y^{(1)}$ where $l, n \geq 0$ and $\mathrm{d}\left(Q_{i}\right) \succeq$ (1) $\}. \mathcal{X}$ is β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{X} \subseteq \mathcal{M}^{\varnothing}$. Let \mathcal{I} be a β interpretation such that $\mathcal{I}(a)=\mathcal{X}$. If $M \in\left[N a t_{0}^{\prime}\right]_{\beta}$, then M is closed and $M \in\left(\mathcal{X}^{+1} \rightsquigarrow \mathcal{X}\right) \rightsquigarrow\left(\mathcal{X}^{+1} \rightsquigarrow \mathcal{X}\right)$. Let $N \in \mathcal{X}^{+1}$ such that $N \diamond f^{\varnothing}$. We have $N \triangleright_{\beta}^{*} x^{(1)} P_{1}^{+1} \ldots P_{k}^{+1}$ or $N \triangleright_{\beta}^{*} y^{(1)}$, then $f^{\oslash} N \triangleright_{\beta}^{*} f^{\oslash}\left(x^{(1)} P_{1}^{+1} \ldots P_{k}^{+1}\right) \in \mathcal{X}$ or $N \triangleright_{\beta}^{*} f^{\varnothing} y^{(1)} \in \mathcal{X}$, thus $f^{\varnothing} \in \mathcal{X}^{+1} \rightsquigarrow \mathcal{X}$. We have $f^{\oslash} \in \mathcal{X}^{+1} \rightsquigarrow \mathcal{X}$,
$y^{(1)} \in \mathcal{X}^{+1}$ and $\diamond\left\{M, f^{\varnothing}, y^{(1)}\right\}$, then $M f^{\ominus} y^{(1)} \in \mathcal{X}$. Since M is closed and $\left\{x^{\varnothing}, x^{(1)}\right\} \cap\left\{y^{(1)}, f^{\varnothing}\right\}=\emptyset$, by lemma $1.2, M f^{\varnothing} y^{(1)} \triangleright_{\beta}^{*} f^{\varnothing} y^{(1)}$. Hence, by lemma 20.4, $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{(1)} . f^{\ominus} y^{(1)}$. Moreover, by lemma 1, $\mathrm{d}(M)=\oslash$ and $M \in \mathcal{M}^{\varnothing}$.
Conversely, let $M \in \mathcal{M}^{\varnothing}$ such M is closed and $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}$ or $M \triangleright_{\beta}^{*}$ $\lambda f^{\varnothing} \cdot \lambda y^{(1)} . f^{\ominus} y^{(1)}$. Let \mathcal{I} be an β-interpretation, $N \in \mathcal{I}\left(\bar{e}_{1} a \rightarrow a\right)=\mathcal{I}(a)^{+1} \rightsquigarrow$ $\mathcal{I}(a)$ and $N^{\prime} \in \mathcal{I}(a)^{+1}$ where $\diamond\left\{M, N, N^{\prime}\right\}$. By lemma $10.1 \mathrm{~b}, N \in \mathcal{M}^{\oslash}$ and $N^{\prime} \in \mathcal{M}^{(1)}$, so $M N N^{\prime}, N N^{\prime} \in \mathcal{M}^{\varnothing}$. Since $M N N^{\prime} \triangleright_{\beta}^{*} N N^{\prime}, N N^{\prime} \in \mathcal{I}(a)$ and $\mathcal{I}(a)$ is β-saturated, then $M N N^{\prime} \in \mathcal{I}(a)$. Hence, $M \in\left(\mathcal{I}(a)^{+1} \rightsquigarrow \mathcal{I}(a)\right) \rightarrow$ $\left(\mathcal{I}(a)^{+1} \rightsquigarrow \mathcal{I}(a)\right)$ and $M \in\left[N a t_{0}^{\prime}\right]$.
