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Abstract. Ezrpansion was introduced at the end of the 1970s for calcu-
lating principal typings for A-terms in intersection type systems. Ezpan-
sion variables (E-variables) were introduced at the end of the 1990s to
simplify and help mechanise expansion. Recently, E-variables have been
further simplified and generalised to also allow calculating other type
operators than just intersection. There has been much work on seman-
tics for intersection type systems, but only one such work on intersection
type systems with E-variables. That work established that building a se-
mantics for E-variables is very challenging. Because it is unclear how to
devise a space of meanings for E-variables, that work developed instead
a space of meanings for types that is hierarchical in the sense of hav-
ing many degrees (denoted by indexes). However, although the indexed
calculus helped identify the serious problems of giving a semantics for
expansion variables, the sound realisability semantics was only complete
when one single E-variable is used and furthermore, the universal type w
was not allowed. In this paper, we are able to overcome these challenges.
We develop a realisability semantics where we allow an arbitrary (possi-
bly infinite) number of expansion variables and where w is present. We
show the soundness and completeness of our proposed semantics.

1 Introduction

Expansion is a crucial part of a procedure for calculating principal typings and
thus helps support compositional type inference. For example, the A-term M =
(Az.z(Ay.yz)) can be assigned the typing &1 = ((z : a) F (((a—b)—b) —c)—¢),
which happens to be its principal typing. The term M can also be assigned the
typing @2 = ((z : a1 Mag) F (((a1 — b1) — b1) M ((ag — by) — by) — ¢) — ¢), and
an expansion operation can obtain @5 from ;. Because the early definitions of
expansion were complicated [4], E-variables were introduced in order to make the
calculations easier to mechanise and reason about. For example, in System E [2],
the above typing @, is replaced by @5 = ((z : ea) F e((((a = b) = b) — ¢) — ¢)),
which differs from @, by the insertion of the E-variable e at two places, and ®-
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can be obtained from @3 by substituting for e the ezpansion term:
E=(a:=a1,b:=b1)MN(a:=az,b:=by).

Carlier and Wells [3] have surveyed the history of expansion and also E-
variables. Kamareddine, Nour, Rahli and Wells [13] showed that E-variables pose
serious challenges for semantics. In the list of open problems published in 1975 in
[6], it is suggested that an arrow type expresses functionality. Following this idea,
a type’s semantics is given as a set of closed A-terms with behaviour related to
the specification given by the type. In many kinds of semantics, the meaning of a
type T is calculated by an expression [T, that takes two parameters, the type T
and a valuation v that assigns to type variables the same kind of meanings that
are assigned to types. In that way, models based on term-models have been built
for intersection type systems [7,14,11] where intersection types (introduced to
type more terms than in the Simply Typed Lambda Calculus) are interpreted
by set-theoretical intersection of meanings. To extend this idea to types with
E-variables, we need to devise some space of possible meanings for E-variables.
Given that a type eT can be turned by expansion into a new type Si(7) M
S2(T'), where S; and Sy are arbitrary substitutions (or even arbitrary further
expansions), and that this can introduce an unbounded number of new variables
(both E-variables and regular type variables), the situation is complicated.

This was the main motivation for [13] to develop a space of meanings for
types that is hierarchical in the sense of having many degrees. When assigning
meanings to types, [13] captured accurately the intuition behind E-variables by
ensuring that each use of E-variables simply changes degrees and that each E-
variable acts as a kind of capsule that isolates parts of the A-term being analysed
by the typing.

The semantic approach used in [13] is realisability semantics along the lines
in Coquand [5] and Kamareddine and Nour [11]. Realisability allows showing
soundness in the sense that the meaning of a type T contains all closed A-
terms that can be assigned T as their result type. This has been shown useful
in previous work for characterising the behaviour of typed A-terms [14]. One
also wants to show the converse of soundness which is called completeness (see
Hindley [8-10]), i.e., that every closed A-term in the meaning of T’ can be assigned
T as its result type. Moreover, [13] showed that if more than one E-variable is
used, the semantics is not complete. Furthermore, the degrees used in [13] made
it difficult to allow the universal type w and this limited the study to the AI-
calculus. In this paper, we are able to overcome these challenges. We develop a
realisability semantics where we allow the full A-calculus, an arbitrary (possibly
infinite) number of expansion variables and where w is present, and we show its
soundness and completeness. We do so by introducing an indexed calculus as in
[13]. However here, our indices are finite sequences of natural numbers rather
than single natural numbers.

In Section 2 we give the full A-calculus indexed with finite sequences of nat-
ural numbers and show the confluence of 3, A1 and weak head reduction on the
indexed A-calculus. In Section 3 we introduce the type system for the indexed \-
calculus (with the universal type w). In this system, intersections and expansions
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cannot occur directly to the right of an arrow. In Section 4 we establish that
subject reduction holds for . In Section 5 we show that subject (-expansion
holds for  but that subject n-expansion fails. In Section 6 we introduce the
realisability semantics and show its soundness for . In Section 7 we establish
the completeness of F by introducing a special interpretation. We conclude in
Section 8. Omitted proofs can be found in the appendix.

2 The pure A“¥-calculus

In this section we give the A-calculus indexed with finite sequences of natural
numbers and show the confluence of 3, 51 and weak head reduction.

Let n,m, 1, j, k,[ be metavariables which range over the set of natural num-
bers N = {0,1,2,...}. We assume that if a metavariable v ranges over a set s
then v; and v’, v”, ete. also range over s. A binary relation is a set of pairs. Let rel
range over binary relations. We sometimes write x rel y instead of (x,y) € rel.
Let dom(rel) = {z / (x,y) € rel} and ran(rel) = {y / (z,y) € rel}. A function
is a binary relation fun such that if {(z,y),{(z,2)} C fun then y = z. Let fun
range over functions. Let s — s’ = {fun / dom(fun) C s Aran(fun) C s'}. We
sometimes write x : s instead of x € s.

First, we introduce the set Ly of indexes with an order relation on indexes.

Definition 1. 1. Anindexis a finite sequence of natural numbers L = (n;)1<i<i-
We denote Ly the set of indexes and @ the empty sequence of natural num-
bers. We let L, K, R range over Ly.

2. If L = (n;)1<i<i andm € N, we use m :: L to denote the sequence (r;)1<i<i+1
where 1y =m and for alli € {2,...,1+ 1}, r; = n;_1.

In particular, k :: @ = (k).

3. If L = (ny)1<i<n and K = (m;)1<i<m, we use L :: K to denote the sequence
(ri)i<i<n+m where for all i € {1,...,n}, 7y = n; and for all i € {n +
1,...,n+m}, r;, =my—pn. In particular, L:: © =@ :: L= L.

4. We define on Ly a binary relation < by:

Ly <X Ly (or Ly = Ly) if there exists Ly € Ly such that Ly = Ly :: Ls.

Lemma 1. < is an order relation on Ly.

The next definition gives the syntax of the indexed calculus and the notions
of reduction.

Definition 2. 1. LetV be a countably infinite set of variables. The set of terms
M, the set of free variables tv(M) of a term M € M, the degree function
d: M — Ly and the joinability M o N of terms M and N are defined by
simultaneous induction as follows:
— Ifx €V and L € Ly, then ¥ € M, fv(zF) = {2} and d(z*) = L.
— IfM,N e M, d(M) = d(N) and M o N (see below), then M N € M,
fv(MN) =tv(M)Uv(N) and d(M N) = d(M).
—Ifz €V, M € M and L = d(M), then \x*.M € M, tv(\zl. M) =
fv(M) \ {=zL} and d Azt M) = d(M).
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— Let M, N € M. We say that M and N are joinable and write M o N iff
for allz €V, if 2¥ € fv(M) and ¥ € fv(N), then L = K.

— If X C M such that for all M, N € X, M ¢ N, we write, ©X.

— If X C M and M € M such that for all N € X, Mo N, we write, Mo X.

The ¢ property ensures that in any term M, variables have unique degrees.
We assume the usual definition of subterms and the usual convention for
parentheses and their omission (see Barendregt [1] and Krivine [14]). Note
that every subterm of M € M is also in M. We let z,vy, z, etc. range over V
and M, N, P range over M and use = for syntactic equality.
The usual simultaneous substitution M[(xX" = N;)n| of N; € M for all
free occurrences of xk in M € M is only defined when o{M} U {N; /
i€ {l,...,n}} and for all i € {1,...,n}, d(N;) = L;. In a substitution,
we sometimes write atlLl = Np,... ,x,];n := N, instead of (atlL = Ny)p. We
sometimes write M[(mZL = N;)1 as M[:I:lLl = Nq].

We take terms modulo a-conversion given by:
et M = ML (M[zt .= y*]) where for all L, y* & fv(M).

Moreover, we use the Barendregt convention (BC) where the names of bound
variables differ from the free ones and where we rewrite terms so that not
both Az and \z® co-occur when L # K.
A relation rel on M is compatible iff for all M, N, P € M:
— If M rel N and A\z® M, \z¥.M € M then (Axl.M) rel (\z*.N).
— IfM rel N and MP,NP € M (resp. PM,PN € M), then (MP) rel (NP)
(resp. (PM) rel (PN)).

The reduction relation >3 on M is defined as the least compatible relation
closed under the rule: (\x™.M)N >3 M[z" := N] if d(N) = L
The reduction relation 1>, on M is defined as the least compatible relation
closed under the rule: \z™.(M z¥) >, M if 2l & tv(M)

The weak head reduction t>p, on M is defined by:

(AL M)NN; ... N, >y Mzl ;= N]Ny...N,, where n >0

We let >g, = >g UDy,. Forr e {B,n,h,Bn}, we denote by >} the reflexive
and transitive closure of >, and by ~, the equivalence relation induced by
>,

T

The next theorem whose proof can be found in [12] states that free variables and

degrees are preserved by our notions of reduction.

1.
2.

Theorem 1. Let M € M and r € {3, Bn, h}.

If M >} N then fv(N) = fv(M) and d(M) = d(N).
If M > N then fv(N) C fv(M) and d(M) = d(N).

As expansions change the degree of a term, indexes in a term need to in-

crease/decrease.

Definition 3. Let: € N and M € M.

1.

We define M** by: ‘ ‘
Q(CL'L)-H — l‘i::L .(Ml M2)+i — M1+1 M2+z .()\{,CL.M)—H — )\xi::L.M+i
Let M+© = M and M+030) = (ML,
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2. If d(M) =i :: L, we define M~* by:
.(‘ri::K)fi — .Z‘K .(Ml Mg)ii — Ml—z M2—z .(/\l,i::K'M)fi —
A M~
Let M=% = M and if d(M) > i :: L then M~031) = (M—%)~L,

3. Let X C M. We write X for {M** / M € X}.

Normal forms are defined as usual.

Definition 4. 1. M € M is in B-normal form (Bn-normal form, h-normal
form resp.) if there is no N € M such that M >3 N (M >g, N, M >, N
resp. ).

2. M € M is B-normalising (Bn-normalising, h-normalising resp.) if there is
an N € M such that M >j5 N (M g, N, M >y, N resp.) and N is in
B-normal form (Bn-normal form, h-normal form resp.).

The next theorem states that all of our notions of reduction are confluent on our
indexed calculus. For a proof see [12].

Theorem 2 (Confluence). Let M, My, My € M and r € {3, Bn, h}.

1. If M>: My and M>%Ms, then there is M such that My>%M' and Mar>*M'.
2. My ~, My iff there is a term M such that My > M and My >) M.

3 Typing system

This paper studies a type system for the indexed A-calculus with the universal
type w. In this type system, in order to get subject reduction and hence com-
pleteness, intersections and expansions cannot occur directly to the right of an
arrow (see U below).

The next two definitions introduce the type system.

Definition 5. 1. Let a range over a countably infinite set A of atomic types
and let e Tange over a countably infinite set £ = {ey,e1,...} of expansion
variables. We define sets of types T and U, such that T C U, and a function
d:U— Ly by:

—Ifae A, thena €T and d(a) = @.

—I[fUe€UandT€ET, thenU =TT and dU —T) = Q.

— If L € Ly, then w! € U and d(w’) = L.

— If Ul,UQ € U and d(Ul) = d(Ug), then Uy MUy € U and d(Ul [l U2) =
d(Uy) = d(Uz).

UeUande; €&, thene,U € U and d(e;U) =i :: d(U).

Note that d remembers the number of the expansion variables €; in order to

keep a trace of these variables.

We let T range over T, and U,V,W range over U. We quotient types by

taking M to be commutative (i.e. Uy MUy = Uy MUy ), associative (i.e. Uy I

(UxNUs) = (U;NMU2)MUs) and idempotent (i.e. UNU = U ), by assuming the

distributivity of expansion variables over M (i.e. e(UyMUz) = eU;Melz) and

by having w® as a neutral (i.e. WL U =U). We denote U, MUp11...MUpy,
by M. U; (when n < m). We also assume that for all i > 0 and K € Ly,
e

(="
Ein = Wi
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We denote €;, ...€;, by ex, where K = (i1,...,i,) and U, MUpy1 ..MUy
by M, U; (when n < m).

Definition 6. 1. A type environment is a set {x¥* : Uy, ...,z - U,} such

S

that for all i,j € {1,...,n}, if a-* = xfj then U; = U;}. We let Env be

the set of environments, use I, A to range over Env and write () for the
empty environment. We define dom(I") = {zl /xL : U € I'}. If dom(I1) N
dom(Iy) = 0, we write I't, I'y for YUy, We write I',z™ : U for I, {z* : U}
and z" - U for {z¥ : U}. We denote 221 : Uy,... akr - U, by (zF - Uy),.
If M € M and tv(M) = {zX*, ... xlr}, we denote env$, the type environ-
ment (zXi: whi),.
We say that a type environment I’ is OK (and write OK(I")) iff for all
.U er, dU) = L.
Let IY = (zF : U, I} and Ty = (xX : U)),, Iy such that dom(I7) N
dom(4) =0 and for alli € {1,...,n}, d({U;) = d(U}). We denote I'1 T1 I
the type environment (zXt = U; M U!),, I}, T. Note that Iy M Iy is a type
environment, dom(I'1MI%) = dom(I)Udom(I5) and that, on environments,
M is commutative, associative and idempotent.
Let I' = (,’EZLI : Ui)lgign We denote éjf = (‘Tg::Li iéjUi)lgigm
Note that el is a type environment and e(G1 M) =ely Mels.
We write Iy o Iy iff & € dom(I'1) and 2% € dom(I%) implies K = L.
We follow [3] and write type judgements as M : (I" = U) instead of the tradi-
tional format of I' = M : U, where - is our typing relation. The typing rules
of - are given on the left hand side of Figure 7. In the last clause, the binary
relation T is defined on U by the rules on the right hand side of Figure 7.
We let @ denote types in U, or environments I" or typings (I' b U). When
S C P, then ® and P’ belong to the same set (U/environments/typings).
IfLe Ly, UceUand I’ = (xf :Uy)n is a type environment, we say that:
— d(I') = L if and only if for alli € {1,...,n}, d({U;) = L and L; = L.
— d{(I'=U)) = L if and only if d(I") = L and d(U) = L.

To illustrate how our indexed type system works, we give an example:

Ezample 1. Let U = es(ex(e1((eodb — ¢) — (g(aM (@ — b)) — ¢)) — d) —
(((ead — a) Mb) — a)) where a,b,¢,d € A,

L1=3:0<xLy=3:2:0=<L3=3:2:1:0:20
and

M = \zb2 Ayl (yPr (ol2 ubs Aols (uls (vls vl9)))).
We invite the reader to check that M : (() - U).

Just as we did for terms, we decrease the indexes of types, environments and

typings.
Definition 7. 1. If d(U) = L, then if L= then UL =U else L=1i :: K

and we inductively define the type U~L as follows:
(U1 NUy) 5K = UK nuy =k (U)K =U—K
We write U~" instead of U~.
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(ax)
o . o .
22 : (22 : T)FT) @Eé(ref)
M : (envs I—wd(M)> ®) D1 EDy DL D3 (tr)
M b C &3 "
M (It U)FT
SO 0D awy —aw)
e M :(I'-U —T) U nUs CO; E
M:(I'tT) z* ¢dom(I) (=) UyCVi UsCWe )
el M AT Wt —T) UyNU.CVinW,
M1<F1}_U—>T> M2<F2|_U> F1<>F2 UZEUI TlET2 (_})
MM, : (I' NI, F T) =e) | U STt =T
M : (' Uy) M : (' Us) - M( )
M :(I'+ Uy N U) (M) elUi Cell
M: (I U) L —
MY (6T F &) (e) Ly Uit C 1y~ - Us
U1|:U2 F2|:F1
M:(I'+U TFUYC(I'FU’ = = C
( >M~<1<“’FU’>)_< >(E) Ty U0 E (D F U (Ep)

Fig. 1. Typing rules / Subtyping rules

2. If I' = (zF : Uy)g and d(I') = L, then for all i € {1,...,k}, Ly = L =: L}
and d(U;) = L and we denote I'™F = (z¥i : U7 F),.
We write I'"" instead of '~V

3. If U is a type and I is a type environment such that d(I') = K and d(U) =
K, then we denote ((I' = U))™K = (X - U~K),

The next lemma is informative about types and their degrees.

Lemma 2. I. IfT €T, then d(T) = ©.
2. Let U € U. If dU) = L = (n;)m, then U = w® or U = ey, T¥_, T; where

p>1and foralie{l,...,p}, T; € T.

3. Let U1 E UQ.

(a) d(Uy) = d(Uz).

(b) If Uy = w& then Uy = w¥.

(c) If Uy = exU then Uy = ex U’ and U C U".

(d) ]f U2 = GKU then U1 = GKU/ and U E U/.

(e) If Uy = M_,ex(U; — T;) where p > 1 then Uy = wi or Uy =
I‘I?ZleK(UJ’- — T7}) where ¢ > 1 and for all j € {1,...,q}, there exists
i€ {l,...,p} such that Uj’. CU; and T; ETJ{.

4. If U € U such that d{U) = L then U C w*.
5. If U CU{NU, then U = Uy MUz where Uy C U, and Us T US.
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6. If TCIYNIY then I' =11 M 15 where I'1 T I and I's C I,

The next lemma says how ordering or the decreasing of indexes propagate to
environments.

Lemma 3. 1. OK(env%)).

2. IfTC I, UCU and x" ¢ dom(I') then I, (z% : U)C I, (2% : U").
3 IT'CIif I = (acf’ U, I = (x{” 2 Uy and for every 1 < i < n,
U; C U

(CEUYC( U ff I'ET and UC U

If dom(I") = fv(M) and OK(I") then I" C env¥,

If I'o A and d(I),d(A) = K, then I~ o A=K,

IfUC U and dU) = K then UK C UK.

IfTC T and d(I) = K then I K C 'K,

If OK(Fl), OK(FQ) then OK(Fl |_|F2).

If OK(I") then OK(el).

NS RS s

N~

The next lemma shows that we do not allow weakening in .

Lemma 4. 1. For every I' and M such that OK(I") dom(I") = fv(M) and
d(M) = K, we have M : (I" - wX).

2. If M : (I" -U), then dom(I") = fv(M).

3. If My : (INFU) and My : (In F V) then I'y o Iy iff My o Ms.

Proof. 1. By w, M : (env$; F w®). By Lemma 3.5, I' C env,. Hence, by C and
Eo, M : <F F wK>.

2. By induction on the derivation M : (I U).

3. If) Let 2 € dom(I}) and 2% € dom(I%) then by Lemma 4.2, 2L € fv(M)
and 2 € fv(My) so Iy o Iy. Only if) Let 2 € fv(M;) and 2 € fv(My) then
by Lemma 4.2, I € dom(I}) and 2% € dom(I%) so My ¢ Ms. O

The next theorem states that typings are well defined and that within a
typing, degrees are well behaved.

Theorem 3. 1. The typing relation & is well defined on M x Env x U.
2. If M : (I" +U) then OK(I"), and d(I") = d(U) = d(M).
8. If M : (' U) and d(U) = K then M—% : (I=K - U—K).

Proof. We prove 1. and 2. simultaneously by induction on the derivation M :
(I' F U). We prove 3. by induction on the derivation M : (I" - U). Full details
can be found in [12]. O

Finally, here are two derivable typing rules that we will freely use in the rest
of the article.
M:<F1}_U1> M<F2|_U2>
M:<F1|TF2FU1|_|U2>

2. The rule az’ is derivable.
24O (24O U) FU

Remark 1. 1. The rule r; is derivable.
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4 Subject reduction properties

In this section we show that subject reduction holds for . The proof of subject
reduction uses generation and substitution. Hence the next two lemmas.

Lemma 5 (Generation for I-).

1. Ifxl . (DFU), then T = (2L : V) and VC U.

2. If \eb .M : (I' - U), ¥ € fv(M) and d({U) = K, then U = w& or U =
MY_,ex (Vi — T;) where p > 1 and for alli € {1,...,p}, M : (I z¥ : exV; -
eKTi>.

3. If b M : (I = U), ¥ ¢ tv(M) and d({U) = K, then U = w& or U =
M _,ex(V; — T;) where p>1 and for alli € {1,...,p}, M : (I'F exT;).

4. If M al (I (22 - U)FT) and 2 & tv(M), then M : (' =U — T).

Lemma 6 (Substitution for ). If M : (I'zX : U F V), N: (A U) and
M o N then M[z¥ := N]: (' A V).

Since  does not allow weakening, we need the next definition since when a
term is reduced, it may lose some of its free variables and hence will need to be
typed in a smaller environment.

Definition 8. If I is a type environment and U C dom(I"), then we write I' [y

for the restriction of I' on the variables of U. If U = tv(M) for a term M, we

write I' [z instead of T’ er(M)'
Now we are ready to prove the main result of this section:

Theorem 4 (Subject reduction for t-). If M : (I't-U) and M >}, N, then

N (" [§FT).

Proof. By induction on the length of the derivation M Dgn N. Case M >g, N
is by induction on the derivation M : (I" 5 U). O

Corollary 1. 1. If M :(I'FU) and M >3 N, then N : (I" [y+U).
2. If M :(I' - U) and M >} N, then N : (I" [yFU).

5 Subject expansion properties

In this section we show that subject (-expansion holds for - but that subject
n-expansion fails.
The next lemma is needed for expansion.

Lemma 7. If Mzl := N]: (' U) and ¥ € fv(M) then there exist a type V
and two type environments 11,5 such that:
MI<F1,1‘LIVFU> N<F2FV> szlﬂFQ

Since more free variables might appear in the S-expansion of a term, the next
definition gives a possible enlargement of an environment.
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Definition 9. Let m > n, I' = (zX' : U;), and U = {x}*, ..., xkm}. We write
Y for zt - Uy, .. xkn Un,x,LLfll cwhner L pLmos gl Note that T is a
type environment. If dom(I") C fv(M), we write I'T™ instead of FTfV(M).

We are now ready to establish that subject expansion holds for 3 (next
theorem) and that it fails for n (Lemma 8).

Theorem 5 (Subject expansion for 3). If N : (I'=U) and M >} N, then
M (M F U).

Proof. By induction on the length of the derivation M >3 N using the fact that
if fv(P) C fv(Q), then (I'7)1%¢ = I"<. O

Corollary 2. If N : (I' - U) and M >} N, then M : ('™ + U).

Lemma 8 (Subject expansion fails for 7). Let a be an element of A. We
have:

1. Ay? A y2z? >,y Ay@.y@
2. °y° () Fa—a).
3. It is not possible that
Ay@ Az@.y%z% () F a— a).
Hence, the subject n-expansion lemmas fail for F.

Proof. 1. and 2. are easy. For 3., assume \y? \z?.y%2? : () F a — a).
By Lemma 5.2, Az©.y%z? : ((y : a) F— a). Again, by Lemma 5.2, a = w? or
there exists n > 1 such that a = M}, (U; — T;), absurd. O

6 The realisability semantics

In this section we introduce the realisability semantics and show its soundness
for F.
Crucial to a realisability semantics is the notion of a saturated set:

Definition 10. Let X,)Y C M.

. We use P(X) to denote the powerset of X, i.e. {¥ /Y C X}.

. We define X+t = {M*" / M € X}.

. We defineX ~Y={MecM /MNEeY forall N € X such that Mo N}.

. We say that XY iff for all M € X ~> Y, there exists N € X such that
Mo N.

5. Forr € {B,0n,h}, we say that X is r-saturated if whenever M >* N and

N e X, then M € X.

DL LW DO~

Saturation is closed under intersection, lifting and arrows:

Lemma 9. 1. (XNY)T =xtnyte
2. If X, are r-saturated sets, then X NY is r-saturated.
3. If X is r-saturated, then X** is r-saturated.
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4. If YV is r-saturated, then, for every set X, X ~~ Y is r-saturated.
5. (X > y)+i C Xt~ y-i—i.
6. If XY then X+~ YH C (X~ Y)H

We now give the basic step in our realisability semantics: the interpretations
and meanings of types.

Definition 11. Let Vi, Vy be countably infinite, Vi N Vo =0 and V =V, U Vs.

1. Let L € Ly. We define ML ={M € M / d(M) = L}.

2. Let x € V;. We define NV = {2F N1..N, € M / k > 0}.

3. Let r € {f3,n,h}. An r-interpretation T : A — P(M®@) is a function such
that for all a € A:

e Z(a) is r-saturated and oVr e V. N2 CI(a).
We extend an r-interpretation T to U as follows:

o Z(wh) = ME e I(e;U) =Z(U)"
.I(Ull_IUQ):I(Ul)mI(UQ) OZ(UHT):I(U)WI(T)

Let r-int = {Z / T is an r-interpretation}.
4. Let U € U and r € {3, Bn, h}. Define [U],, the r-interpretation of U by:
[Ul, ={M € M/ M is closed and M € (\z¢c,_int Z(U)}

Lemma 10. Letr € {3,0n,h}.

1. (a) For any U € U and T € r-int, we have Z(U) is r-saturated.
(b) If dU) = L and T € r-int, then for all x € V;, N¥ C Z(U) € ML,
2. Letr € {B,0n,h}. If T € r-int and U CZV, then Z(U) CZ(V).

Here is the soundness lemma.

Lemma 11 (Soundness). Let r € {0, ﬂn,h} M : ((IJLJ UjnFU), T E r-int
and for allj € {1,...,n}, N; € Z(U;). IfM[( = N;),] € M then M[( =
Nj)al € ().

Proof. By induction on the derivation M : ((xJLJ 2Uj)n FU). O
Corollary 3. Letr € {3,0n,h}. If M : () - U), then M € [U],. O

Proof. By Lemma 11, M € Z(U) for any r-interpretation Z. By Lemma 4.2,
fv(M) = dom(()) = 0 and hence M is closed. Therefore, M € [U],. O

Lemma 12 (The meaning of types is closed under type operations).
Let r € {8, 5n,h}. On U, the following hold:

1. [e:U], = U]}
2. Uunv].=[U,n[V]
3. If T €r-int and U,V € U, then Z(U) 1 Z(V).

Proof. 1. and 2. are easy. 3. Let d(U) = K, M € Z(U) ~ Z(V) and x € V; such
that for all L, 2% & fv(M), then M o 2¥ and by lemma 10.1b, 2% € Z(U). O
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The next definition and lemma put the realisability semantics in use.
Definition 12 (Examples). Let a,b € A where a #b. We define:

— Idy=a—a, Idy =€;(a — a) and Id] =€1a — €;a.

— D=(aMN(a—0b)) —b.

— Natg = (a — a) — (a — a), Nat; =e&1((a — a) — (a — a)),
and Naty = (e1a — a) — (€1a — a).

Moreover, if M, N are terms and n € N, we define (M)™ N by induction on n:
(M) N =N and (M)™™* N =M ((M)™ N).

Lemma 13. 1. [Ido]s = {M € M@ / M is closed and M >} \y® .y®}.

2. [Idy)g = [Idy)g = {M € MDY / M is closed and M >5 My yMY. (Note
that 1d; ¢ U.)

8. [D]g={M € M? / M is closed and M > \y®.y?y®}.

4. [Natolg = {M € M?® /M is closed and M>5\f°.f2 or M>ENfO Ay@.(f9)"y?

where n > 1}.
5. [Natilg = {M € MW / M is closed and M >3 A\fM.fO or M %
MO Xz £y () yyhere n > 1}. (Note that Nat) ¢ U.)

6. [Natpls = {M € M? /M is closed and M>EAf.f© or MA@ Ay fOy1)Y.

7 The completeness theorem

In this section we set out the machinery and prove that completeness holds for
.
We need the following partition of the set of variables {yX/y € V»}.

Definition 13. 1. Let L € Ly. We define UF = {U € U/d(U) = L} and
VI = {2l /z e V).
2. Let U € U. We inductively define a set of variables Vy as follows:
— If d(U) = © then:
o Vi is an infinite set of variables of degree @.
e [fU#V and dU) = d(V) =@, then Vy NVy = 0.
* Upeve Vv =V7.
— If d(U) = L, then we put Vi = {y* /y2 € V-1 }.

Lemma 14. 1. If dU),d(V) = L and UL =V =L thenU =V.
If d(U) = L, then Vi is an infinite subset of VL.

IfU#V and d{U) = d(V) = L, then Vy N Vy = (.

UUiUL Vy =Vt )

If yL € Vy, then y*L € Vg .

If y*L € Vy, then y* € V-,

S Grds o o

Proof. 1. If L = (n;)m, we have U =€, ...€,, U and V =¢€,, ...€,, V' Then
U L=U,V"t=V"and U = V’'. Thus U = V. 2. 3. and 4. By induction on
L and using 1. 5. Because (¢;U)~¢ = U. 6. By definition. O
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Our partition of the set Vs, as above will enable us to give in the next definition
useful infinite sets which will contain type environments that will play a crucial
role in one particular type interpretation.

Definition 14. 1. Let L € Ly. We denote GL' = {(yL : U) /U € UL and y* €
Vit and HE = Jjes ; GE. Note that GE and HE are not type environments
because they are infinite sets.

2. Let L € Ly, M € M and U € U, we write:
— M : (H" - U) if there is a type environment I' C HY where M : (I" - U)
~ M :(HY - U) if M3, N and N : (HE - U)

Lemma 15. 1. If I’ C HE then OK(I').

2. If I C HE then ;" C H*E.

3. If I ¢ H*E then I'™* C HE.

4. If I CHEY, Iy c HE and L < K then It N Ty C HE.

Proof. 1. Let % : U € I' then U € UX and so d(U) = K. 2. and 3. are by
lemma 14. 4. First note that by 1., I'y M I is well defined. H¥ C H”. Let (2% :
U1|_|U2) € Iy M Iy where (SL‘RZUl) ely C HY and (SL‘R:UQ) €Iy c HX QHL,
then d(Uy) = d(Usz) = R and 2% € Vi, N Vy,. Hence, by lemma 14, Uy = U,
andFll_IF2:F1UFQCHL. O

For every L € Ly, we define the set of terms of degree L which contain some
free variable ¥ where € V; and K > L.

Definition 15. For every L € Ly, let OF = {M ¢ M' /2K c tv(M), z € V,
and K = L}. It is easy to see that, for every L € Ly and x € V1, NF C OF.

Lemma 16. 1. (OF)*i = 0L,

2. If y € Vo and (My*X) € OF, then M € OF

3. IfMeOF MoN and L < K = d(N), then MN € OF.

4. IfdM)=L,L=<K, MoN and N € OF, then MN ¢ OF.

The crucial interpretation I for the proof of completeness is given as follows:

Definition 16. 1. Letlg, be the Bn-interpretation defined by: for all type vari-
ables a, Ig,(a) = O° U{M € M® /M : (H® * a)}.

2. Let Iz be the (B-interpretation defined by: for all type variables a, Ig(a) =
O0°U{MeM?/M:(H?Fa)}.

3. Let 1), be the h-interpretation defined by: for all type variables a, I (a) =
O0°U{MeM?/M:(H®Fa)}.

The next crucial lemma shows that I is an interpretation and that the inter-
pretation of a type of order L contains terms of order L which are typable in
these special environments which are parts of the infinite sets of Definition 14.

Lemma 17. Let r € {On,3,h} and ' € {3, h}

1. If I, € r-int and a € A then I,.(a) is r-saturated and for all x € V1,N2 C
I(a).
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2. IfU € U and d(U) = L, then I, (U) = OF U{M € ML / M : (H' +* U)}.
3. IfU €U and d(U) = L, then L, (U) = O U{M € ML /M : (HF - U)}.

Proof. 1. We do two cases:
Case r = (. It is easy to see that Vz € V, N2 C 09 C I, (a). Now we show
that Ig,(a) is By-saturated. Let M >3, N and N € Ig,(a).

— If N € O2 then N € M? and 3L and z € V; such that z* € fv(N). By
theorem 1.2, fv(N) C fv(M) and d(M) = d(N), hence, M € O?

-~ IfNe{MeM?®/M:(H?F*a)} then N3, N"and 31" C H?, such that
N’ :(I' - a). Hence M >}, N’ and since by theorem 1.2, d(M) = d(N'),
Me{MeM?/M: (H?Ht* a)}.

Case 7 = (3. It is easy to see that Vo € V1, N9 C 09 C Ig(a). Now we show
that [(a) is B-saturated. Let M >3 N and N € Ig(a).

— If N € O? then N € M@ and 3L and x € V; such that ¥ € fv(N). By
theorem 1.2, fv(N) C fv(M) and d(M) = d(N), hence, M € O?

—UfNe{MecM?/M:(H®Fk a)} then 3" C H?, such that N : (I" - a).
By theorem 5, M : (I't™ F a). Since by theorem 1.2, fv(N) C fv(M),
let fv(N) = {zF*, ... 2L} and fv(M) = fv(N) U {xifll, . ,xﬁﬁ,’;} So
v =r, (xﬁ_ﬁl swbntr ,xﬁ_’ﬁ,{" cwhrtm) ¥n +1 <i < n+m, let U;
such that zX € Vy,. Then I, (:1:7]:_;{1 Uity T Upy) © H? and
by C, M : (T, (Iﬁfﬁl : Un_,_l,...,xﬁitn’" : Uptm) F a). Thus M : (H? I a)
and since by theorem 1.2, d(M) =d(N), M € {M € M? / M : (H? |- a)}.

2. By induction on U.

— U = a: By definition of Ig,.
— U = w”: By definition, Ig,(w”) = M. Hence, OF U{M € ML /| M :
(B W)} € Tag(h).
Let M € g, (w”) where fv(M) = {2z, ..., 2En} then M € MLV 1 <i<n,
let U; the type such that zZLl € Vy,. Then I' = (:cf : U;), C HE. By
lemma 4.1 and lemma 15, M : (I"  w®). Hence M : (HL - wl). Therefore,
I(wl) C{M e ME /| M : (HL -+ wh)}.
We deduce Ig,(wl) = 0L U{M e ML /| M : (HL = W)}
—U=%V:L=14: K and d(V) = K. By IH and lemma 16, I,(e;V) =
(Loo(V)) ¥ = (OF U{M € MK / M : (HE b= V)})+i =
Olu({M e ME | M: (HEX - V)}Te.
o If M € MK and M : (HX +* V), then Mpp, Nand N : (I' = V) where
I' CH®. By e, lemmas 19 and 15, Nt : (&'t ;V), M > N** and
&' C HE. Thus M+ € ME and M+ : (HE F* U).
o If M e MY and M : (H" +* U), then M >% N and N : (I - U) where
I' ¢ H". By lemmas 19, 3, and 15, M~ DG, N7 N7 (I F V) and
I'~* ¢ HX. Thus by lemma 19, M = (M ~")*" and M~* € {M € M¥ /
M : (HE = V)
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Hence ({M € M¥X / M : (HE - V)t = {M e ME ) M : (HL = U)}
and I, (U) = OFu{M e ML / M : (HL =+ U)}.

— U =U;NUsy: By IH, I, (U1 NUs) = 1, (U1) N1, (Uz) = (OF U{M € M~/
M : (HY = UD)N(OFU{M € ME ) M : (HE =+ Uy)}) = OFu({M € ME
/M :(HEFUDYN{M € ML ) M : (HE =+ Us)}).

o If M € MY, M : (HF +* Uy) and M : (H* +* Us), then M >3, Ni,
MDE”] Ny, Ny : <F1 H U1> and Ny : <F2 = U2> where I, I C HE.
By confluence theorem 2 and subject reduction theorem 4, IM’ such
that M DEU ]\4’7 MI : <F1 [M/l— U1> and M/ : <F2 F]yj/}— U2> Hence by
Remark 1 and lemma 1 and lemma 4.2 and lemma 25.2, M’ : (I} 11
) [ Uy MUY and, by lemma 15, (It M 1y) [apC Iy M1y € HE.
Thus M : (HE -+ Uy N Us).

o If M e M" and M : (H" -* Uy MUs), then M >% N, N : (I' - Uy NUs)
and ' CHY. By C, N: (I' - Uy) and N : (I' - Us).

Hence, M : (HF +* Uy) and M : (HE =+ Uy).
We deduce that I, (U; M7T5) = otu{M e ML ) M (HE U NUL)Y.

— U=V —>T:Let d(T) = © <= K =d(V). By IH, I, (V) = OK U{M € MK
/ M : (HE = V)} and I, (T) = O U{M € M? / M : (H? +* T)}. Note
that Iz, (V — T) =1g,(V) ~ I, (T).

o Let M € I3,(V) ~ Ig,(T) and, by lemma 14, 1et y € Vy such that
VK, y& ¢ fv(M). Then M o y¥. By remark 1, y : ((y® : V) F* V).
Hence y& : (HX +* V). Thus, y* € I3, (V) and MyX € Hgn(T)

x If MyX € 09, then since y € Vs, by lemma 16, M € O

« If MyK € {M € M2/ M : (H? +* T)} then MyX |>BnN and
N : (' = T) such that I' C H?, hence, Ay .MyX >, MK N. We
have two cases:

- If y® € dom(I"), then I' = A, (y¥ : V) and by —r, \y®X.N :
(AFV = T).

- If y® ¢ dom(I), let A = I'. By =4, \yB.N : (A wE — T).
By C, since (AF w® - T)C (A+V — T), we have \yX.N :
(AFV —T).

Note that A C H@. Since A\yX MyX >%, M and Ay MyK D> 5
A\y® N, by theorem 2 and theorem 4, there is M’ such that MDEnM/’
)\yK.N l>z§n _]\4'/7 M’ <A [V — T> Since A [ C A C H®,
M:(H?HV —T).

e Let M e O°U{M e M? /M :H?HV —T)}and N € I, (V) =
Ok u{M e ME /) M : (HE * V)} such that M o N. Then, d(N) =
K »=o=d4dM).

* If M € 0%, then, by lemma 16, MN € O9.
< I Me{MeM?/M:(H? - V —T)}, then
- If N € OX | then, by lemma 16, MN € O%.

-IfNe{Me ME / M : (H* = V)} then M>5, My, N>, Ny,
My : (It =V — T)and Ny : (I3 + V) where I} C H? and
I'y ¢ HX. By lemma 19 and theorem 1, M N DEY/ My N7 and,
by —g and lemma 4.3, M1 Ny : (I1 NIy F T). By lemma 15,
It M Iy € H?. Therefore MN : (H? +* T).
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We deduce that Ig,(V - T) =02 U{M e M? | M : (H? -*V — T)}.

3. We only do the case r = 3. By induction on U.

— U = a: By definition of Ig.

— U = w’: By definition, I5(w?) = M. Hence, OL U{M € ML / M : (HL +
wh)} C Is(wh).

Let M € I5(w”) where fv(M) = {21, ..., zL»} then M € M*. V1< i<n,
let U; the type such that zf‘ € Vy,. Then I' = (x51 : U;), C HE. By
lemma 4.1 and lemma 15, M : (I"  w®). Hence M : (HY - w’). Therefore,
I(wh) C{M e ML/ M : (H - W)}

We deduce Ig(wh) = OL U{M € MY /| M : (HE - wh)}.

-U=%¢V:L=4: K and d(V) = K. By IH and lemma 16, I3(¢;V) =
(V)" = (0K U{M € MK / M : (HE b V)})+ =
otu({M e ME /) M (HE - V)})*i.

o If M € MX and M : (HX F V), then M : (I' V) where I' C HX.
By e and 15, M+ : (" - &V) and &I" C HY. Thus M+ € M and
M+ (HE - U).

o If M € ML and M : (HX - U), then M : (I' - U) where I' C HE. By
lemmas 3, and 15, M=% : (I'"* = V) and I'"* € HX. Thus by lemma 19,
M=(M""H*and M~ € {M € MX /) M: (HX FV)}.

Hence ({M € M / M : (HE -V ={M e ME /) M : (H' - U)} and
Ig(U)=0Lu{M e ML ) M: (H+-U)}.

— U =U;NUy: By IH, I3(U; NUs) =Ig(Uy) NIg(U2) = (OF U {M € ME/
M (HY U N (OFu{M € ME ) M : (HY - Up)}) = OF U ({M € ME
/M :HEFUDIN{M e ME ) M : (HE - Us)}).

o If M e ML, M : (HL - Uy) and M : (HL - Uy), then M : (I + Uy) and
M : (I, F Uy) where I, Iy C HY. Hence by Remark 1, M : (I M I -
Uy MUy) and, by lemma 15, Iy 1 Iy € HE. Thus M : (HE = Uy 1US).

o If M € MF and M : (HF - Uy, M Uy), then M : (I' - U; MUs) and
[CHE. By C, M:(I'FUy) and M : (I'F Uy). Hence, M : (H” - Uy)
and M : (HL - Uy).

We deduce that I5(U; MTz) = OL U{M € ME /) M : (HE = U, N UL}

~ U=V =T:Let d(T) =2 < K =d(V). By IH, I3(V) = OK U {M € M¥
/M : (HE = V)} and 15(T) = O°U{M € M? / M : (H? - T)}. Note that
Ly(V = T) = I5(V) ~ Is(T).

o Let M € Ig(V) ~ I5(T) and, by lemma 14, let y® € Vy such that
VK,yX & fv(M). Then M o y¥. By remark 1, y¥ : ((y% : V) F* V).
Hence y% : (HX V). Thus, y% € I5(V) and MyX € I5(T).

x If My® € O, then since y € V,, by lemma 16, M € 09.

x If My € {M € M2 / M : (H® - T)} then MyX : (I' - T) such
that I' C H?. Since by lemma 4.2, dom(I") = fv(MyX) and y¥ €
fv(My®), I' = A, (y¥ : V). Since (y¥ : V') € H?, by lemma 14,
V =V’ So My¥X : (A, (y¥ : V) - T) and by lemma 5 M : (A F
V — T). Note that A C H?, hence M : (H® -V — T).
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eLet M e OU{M eM?® /M:H°FV —T)} and N € Ig, (V) =
OKuU{M e ME /| M : (HE + V)} such that M o N. Then, d(N) =
K = o =d(M).
* If M € 09, then, by lemma 16, MN € 09,
«IEMe{MeM?/M:(H°FV —T)}, then
- If N € OX, then, by lemma 16, MN € O9.
IfNe{Me A4Kf/ M : (HE - V)} then M : (IT FV — T)
and N : (I V) where I € H? and I, ¢ HX. By —p and
lemma 4.3, MN : (I'1 1 I3 = T). By lemma 15, I} 1 I C H?.
Therefore M N : (H? + T).
We deduce that I[3(V = T)=02U{M e M?® /M:(H°+V —-T)}. O

Now, we use this crucial I to establish completeness of our semantics.
Theorem 6 (Completeness of -). Let U € U such that d(U) = L.

1. [Ulgy ={M e M" / M closed, M 1>% y NV and N: () FU)}
2. [Ulg=[Ulh={MeM"/M: (()FU>}
3. [Ulgy is stable by reduction. Le., If M € [Ulg, and M >}, N then N € [Ulg,

Proof. Let r € {8, h, Bn}.

1. Let M € [U]g,. Then M is a closed term and M € I, (U). Hence, by Lemma
17, M € OF u{M € M* / M : (HV +* U)}. Since M is closed, M ¢ OF.
Hence, M € {M € M* / M : (H" F* U)} and so, M >, N and N : (" - U)
where I' C H”. By Theorem 1, N is closed and, by Lemma 4.2, N : () - U).
Conversely, take M closed such that M >3 N and N : (() - U). Let 7 €
On-int. By Lemma 11, N € Z(U). By Lemma 10.1, Z(U) is Bn-saturated.
Hence, M € Z(U). Thus M € [U].

2. Let M € [U]g. Then M is a closed term and M € Ig(U). Hence, by Lemma
17, M € O u{M e ML ) M : (HEF I~ U)}. Since M is closed, M ¢ OF.
Hence, M € {M € MY / M : (HV + U)} and so, M : (I'  U) where
I' c HY. By Lemma 4.2, M : () - U).

Conversely, take M such that M : (() - U). By Lemma 4.2, M is closed. Let
T € p-int. By Lemma 11, M € Z(U). Thus M € [U]3.
It is easy to see that [U]g = [U]p.

3. Let M € [U]gy and M >3, N. By 1, M is closed, M >3, P and P: (() = U).
By confluence Theorem 2, there is @ such that P >3 @ and N >3, Q. By
subject reduction Theorem 4, @ : (() - U). By Theorem 1, N is closed and,
by 1, N € [U]ay- O

8 Conclusion

Expansion may be viewed to work like a multi-layered simultaneous substitu-
tion. Moreover, expansion is a crucial part of a procedure for calculating principal
typings and helps support compositional type inference. Because the early def-
initions of expansion were complicated, expansion variables (E-variables) were
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introduced to simplify and mechanise expansion. The aim of this paper is to give
a complete semantics for intersection type systems with expansion variables.

The only earlier attempt (see Kamareddine, Nour, Rahli and Wells [13]) at

giving a semantics for expansion variables could only handle the Al-calculus, did
not allow a universal type, and was incomplete in the presence of more than one
expansion variable. This paper overcomes these difficulties and gives a complete
semantics for an intersection type system with an arbitrary (possibly infinite)
number of expansion variables using a calculus indexed with finite sequences of
natural numbers.
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Proofs of Section 2

The next lemma is needed in the proofs.

Lemma 18. Let M, M’ ,N,Ny,...,N, € M.

Grds fo do ~

Mo M and if M o N then N o M.

If tv(M) Ctv(M') and M’ o N then M o N.

If Mo N and M’ is a subterm of M then M'<¢ N.

If d(M) = L and 2 occurs in M, then K = L.

Ifx ={M}U{N;/1 <i<n}, foralli e {l,...,n}, d(N;) = L; and oX
then M[(zX" := N;),] € M and d(M[(zX" := N;),]) = d(M).

If X ={M,N}U{N;/1 <i<n}, foralliec {1,...,n}, d(N;) = L; and oX
then M[(zl' := N;)] o N[(zF = N;),,]

Proof. 1. First, we prove M ¢ M by induction on M.

5.

— Let M = z then it is trivial.

— Let M = Az".N such that N € M and L = d(N). Let y*,yX" € fv(M)
then y*,y% € fv(N) and we conclude using TH on N.

— Let M = M1M2 such that Ml,MQ € M, d(Ml) = d(Mg) and M1 OMQ.
Let ol 2 € fv(M) then either 2, 2¥ € fv(M;) and we conclude using
IH on M;. Or 2%, 2% € fv(Ms,) and we conclude using IH on Ms. Or
zl € fv(M;) and 2% € fv(Ms) and we conclude using M; o My.

Let M o N, we prove N ¢ M. It is trivial by definition.
Let zF € fv(M) C fv(M') and 2% € fv(N) then by hypothesis K = L.
By induction on M.

— Case M = z! is trivial.

— Case M = Az P where VK € Ly, 2z ¢ fv(N). If M’ = M then nothing
to prove. Else M’ is a subterm of P. If we prove that P ¢ N then we
can use IH to get M’ o N. Hence, now we prove P o N. Let y € V such
that 4 € fv(P) and yX € fv(N). Since 2" & fv(N), then z # y and
y& # 2l Hence y®X € fv(M) and since M o N then K = K’. Hence,
PoN.

— Case M = M1 Ms. Let i € {1,2}. First we prove that M; o N: let € V,
such that z¥ € fv(M;) and X € fv(N), then 2% € fv(M) and so L = K.
Now, if M’ = M then nothing to prove. Else

e Either M’ is a subterm of M; and so by IH, since M; o N, M’ o N.
e Or M’ is a subterm of My and so by IH, since My o N, M’ o N.
By induction on M.

— If M = 2% then d(M) = K and since = is an order relation, K = K.

— If M = My M5 then d(M) = d(My). Let L' = d(Ms) so L’ = L. By IH,
if 2% occurs in M; then K > L and if % occurs in M, then K = L'.
Since ¥ occurs in M, K > L.

— If M = Axlr .My then Ly = d(M;) = d(\zlr.My) = L. If 2% occurs in
M, then 2% = 2™ or ¥ occurs in M;. By IH, if 2% occurs in M; then
K= L.

By induction on M.
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— If M = y¥ then if y¥ = 2 for 1 < i < n, then M[(zF = N;),] =
N; € M and d(M[(zF = N;),]) = d(N;) = L; = K. Elbe M[(a:ZLl =
Ni)n] = y* € M and d(M[(z;" := N;)n]) = d(y").

— If M = My My then d(M) = d(M;) and M[(zX := N;),] = M;[(zFi =
Ni)u]Ma[(zF := N;),]. Since VN € X, M o N, by 3., VN € X, M, o N
and My o N. Since My, My € M, by TH, My[(zXt = N;),], Ma[(zFi =
Ni)n] € M, d(Mi[(z" := N;),]) = d(M:) and d(Mo[(a]" = Ni)n]) =
d(My). Let X € tv(M[(zF := N;),])) and 2" € fv(My[(zFt := N;),)).
If 2% € fv(My) then by 3., o({ My, Mo }U{N;/1 < i < n}) hence K = K'.
Let 1 <i < n. If X Efv( )thenby3 <>({M2}U{N/1 <i<n})

hence K = K'. So Mi[(zl = N;),] o My[(zl* := N;),]. Further-
more, d(M[(a* i= N = d(Ma) = d(M) = dQA [P = N
hence Ml[( L= N Mo[(zE = N),] € M and d(M;[(zF =
Nl Ma(x]" := Ni)n]) = d(My[(x ZL i= Ni)n]) = d(My) = d(M).
—IfM—)\y M1WhereK>d(M1)andVlgzgn,y#x nd VK’ €
Ly, v5' ¢ tv(N;) U {zF} then M[(zl = Ny),] = )\yK.Ml[(xiLi =
N;)n]. Since M; € M, then by 3. and IH Ml[(xZL = N;)p] € M and
A(My[(@7" = Ni)a]) = d(M1). So Ay .M[(a}" = Ni)p] € M and

A . My[(zf = Ni)al) = d(Mi[(x] = Ni)n]) = d(My) = d(M).

6. By 5., M[(xZLz = Z)n],N[(l‘ZLl = Ni)n] € M. Let 2¥ € fV(M[(x-Li =
Ni)n]) and 2 € fv(N[(zL == N;),)). So 2l € fv(M)Ufv(Ny)U...Ufv(N,,)
and 2% € fv(N) U fv(Ny) U ... U fv(N,,). Since oX, then K = L. Hence,
M[(:z:ZL‘ = N;i)n) ON[(LELi = N;i)nl O

(2

Proof (Of Theorem 1).

1. By induction on M >} N, we only do the base step:

— M = Xel Nzl >, N and 2% ¢ fv(N). By definition fv(M) = fv(Nz%)\
{al} = fv( ) and d(M) =d(Nat) = d(N).

- M =Mzt My g PV .N7y = N and M, g N;. By IH, fV(Nl) fV(Ml)
and d(M;) = d(Ny). Hence, d(M) = d(M;) = d(Nl) = d(N) and
fv(N) = fv(Ny) \ {21} = fv(Ml) \ {zF} = fv(M).

— M = MM, l>nN1M2 = N such that M, >y Ny. By IH, fV(Nl) = fV(Ml)
and d(M;) = d(Ny). By definition, fv(N) = fv(Ny) Utv(My) = fv(M;) U
fv(Ms) = fv(M) and d(M) = d(M;) = d(N;) = d(N).

— M = MM, I>77M1N2 = N such that M, g Ns. By IH, fV(NQ) = fV(MQ)
and d(Mz) = d(N3). By definition, fv(N) = fv(M;) Ufv(Ny) = fv(M)U
fv(Msy) = fv(M) and d(M) = d(M;) = d(N).

2. Case r = 3. By induction on M >3 N, we only do the base step:

- M = ()\SCL.Ml)MQ > Ml[IL = MQ] = N such that d(Mg) = L. If
zl € fv(My) then fv(N) = (fv(My) \ {zX}) U fv(Ma) = fv(M). If 2L ¢
fv(M;) then fv(N) = fv(M;) = fv(My) \ {zL} C fv(M). By definition,
d(M) = d(M;). Because N € M then My o My and d(Ms) = L. So, by
lemma 18.5, d(N) = d(My).
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— M = Xxl .My >g AaP. Ny = N such that M; >g Nyi. By IH, fv(N)
fV(Ml) and d(Ml) = d(Nl) By definition d(M) = d(Ml) = d(Nl)
d(N) and fv(N) = fv(Ny) \ {zF} C tv(My) \ {o1} = fv(M).

- M = M1M2[>5N1M2 = N such that M1 I>[3N1. By IH, fV(Nl) g fV(Ml
and d(M;) = d(N1). By definition, fv(N) = fv(Ny) Ufv(My) C fv(My)
fv(Msy) = fv(M) and d(M) = d(M;) = d(Ny) = d(N).

— M = MM, [>gM1N2 = N such that My I>5N2. By IH, fV(NQ) - fV(MQ)
and d(M3) = d(N3). By definition, fv(N) = fv(M;) Ufv(Ny) C fv(M;)U
fv(Msy) = fv(M) and d(M) = d(M;) = d(N).

Case r = f3n, by the § and 7 cases. Case r = h, by the 3 case. O

1N

~—

C

The next lemma is again needed in the proofs.

Lemma 19. Let i,p > 0, M,N,N1,Na,...,N, € M, »'e {>j,>),>5,} and
> {>g, Dy, Days Bh, 5, B, 5, B . We have:

1.

AR

S

8.
9.
10.
11.

12.
13.

1.

M* e M and d(M*) =i d(M) and ¥ occurs in M+ iff K =i :: L
and x* occurs in M.

Mo N iff MTo N T2
Let X C M then oX iff Xt
(M-i-i)—i - M.
. L; i i i L
If{M}YU{N; /j€{1,...,p}} then (M[(z;7 := Nj)p)*" = M**[(x; :=
N9,
J p

IFMw N, then M+ » Nt

Ifd(M) =i :: L, then:

(a) M = P* for some P € M, d(M~%) =L and (M~%)*" = M.

(b) If V1 < j < p,d(N;) =i K; and o{M}U{N; /j € {1,...,p}} then
(M@ = Nj)p)) ™ = M7} := N7, .

(¢c) If M » N then M~ » N~°.

IFMw» N, PwQ and MoP then NoQ

If M » N*ti then there is P € M such that M = P** and P » N.

If M*i» N, then there is P € M such that N = P** and M » P.

IFyX ¢ tv(N)U {z}, d(P) = K, d(N) = L, o{M, N, P} then

M[y¥ = P][z* := N] = M [zl := N][y¥ := P[zL .= N]].

If M » N and d(P) = L and o{M, N, P}, then M[z" := P] » N[z* := P).

IFN » P and dN) = L = d(P) and o{M, N, P}, then M[z" := N] »’

Mz* = P].

If M » M', Pw»' P and d(P) = L and o{M,M', P,P'}, then Mzl :=

P]»' M'[zF = P'].

Proof. 1 We only prove the lemma by induction on M:

— If M =z then M*+* = 2L € M and d(2¥L) =i L =i d(zh).

— If M = \z%.M; then M; € M, L = d(M;) and M+? = Xz L M.
By TH, M;" € M and d(M;™") =i :: d(M;) and ¥ occurs in M iff
K =i : K and yK/ occurs in My. So i = L =4 d(My) = d(Mfri).
Hence, Az** L. M € M. Moreover, d(Mt?) = d(M;") =i :: d(M;) =
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i d(M). If y& occurs in M then either y® = %L, so it is done

because z¥ occurs in M. Or y¥ occurs in Mf" By IH, K =i :: K’ and
yK/ occurs in Mj. So yK/ occurs in M. If ¥ occurs in M then either
y% = 2% and then y*¥ occurs in M**. Or y¥ occurs in M;. Then by
H, y*¥ occurs in M. So, y*& occurs in M.
—IftM= M1M2 then Ml,MQ € M, d(Ml) = d(MQ), M1 <>M2 and MJH; =
MM By H, M, M e M, d(M{") = i = d(My), d(MS) =
i d(Ms), y* oceurs in M iff K =i :: K’ and y* occurs in M,
and y¥ occurs in M;” iff K =4 : K' and yK/ occurs in Ms. Let
zt € fv(M;?) and % € fv(M,") then, using TH, L =i : L/, K =i =2 K/,
2L occurs in M, and K occurs in M. Using M; ¢ Ms, we obtain
L' = K',so L = K. Hence, M;™" o M. Because d(M;) < d(Ms), then
d(M;") =i = d(My) =i d(My) = d(MS). So, M+ € M. Moreover,
d(M“) = d(M]") =i = d(My) =i = d(M). If 2% occurs in M+ then
either z% occurs in M“ and using IH, L =i :: L’ and =% L occurs in My,
so # occurs in M. Or ¥ occurs in M and using IH, L =i :: L’ and
2L occurs in Ms, so 2 occurs in M. If z¥ occurs in M then either 2~
occurs in M; so by TH 2% occurs in M;", hence x**F occurs in M7
Or 2 occurs in My so by IH 2%F occurs in My, hence 2*“* occurs in
M
Assume M o N. Let 1 € ngM+i) and ¥ € fv(NT?) then by lemma 19.1,
L=i:L K=i:K'\z" € fv(M) and &' € fv(N). Using M o N we
obtain K’ = L' and so K = L.
Assume M1 o N*i. Let ol € fv(M) and ¥ € fv(N), then by lemma 19.1,
¥l ¢ fy(MT) and 2K ¢ fv(N*?). Using M o Nt we obtain i :: K =
i L and so K = L.
Let X C M.
Assume oX. Let M, N € X*¢. Then by definition, M = P** and N = Q**
such that P,Q € X. Because by hypothesis Po(Q then by lemma 19.2, MoN.
Assume oX 1% Let M, N € X then M1?, NT¢ ¢ X+ Because by hypothesis
M+ o Nt then by lemma 19.2, M o N.
By lemma 19.1, M™% € M and d(M*%) =i :: d(M). We prove the lemma
by induction on M.
— Let M = o¥ then M+ = 2% L and (M%)~ = 2.
— Let M = A\z%.M; such that M; € M and L = d(M;). Then, (MT4)~¢ =
Azt M=t = Al (M)~ =TH Aol M.
— Let M = M; My such that My, My € M, My o My and d(M;) < d(My).
Then, (M+) ™" = (M M5") ™ = (M)~ (My) ="M M1M2
By 3, <>{M+i}U{N;_i /j€{l,...,p}}. By lemma 18.5, M[( = Nj))
and M“[(:z:;f:Lj := N;"),] € M. By induction on M:
—Let M = yX. If V1 < j < p,9¥ ;é a:Lj then y (x Ii= Nyl = vk
Hence (y*[(x}7 = Nj),])** = ¢ = y# [ .= NF), ] If 31
j < p, yK = x]L'j then yK[(:C 7 := Nj)p] = N;. Hence (yE[(z> =

Nj)p))t N—H =y~ K[( = N;’_l pl- J

al
L

IA
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— Let M = \y™.Mi. Then M[(a}? := Nj),] = MK M[(x]? = N;),]

where V1 < j < p,y* & fv(N;) U {mJLJ} By lemma 18.3, o{ M1} U{N; /
J € {L o p}} By IH, (Mi[(aj” = Nj)p)) ' = M [ = NJO),).
Hence, (M[(x” := Nj)p)) ™ = Ay=K.(My [(a7 = Nj),])*F =

MR M = N, = R M) = N,

— Let M = MiMs. M[(z’ := Ny)p] = Mi[(z}’ = Ny),|Ma[(x}’ =
N;)p|. By lemma 18.3, o{ M1} U{N; / j € {1,...,p}} and o{M} U{N;
/3 € {1, iphy By I, (My[(2) := Ny),)) ™ = M (2] = N},
and (Ma|(w;? = Nj)y]) ™" = M[( 1= N, )

Hence (M((x;” = Nj)p))*' = (Ma[(x;” = Nj)p)) ¥ (Ma[(a” = Ny))* =
M = NPIM (a5 = Ny, = MG = N
6 By lemma 19.1, if M, N € M then M+!, N*ti ¢ M.

— Let » be >g. By induction on M > N.

e Let M = Azt . My)Ms >g M|zl := My] = N where d(Ms) = L,
then by lemma 19.1, d(M,*) = i :: Land M = (\z™ L M) M >4
Ml = M = (M[z" := My))*.

o Let M = Mzl .M, >3 Azl Ny = N such that M, >3 Ni. By IH,
M >4 N hence M+ = \a™ L M > 5 A E N = NTE

e Let M = M; My>5 Ny My = N such that M; >3 Ny. By TH, M, >4
N hence MTH = M7 M) >5 NP M = N*E

e Let M = My M, >3 M Ny = N such that My >3 No. By ITH, My >4
Nyt hence MT = M7 My >5 NP M = Nt

— Let » be >j. By induction on >} using >g.

— Let » be >,. We only do the base case. The inductive cases are as
for >g. Let M = \al.Nz* >, N where z* ¢ fv(N). By lemma 19.1,
gl g fy(N+Y) Then M8 = \gb Ntigisl , NH

— Let » be >7. By induction on >} using >,.

— Let » be >g,, >5,, > or >,. By the previous items.

7 (a) By induction on M:

— Let M = y*L then yL' € M and d((y*L)~%) = d(y*) = L and
((yi::L)fi)ﬁﬁ' — yi::L.

— Let M = \y®.M; such that M; € M and K = d(M;). Because
d(M;) = d(M) =i == L, by IH, M; = P* for some P € M,
d(M;%") = L and (M;")** = M. Because, K > i :: L then K =
i L K’ for some K'. Let Q = M\ylK'.P. Because P =194
(P))=% = M;*, then d(P) = L. Because L < L :: K', then Q € M
and Q™% = M. Moreover, d(M~%) =194 d(Q) = d(P) = L and
(M~i)+i = p+i = .

— Let M = M1M2 such that Ml,MQ € M, M1 <>M2 and d(Ml) =<
d(Ms). Then d(M) = d(M;) < d(Ms), so d(Mz) =i == L o L'
for some L'. By ITH M; = P;" for some P, € M, d(M;") = L
and (M;%)*" = M;. Again by TH, My = P; for some P, € M,
d(My;%) = L :: L' and (M; )" = My. If y*1 € fv(Py) and y* €
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fv(P2), then by lemma 19.1, K| =i = Ky, K) =i = Ko, oK1 €
fv(My) and =2 € fv(My). Thus K} = K}, so K1 = Ky and P) o Py,
Because d(Py) = d(M;%) = L < L = I = d(M;") = d(P,) then
Q = PP, € Mand Q" = (PP)T" = P"'Py* = M. Moreover,
d(M~%) =194 4(Q)=d(P) =L and (M~ )T =Q*t' =M
(b) By the previous item, there exist M’ , Ny,..., N/ € M such that M =
M'*" and for all j € {1,...,p}, N N’“ So by lemma 19.3, o{ M’} U
{N: /i e {l,....p}}. By lemma 194 M~ = M’ and for all j €
{1,...,p}, Nj_i = NJ. So, O{M_i}U{Nj_i /j€{1,...,p}}. By lemma 18.5,
M(@™ = Nyl M7z} = Nj'),) € M and d(M[(}™ :=

J J
Nj)pl) = d(M) =i :: L. We prove the result by induction on M:
— Let M = y™L If V1 < j < p,yl £ x;::Kj then yi“L[(x;”Kj =
71 70 i::K' —1 K;
Nj)pl = y"*F. Hence (y**[(2" = Ny)p))™" = y* = y*[(a;7 =
N )]If31<]<py’L—x ]theny [(ZK::Nj)p]:Nj.
i K — K —3
= N;)p)) 7 = Ny =yt [(a = Nl

i L
Hence (y***[(x;" J ;

— Let M = M\y®.M; such that M; € M and K = d(M;). Then,
M[(x;”Kj = N;),| = /\yK.Ml[(x;“Kj := Nj)p] where V1 < j <
K ¢ fv(N;) U {x Ki1. By lemma 18.3, ofM;} U {N; /j €

{1,..., p}}. By definition d(M) = d(My). By IH, (My[(z"

Nyt = Mfz[(xfj = N; “)p)- Because d(M;) =i = L < K,

K:i;;L::K_’.Igor some K'. - _
Hence, (M[(z}" = Nj)p|) ™" = A" H L (Mi[(a := Ny)p]) ™" =
N —3 K; —1i —1i K —1

— Let M = M; M, such that My, My € M, My ¢ My and d(M;) =<
A(My). Then, (™0 = Ny),] = M7 1= N, o[ (o =
N;)p]. By lemma 18 3, o{M1}U{N, /je{l,...,p}} and O{Mg} U
{N; /je{1,...,p}}. By definition d(M) = d(Ml) = d(Ms). So
d(Ms) =i = L :: L' for some L'. By IH, (M;[(x} z; =N;),) " =
My (2 o= N7l and (Ma[(ay™ = Ny),) ™" = M;i[(xff =
N Z)p] Hence

(M[(x = N T = [T = Ny T (M (e =
= Mfl[(l‘fj = Ny My (27 = Ny)) = M7(a = NP, .
(c) Using lemma 19.4, lemma 1 and the first item, we prove that M ~% N~ €
M.
— Let » be >>g. By induction on M >g N.
o Let M = (\a®.My) My >5 My [z := Ms] = N where d(Ms) =
K. Because M € M then M; € M. Because ¢ :: L =
d(M;) < K, then K =4 :: L :: K'. By lemma 19.7, d(M5"
L: K. So M~ = \axl & MMy > M [z K = M,
(My [z = M)~
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o Let M = M. M, >3 AxX.N; = N such that M; >g Np. Because
M e M, M; € M and K > d(M;). By definition d(M) =
d(M;). Because i :: L = d(M;) < K, K =4 = L = K' for
some K'. By TH, My " >3 N{%, hence M~" = Az™+K M g
)\xL::K'N;i - Nt
o Let M = My M >3 N1 My = N such that M; g Ni. Because
M € M then M, € M. By definition d(M) = d(M;) =i :: L. By
TH, M; " >4 Ny, hence M~ = M; "My 55 Ny *My" = N—.
o Let M = MiMy > M{Ny = N such that My >g No. Because
M € M then My € M. By definition d(Mz) = d(M;) = d(M) =
L. So d(Ms) =i :: L :: L for some L'. By IH, My " >5 N5,
hence M—izM;iM s Ny Myt = N~
— Let » be >j. By induction on 7. using > 3.
— Let » be >,. We only do the base case. The inductive cases are
as for >g. Let M = Az Nz¥ >, N where 2% ¢ fv(N). Because
i L=dM)=d(N) 2 K, then K =4 :: L :: K’ for some K’'. By
lemma 19.7, N = N'* for some N’ € M. By lemma 19.7, N/ = N ¢,
By lemma 19.1, 22X & fy(N~%). Then M~ = /\a:L”K/.N_ixL”KIDT7
N~
— Let » be 7. By induction on >} using >,.
— Let » be >g,, l>2§n, >, or >} . By the previous items.
Let 2 € fv(N) C! fv(M) and XX € fv(Q) C! fv(P), since M o P, L = K.
Hence N ¢ Q.
By lemma 19.1, d(N*%) = i :: d(N). By lemma 1, d(M) = d(NT%). By
lemma 19.7, M = M’'*® such that M’ € M. By lemma 19.7, M’ =194
(M) = = M~ p (NF7)~i =194 N,
By lemma 19.1, d(M*%) = i :: d(M). By lemma 1, d(M*%) = d(N). By
lemma 19.7, N = N’ such that N’ € M. By lemma 19.7, M =194
(M+i)7i > N*i — (N/Jri)fi _19.4 N'.
By lemma 18.5, M[y¥X := P] € M. Let us now prove o{ M [y® := P], N}. Let
R e fy(M[y¥X := P]) and 2% € fv(N) then 2 € fv(M) or 2% € fv(P). In
both cases, because M ¢ N and P N, we obtain R = R’. So by lemma 18.5,
M[y® := P][z* := N] € M.
By lemma 18.5, M[z* := NJ|, P[zt = N] € M and d( [wl = N])
d(P) = K. Let us now prove that o{M[z* := NJ], P[z¥ := N]}. Let 2%
fv(M[zY = N) and 2% € fv(Plz? = N]) then either 2% € fv(M ) or
R ¢ fv(N) and either 2% € fv(P) or 2z € fv(N). In all of the four cases,
because by hypotheses and lemma 18.1, M o P, Mo N, No P and No N,
we obtain R = R’. So by lemma 18.5, M[z¥ := N][y* := P[z* := N]] € M.
We prove this lemma by induction on the structure of M.
— Let M = 2%,
o If 2f' = y& then M[yX := P|[z := N] = P[z% := N] = M[y¥ =

Pzl := N]| = M[z" := N][y¥ := P[z* := N]].
e Else
IfM =gl then M[ = P|[z* :

Ny o Pl — NJ| = Mzt o= N[y — Plet — N
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* Else M[y® := P|[z* N]: M[zt .= N] = M = M[y¥ =

Plz* izN]]:M[ N][y* = P[z" := N]].
— Let M = \zBM; such that R = d(My) and M; € M. y lemma 18.3,
o{My, N, P}. Then, M[y¥X := P|[zl := N] = \2B.M[y% := P][zl =

N] =IH \2B My[zF .= N][y¥X = Pzl .= N M[ : N][yK =
Pzl := N]J| such that 2 ¢ fv(N) U fv(P) U {y*, zL}.

— Let M = M; M such that My, My € M, d(M;) < d(Ms) and M, <>M2
By lemma 18.3, o{M;, N, P} and O{MQ,N,P}.Th , My = P][x
N S MY i Pl = NS = Plet N] 2 ot
N][y¥ := Pzl = N]]Mz[zl := N][y¥ = Pzt = NJ]| = M[mL =
N][y¥ := P[zl := N]J].

12 By lemma 18.5 and using the hypothesis, we obtain M|zl = P], N[zl =
Pl e M.
— Let »=1>3. We prove the result by induction on M >g N.

N_

o Let M = (\y&.My)Ma>s My [y == My] = N such that d(Mz) = K.
Then M[z* := P] = (& .My[zt := P]) M2t := P) and Nzl =
P =11 £ [t = Pl[yE = Maal = P Such that y& & fv(P)U
{zl}. By lemma 18.5, d(My[z* := P]) = d(M) = K. So, M[z* :=
P]>g Nzl .= P).

o Let M Ay& M, >3 DYTA = N such that M; >g N;. Then
M|zt *P]*)\yKMl[x ]and Nzl = P] = % . Ny [2F
P] such that y* ¢ fv(P) U {xL} By lemma 18.3, <>{M17N1,P} By
H, Mzl := P]>p Ni[zF := P]. So, M[z" := P] >4 N[zl := P].

o Let M = M1 My>g N1 My = N such that M; >g N;. By lemma 18.3,
o{My, Ny, P}. By IH, M;[zt := P| >3 Ni[zl := P]. So, M[zF :=
P]>g Nzl .= P).

o Let M = My My1>g My Ny = N such that My >g Ny, By lemma 18.3,
o{Ma, N2, P}. By TH, Ms[zt := P] > Na[z¥ := P]. So, Mzl :=
P]>g N[zl .= P).

— Let »=1>,,. We only prove the base case. The other cases are similar as
the ones for 4. Let M = A\y® .Ny® >, N such that y* & fv(NN). Then
Mzt .= P] = ¥ .N[zF := P]y¥ such that y* ¢ fv(P) U {zf}. So
yX & fv(N[z* := P)). Hence, M|zt := P] >, N[zt := P].

— The other cases are based on the two previous ones.

13 By lemma 18.5 and using the hypothesis, we obtain M|zl := P], M|z
N] € M. We prove the result by induction on the structure of M.

— Let M = y¥.
o If y& = 2L then Mzl .= P] = P»N Mzt = NJ.
e Else, M[zF := P] = M>M Mzt = N).
— Let M = \y®.M; such that K = d(M;) and M, € /\/l Then Mzt =
P] = WX .Mzl := P] and M[zF := N] = \y¥.M;[zl := N] such

that y ¢ fv(P) U fv(N) U {zL}. By lemma 18.3, o{M;, N, P}. By IH,
Mzt .= N} »' M;[zt := P]. So, M[zX := N] »' M[zL := P].

— Let M = M;Ms such that My, My € M, M7 o My and d(M7) < d(Ms).
By lemma 18.3, o{M;, N, P} and o{ M, N, P}. By IH, M;[z* := N] »’
Mzl = P] and Ms[z® := N] »' Mzl := P]. By lemma 18.5,
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Ml[ L .= N] Mg[ N M1[$L = P} Mg[ = P] € M and

= N,
Ao 1= N)) = d(My) = (D) = A(Mlo* = N]) and (M fe* o=
Pl]) = d(My) = d(Mz) = d(MQ[xL := NJ) and d(M; [z = P)) =
d(Ml) =< d(Ms) = d(Mz[z* := P]). By lemma 18.6, Mzl := N]o
Ms[z® = N] and M;[z* = P] <>M2[ = N] and Mi[z* = P]o
Mzt = P]. So Mi[zt = N]Mylzl = N] Ml[ = P]M zl =
N], Mi[zt := P]M;[zl := P] € M. So Ml[ = N]MQ[ = N] »’
Ml[SCL Z: P]MQ[JZL = N] and Ml[ L.— P]MQ[ : N] > Ml[ L =
P|My[zt .= P). Hence7 Mzt := N >’ Mzt := P].

14 By lemma 19 12, Mzt = P] »’ M'[z* := P]. By lemma 19.13, M'[zl =

Pl »' M'[zE = P'). So, M[a" i= P] »' Mz = P/). O

Next we give a lemma that will be used in the rest of the article.

Lemma 20. 1. If Myl := 2] >3 N then M >5 N’ where N = N[yl := 21].

2. If M[y" := 2%] is ﬂ-normalising then M is 3-normalising.

3. Letk > 1. If Mxl . é" 18 ﬁ—normalz’sing, then M is -normalising.

4. Let k > 1,1 < i <k: [ >0, xiNl .N; be in normal form and M be
closed. Ime xk >5 T LiNy...Ny, then for some m > i andn <1, M >5
)\mlLl....)\me . M1 M, where nt+k = m+l, M; ~g N; for everyl < j<mn
and Np4j ~g mmﬂ for every 1 < j <k —m.

Proof. 1. By induction on M|yl := 2| >4 N.
2. Immediate by 1.
3. By induction on k > 1. We only prove the basic case. The proof is by cases.

o If Mz > M’ 2t where M’ 2P is in f-normal form and M > M’
then M’ is in B-normal form and M is B-normalising.

o If Mzl > Ay .N) 2l > N[yk = 2] >4 P where P is in f-normal
form and MDE)\yLl .N then by 2, N has a S-normal form and so, \y“1.N
has a B-normal form. Hence, M has a G-normal form.

4. By 3, M is B-normalising and, since M is closed, its §-normal form is
)\xfl....)\xﬁ{".xﬁle...Mn forn,m>0and 1 <p<m.
Since by theorem 2, tF NN, ~p ()\lel. AT m.xﬁ"Ml...M ot é’f
then m < k, x ¢ Ni...N; ~p xﬁle M, ac,,f_”ﬁll. xﬁ’“ Hence, n < [, 7 =
p<m,l = n—|—k—m for every 1 < j < n, M; ~3 N; and for every

1<j<k—m, Npyj ﬂxmﬁ?- O

A.1 Confluence of >35, >, and l>z;n

In this section we establish the confluence of >, >}, and Dgn using the standard
parallel reduction method for >5 and >, .

Definition 17. Let r € {3, 3n}. We define on M the binary relation 25 by:

- M5 M
— If M 25 M then Aa™ M 25 \al M.
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—IfMZ M, N2 N and MoN and d(M) = d(N) then MN 25 M'N’

—IfFMZ M, N2 N, AN)=L> dM) and M o N, then (A" . M)N 25
M'[z" .= N']

— M M, 2l oM and L = d(M) then Aa™ Mz= "2 M’

We denote the transitive closure of 25 by 2%. When M 25 N (resp. M = o = N),
we can also write N 22 M (resp. N &= M). If R, R’ € {25, 2% £ 2% we write
M1 R M2 R/ M3 instead 0fM1 R M2 and M2 R/ Mg.

Lemma 21. Let M € M.

1. If M >, M, then M 25 M.
2. If M 25 M/, then M’ € M, M >* M, tv(M') C fv(M) and d(M) = d(M’).
S IfF M2 M, N2 N and Mo N then M' o N’

Proof. 1. By induction on the derivation M >, M’. 2. By induction on the
derivation of M 25 M’ using theorem 1 and lemma 19. 3. Let z* € fv(M’) and

K e fv(N"). By 2., fv(M') C fv(M) and fv(N') C fv(N). Hence, since M o N,
L=K,so M oN'. O

Lemma 22. Let M,N € M, M o N and N 25 N'. We have:

1. M[z% .= N1 25 M[z" .= N'].
2. If M 5 M’ and d(N) = L, then M[z" := N] 25 M'[z" := N'].

Proof. 1. By induction on M:

— Let M = y¥. If y¥ = ¥, then M[2* := N] = N, Mzl := N'] = N’ and by
hypothesis, N 25 N’ If y¥ # 2L then M[zt = N] =M, Mzt :=N'|=M
and by definition, M 25 M.

— Let M = \y®.My. Mzl := N] = MK .M;[z" := N] and since M; o N,
by IH, Mi[zY = N] & M[z? := N'| and so \y¥.Mi[2l = N] &
Ay My [zF = N]

— Let M = MMy, Mzt := N] = M[zF N]M. [37 = N] and since
M o N and My o N, by IH, M;[z" := ]&Ml[ N'] and Mzl =
N] 2 My[z" := N’]. By lemma 18.6, M[z" = N] o Mylz™ := NJ, so

M[z* = N]M;[zt := N] LN M[z* = N'|My[z* := N'].
2. By induction on M 25 M.

~If M = M, then 1.,

— If My M 25 Ay M’ where M 25 M| then by TH, M[z" := N] 25 M'[z"
N’]. Hence (A\y*.M)[z" := N] = My . M[z! .= N] & \yK.M'[2} .= N'] =
Ay .M") [zt := N’] where y& & fv(N’) C fv(N).

— If PQ 25 P'Q" where P 25 P!, Q 25 Q' and PoQ, then by IH, P[zX := N| 2
P'[zl := N'] and Q[z" := N] & @Q'[z* := N’]. By lemma 18.6, P[z" :=
N]o Q[z" := N], so P[zL := N]Q[zF := N] LN P'[zt .= N'|Q'[sL := N'].
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- (WE.P)Q B PyK = Q] where P25 P/, Q 25 @', PoQ and d(Q) =
K, then by IH, P[ = N] & P’[;UL = N’], Qz" = N & Q'[z" =

N Moreover, (. P)Q)la" i= N] = Ow*P)la* i= NJQla" i= N] =
Ay P[zt := N|Q [ = N] here yX & fv(N') C fv(N). By lemma 18.6,
Pzl = N} o Q[zl := NJ] and by lemma 18.5 d(Q) = d(Q[z* = NJ)

so Ny . Plzl = N]Q[x = N| & Pzl .= N'|[y¥ = Q'[2F = N']] =
Py = Qlat = N

— IfAyK MyK "2 M’ where M "% M’ K = d(M) and VK € CN,y & tv(M
then by IH M[zL := N] % M'[z~ := N’). Moreover, (Ay™.MyX)[zL :
N] = W& Mzl = NjyK[zl := N] = \yK . M[zF = N]y& Where VK
Ly, y% ¢ fv(N') C fv(N). Since by lemma 18.5 d(M) = d(M [zl := N)),
AyE M[zE .= NjyX 2 M 2L = NY).

Oo>=ml \-’

Lemma 23. 1. Ifz" LN N, then N = z.
2. If \xl.P "2 N then one of the following holds:
— N = MzL.P" where P2 P'.
— P = P'zL where VL € Ly, 2" ¢ tv(P'), L = d(P') and P' "2 N.
3. If \ab' . P22 N then N = Aal.P’ where P22 P'.
4. If PQ 25 N, then one of the following holds:
~-N=PQ,PZP,Q25Q and P Q.
—P=XlP,N=Pt =qQ], P25 P,Q%Q, PoQ and
d(@Q) = L.

Proof. 1. By induction on the derivation z 2N,

2. By induction on the derivation \z*.P N,

3. By induction on the derivation Az’.P 28 N.

4. By induction on the derivation PQ 25N, O

Lemma 24. Let M, My, M € M.

1. If My 22 M 25 My, then there is M’ € M such that Mo ﬁ M’ & M
2. If My &= M 25 My, then there is M' € M such that My 25 M’ &= M;.

Proof. 1. By induction on M:
— Let r = 0On:

o If M = 2%, by lemma 23, M; = My = 2. Take M’ = 2.

o If NoPy "2 NP ™2 NP, where Ny 22 N 2 Ny, P, "2 P "2 Py and
N o P then, by IH, 3N, P’ such that Np &' N’ 2" Ny and P, "% p' "2
Pi. By lemma 21.3, Ny o P; and Nao Py, hence NoP» "2 N'P' 2" Ny P,

o If M2l .P)Q1 2 (M2l .P)Q "2 Pyl = Q4] where Azl .P "2 Aol Py,
P2 Py Q"2 Q™ Q. d(Q) = L, (AF.P)oQ and P o Q then,
by lemma 23, P "% Pi. By IH, 3P', Q' such that P, “% P’ 2" P, and
Q1 % Q' "2 Q,. By lemma 21.2, d(Q1) = d(Q2) = d(Q) = L. By
lemma 21.3, P; ¢ Q. Hence, (\z™.P,)Q; ey Pzt = Q']
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Moreover, since Py 2 P/, Q, "2 @, d(Q2) = L and by lemma 21.3,
Py ¢ Qa, then, by lemma 22.2, Po[zt 1= Q5] i Pzl = Q']

o If Pzl := Q1] 2 (ML P)Q ™% Pyfal = Qy] where P, 27 P "% Py,
Q1 "2 Q™ Q,, d(Q) = L and P o Q, then, by IH, 3P',Q’ where
P2 P Pyand Q1 "2 Q27 Qy. By lemma 21.2, d(Q1) = d(Qs) =
d(@) = L. By lemma 21.3, P; ¢ Q7 and P ¢ Q2. Hence, by lemma 22.2,
Pzt = Q] Py Pzl = Q] e Pzt = Q2.

o If \el Ny 22 Mgl N "2 Azl Ny where Ny 2% N "2 Ny, by IH, there is
N’ such that Ny 2 N’ 27 Ny, Hence, Az~ N, 200 \xL N' 20 A2l Ny,

o If My 2" \aL PxE "% M, where VL € Ly, 2% & fv(P), L = d(P) and
M,y %22 P2 M, then, by IH, there is M’ such that My “2 M’ "2 M.

o If My 22 Aol Pal "2 \aL.P', where P "% M, PzE "2 P’ and VL €
Ly, xl ¢ fv(P) and L = d(P). By lemma 23 there are two cases:

x* P = P2l and P "2 P”. By IH, there is M’ such that P" "2
M’ "2 My, By lemma 21.2, VL € Ly, 2z~ & fv(P") and L = d(P"),
hence, AzL. P’ = \zL Pzl "2 M P20 .

* P=XMEQ, Q"™ Q. Qoal and P = Q'[y~ := 2]. So we have
My 20 xal (\yE.Q)al P2 Aal Q' [yY = xL] where My 27 Ayl .Q =
Arl.Qyl := %] since VL € Ly, xL & tv(P).

By lemma 22.2, A\xl.Q[y* = %] Py el .Q'[y" = z%]. Hence by
IH, there is M’ such that M; 2 M 2% \zE Q' [y~ := =X].
— Let r =

o If M = 2", by lemma 23, M; = M, = z¥. Take M’ = .

o If NoPy 22 NP 22 Ny P, where No 22 N 22 Ny, P, 22 P22 P, and NoP,
then, by IH, 3N, P’ such that No 22 N’ £2 Ny and P, 22 P’ 22 P,. By
lemma 21.3, N; o P; and Na o Py. Hence, NoPy 23 N'P' 22 Ny ;.

o If Azl P)Q1 &2 (Al P)Q 28 Py[al := Q3] where Al P 23 X2l Py,
P2 P, o 2028 Q,,dQ) =L, PoQ and (A\zE.P) o Q, then,
by lemma 23, P 2% P;. By IH, 3P', Q' such that P, 22 P' 22 P, and
Q1 22 @ 2 Q,. By lemma 21.2, d(Q,) = d(Qs2) = d(Q) = L. By
lemma 21.3, P, o Qy. Hence, (\zL.P))Q 23 P'[zE := Q).

Moreover, since P 28 P Q- 28 @', d(Q2) = L and by lemma 21.3,
P50 Qs., then, by lemma 22.2, Py[zF := Q,] 23 P'[al = Q']

o If P[zl := Q] 2 (\zE.P)Q 3 Pyzt = Q3] where Py 2 pxs P,
Q1 2 Q% Q,,d(Q) =L and PoQ then by IH, 3P', Q" where P, 22
P 22 P, and Q1 A Q' & Q2. By lemma 21.2, d(Q;) = d(Q2) =
d(Q) = L. By lemma 21.3, P; ¢ Q and P ¢ Q2. Hence, by lemma 22.2,
Piat = Q] 2 Plat = Q12 Pyfal == Qo).

o If Aol Ny 22 Aol N 28 Aol N, where No 22 N 22 Ny, by IH, there is
N’ such that Ny 22 N’ 22 Ny. Hence, A\zE. Ny 23 MaL N’ 22 A2l Ny.
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2. First show by induction on M 2% M, (and using 1) that if Mo 20 M2
then there is M’ such that My 2% M’ 22 M. Then use this to show 2 by
induction on M 25 M. O

Proof (Of Theorem 2).

1. For r € {8, 4n}, by lemma 24.2, 2% is confluent. by lemma 21.1 and 21.2,

M 2% N iff M >* N. Then >* is confluent.
For r = h, since if M >* My and M >* My, My, = Ms, we take M’ = M.
2. If) is by definition of ~,.. Only if) is by induction on M; ~, M> using 1. O

B Proofs of section 3

Proof (Of lemma 2).

1. By definition.
2. By induction on U.
— If U =a (d(U) = @), nothing to prove.
—IfU=V —T (d(U) = @), nothing to prove.
— If U = w”, nothing to prove.
—IfU=U,NU; (dU) = d(Uy) = d(Us) = L), by TH we have four cases:
[ ] IfUl :UQZCUL thenU:wL.
o IfU; =Wt andUQ:eLl_IleTiwherekZ landV1<i<k, T; €T
then U = Uy (since w’ is a neutral).
o If Uy =wl and Uy :eLI_IleTiwherekz landV1<i<k T, €T
then U = U; (since w’ is a neutral).
e IfU; =erM_| T, and Uy = ey, I‘Ifi'g+1 T; where p,q > 1, V1 <i <
p+q T; € T then U = ef, M T,
-IfU =%,V (L=d{U) =ny = dV) =ny :: K), by IH we have two
cases:
o If V=wk U=¢,uf =uwl.
e If V =exM_, T, where p > 1 and V1 < ¢ < p, T; € T then
U=e,M_; T, wherep>1and V1 <i<p, T; € T.
3. (a) By induction on Uy E Us.
(b) By induction on Uy E Us.
(¢) By induction on K. We do the induction step. Let U; = €;U. By induc-
tion on €;U C Uy we obtain Uy = €;U’ and U C U’.
(d) same proof as in the previous item.
(e) By induction on Uy C Us:
— By ref, Uy = Us.
i M_ex(U; = T;) CU ULC U
M_ex(U; — T;) C Uy
wE IfU = Mi_,ex(U; — Tj) where ¢ > 1 and V1 < j < ¢, 31 <
1 < p such that UJ’» CU;,and T; C TJ’ then by IH, Uy = w¥ or Uy =
Mp_ex (U — Tj) where r > 1 and V1 < k < r, 31 < j < ¢ such
that U}/ C U]’v and Tj’ C 7). Hence, by tr, V1 < k <r, 31 <i<p
such that U} C U; and T; C T

.If U = w¥ then by (b), Uy =
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— By Mg, Uy = wk or Uy = I‘I?zleK(UJ'- — TJ’) where 1 < ¢ < p and
V1 < j <gq, 31 <i<psuch that Ui:UJ’- andTi:ij.
— Case M is by TH.
— Case — is trivial.
i M_jen (Ui — T;) C Us
M _ex(U; — T;) CeUs
wl and so Uy = wX or Uy, = I‘I?ZleL(UJ‘ — Tj) so gUy =
H?ZleK(UJ’- — T]') where ¢ > 1 and V1 < j < ¢, 31 < ¢ < p such
that UJ’- CU;and T; C TJ’
4. By Mg and since w” is a neutral.
5. By induction on U C U; M Uj.

— Let U{ﬂUéEU{I‘IUé'Byref’ Ui CUj and US C U3,

UCuU’ T UTCUiNUy

TEU U] .By IH, U"” = U{'NUY such that Uy C U]
and UY C Uj. Again by TH, U = U;MUs such that Uy C Uy’ and Uy C UY.
So by tr, U; C Uy and Uy C UJ.

— Let U nUET A0 By ref, Uj C U{ and Uj C Uj. Moreover

d(U) = d(U] N UL) = d(U!) then by Mg, U, NU C UL
_HU1EU{ & U C U,
UpNU, CU NUS
VLEV & Th'ETh
TV oT WO then Uy = U} = Vo — Ty and U = Uy M U; such
that Uy = l/]g = ,Vl — T and we are done.
UcCuinu.
— If ﬁffl{ﬂ;% then by IH U = U; M U, such that U; T U/ and
Us C US. So, eU = eU; MelUs and by C,, eU; C eU] and eUs C eUs.
6. By induction on I' T I M [.

— Let F{I‘IFQ’EF{HFQ"Bymf’ I'NCI{and Iy C I3,

C 1 //I: / /

F—Fpglfzﬂ}jlﬂFQ.BylH, I'" = I''MIY such that I} C I
and I'Y C I'y. Again by TH, I = I'y 1% such that Iy C Iy and Is C I
So by tr, It T I and Iy C T3.

U1 E Uy n . _ v /
Let L U0 (5 0) where I, (y" : Up) = I'{ N I},

o If Il =17, (y™: Uj) and I') = I}, (y™ : UY) such that Uy = USNUY,
then by 5, Uy = U; MUY such that U; C U4 and Uy C UY. Hence
I=1ynryand I, (y" : Uy) = It NIy where IN = I7, (y" : Uj)
and Ip = Iy, (y™ : Uy') such that It C I and I» C I by C..

o If y* & dom(I7y) then I' = I'y M Iy where I}, (y"™ : Us) = I}. Hence,
I (y™ : Uy) = Il NIy where Iy = Iy, (y" : Ur). By ref and C,,
INCIYand I, C T3

o If y" & dom([}) then similar to the above case. O

where K = i :: L then by IH, Us =

— Let

there is nothing to prove.

— Let

Proof (Of lemma 3). 1. By definition, if fv(M) = {zX*,... 2k} then env§, =
(zFi . wh), and by definition, for all i € {1,...,n}, d(w™) = L;. Moreover, if

7
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zt Uzl Ve envyy, then U =wl=V.

2. First show by induction on the derivation I C I that if I' T I'" and I, (z” :
U) is an environment, then I, (zL : U) C I/, (zL : U). Then use (¢r) and (C.).

3. Only if) By induction on the derivation I' C I"". If) By induction on n using
2.

4. Only if) By induction on the derivation (I" = U) C (I = U’). If) By Cyy.

5. Let fv(M) = {z¥',... zl»} and I' = (2 : U;),. By definition, envy, =
(zLi - wl),,. Because OK(I'), then for all i € {1,...,n}, d(U;) = L;. Hence, by
lemma 2.4 and 3, I' T envy;.

6. Let 11 € dom(I'"%) and z12 € dom(A~K), then zX#1 € dom(I") and
rK#l2 € dom(A), hence K :: Ly = K :: Ly and so Ly = Lo.

7.Let d(U) =L = K :: K'. By lemma 2:

— If U = w” then by lemma 2.3b, U’ = w” and by ref, UK = w& C kK =
U-K,

—IfU=e,M_, T, wherep>1and V1 <i<p, T; € T then by lemma 2.3c,
U' =erVand M_,T; C V. Hence, by C., U K = e/ M_| T, C eV =
U-K,

8. Let I' = (zF : Uy),, so by lemma 3.3, I'" = (X : U!), and V1 < i < n,
U; C U/. Because d(I") = K, then by definition V1 < ¢ < n, d(U;) = K. By
lemma 3.7, Vi € {1,...,n}, U7X C U7X and by lemma 3.3, X C "X,

9. Let It = (X" : Uy)p, I} and Iy = (zF : Ul),, Iy such that dom(I7) N
dom(I%). Then, by hypotheses, for all ¢ € {1,...,n}, d(U;) = L; = d(U}). Then
NNy = (xF Uy UD,, I, Ty is well defined. Moreover, for all % : U € I7,
d(U) = L and for all 2 : U € I}, d({U) = L and for all i € {1,...,n},
d(U; nU;) = d(Us) = Li = d(U;).

10. Let I' = (xJL’ : Uj)n then by hypothesis, for all j € {1,...,n}, d(U;) = L;
and e, I’ = (w;-::Lj :€;U;). So, forall j € {1,...,n},d(e;U;) =i d(U;) =i :: L;.
11. By lemma 3.3, I = (zX* : U;), and Iy = (zF : U}), and for all i €
{1,...,n}, U; C U!. By lemma 2.3a, for all i € {1,...,n}, d(U;) = d(U)).
Assume d(I1) = K then for all i € {1,...,n}, d(U;) =d(U}) = K and L; = K,
so d(I2) = K. Assume d(I%) > K then for all i € {1,...,n}, d(U;) = d(U}) =
K and L; » K, so d(I1) = K. Assume OK([1) then for all i € {1,...,n},
L; = d(U;) = d(U}), so OK(I%). Assume OK(I%) then for all i € {1,...,n},

Proof (Of theorem 3).

1. and 2. By lemma 4.2 and lemma 3.3, I'o I

If 2 (@O T T then, by hypothesis, T € T C U and d(T) = @ =
d(z@). So, OK((z? : T)) and z© € M.
- If . By definition, M is defined to range over M
M : (env%, F wd(D)
and OK(envy,) by lemma 3.1. By definition, wd) ¢ U. Let tv(M) =
{alr, ... xtn}, so envg, = (zFi - whi), and by lemma 18.4, V1 < i <

n, Li = d(M) = d(wd®0).
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: L.

—If Aj‘;‘.g’:(fp F[{J):% then by IH, M € M, T € U T, (2L : U) € Enw,
OK(I, (z : U)) and d(T, (z¥ : U)) = d(T) = d(M). By hypothesis,
T € T. Because I, (x* : U) € Env, then U € U. SoU — T € T C U.
Let I' = (2L : Uy),, then for all i € {1,...,n}, Ly = d(U;) = d(T) =
d(U — T) and d(U) = L = d(M). Hence, A\zX.M € M and OK(I"). So,
dA\zl . M) =d(M) =d(T) =d(U — T).

: L

i MA;LFA;TEF”; w% d_o)n;(f) then by IH, M € M, T € U, I’ € Emv,
OK(I') and d(I") = d(T") = d(M). By hypothesis, T € T. So d(T) =
© = d(M) =< L. By definition, w* € U. So, w* — T € T c U. So,
Ael M € M and d(\zt. M) = d(M) = d(T) = d(wt — T).

M1<F1|_U—>T> M2<F2}_U> F1<>F2

—If MMy (AT 1) then by TH, My, Ms €
M, In,Ine Env, U -T,U €U, OK(Fl), OK(FQ) and d(Fl) > d(U —
T) =d(My) and d(I%) = d(U) = d(Mz). By definition, I'1 M I is a type
environment. By hypothesis, ' € T C U. By lemma 3.9 and lemma 4.3,
OK(I71 M I3) and My o Ms. Because d(My) =d(U) =m0 =d(U - T) =
d(My), then MMy € M. We have trivially, d(I1 1 I7) = @. Moreover
A(M Ms) = d(My) = d(U — T) = d(T).

— If M: <I’]\; U<11>1|_ Ulj\ﬁ Uil)ﬂl_ Us) then by IH, M € M, I' € Env,
Up,Uz € U, OK(I') and d(I") = d(U;) = d(M) and d(I") = d(U2) =
d(M). So d(Uy) = d(M) = d(Usz). Hence, U; MUz € U. Moreover,
d(I") = d(Uh) = d(Uy N Uz) = d(M).

— If M_f;{ .<2£FFI—U6>;CU> then by IH, M € M, I' € Env, U € U, OK(I')
and d(I") = d(U) = d(M). Then, by definition, €,U € U. By definition,
ey’ € Env. Then, by lemma 19.1 and lemma 3.10, M € M and
OK(eiI'). Let I' = (xf’ 2 Uj)y so epl’ = (:E?::Lj : e,Uj)n and for all
j€{l,...,n}, because d(U;) = L; = d(U) then d(e,U;) =k :: d(U;) =
kuLj=k:dU)=dEU)=k:dM)="1d(M*F).

. / !

_ IfM~<FFU>M:<<;:gI>>E<F "U) then by IH, M € M. U € U
I' € Env, OK(I') and d(I') = d(U) = d(M). By lemma 3.4, I" C I,
hence, I" € Env. By lemma 3.11, OK(I"). Let I' = (zX* : U}),, so
V1 < i < n,d(U;) = L; = d(U). By lemma 3.3, I" = (z* : U}),, and
V1 <4 <mn, U; C U/ so by lemma 2.3a, d(U;) = d(U/). By lemma 3.4,
U C U’ so by lemma 2.3a, d(U) = d(U’). Hence V1 < i < n,d(U]) =
Li = d(U) = d(M).

3. By induction on M : (I' + U). Case K = © is trivial, consider K =i :: K'.
Let d(U) = K :: L. Since d(U) = K, UK is well defined. Since by 1.
d(I') = d(U) = d(M), M—% and I'"X are well defined too.

—-K . w L
If M (oot F SAany” By w, M™% : (envy,_x F w™).
— My is by IH.
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M :('FU)
Mti: <€iF FEiU>

d(U) = K" and by IH, M~5" . (P=X" - U=K") 50 by e and lemma 19.4,

(M*H=E (&, ")~ K I (g;U)~K).
7IfM:<FI—U> (reoyc{I’+u

M (I U

and U C U’. By lemma 2.3a, d(U) =d(U’) = K. By IH, M~ . (=K -

U~X). Hence by lemma 3.11, lemma 3.7, lemma 3.8 and =, MK :

(M=K |- y'=K), O

- If

. Since d(g;U) = ¢ = K' : L, d(U) = K' :: L, so

then by lemma 3.4, I" C I

Proof (Of remark 1).

1. Let M : (IN F Uy) and M : (I'x F Us). By lemma 4.2, dom([}) = fv(M) =
dom(Iy). Let Iy = (% : Vi), and Iy = (2% : V/),,. Then, by lemma 3.2,
Vi<i<n,dV;)=d(V/) =L, By Ng, V;MV/ CV; and V; NV C V.
Hence, by lemma 3.3, I'1 115 E I and I1 NIy E I3 and by C and Cyy,
M:(Flﬂpg}_U1> andMZ<F1|_|F2|_U2>. Finally, by|_|], MZ<F1|_|F2|_
Uy M Us).

2. By lemma 2, either U = wl so by w, ¥ : (2L : wL) F wl).Or U =1¥_ e, T;
where p > 1, and V1 <i < p, T; € T. Let 1 <i < p.By ax, 29 : (2 : T}) F
T;), hence by e, x& : ((zL : e, T;) F e T;). Now, by 1y, ol : ((zL : U) F U).
O

C Proofs of section 4

Proof (Of lemma 5). 1. By induction on the derivation L : (I' + U). We have
fives cases:

— If (@@ T FT) then it is done using (ref).

- If o (@ wh) F Wl then it is done using (ref).

oL (- Uy) ol (T - Uy)
— If CByIH, I' =z : V),V CU d
2L (T F U, NUs) v (2 ), V.C Ui an
V C Us, then by rule M, V C Uy NUs.
2L (M- U)

— If — . Then by IH, I" = (2% : V dV C el =
x’L::L . <€1F|_EZU> en y ’ (x ) an = U7 SO e
(x¥L 12, V) and by C., &V C &U,

oE (IR U (I U C(TFU)
— If = . By I A4 rcrI’ 'c
2E (T D) y lemma 3.4, I' C and U'C U
and, by IH, I'" = (z¥ : V') and V' C U’. Then, by lemma 3.3, I' = (2L : V),
V EV’ and, by rule tr, VE U.

2. By induction on the derivation AzZ.M : (I' - U). We have five cases:

— If - then it is done.
Azt M : (env§ o o, F wdak. M)y
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. L.
/\a]v\/i]\;[" fF }_[{]:T;> (d(U — T') = @) then it is done.
AeE M (D UL Aeb M : (T Us)

)\.IIL.M : <F F U1 M U2>
K. By IH, we have four cases:
o If Uy = Uy = w¥, then Uy MUy = w¥
e If Uy = wi, Uy = M_jex(Vi — T;) where p > 1 and V1 < i < p,

M : (I zt : ex Vi F exT;), then Uy MUy = Uy (WX is a neutral element).
e If Uy = wi Uy =M_ex(Vi — T;) where p > 1 and V1 < i < p,

M (I, zt eKV FexT;), then Uy MU, = Uy (wX is a neutral element).
o If U, = I‘I,’i’zleK(Vi —T;), Uy = T2 e (Vi — T;) (hence Uy MU, =

Mt e (Vi — T;)) where p,q > 1, V1 <i<p+q, M : ([al : exV;

exT;), we are done.

Al M (D FU)

)\(Ei::L.MJri : <EZF "EZU>
have two cases:

o If U = wX' then ;U = wk.

e If U = ﬂ? 1ex'(V; — Tj), where p > 1 and for all 1 < j < p, M :
Izt - eV ex:Ty). So &;U = 1M_ ex(V; — Tj) and by e, for all
1<j<p, MT: (eI a%L eV, exTy).
el M (DU (PFUYC I HUY

<)\xL.Z\>4:<<F’I— (>]/> < > By lemma 3.4, I C I' and
U C U’ and by lemma 2.3a d(U) = d(U’) = K. By IH, we have two cases:
e If U = w¥, then, by lemma 2.3b, U’ = w¥.
o IfU=""_ex(Vi = T;), where p>1and for all 1 <i <p M : (I',z*
ex Vi exT;). By lemma 2.3e:
* Either U’ = w&
« Or U = N{_jex (V] — T/), where ¢ > 1 and V1 < i < ¢, 31 <
Ji < psuch that V/ CT Vj, and Tj, C T,. Let 1 < i < g. Since, by
lemma 3.4, (I z : exVj, FexT,) C (I, xl 1 ex V!  exT]), then
M (I zt :ex V! - exT!).

- If

- If

then d(U; MUs) = d(Ur) = d(Uz) =

- If

d(&U) =i = dU) =i K' = K. By IH, we

— Let

3. Similar as the proof of 2.
4. By induction on the derivation M xL : (I 2% : U - T). We have two cases:

(

M:A(TFV —=T) zF: (2L :U)FV) To(2zF:0)
Mzl ([ (2L : U) - T)
)SlnceV—>TEU—>T we have M : (U —1T).
fLeth (I (2L U RV (D (2R U VY E ,(xL:U)FV>(b

M 2L (T, (zF - U) F V) Y
lemma 3). By lemma 3, T C IV, U C U’ and V' C V. By IH, M : (I"
U—-VYandby C, M :(I'FU — V).

— Let (where, by 1. U C

Proof (Of lemma 6). By lemma 3.2, M,N € M, d(N) = d(U), OK(A) and
OK(I,z¥ : U),s0 d(N) = d(U) = L. By lemma 3.9, OK(I'T1A). By lemma 18.5,
M(z" := N] € M. By lemma 4.2, z* € fv(M).

We prove the lemma by induction on the derivation M : (I',zX : U F V).
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_ : O[O N — N -
I o Ga ey 4N (AR D), then a®(a® = N = N+ (AFT).

- If M (e (oL o) F oA and N : (A F w%) then by w,
B A(CTINC0 S

Mzt = NJ : <6’IL’UJ°\J4[IL::N] F wd(M[zL’:ND) By lemma 18.5 d(M|[z% =

N]) = d(M). Since x* € fv(M) (and so fv(M[z" := N]) = (fv(M) \ {z*}) U

fv(N)), by C, Mzt == N] : ( NAF wdD),

. S MU M)\ ()
M : ([ x~: U RT
)\yK.]\<4 ’ T xg,:yU I—I{J’ - ;1> where y% ¢ fv(N)u{zl}. So (\y® . M)[zF =
N] = A& .M[zF := NJ]. By lemma 18.3, M o N. By IH, M[zl = N] :
(rna,y%: [i’ FT). By e ()\yK.M)[aiL =N]:(I'MARU = T).
M: (" :UFT dom(I,z* : U
<)\;JK.M:<F,3>:L:yUfwK(—>7T> ) where y* ¢ fv(N) U {z%}.
So (AWK .M)[zF := N] = \yX.M[z* := N]. By lemma 18.3, M o N. By
lemma 4.2, fv(N) = dom(A4), so y¥ ¢ dom(A). By IH, M[z* := N] :
(FMAFRT). By =%, OyX.M)[zE =N} (I'MAFWE - T).
M1 : <F1,.Z‘LZU1 "V—>T> MQ : <F2,J}LZU2}_V> F1<>F2
M1M2 : <F1HF2,J?L : U1|_|U2 FT>
where xl € fv(M;) Nfv(My), N : (A F U; M Us). By lemma 18.3, M; o N
and Moo N.By Mg and C, N : (AF Uy) and N : (A F Us). Now use IH and
— g (using the fact that I3 M Ao I3 M A, by lemma 4.2 and lemma 18.6).
The cases 1 € fv(My) \ fv(My) or ol € fv(My) \ fv(M;) are similar.
B IfM:<F,a?L:U|—U1> M : ([ zt U U)
M:(F,LJ:L:UI—Ull_IU2>
M:([z": Uk
et e (efij“L :iiU‘I/—>eiV> and N : (A+€U). By lemma 3.2, d(M) =
d(e;U) = i :: A(U). By lemma 3.3, N=¢ : (A~ |- U). By lemma 19.7 and
lemma 19.2, (N~H)*" = N and Mo N~ By IH, Mzl := N9 . (I'm A~ -
V). By e and lemma 19.5, M+ i[z*L .= N]: (e, M A+ & V).
M (I zb U=V (D2l U VY CE(L 2l i URV)
M:([zt :UERV)
By lemma 3, dom(I') = dom(I”), I’ C I'", U C U’ and V' C V. Hence
N : (A U') and, by IH, M[z¥ := N] : (I" M A V). It is easy to
show that 'MA C I"MA. Hence, (I"MAFV)YC(I'MAFE V) and
Mzt == N]: (CMAF V). O

— Let

— Let

— Let (by lemma 4.2)

use IH and M;.

- L

— Let

(lemma 3).

The next lemma is needed in the proofs.
Lemma 25. 1. If fv(N) C fv(M), then envM [ny= env.

9. If OK(I}), OK(I3), fv(M) C dom(I}) and fv(N) C dom(Is), then (It M
o) TunE (I Ta) (L2 ).

3. & (I [m) = (€1 [nr+s

Proof. 1. Easy. 2. First, note that OK(I M I2) by lemma 3.9, OK(I7 [u),

OK(FQ FN) and dom((F1 |_|F2) rMN) = fV(MN) = fV(M) UfV(N) = dom(Fl v

) Udom(Is [n) = dom((I7 [a) M (I [n)). Now, we show by cases that if

(l‘L : Ul) S (Fl HFQ) vy and (J?L : U2) S (Fl fM) I (FQ rN) then U; C Us:
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— If ¥ € fv(M) N fv(N) then (2L : U}) € Iy, (2 : U}) € Iy and Uy =
Uunuy =Us,.
— If 2l € fv(M) \ fv(N) then
o If 2L € dom(I3) then (2L : Uy) € I, (2l : U]) € Iy and Uy = UjNU, C
Us.
o If 21 ¢ dom(I%) then (2% : Uy) € Iy and Uy = Us.
— If 2% € fv(N) \ fv(M) then
o If 2L € dom(I") then (2L : U]) € I, (2L : Up) € Iy and Uy = UjNU, £
Us.
o If z¥ ¢ dom(I) then z¥ : Uy € Iy and Uy = Us.
3. Let I' = (x]L’ 2 Uj)p and let fv(M) = {y*, ...,y } where m < n and
V1l < k < m 31 < j < n such that y,f’“ = JLJ So I' [p= (y,f’“ : Uk)m
and & (I [pm) = (y,iC"K"' : €Uk)m. Since g;I" = (x;::Lj 1 €Uj)n, fv(MTY) =
{yi”KH...,yf,;K""} and V1 < k < m 31 < j < n such that y,i”K’“ = :ré”Lj
then (&) [aei= (Y™ : Up)m. 0

The next two theorems are needed in the proof of subject reduction.

Theorem 7. If M : (I' - U) and M >g N, then N : (" [yFU).
Proof. By induction on the derivation M : (I' - U).

— Rule w follows by theorem 1.2 and lemma 25.1.
M (T, (2" : T
(L (@ : U) ) then N = Az.N’ and M >3 N’. By IH, N’ :

— If .
NI M (TFU=T)
(T, (=L 2 U)) [nF T). If 2L € fv(N') then N’ : (I v (v gty (L U) F
T) and by —1, Ae™ N": (I' [\zo n/F U — T). Else N’ : (I" er(N’)\{;L'L}F T)
so by =7, Az .N" : (I [ypr nF wl — T) and since by lemma 2.4, U C wl,
by C, AeL. N : (T Iypr ok U — TV
M:(I'+T) zt ¢ dom(I) . ) I
- If LA (TF Wl =T then N = Az"N’ and M g N’. Since =" ¢
fv(M), by theorem 1.2, 2 & fv(N’). By IH, N" : (I" |
—h Al N (I [y ok b — T).
-~ IfMl : <F1}_U—>T> M2<F2|_U> F1<>F2
M1 M2 : <F1|_|F2}_T>
Ny and N = N; M, and case My >g No and N = M; N, are easy. Let
My = Azl M| and N = Mj[zL := M,]. By lemma 4.3 and lemma 18.3,
Mj o M. If 2 € FV(M]) then by lemma 5.2, M{ : (I,z% : U + T). By
lemma 6, Mj[z" := My : (InMIy = T). If oL ¢ FV(M]) then by lemma 5.3,
Mzt .= My) = M| : (I = T) and by C, N : (I} N I3) [nF T).
— Case My is by IH.
M:(I'tU )
— If T (iif C e>iU> and M >3 N, then by lemma 19.10, there is P € M
such that P™ = N and M >3 P. By IH, P : (I" [pF U) and by e and
lemma 25.3, N : ((e;I") [nF €;U).

fvvy eyt T) 0 by

. Using lemma 25.2, case M>3
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M:(I'+U) (THUYC({I'HUY)

- M :(I"FU")

(I Tk U).

Theorem 8. If M : (I'+-U) and M >, N, then N : (I' = U).
Proof. By induction on the derivation M : (I F U).
— If then by lemma 1.1, d(M) = d(N) and fv(M
M : (env%, F wd(D) (M) ) (M)
fv(N) and by w, N : {env¥, F wd(M)>.

I M : (T, (zL:U)FT)
NI M (ITFU=T)
e M = Nzl and so by lemma 5.4, N : (' FU — T).

then we have two cases:

then by IH, lemma 3.4 and C, N :

O

e N =Xt N and M >, N'. By IH, N’ : (I, (2% : U) + T) and by —,

N:(I'FU—-T).
,fM:<FFT> ' & dom(I)
B TNL M (T Fwl = T)
(I'=T) and by —%, N : (' Fwl = T).
_IfM1<F1|_U—>T> M2<F2}_U> F1<>F2

M1M22<F1|_|F2|_T>

, then we have two cases:

then N = Az.N" and M 1>, N’. By IH, N’

o My |>an and N = NiMs. By IH N7 <F1 FU — T> and by —g,

NZ<F1|_|F2FT>.

o My >, Ny and N = M{N,. By IH Ny : (I - U) and by —g, N :

(I N Iy FT).
— Case Ny is by IH and M.
M:{(I'FU )
— If T <<eiF C e>iU> then by lemma 19.10, there is P € M such that P™*
N and M >, P. By IH, P: (I'- U) and by e, N : (&' - &U).
g MCRU) (rRU SR

M (I"FU)
(I U").

The next auxiliary lemma is needed in proofs.
Lemma 26. Leti € {1,2} and M : (I' - U). We have:

1. If (2% : Uy) € T and (y¥ : Uy) € T, then:
(a) If (zL : Uy) # (y5 : Ua), then ot # y¥.
(b) If x =y, then L = K and Uy = Us.

then by IH, lemma 3.4 and C, NV :

O

2. If (2 Uy) € I' and (y¥ : Uy) € T and (2% : Uy) # (y¥ : Ua), thenx £y

and zt # yX.

Proof. 1. If 2% = YX then by definition U; = Uy, so (2% : Uy) = (y¥ : Us). By
lemma 4.2, ¥, y¥ € fv(M). By lemma 18.1, M o M. So, if x = y then L = K

and by definition U; = Us. 2. Corollary of 1.

O

Proof (Of theorem 4). Proofs are by induction on derivations using theorem 7

and theorem 8.

O
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D Proofs for section 5

Proof (Of lemma 7). By lemma 3.2, M [zt := N] € M, so by definition, M, N €
M and M o N and d(N) = L. By induction on the derivation M[z* := N] :
(I'FU).

- If then M = 29 and N = 4y9. By ax, 29 : ((z© : T) -
v (2 TP T) e
T).
- If then by lemma 18.5, d(M) =

Mzl := NJ: <env§*\’4[mL::N] - wd(M[aE:=N]))
L= . : e Lol - d(m) :
d(M|x L];f]) By w, M <em}fv(M)\{xL}’($ W Fw ) and N

and because fv(M[zl = N]) = (fv(M) \ {zF}) U fv(N),
Menvy = envﬁ[rL::N].

(envy F w

R 1)\ (ot}
i Mzt == N]: ([, (y®* : W) - T)
My E Mzl :=N|:(I'EW = T)
and 3 I, I'; type environments such that M : (I, 2% : V= T), N : (I - V)
and I,y® : W = Il M I,. By lemma 4.2, fv(N) = dom(I%) and fv(M) =
dom(I')U{y®}. Since y¥ € fv(M) and y¥ & fv(N), It = A1, y* : W. Hence
M : (A, y® Wzt VET). By rule —7, Ay .M : (A, 2l - VEW — T).
Finally I' = A, M 5.
I Mzt := N : (T +T) y¥ ¢ dom(I)
MK Mzl := N]: ('t wE = T)
3V type and 3 Iy, I, type environments such that M : (I, 2" : V = T),
N : (I = V)yand I’ = I M 1. Since y& # ol \y® M : (I, 2% . V - w& —
T).
IfMl[xL :N} : <F1 |_W—>T> MQ[(EL :N} : <F2 |_W> F1<>F2
Mzl := N] Ma|zl := N]: (In NIy = T)
M7 M>, then we have three cases:

o If 2% € fv(My) Nfv(My) then by TH, 3 Vi, Vs types and 3 Ay, Ay, V1, Vs
type environments such that M; : (Ay, (2% : Vi) = W — T), M, :
<V1,(£CL : ‘/2) = W>, N : <A2 F V1>, N : <VQ = V2>, Fl = Al |_|A2 and
I5 =V MV, Because I ¢ I3, then Ay oV and Ay ¢ Vo and because
Ay, (2 2 Vi) and Vy, (2l 1 V3) are type environments, by lemma 26,
(AL, (x5 2 V1)) o (V1, (¥ : V5)). Then, by rules My and —g, MM, :
(A1 MVy, (zF : ViNVa) B T) and by 11}, N : (A3MVy F ViMV3). Finally,
Flﬂrg = (A1|_|A2)|_|(V1|_|V2).

o If 2L € fv(M;) \ fv(Ms) then by TH, 3 V types and 3 Ay, A; type
environments such that My : (A, (zL : V) F W — T), N : (A - V)
and It = A1 M As. Since I ¢ Ih, Ay oI5 and since [ M I5 is a type
environment, by lemma 26, (Ay, (X : V)) o Iy. By —g, MMy : (AT
FQ,(LI}LZV) |_T> and Fl |_|F2 = (All_lAg)ﬂfg.

o If 2¥ € fv(Ms) \ fv(M;) then by TH, 3 V types and 3 Aq, Ay type
environments such that M : (Aq, (zF: V)W), N : (A F V) and Iy =
A1MA,. Since 101y, I10A ) and since Iy 15 is a type environment, by

where y& & fv(N) U {zF}. By IH, 3V

where y* ¢ fv(N) U {zX}. By IH,

where M =
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lemma 26, (A, (2L : V) o I. By —g, Mi My : (It N Ay, (zL: V) = T)

andFll_Ifngll_l(AlﬂAg).

Mzt := N|: (' U;) M[zt = N]: (I'FUs)

Mzt := N|:(I'F Uy NUs)
and 3 Ay, Ay, V1, Vs type environments such that M : (A, zl : Vi - Uy),
M:<V171‘L : ‘/2 FU2>,N2<A2F‘/1>,NZ<VQF‘/2>7F:A1|_|A2 and
I' = V1M Vs Then, by rule My, M : (A MV, 2t : ViNVa U NUs) and
N : <A2 1 Vz F Vl M V2> Finally, I'= (Al M AQ) M (Vl M VQ)

Mzt := N]: (" +U)

— If ML = N : (& F &,0) then by IH, 3 V type and 3 I, I type
environments such that M : (I,z% : V- U), N : (I, - V) and ' =
Fl |_|F2. So by e, MJrj : <EjF1,Ij::L : EjV = EjU>, N <EjF2 F EjV> and
EjF:Ejpl |_|§jF2.

MR =N (UEU)E(RD)

Mzt := N|: (' U)
and U' C U. By IH, 3 V type and 3 I, 5 type environments such that
M ('}, 2L . V= U"), N: (I'y - V) and I" = I'| N I'. Then by lemma 2.6,
IF'=nnNlyand It I and I C I Soby T, M : (I',zX : V = U) and
N : (I F V). O

— Let

. By IH, 3 V4, V5 types

then by lemma 3.3, ' C I’

The next lemma is basic for the proof of subject expansion for (.

Lemma 27. If M[z% == N] : (I' F U), d{U) = K and L = d(M), U
fv((AxL.M)N), then (AL M)N : (I'TY - U).

Proof. By lemma 3.2, M|zl := N] € M, s0 M, N € M and M ¢ N and d(N) =
L. By definition (A\zX.M)N € M. By lemma 18.5 and theorem 3.2, d(I") =
d(U) = K = d(Mzl := N]) = d(M) = d((Az*.M)N). So L = K and there
exists K’ such that L = K :: K'. We have two cases:

— If o € fv(M), then, by lemma 7, 3 V type and 3 I}, I type environments
such that M : (I, 2L : V= U), N : (Ix + V) and I = I MI%. By lemma 3.2,
OK(I) and OK(I3). By lemma 3.9, OK(I} M I3). So, it is easy to prove,
using lemma 3.1, that OK(I'1%). By lemma 4.3, I, z% : V o Iy, s0 I o I},
By lemma 3.2, d(I7) = d(M) =d(U) = K and L = d(N) = d(V) = d(I2).
By lemma 2, we have two cases :

o If U = wX then by lemma 4.1, A\zL.M)N : ('Y + U).

e IfU =exM_, T; where p > 1 and V1 < i < p, T; € T, then by
theorem 3.3, M~X . (I K 2K . VK - P_T;). ByC,V1<i<p,
MK <F1_K,IKI VK ET), soby —, \eE MK <F1_K FV—K -
T;). Again by theorem 3.3, N~K : (F{K F V—K) and since Iy o Iy, by
lemma 3.6, ITX o I K so by —p, V1 <i<p O M- E)N-K .
(I7* Ny X+ T;). Finally by My and e, (\z%.M)N : (I 1 I + U), so
(AL M)N : (T4 F U).

— If 2l & fv(M), then M : (I' - U). By lemma 3.2, OK(I'). So, it is easy to
prove, using lemma 3.1, that OK(I'T¥). By lemma 2, we have two cases :
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o If U = wX then by lemma 4.1, \zL. M)N : ('Y - U).

e If U =exM_, T; where p > 1 and V1 < i < p, T; € T, then by
theorem 3.3, M=K . ('K - _T;). By C,V1<i<p M K:
(Fr—% F T;). Using lemma 19 and by induction on K, we can prove
that X" ¢ fv(M~5). So by lemma 4.2, 2" ¢ dom(I"¥). So by —/,
MK MK (0K - WK - T, By (w), N°K (env_x F WK’
and N : (env¥ F w%). By theorem 3.2, d(env¥) = d(N) = L. By
lemma 4.3, I" o env%. By lemma 3.6, I' "X o envy_x. By —p, V1 <
1 < p, (/\xKI.M_K)N_K (=K envy,_x F T;). Finally by My and e,
Azl M)N : (' Menv, FU), so Azl M)N - ('Y = U). O

Next, we give the main block for the proof of subject expansion for S.
Theorem 9. If N : (I'+U) and M > N, then M : (I'TM - U).

Proof. By induction on the derivation N : (I" - U).

_ %) — K o —
B ooy 4 MPpa?, then M = (Aym.M)M; and 27 =

M [y¥ := M,)]. Because M € M then K = d(M;). By lemma 27, M : {(z9 :
)™ 1),
- If and M > N, then since by theorem 1.2, fv(N) C
N : (envg, F wd)
fv(M) and d(M) = d(N), (env$)T™ = envy,. By w, M : (env§, + wd(M)>.
Hence, M : ((env))1™ I wd(N)>.
I N[zt :UFT)
MLUN:(I'FU—T)

o If M = \z.M' where M’ >3 N, then by TH, M" : (T, (% : U))1™ + T).
Since by theorem 1.2 and lemma 4.2, 21 € fv(N) C fv(M'), then we have
(I, (« - U))TfV(M/) — FTfV(M’)\{xL}’(xL . U) and vty —
"M Hence, M’ : (I'A*"M' (gL . U) - T) and finally, by —7,
Ark M (TPt M U S T,

o If M = (\yX.My)My where y® & fv(My) and Ax™.N = M, [y¥ := M),
then, because M € M then K > d(M;) and by lemma 27, Because
M [yX == Ms] : (' U — T), we have (Ay.M;) M, : (FT(AyK'Ml)M2 F
U—T).

N A(I'=T) zF & dom(I)
ML N (IT'Fwl —T)
N1<F1|_U—>T> N2<F2|_U> F1<>F2
N1 N2 : <F17|F2|_T>

and M >g Az¥. N, then we have two cases:

- If

and M >g N then similar to the above case.

- If

and M >g NiNa, we have

three cases:

o M = M1N2 where M1|>5N1 and M1<>N2. By IH, M1 : <F1TM1 FU — T>
It is easy to show that (I'y M ) TMiN2 = 1M 1,0 Since My o No, by
lemma 4.3, It 1M1 o I, hence use —g.

o M = N M, where My I>g N». Similar to the above case.
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o If M = (Axl.M;)M; and Ny Ny = M [zl := Ms] then, because M € M
then L = d(M;) and by lemma 27, (AzZ. My )My : (IyNIy) 10" M1)Ma
T).

N:><FFU1> N ([FUs)
N (IF U, NUs)
N:([FU)
N+i: <€jF|—EjU>

M = P% and P>g N. By IH, P : (I'tY - U) and by e, M : ((e;")TM +
EjU>.
IRl NVl o A =R U
N (I"FU"
and U C U’. It is easy to show that I"T™ C I''™ and hence by lemma 3.4,
(MM - U) T (1™ - U'). By TH, MM : (I' - U). Hence, by Ty, we have
M ("M FUY). O

- If

and M >3 N then use IH.

- If

then by lemma 19.9 then there is P € M such that

and M>gN.Bylemma 3.4, [V C I

Proof (Of theorem 5). By induction on the length of the derivation M >5 N
using theorem 9 and the fact that if fv(P) C fv(Q), then (I'"7)19 =119, O

E Proofs of section 6

Proof (Of lemma 9). 1. and 2. are easy.

3. If M>* N*t where N € X, then, by lemma 19.9, M = P*% such that P € M
and P>, N. As X is r-saturated, P € X and so PT* = M € X+

4. Let M € X ~» Y and N>> M. If P € X such that Po N, then by lemma 19.8,
P o M. So, by definition, MP € ). Because Y C M, then MP € M. Hence,
d(M) < d(P). By lemma 1, d(M) = d(N). So NP € M and NP >* MP.
Because M P € )Y and ) is r-saturated, then NP € ). Hence, N € X ~» ).

5. Let M € (X ~ V)" then M = N*  and N € X ~ ). Let P € X1
such that M ¢ P. Then P = Q%% such that Q € X. Because M ¢ P then by
lemma 19.2, N ¢ Q. So NQ € Y. Because Y C M then NQ € M. Because
(NQ)tt = NtiQT = MP then MP € Yt Hence, M € X% ~ YT0,

6. Let M € Xt ~» Y+ such that X+ Y17, By hypothesis, there exists P € X+
such that M o P. Then M P € Y1¢. Hence M P = Q%* such that Q € Y. Because
Y C M then Q € M and by lemma 19.1, M P € M. Hence by definition M € M
and by lemma 19.1, d(M) = d(Q*") =i :: d(Q). So by lemma 19.7, there exists
My € M such that M = Mf” Let Ny € X such that M; ¢ Ny. By definition
N € X+ and by lemma 19.2, M o N;". So, MN;" € Y+, So MN;"* = M'+
such that M’ € ). Because Y C M then M’ € M. By lemma 19.1, MNfri e M.
So M;" o N and d(M;"") < d(N;™). By lemma 19.1 and lemma 19.2, M; o N;
and d(M;) < d(Ny). So MiN; € M and (M;N;)t" = M;""N{* € Y*i. Hence
MNy € Y. Thus, M; € X ~ Y and M = M;"" € (X ~ V)T O

Proof (Of lemma 10). 1.1a . By induction on U using lemma 9 and lemma 1.
1.1b. We prove Vz € V1, N C T(U) € M’ by induction on U. Case U = a:
by definition. Case U = wL: We have Vx € Vl,./\/'xL C ML C MY Case U =
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Uy MUy (resp. U = €;V): use IH since d(Uy) = d(Us) (resp. d(U) =i = d(V),
Vo € Vi, WE)T = NEEK and (ME)T = M#K) Case U = V. — T: by
definition, K = d(V) = d(T) = ©.

— Letx € Vi, Ny, ..., Ny such that V1 < i < k, d(N;) = @ and o{z?, Ny, ..., Ny}
and let N € Z(V) such that (z ®N1...Nk)<>N. By IH, d(N) = K = @. Again,
by TH, 22Ny...NeN € Z(T). Thus 2?Ny... Ny € Z(V — T).

— Let M € Z(V — T). Let © € V; such that VL,z" ¢ fv(M). By IH, =&
Z(V), then M2X € Z(T) and, by IH, d(Mz¥) = @. Thus d(M) = @.

2. By induction of the derivation U C V. O

L

Proof (Of lemma 11). By induction on the derivation M : ((z;” : Uj)n = U).

—If 20 (@2 T FT) and N € Z(T), then z9[z? := N] = N € Z(T).

- If M (e, o0 Let envy, = (Z‘JL] :Uj)n s0 fv(M) = {21, ..., xkn}.
Because, by lemma 3.2, for all j € {1,...,n}, d(U;) = L; by lemma 10.1,
Z(U;) € Mti, hence, d(N;) = L;. Because M[(xJLJ = Nj),] € M, then
o{M}YU{N; /i€ {1,...,n}}. Then, by lemma 18.5, d(M[(xJLJ = N;)]) =
d(M) and M[(z}7 = Ny),] € MIOD = 7(u,d0D),

g M (7 Uj)n, (2% V) F T)

MK M : <(ij1 U PV — T
Z(V) such that ()\ZL’KM)[(SL'jLJ := Nj),] ¢ N. By lemma 3.2, d(V) = K. We
have, (Azf. )[(ﬁ-f = Nj)ul = XK. M[(z}’ := Nj)p], where V1 < j <
n,y¥ & fv(N;) U {ac 1. Since N € Z(V) and by lemma 10.1, Z(V) C MX|
d(N) = K. By lemma 18.3 and lemma 18.5, M[( Li= Nj)n] o N and
M((z} = Nj)u][le¥ = N] = M[(z}’ := Nj)n,2" = N] € M. Hence

(K M|z = N;),, })NeMand (A M (] :NJ) DN, M[(z} =

K

Nj)ns (@5 := N)|. By TH, M[(z}" = N) (@ = N)| € I(T). Slnce, by

1 <j<mn N €I(Uj) and N €

lemma 10.1 Z(T') is r-saturated, then (Az".M|[(z JL = N;),])N € Z(T) and
so MK M(z] = Nj)u] € Z(V) ~ I(T) = (V —T).
M: (x5 U, FT) o5 ¢ dom((z> : U;),)

—If J I vl < j<n, N; eZ(U)
B M <(zf’ :Uj)p Fwk —=T) ! !

and N € Z(w¥) such that ()\:EKM)[(:EJLJ := Nj)n]oN. By lemma 4.2, 2 ¢
fv(M). We have, (\e™.M)[(z]” := Nj)u] = Aa™ . M[(z]? = N;),], where
V1 < j < n,2f & fv(N )U{x 7}, Since N € Z(w®) and by lemma 10.1,
I(w®) = MX then d(N) = K. By lemma 18.3 and lemma 18.5, M[(x]L] =
Nj)al o N and M[(z]’ = Nj)u]eX := N] = M[(z}’ := Nj),a¥

N] = M[(z}’ = N;),] € M. Hence, (AxK.M[(xfjJ:: N))N € M
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and (\e®.M[(z]’ = Nj)u))N &, M[(z}’ = Nj)n, (2" := N)]. By IH,
M[(x]L] = Nj)»] € Z(T). Since, by lemma 10.1 Z(T') is r-saturated, then
(AxE. [(x]LJ := N;)n])N € Z(T') and so )\J:K.M[(xfj = Nj)n) € Z(wk) ~
(T ) I(w" — T).
LMD EV ST My (IbEV) Dol
M, M, : (I (15 F T)

Vi)m, Ia = (xJLJ 2UDn, (zJS] : W;)p such that {yfr) ... cyEKmangzi ,zgp} =
0and Iy N Ty = (27 - Uy U, (557 Vidms (257 2 W)y
Let V1 <j<n,PeZ(U I_IU') Vlgjgm,Qj €Z(V;)andV 1<y <
p, R; € Z(W;). So, for all j e {1 ,n}, P; € Z(Uj) and P; € Z(U). By

where It = (xJLJ 2Uj)ns (ZJJKJ :

hypothesis, (M1 Mo)[(z}” = P;)n, ( f]‘ = Qj)m, (257 = R;),] = AB € M
where using lemma 42 A = M[(z; Lo Pj)n,(y;(j = Qj)m] € M and
B = M(z}’ := Py, (2 := R;),] € M and Ao B.

ByIH, AcZ(V) ~ I( ) and B € I(V) Hence, AB € Z(T).

M {((z) U b Vi) M ((z U b Vo)

}_

M {((z)7 Uy Vi Va)
Z(V;) and M[(x? = Nj)n] € Z(V2). Hence, M[(z}’ := N;),] € Z(V1i 1 Va).
M : {(xg"* : Up)n - U)
MH (@ 22Uk - 2U)
Z(Ux)*. Then V 1 < k < n, Ny = P,/ where P, € Z(Uy). By lemma 10.1b,
for all k € {1,...,n}, P, € M%*. By the definition of the substitution,
AMYI} U{Ny / k € {1,...,n}}. By lemma 19.3, o{M} U {P; / k €
{1,...,n}}. By lemma 18.5, M[(xék = Py)n] € M. By IH, M[( =
Py)s) € Z(T). Hence, by lemma 19, MH[(z) " = Ny),] = (M|[(x ék =
Po)))H e Z(U)Y = I(g;U).

M:d ¢C P .
— Let ————— where ¢’ = ((ij7

TR : Uj)n F U). By lemma 3, we have
P = <(3st’ : U]’)n F U’), where for every 1 < j <n, U; C U; and U' C U.
By lemma 10.2, N; € Z(U;), then, by IH, M[(a:jL] = N,),] € Z(U’) and, by

lemma 10.2, M[(zfﬂ = N;),] € Z(U). O

— Let By IH, M[(z}’ := N;),] €

— Let

and V1< k <n, Ny € I(e;Uy) =

Proof (Of lemma 13).

L. Let y € Vo and X = {M € M? / M >} 29N;...Ny, where k > 0 and
z € V) or M >y y?}. X is (-saturated and Vo € V;,N2 C X C M©.
Take a (-interpretation Z such that Z(a) = X. If M € [Idy]g, then M is
closed and M € X ~ X. Since y© € X and M o y© then My? € X and
My© > 29N;...Ni, where k > 0 and = € V; or My® > y©. Since M is
closed and 29 # y©, by lemma 1.2, My® % y©. Hence, by lemma 20.4,
M >% \y?.y© and, by lemma 1, M € M?.

Conversely, let M € M@ such that M is closed and M >3 \y®.y?. Let T be an
B-interpretation and N € Z(a) such that Mo N. By lemma 10.1b, N € M©,
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so MN € M?. Since Z(a) is f-saturated and MN >3 N, MN € Z(a) and
hence M € Z(a) ~» Z(a). Hence, M € [Idy]s.

. By lemma 12 and lemma 9, [Id}]g = [e1¢ — €1alg = [e1(a — a)]g = [Id1] =
[a — al}' = [Ido] " By 1., [Ido] ' = {M € MWD | M % Ay .y},
cLety € Vo, X = {M € M? /| M >} y? or M > 29 Ny...Ny, where k > 0
and x € V1} and ¥ = {M € M@ / M >} y9y? or M > x9Ny...N, or
M > y@(29N;y...Ny) where k > 0 and = € V1}. X, Y are [-saturated
and Vz € V|,N2 C X,Y C M9, Let Z be a [(-interpretation such that
Z(a) = X and Z(b) = Y. If M € [D]s, then M is closed (hence M ¢ y?) and
Me(XN(X~Y))~ Y. Sincey? € ¥ and y? € X ~ YV, y? € XN (X ~
Y) and My® € Y. Since 2° # y?, by lemma 1.2, My? >} y9y°. Hence, by
lemma 20.4, M >} \y©.y?y® and, by lemma 1, d(M) = @ and M € M?.
Conversely, let M € M? such that M is closed and M > A\y©.y“y®. Let
T be an S-interpretation and N € Z(a M (a — b)) = Z(a) N (Z(a) ~ Z(b))
such that M o N. By lemma 10.1b and lemma 18.1, N € M@ and NoN. So
NN,MN € M@. Since Z(b) is f-saturated, NN € Z(b) and MN >} NN,
we have MN € Z(b) and hence M € Z(a T (a — b)) ~» Z(b). Therefore,
M e [D}g

. Let f,y € Vo and take X = {M € M? /| M > (f9)"(29Ny...Ny) or
M > (f9)"y? where k,n > 0 and x € V1 }. X is (-saturated and Vr €
Vi,N2 C X C M@. Let T be a (-interpretation such that Z(a) = X.
If M € [Nato)g, then M is closed and M € (X ~ X) ~ (X ~ X).
We have f¢ € X ~ X, y? € X and o{M, f@,y9} then M f9y? € X
and M f@y? 5 (f9)" (9 Ni...Ny) or M f9y? >3 (f@)"y® where n > 0
and x € Vi. Since M is closed and {2} N {y?, f¢} = 0, by lemma 1.2,
M f@y? >3 (f9)"y® where n > 1. Hence, by lemma 20.4, M >5 A f?.f? or
M >3 MO My2.(f9)"y? where n > 1. Moreover, by lemma 1, d(M) = ©
and M € M?.

Conversely, let M € M@ such that M is closed and M >3 Af€.f© or
M >5 Af9 M2 (f9)"y? where n > 1. Let Z be an [-interpretation, N €
Z(a — a) = Z(a) ~ Z(a) and N’ € Z(a) such that o{M,N,N'}. By
lemma 10.1b, NN’ € M, so MNN’,(N)"N' € M?, where m > 0. We
show, by induction on m > 0, that (N)"™ N’ € Z(a). Since MNN'>%(N)™ N’
where m > 0 and (N)™N’ € Z(a) which is S-saturated, then MNN' € Z(a).
Hence, M € (Z(a) ~» Z(a)) — (Z(a) ~ Z(a)) and M € [Naty)g.

. By lemma 12, [Nat1] = [e1Nato] = [Nato]*!. By 4., [Nati] = [Nate]™ =
{M e MO My AfO FO or My A fO Ay (F0)y 1) where n > 1}.
. Let f,y € Vo and take X = {M € M% | M >% 2@P)..P, or M >
fo(29Q1...Qp) or M >3 y@ or M > 2y where I,n > 0 and d(Q;) =
(1)}. X is B-saturated and Vz € Vi,N2 C X C M. Let Z be a (-
interpretation such that Z(a) = X. If M € [Natg]s, then M is closed and
M€ (Xt~ X) ~ (X~ X). Let N € X! such that N o f©. We have
Ny zWPH L P or N g y®, then fON b3 fO(WPH P e X
or N > foyM e X, thus f@ € X! ~» X. We have f@ € XT! ~ X,
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yM € X+ and o{M, f2,yM}, then M f2yM) € X. Since M is closed and
{22, 2MY N {yM, f21 = (), by lemma 1.2, M fOy1) > 2y, Hence, by
lemma 20.4, M>5Af9. f€ or MD};)\f@.)\y(l).f®y(1). Moreover, by lemma 1,
d(M) = and M € M.

Conversely, let M € M@ such M is closed and M >3 Af?9.f9 or M >
MOy fOyM) Let T be an B-interpretation, N € Z(é1a — a) = Z(a)t! ~
Z(a) and N’ € Z(a)™ where o{M, N, N'}. By lemma 10.1b, N € M@ and
N € MY so MNN',NN' € M?. Since MNN't>% NN', NN’ € I(a) and
Z(a) is (-saturated, then MNN' € Z(a). Hence, M € (Z(a)™ ~ Z(a)) —
(Z(a)™ ~ Z(a)) and M € [Nat). O



